(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 8876383, 163398] NotebookOptionsPosition[ 8806210, 162180] NotebookOutlinePosition[ 8806815, 162203] CellTagsIndexPosition[ 8806737, 162198] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Dodecahedral Graph", "Title",ExpressionUUID->"a719feb7-6218-48af-b5e8-21f1220eac5f"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"f72a88d6-f7e7-4f57-b144-1a8e1bc4e1bd"], Cell["\<\ Eric W. Weisstein June 21, 2023\ \>", "Text",ExpressionUUID->"fa961551-c271-4c7b-83ef-08279d067795"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/GraphTheory/\ DodecahedralGraph.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/GraphTheory/DodecahedralGraph.\ nb"], None}], "." }], "Text",ExpressionUUID->"24ffcfd0-f681-421a-a813-4fc79abacb4a"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/DodecahedralGraph.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/DodecahedralGraph.html"], None}], "." }], "Text",ExpressionUUID->"1dfde49c-c2c1-49b9-842c-06de76e1f4f0"], Cell["\<\ \[Copyright]2023 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"c3418fa4-d105-40ff-98dc-b8aed831e346"] }, Open ]], Cell[CellGroupData[{ Cell["Embeddings", "Section",ExpressionUUID->"24231fdd-d4bd-490f-8510-54130413d4a0"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Graphs`"}]], "Input", InitializationCell->True, CellLabel->"In[11]:=",ExpressionUUID->"6829a3f3-589f-4628-a602-7ee3267aef9c"], Cell[CellGroupData[{ Cell["Names", "Subsubsection",ExpressionUUID->"6485c1e4-179b-4603-9511-2debe3310c9a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[126]:=",ExpressionUUID->"3846e362-6f7f-476d-b901-8ef8f4f026a5"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel-> "Out[126]=",ExpressionUUID->"e1514d7b-c035-4b90-b0f4-437a572a6e75"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"c14a0012-a7bf-4d66-8056-562b63b5b5ad"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"ArcTransitive\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "6"}], "}"}]}], "}"}], ",", "\<\"Ct27\"\>", ",", RowBox[{"{", RowBox[{"\<\"CubicTransitive\"\>", ",", "27"}], "}"}], ",", "\<\"DodecahedralGraph\"\>", ",", "\<\"DodecahedronGraph\"\>", ",", RowBox[{"{", RowBox[{"\<\"EdgeTransitive\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "5"}], "}"}]}], "}"}], ",", "\<\"F020A\"\>", ",", "\<\"Foster020A\"\>", ",", RowBox[{"{", RowBox[{"\<\"Fullerene\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GeneralizedPetersen\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "2"}], "}"}]}], "}"}], ",", "\<\"Gp10,2\"\>", ",", "\<\"GP10,2\"\>", ",", "\<\"Gp8\"\>", ",", RowBox[{"{", RowBox[{"\<\"IGraph\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "1", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"IGraph\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "2", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"IGraph\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "3", ",", "4"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"IGraph\"\>", ",", RowBox[{"{", RowBox[{"10", ",", "4", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"VertexTransitive\"\>", ",", RowBox[{"{", RowBox[{"20", ",", "9"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"1694eadc-a4ab-4d53-a8fa-e0abfde9c8b0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Primary", "Subsubsection",ExpressionUUID->"fcf7cb8b-a55e-4b17-aeb5-698c2bb792b7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], "//", RowBox[{ RowBox[{"StyleGraphs", "[", RowBox[{"#", ",", RowBox[{"ImageSize", "->", "Small"}]}], "]"}], "&"}]}]], "Input", CellLabel-> "In[127]:=",ExpressionUUID->"1aede9d9-f9f7-4bd1-ae12-82d78b0f7984"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, { 16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, { 12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, { 17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, ImageSize -> Small, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483], DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483], DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483], DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483], DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483], DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483], DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483], DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483], DiskBox[19, 0.09709139882090483], DiskBox[20, 0.09709139882090483]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, ImageSize->Small]], "Output", CellLabel-> "Out[127]=",ExpressionUUID->"9702c973-6331-4ccd-ba39-1987c8b1c2dd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Construction from Read and Wilson", "Subsubsection",ExpressionUUID->"33041918-817b-423b-81bb-81828335e9a4"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJycvVfQLUlxhatrHu7jfdSDAgRCIJAAIbwdvEDIYQRCmMF7O3h7cAIGEN67 wQkPg/cwgPBeCCcQwnt57/dldcT645tvsvo/uieiz/537+rqqqzMlSuzqqvP c6u7X+92/+fP/MzP3Ov/+el/17vl/a5y2mm3fMD1/9+ffvm9u93rjre/221v c+273fu2t7/taZe51f/105M3+T9+5mdu89Pj//7p3//xH/9xyPGf//mfh3// 938/fPe73z1c//rXPzz0oQ89/MM//MN2fjpS9t/+7d8O//zP/7yVy/GP//iP h3/91389+i31/td//dfRNfne3/K9v+V7j/zO8tM9ez6fvDZt+ad/+qfDv/zL v2ztYFv6PUfum2vzd8r2urQ/f7d9bS/bke///d//vR1tf9uRuv7+7//+8Dd/ 8zfbZ46/+7u/O5JLj7a339uGlEs7cq737H16sO/9m7/n8DW8rr+zTOtifzxm HZf+3e+tp/1JXyr/nOP4T23tvVMPdcLtYft7jmPAtrSdvB/7kXZVzm1n78fD ep5rclRH2i7qZO9J3dzTaeoVdaSHbah9rF66z9P9et7trDzYd17L+1KOPs97 rfo36YDtyLaUg/o+ja3v2795WI97Pn+njre97W2H613veodPfOITR/e33U/9 op6w/hzVl2JQ+hL7JjbRXqpjbFvOfetb3zr8zu/8zuGBD3zghisp0/JsS68r Bv3t3/7thslpw6SHvpZ6y6Ny4Cft3zZTHWL/iq21nZxrGbaN9mlMbJ9Zhrbr caksarP9u74qMqrP4pF75mDbO4bts3HXNsR2FNdY/n/+53/Opsu1Y+O2MXHC zepN22zZVI6VuXWV96F/3Tt6H19Lm5nu4T5XBzhO9H3sO+3WvqY2xf65DuM6 +zP9zvGzXRhf2capnslXT76UMiSW874ng0vWJf7NceY4Vo/5fYXfHIPj/Bn7 kL9rZ9Uzj2PaGjz+zd/8zcPHPvaxs7WLtk3Z2S9M49d6qmu1f/pyypP1E3O+ /e1vH37rt37r8IAHPGDjdrU79rM213Ppb/C4vJC2av5AWyeHsE0RD1NXbZyY 2t9tL7U1c+XiSI7JRs1NyCsmHGfbIgPLq+OQ8xyP3Ct/14exXfR//aRN0n/b Xia+Y30y37Xtr3hHz9HPG5vySV/G3yxLnlvZvvs7cTviB/WEesWxqr8lz2Ws MvEAcrZeu/LLq1iFWFz8mrghx3LFZclXWO/EC1d8bvITK3zw+NgvTveyP7EP mHDfcYrbQzye/LZ9y8RBqYcZx9znLW95y+EGN7jB4dOf/vTZfEw+J92jrH2O +k1OFlsPBuQ7fSr7mM+UC14ES//6r//68Jd/+Zcbd7/f/e53+MEPfnD0ez7z e46f/OQnh7/6q7/a7lP7TJn+3pi91+R7yhR72saeK161HcSulCGm5ZN8M0fu 8cMf/vDonu17zrP95PDlpsVG4jdjjdo48wrN0TQn0b/bNtfD+KGY1XbnGpc3 RpvXT7zNHISc1dynOOkYwD5qws62f+XreM5tZl7JPp421XLsl+3S7a4+T/2q /ufvjgd9MttmGbZM+1gc730mX+Y8DPtlH2t/Y39fLKlsiS2M6+0DGcfwfpaL 78Xxnca4Omx59f693nk56pBjq8iNZSYeRD2n/61szHs5brQFyix9Sbk3vOEN h9///d8/fOYznzmbT7AtWCf6G32NZV9sLAbk+4THrftZz3rW4WlPe9rhj/7o jw7PeMYzDg972MMOl7zkJQ+//du/fXjyk598eN7znnd4znOes5XL96c85SmH 5z//+YcXvvCFh1e/+tWHN77xjYczzzzz8MpXvvLw2te+djte+tKXHs4444zD i170orOdT7mWf9WrXrUd+T2fqet1r3vddrz5zW8+vP3tbz86Iq9ck/PvfOc7 D+94xzu2enL+TW9603bk99e85jVbXbnXBz/4wa1crsln6v3oRz+65Yje8573 bD4xdX3gAx84vO9979uOj3zkI9vx/ve///Dud797i18++clPbtfk2nzPZ8rk XL7n+NM//dPD5z//+e3zs5/97Daun/vc5w6f+tSntr/z+fGPf3yrKz445/LZ c/k9R65NvTn3hS98YSuTer/0pS8d/vzP//zw5S9/+eh7/s79cv4rX/nKduRc jpz72te+dvjqV7+6/f3FL35x87Nf//rXt3P5zPmc++Y3v7nlqHr8xV/8xeHP /uzPtnukjpTJ+e985ztb2W984xvb9T2fI+cSV+Vvls9cxPe+973tM99zxG/m +P73v7/9Fp/fo+Xymd9//OMfH/n//P2jH/1o+2z5/N0j/KBl8nf5RY585/nG cvXTqZ++vOdzjrFAfyc+1R/Xx5MHER9qm6mz9yYnIKYS0+nPc03xqzyI/oF4 yVyZYy/6F8YTva7nWD/7Zs5BfGWsSb/B2GPKlRCTOA80+SPHxsRg4rrjCOJx 25y2BC9+4zd+Y7Nlc2IezjPYtxFfnSOufpTjM+Zi2692tasdrnCFKxyufvWr H65znescrnzlKx/Od77zHS584QsfrnGNaxx+/dd//XDNa15zO9Lm5Fmufe1r b+VSPt9z7SmnnHK41rWuteH4Va961cPlL3/57TPn8pnf+z315PO6173u4Xd/ 93e3+1zpSlfaPpMrSf469aTu/J02XOUqV9mub9krXvGK27l8T1vyPedzLn/n XNqQz7Qv/Ux7U2/+bn/zd8rks9eljstd7nLbubQ15dLe9CFHyuRom9POyCdy YVtzj/yeo+1KmXzP32lfPi972cseLnOZyxzJsDKq3Nqv1JfPtKv13eQmNzmc euqp2zX5Pf3LNfktsrvFLW6x/X7729/+cOtb3/pwm9vcZuMCOXL+0pe+9Hak vlx7u9vdbiuXz7QzbcvvN7/5zQ93uMMdtutve9vbbr/nmrQ7/jv3zHhGbimf 77k27bjlLW95+L3f+71Nz9rvlMtn5o5TZ37L9ak7R9p+97vf/XCXu9zlcOc7 33m7X+rJ/VJ/6o7u3OlOd9r6nfaddtpph3ve857b573uda/DXe961+36nMvf OfJ36rvRjW50uOlNb7r9fsc73vHoyG93u9vdNnnle2SSWDZtyzhHbje72c22 9v3BH/zBdq98VpdTPp/pV/qc33Kv/J16cv6GN7zhdu+0Ob/nyDjmuPGNb3wk //T3Vre61VYu59Ke9KFjmc/0P+3NbzmXMeI45VzrS9n2L/XkXD7Th/wW2UQe kXvOp2y+57d8j0zvcY97bLnM/N16cuR8rr///e+/rQVImcTY973vfbf67n3v ex8e/OAHb/NSOZfPcL9HPOIRhxMnTmzX5FzKPPKRjzy6Pufye8rltyc84Qkb d3zc4x63ccMnPelJh8c85jGHP/zDP9zOPfrRj97qfexjH7udz5Fy4ZrPfvaz D09/+tOPrstnOGbkEL3KfZ773OcenvjEJ27lUj5c9OUvf/nGMcNNc6TMC17w go1zhk++4hWv2MqE873+9a/fuGUwPnwxfDB/v+QlLzm8+MUv3jhq6nrZy162 8a76hfrO8LL4hfKud73rXRumZDw//OEPH3G+8L3wppTL9/DEXBsOl+vL9col w0/DI1NH+Oh73/vejYOeddZZ22d4aa7JtfkeDpvPlM+1+TvXhavme67L9/DW cOa0M/w2f7/1rW/d+G7+zu/9O5/5LXWnbK/vudwj5fJ3jvwd3h25RpYtl3rC wfOZOlKunLxHrsnvmRuI/DNO5ev5zLl8pkzGKOOWMhnHjE3jiZTPb6k/12Ss M74Zz5Tt2Od7dKLxS/7O9fn+zGc+c9O/xDTRnehdjpzPkXgovz31qU/d9Ds6 m8/oaPU0ZaLfp59++uHxj3/8pqMpn7/zW8o/6lGP2q7tZ8rHrmIPKRfbyG+1 pfz2kIc8ZLOz2Fu+P/zhD99sJ2XyW2w1n7ku9cRGYpMPetCDtuM+97nPZts5 cj51pEx+y3W1+RzBjNwr53K/XFNMKc7n9+J+8CXYlCPnikcpn7+Defkt32Mf wZ+0O3WmXDE8f9evpVx8YrA2uBsfGDzvJ/E4OB08z9/B4WB/8DvnkkMMnudc sD3ng/P5XszP7/3M7/ktdeba+JL4+JzL99wjfQx2517pS9oeXxLfEjmnz6mn /jA+KNwkMsjvuTZYkc+MW3xM+EbK9EjdkVful9/KWcpLymPStnzPZ+4fzlEO V78aOeSz4x/fVW6Xe6Wt9B89WjbjW38VGaa9OVefl/6nrRmbtinX5Yh8Um98 ZHll2h7+GBlnDCrbnMu14QntczhVjvQr/Q+HSVsTczb+aSxXbA5vzu8Zu+hz c5uMq/q9OWHmxrlWrLFEYx7HKuTsjRE639JrHC+1HY1J+lvzN627uWnmH5sv cszQtjBf3Hqa3+baI8/bMP/Tfkzz2VOujvGXc3Kcp/E8KOU7HfyNcZpzdsxB N37l9Y27nD/mJ+M439f5QudNnSv2Wjnn7VrXNPc6rXOg/BoPVl8at0/1Nlan zKqbnn9grtAyoV5yjoixfH+rrTC3Tbk0N8L1N4ztHRszf9l2t+4pD95cR8t3 /iX40COY0ZyP56k5p9/cSudXWk/nV9qW5m5ab/NR+UxOK5/JJTXH1VwV/05e q7mrlm2eLLmvfDanlXLJqzVH13xd83f57G/NvyW/lxxgz6dM8njJ6zVvlyP5 wuYOkx8Mb82Rv8Njm5PMueQiwzXiP8J3nWPuuOTIPYPH4R35nTbOOUTm/2mD 05zG9JvXYnXew3OirIM2Vf/huZzVfBFtzvmh1st5jGletFjOeXnaFDHOeEL8 bnzC+RLaBHFxWlfDHFj9ItfHcj6FWEIbtH/g3A9xseX6fco5EhvoM2n3bWfL 53rO27L9PcexbpnmdrlmkHNPzuVVflzLWB9LX+n5UeZP2dfiHcc/34tB7B/l 5HUuzpOy7p4jL5nWSXL9isfN+U/2wWPKPGgP+i7Kx2szOb9N7sU6PKfog3bI eunfOD7Uq8qBfzNvTr01t2z9lHv7Vl/Cc2wbeR3XyE3rOMgvyh2SC0m8Eayu /+tBmcWnJOZJPqaYxxw213Cwre0jsaM6uOKWXPPjde7WJ/fNa46cI/dvlNW0 /sf8kjZFH8H51Gmdk/Wm1/M+/c1z7Tzfe3h9Ktc2GoM550E/RV2wn1rJuP30 utC203KwvMgbJ7ykT5nWi7cer3MhRnqeqrJcrVEvD2Fc12s8Z0Sb89wM9cBY QP2hXXke3TrQuosljEMpH6/joV9xzMV1Ap7HMvab1/Q8x5ftZPuJx46RJ7th HOPnqlKuvtv2at7kmIp47PjdbXTszDijZcl12hbWQ7xwbGaZ2Q6Sn05eI3lg 6przAMHj5FKS/+OYd2wZt3EellzHelCfwHWX4cU9/DxCruNYs/6OE3MVuY76 SKwmzhDnjceUJW14krk5MZ/BYJ8dl1PP2T76Deqvcyr2c5S99Ya6Ty5Cn0bs 5pgRBykbrhkrx2T/Jjshh61vTz3E6wkLGT/0Hoy/J544xSKe8yY21L7Ny+hH nKvjvZwLIWa3rcQ6lqv8yS8cj7EtXh/a/neMGne1HmLaCje5bpSxKLm5821t s30oOStzd47XbHccn9pO6zVX6Rik/43vKSPGVMRXc0nqGmMy2lHHj3Kn7dKO aB/EMOIB8TjfM+eTXH3wOOU6BulXcjdpS+pPTiQ8OnMkXrtDrKed2SaYdyBf JS6QHxP3zL3JrRl3V9dWOQfH+45PjcHmiszzOXZne6d1r457a5OOe8zhnePg seIp9I3OC9L/V88mXCZ3mbCRbSX/Iqenb2fOsmNJX8E2Md/gZxYn7CROcj6g 7XKOrDrFteLMB1nuxGz6ndZTHGt+gvET8bj2TV10H3ptdcC/t4zzAs3ZcO2Z 67Uutj9T3pc8m/54mrPhb33mgHlh+8hiRWVO/aYNse/MV032RJ/P/BZzCeRu jm38TEMxns9M5Oh6R+eD2P7Jn0w+rLLK/fI98+mZ+2v+uHpMv1A8Dm5nTrpj Pq2TnPzj5Hf6N23ezxXSJhinMWapnjCWs/31etoI7aBjU9/tOMO8lmNAf7TS K3IjYwbnaqbYl77OsiIHJQ5SH4l/OSZsMYd2rmfKt7RexnfEHvNJcknicdtB nmb75X4fLO++8lmcruUlfpmHTmPT/ti/mRe0Pvo05iHIfYxDrMN2QRus7OsP mVdhHyqjYmnnz7hfCnWN9kd95LNU9NPED/sM9pV8jDjGe/aaCV8dNzKOIyat cqLUCeaK2+8+e0U9alvo/zlm9XN8dqz9Ig5Rn6bYzHyt5Vp3+5P1UFm3kbk9 4pb9a+YKw4+zjmfyoVNuxfpOO52wLLIvNza/pN47t0X+xnEnL55kbV0iZ5+4 C3m9x4++hXjt2JIHeQ59hK+l/IiXxlbf13kC8mWPHfV5ytUzn7byHfTF5ri0 YbbRPofX8vlG4g3jS44z9a+YwHtO/oeYTnmxXfyNcqtMOI7MRUy8PUfm+7NG wP6CdTGvxHinfoZ8rHZdjMhn1w70Hn4ufyX3+jI/b0eO7JwQbYg4QF9APWwd 3BegMmNc69z3ZMscT/on50sYlxA/6mOdP3M8wj7V11S/bOfUK97HPqD43lgi v2cdatbcZf3FFOs1/gp/ztr8rOdMm6JT/a0cvvGJ+2UbnPi8n99nfpe4m/O2 GeosY07qIa+ZchmMvyrTlrMfsY9jfz2X49wN9YR820fHcBWfs+2UsXn6pKOV S58bp8zIH+nXLS9jIW2UfsI4Zm7Y+pk78DPs1HX6zY7FHtfrPXKdORK5YNvH OIKcnZyKvJjP4ddvuA3cV4DP/bOffPaP8VJ1INd2vVdsr88O2o+QD9JvWD+Y 96f/4JwMdY4+mX6y7afedjy4PwLzurZL8hHqDe2K3Lt6QHxc4Q39aceSsRY5 MHWm58nxmS9YxbKOrx2nM76oHKh/eT4g66zDj8nzGx+07XkmJOuYw487ZuTJ rL82w/wXOSXxddpjxWsbGKev5meJgdW3jmF+q68gh2VMU5zu/Tgfzz5QR60j 1EfnbIhH9CNeQ7E6z34x/5ljhbmOKdn3tr+caoXB9o/kKxMemncxv9Qxs/9K eepU7dd6Tt+c81znR/uvDVUGxt7aEvOFnAszn7PNVT4p15wieSjX57bu3Ltl qy/F5LaP81GVGfsVDC6md90vY4k+C05scRxrWTIXQX/JuTzzlpUf6z0amxCz mU/mOLVc728/xViHsmlbWxf1htfVZ1afGKd6HXQO5nLz2TH0HANtlDGjbZft oLzIq8l/g8fJQ+TZuZTrGmzmylIu64/Do/N8FP1cfyePyLXku5xzYyzGnLHz FOTNxBBikWNDxtqc46qfIW7af1Qe01yZ87Sc1yNvnvg0+UvHv+NGf8SciP0r OSvxuHjC2NVzcvbXXudXOdLn8RkTxyy9hr6JukA9K/euXLt+gmNH/WUutPbD dk/rEb3eibZOHkWOS/+U89F38s3K22uweLSdziO237Xr1FesL8+qDdBmPB9X uRHbeA/2tb6gdbBOciVyCcuuZdqGyt/6Zl/lWJ8clPyX/JLznsZbxhW1ySnP R99BXCdeM1bgODW/Q+7LNlR3iof0LeR1U/xuuZp7c40MZdc6sv44zxTmOeXm tmpH1aFcl/VueX4wz4izj8010Ud2HLmnYPU39XKeYrIvrjWb9lBfxdQdP+KW +SF5Ytqa/tIGyQ29bom5Pd6v2NQ+51rG1+aKvU/xzm1n/obzOSt+TGxs/4yv 1BuvX6sPbfv5LA7XIbZf1HvGJuRi9nXkssUZyoz7NDo35Hhowsj2p3pJu+R8 f/WPMTxtk3kkx2/2ZcwLMB9Fvs0+1OapA+1L5UoO2Lxg8hSVNeNv2nrbTT9B TDVWOA9BmZsX7OXCyQu511F5WvWZcRRxg7na9tl5L+Z/qqv06x0D5lrI+6hT 7VPHz3Gs9ZbxwrQOh1jBOfYp90996DiV25ezZO+BPDedPSVyPa+pfqeuPAeY dRidz6uON25ynpAcuXhQORPraut8/sMHbc65MOb+idPOMRJLve6CnInXmG92 /ByXtCz9BeXPfBSxj77HeWv6stqZ8dj5wGI78xsTt6OOuk32fRwXxgi12/at tsBYo/Jqn+gHHN85J09McNuJj85vFfMYtxVvmZcxrjK/QzumzZEvF8e9tq32 S8xlfox47PEolhtfyn+pk9VH7jfn+II5H/Nic422sbnqcsSWpx9gbsnYxLwH 7Y0HY4bWyzy8MZxxvec6WJf1xjlvYml1hbmN6obzfpwH6HhPnI86YsxiPfRV zFml3uwBk3xF9vvpdcSv6mrwOPt2BI/bLus970k84FgX/+hTyD2I0+wT9bby oh7Zr9O+aSP1E4y9mVMjLjoXSt22jjKnRCyin+U52nltkeU5tvQF5ByOB/ys yoT7zjWT47AeXkcspf9Z8RfHoM5LOK7g+NGWKdM9HCamM04zPnX8iZHk++R5 jFOoh+SAxRDmwY2pxenmMciHHI+ljNfpeR6J5fN7czO9V/vD57QnO7Isa1u5 T/PQxUbrzJRnnsbRWF3ZOZaq7nBu0Lk/xvqUQ7GW9yL2s8yKd5tLOrZlG+lL ySN4v+qCc+/maM7t5Lfw4+w5lD3VmKskR86RfTSyV1H277KemDNxrJg3N56Q 4/fwc5LtEzktZTXdm1yn+F+MIM5RLtWp9p3xsstQ1szN2W8zn1Bbrc6Re5HT EhMYw5O3U8/I3Ry703ewLraPcqz8J1/INcjMmxXTPH/DWIxYQs7jWMTtmvSc seDE+ZnTpC6yHc5X1y4b2xuniFeUL8eX+fGJixU7u0+XY5f65MquOlc5VmfM b9p26nvjgeL0hMfM2/nZcfp++l2ODeU25QJqE7Q3tnvKbTGfyTwbc0C0Nfqf nOf4sK+VEzkwc+XUE57jfdhXcmPHHH6+kLKmn2J+hvqQfRSzbqL5itoI/Vnq yh5FKZe9C5kft88mTrVv3fuJvp/5U+aIm7tgrEGuxVw/+0vd7FgzH1dZ2m8y b0b509c61qPf8zg7h+u8dHWRPpn5hSln2bFk/eaX9Gm8v/Ge+TrH1dQrYjLx mJjMtpB/MD9DTmMOO7WH48dYZsIU8z3nLIopE8aXNzvudtxp2+61nEcq/7fe F0MpI3MYx7OM26tbxYmUYbxU3GWMWh7etYxTTEBb5VizHYx9aV/OM/c53nKd yp9+ipyqOVA+U9F6OAdYvXD+1XE38djxHf1m8wIt2/GrzypW8nk56zLXkJBP el0Y/+ZcOMetescYMuWzf0XyENmvmPM+tu/gcfb1zPqK1mlfxpwvOR39D/l+ rykGO5dMvuPcjfm1MYh+mrboNWw+HOfzHOUx5csYU5D/kSdUtyc/MPko+lfX zXy5c92Oh+17zE2NvR4Xy5pxA/OnU06WOtX+s/1tL3M65LKTj2AehXJyzEN5 UO7EM+YqGE8QR8x7phiDcTWfmyb3Iicxp+1zHHznWfPUmddrfc0b8x7kGOVA xDv60CmPzDHgWtaOT/MYxBJiWvHLPIg8kxzGa9eYk2YszbL0O8xBESdpy5Wt 21NfzGefOU5e47LCY9qo81qOfWgz7St1oZiYfEXWV2QPztRp/9Mj+30mr5G9 xdvOjiv3AOK7iO2niE30Lbw+h31c9cw8zvKY8p7EggnrXNc0l2Wc8m/O2U7c lWPjw5hjWZqr8X6uixjXet2+iR+xz/4+4TL9rflj7Yv20XbUZvew0n7Mvt5c xGvxnHfmvRknTzki9pt1WF+sWz3HeRS/46lxIufnik99xqPrm+rfiwVez0yu R+5ZrGZd9E2WC+dSiMfkx8WQtL37Cbc9WfvBd2E6juU4tx3Mqfj9kc4vEbcq l/aR92VukblC5gSYHynupg7Gq72++RfHbvSjU+xc2yB3Y46ntpk2TfqQ9WvZ 0z7zeamvfaOup/6uP87+bql74sSTHRMXnQuZ9nQztq/8DnGp9Rk3mHMx3kzH dP9V3yac5pqIKZY2pjKemfwCsXDVntV103f7WLaB+aKOm8ehfZpksfJlxYl8 Uh9W/IH4N/mDKZ7y75S3z9kH5qgtG+OnsZ+Oib8711F9dOzpXNAUpzD3z1iQ uV/ahP9e6f10LWMs1u+4kHMh5GbmXuwf82aev3bMVx/tefFyec8hM8fNWIS5 H+bDOY/r+QzG2IznOD9lHGs/uS9lsdh5J+b3vZ45+Jr9NvMuzepMdZNjlndT Zt/6zOelLbY926jnYuoTm7smjuzhYPWF9j1x4QlXjdHHHcafFS9bcWb/Vhvy b8VG4vHqemPTVHbiuFM7J5ufMG7lg1h2apM55uSL3KfVcdwYOH5Y+TG2Y6Uz xC3XMcUG7veExx4D35tymXw6ZWB8Z2yz8g/Efv690qNJ746LO4tJjvF8va8l j1rdj/0oPyfmu54pZ8c4foovmQMsBjOmXcm+91npLPkg122Qe9OXEN/z/rPg cfanoB/2uGV9Rd4DlfLE4xVeOWfYWMb58AmPV7pZHGOfjWt7/HYPZ467xr9Z f5xnnDgQ8XhqT+udbH0Puz0OtuMJa3jPqY/GA9+HmGxdZBuZg62+W78mOUw4 MOHWZC8rTJ/6T7unrZIrsB29znt000esZNnxPQ4D3Y/KzX1knXuYSKxivebn Lm8uMPmUCQcmO5t8s213de3KjvzJfjpn52tZxvNRx/nH1eG212dxPSVzweTe zUlk/+O85zDvB+nY0156r+zvlnxF1iv32hVvIH7kk1zfa+F5nZ8Lcb3H5RNs A7zHcTxnxc33cGPSTdrIFHtP/Z7aMuHuZLPH4fGK901tnHBxJZsJoz1G9ikr bF/hJPVoahdt7WT8FHGTbSwHm+Y1V+Oyhx+TLlo33F76rY6L8xseL+Z/2F+e 83h7Ljb1ezwn7Jyw0Pda2QLrb38so5X+Oo/VNk12MenYyj56j+LiKu7ek8Nk T8ZAcmLOV5DLc+1K3r+U5/Oyn5DrpP/vfvRZH8e8UMeDnMKYSj1zLDDp+3FY aJmu/CzHivZ3srhLW7ee2DeufEHrcazlsbaN+ZjwYaX7/n2F4VM/VvXbd6x0 d8LkPdxa4egeHlPvprHnfacxnO45xbSO8VcYMMnFMluNfcsQo93mVd0T55va Tw7stUKWt693DnqyW/+9wriTsefV+BS32HbrH+/vNRDMu6/sbxojjj9z6Lxu T6e47njKkTOf0fm8rHfLu1J7T/vvfA8/zj5wxWPnA9v3CSdOFl/oAyY7Mm8k ruzZrc/v6fm0VmTKQ6zaTZ02FhIjjON7vGyFNdM8117+eyUHY+iUi9izlamN x+V3VrlZ/822HCebSTcmXKytGK9Wh3VyVedUxjg52cC0LmkP051T6T3c3j37 m2TlsdrjyXs64fPGzGnMT2aeh/L0moapn1PZFa4chy2rPky2SR2LzDrPyPlA zkfyWaWnPOUp23ujw4+NH713vudd1te+9rWP1ruZR0+2vuoj6/3/4zcnuXIc qrOTH9/T9T0bnuzoOIzrOa/lq4/f02fHxhPGmfPn33Fx8l59e/3J354jojyO w8pJvhNmWfaM4+n/p7EnZzEP5ByO87DU95WPsd6t9GPC46nsSh9tg1M7zauJ HdPczyqn7nL0D1Peifyaa3PMMVf1rs7v2ad/n3TK48eDPHllFx4f6knr5hqh 6Rr20fkl5iW4LxHXcYcrp77ut/nZz352tI2UyffkK7L+OOsr3Mc9O5z63ONk ckkna7fT94lz8r7Up4nj8JzjFuMB9eJk/O+Eve73lF84Gf+14jO2c/bNbd4b 0z17mTjchDd7vmLyRyv9YWw84eBkK3s+Yo/Hkfes1it4/Phspcvv4fseP5j6 NZWzPIgRx+Gi+2mbsL5Tx2yjq3EmxtP3rHjb5MsmmU3rHyYs2sOqSd+oU453 9uqirDiHSM5QmWW9W96Ll/3mraOUYZ4HCT9uvmI1jivexfIuM/3tHGD7PuUM V3J3PtC27fo5plyDOdl0vu/FOMbb/00eYeUTVoe51LTOdZU7XsUSllPbMY3Z hMfW2cm3TcdKTtOYsb6VT2G/Vrn5XsvYdspJrex0bxzdtpY/jp8fVy/56apN U0wx4aHLTPrj3A7HYWrfNH57voNlp3h78gG0XfPzlX/n35N+7fmn4+zR9VDG e7kx1hu+2/wx15pRX/KZ/d3Cj5/85CefI1dP2Z1MHHwcHtN+2hbmwM01iPGr fq50Y0+GE//Z46gTNhoDJzs3zrj/k5yMJ8Thlb6cbI7BuNBryatWeDxhA/XR PmTVVrfvOB65wvCpn86TT5jZv6f5BPZl8gPTWPrcJB+vvyI+TlhI+3CedDWO e2O1yovwd2Ji9ckYuTomXZuwem+OhFyp+ki7cpuNOczpOd9r/TsZbDsZW5rG 3b6j4/yYxzxm471cX8G2VM7B6+Q1st6t+WOOvXF0wtxV/nOVr9rDrRXmH7d2 YmWTvn6Po9hXGven85Pu2bevsGZPFiw71TPZi3OA1pEVnkxlVnZl++EzQCt/ OV1vfNyTo/1p62UMMMmUbTR3N/fy2ji3t/G3n6U+Wf1gmx2j0Tc6RzPJZS/X NWHunnwmPTeWFx/tg9le81hjjvkIfc7kI6bxnmzV/Kj+K2XqCydZ+NmRqQ8r vd2zD9tsjvQ183lZNxG8dV6V12Y/oe5fwb3tVv5gwsuTxVDWw+/TWgTzgT0c tRwoC8trpeOr39jmyW58OCa0nUy5u0nPJrxlm7g2YIo9j4tnKfcJ+yYf5bGi rVQmU0xcnVyN3TQWvn7lH1d8b7JTP+vltYpcP8qYgWW8t8heLDBhKOuiXls/ pnGzzCwTt6VlpjWZHHfyYdscYwbjH+VITJlw17prPfJaOst00gHrvceVOn0y x8lijGVj27OvTJvyvF32NU5+ePJzLRs8znN83b+CsZVtZfIJE+4ay/Z0a8J6 jwfxvWsZJjvm2JKPGMNW9rLHO1YYbjuauNiEL7x+snv3fY/3EB/s940f7N+q T3t43Gunus2Xracr7CV/dN/6G3njHk57LCoHrt33Hlau1zH6pM+rsVzJkOdW dVS3V/5mqsftos88DnMs69Xcits9zWHs2faEwy7DvA79odvIsfLcnu2R/V35 q4kLrsbb+LuyLV6Tv9On008//QiPvY6F5TPfl/02i8cr2a4wd5VPLwYZLya8 sy736FqSxh/W70k3j9NbY7Yxjf75OB/S36pLtXdyq8kGJh9HeVHPV7ZjTOKe YtzHapLVZOcr3uFxal8rq44R1793vKzXe8dxmGO8Ndfl81LeV857LdLuO/a0 kWkNtXMJK5nt6cyeT6LNUO72tSv/OLXL8ZjHY8qzTrbUMed+p9R34wv1mevL zL8qV+75w32JuLd5r3dcOI2FfTnlYZ+y50N7jZ97nOKj6k2u7TXUl6yXuMlN brLN17F+61jyGclXhE9zX3eOyXT9hNNTjt5YRxnYj034aD9izr2K023LxiLy OY6R5zIoC7afmEVM8D4nE+ZxvDp+vH+x1TZlufFZfsbc3Dtr4uq0PdqisaXX cn2b+8xnQtn3Cav2+NPks/x75WYO29+9JyP3MW47+7wUsY04Y8yzPKjL1CHb 32TXloF5iLHBYzbh7MRV3RbXQRmv9HPi5bw39Yz7bZvPTdjX+3OfNPpS7gHX PRzsh9x2cvtJZtYjrlec+s4x9d6xjD07ppWJ18a33+G72Zci/JgyqU21HX1/ Xp7nK/4biye8tF3t8egpZzdxxCluMI56P6O2l3JzHyadI+ehLzWWGMtazuPl Z9gnG5uw3HbesaJ+OR/GfQyNgfm73MLvwLGfmOTC+7M9K5unrnLvX2OeZcl7 cQ/9xhbTWHDM6TsnrJjeJcC9IKlDxG76N8cXtJ22g/povO5YGY9s+xMHXmEo 7WnlI7iHJWVT32//Qr2c2jDhm+OxydcQb8wLUkeu9/usaVfc95q+z1y/dZE3 TH6FfW7c1Pqpy86b9LvfM1GdJ3fy2LWOrHcLHuf5u2kdWT/zvHTWKed9IpWB 9bE24/mayVfZ73Ps3AbK1M+CTtyCmGObbx1cW+HY2pzSvIVcmuNnPkPd5RjV 3rlfoePpCRf9yfqNn7RzyoDnvceT9WRV54p7Ub8pg9bVfRP9bjnXQRlSvzgG boPx1nZt7O6YcL9D8ubuJU87pyzZL+dSKS+P1+T3azdd10/Zk1+b36yeM5ry b9bNCZ95eA97+wX+Nu2lVn9Ufed7Ack12y76UOt28ZjvZWK77SOtB8ai1diY E9QHOx7iPAPfx8D2ek9ttmfCiY55+G720Wy+gvpNOX3xi1/c8hV5n4jfhVMd pc9gDEh7mWycXIU4NWEusYv+cJVbaqxkjLMu+n0V/U4fzL7xHT2MZxyTMF53 zrLXtDzbTf/K/tI3k2+6fGXMnBZtiHpjvsF7VceNR8agttE+kdhTPPb7HPxO J44P28v4l3ZpLJ7sy3yI7woh5+r49llW6k37T7tnHOB4g3bKuKf94jvMaPfG O9o/dW/iGav5CGMudWmSPWMu6h+5nnk//S51nXvt+l4+6I/Z975jhe8soU6s /ArjKuLDFFNOXMb70xuPyRVsq8ZHtrfXF5/L3bO/W/bbTH7YcQnbl/XJWV/R 9ce+7woTnS90nMp7WlYTR6gu1Gb4/i3u1eHv1HvGFcSpjh11vuWYu/J8EN9R Vn9dDkgb9XtwOD6e0/e7CBz7eB6K2EE+59iJmNO28T00fK6e9sP6jN+TXTle oWwpP+cLrK+T/dgPkcM5dp54c23NciRH7nhWB+hLKpfqs/dUpG5y31tzh+ld QuyzOXvL059N/Z7y/RxD38/5TPab7aFtMT7mGPt9d9wvp3JzrM4YyLytNs93 xFKfiR/0M7XLtqO2QXu1zdGndMyP00/68eqoc9stN+GbeXeeB8l7P77yla+c I8Yh5gavk9d49rOffY68pA9zDb5Ljf7C+kSbpf3xfqy7/fU7XahLU3naDGVN vLMcV+/h6nj2nTH1c54b6vWcv6d9uu32Gc5nMJaonNu2Yr3n0Owvp3eOej6L /Jc6bB7uOJlzNNZjvmeTcYdzKN5vhTrtnAftgTrMXKrxdZrTo2+ffBh/Yw6m B98bzHe/VdfKDTwO01yVuUDbzPdvE8MY2xKPiXGUITGdPpT2Qky1rlH+LWus N4ZPfHTV3uYMpvefMp7guJrbuA3OT1Wm9DHFIZelHk/j1e/Ee45z5dM8huOY 3Dvr3a53vett+WPn/xhjZb/6q1/96ofHPvaxR76qOEteQFttu1uuvo5Y5ziJ 8QGxyrG+uRN1l++xJne3vKjj9mHmKny/Cv0D8cXc3LZFm67Pppxqx8QGtsU8 n/U7Pqnt2VeRd1OWtE/aPX2j7YDcxlzFsXnHnlhFTKYOtR35XiyoT2rdlGvL G/+JKzzPWGuSBWXGa/obczjWQbbdOG+/SJ0oXrMtfd8a57FoG6s42+fJxWhz jldoL20T4y76COqG4xlyqa4h7LvsGBcSZ1Z5JccgfS+s33vHMWm5vsvVOm8M mjCp95x8M/0Z5Vm8NH7Q71LvO4Yds9QVfpx8RdZX0F86j5N8xVWvetUNvyvj +hTem3Ecx6n9cHw8xUnUKXIZytJxPG2D9dIuncPo+8KNC8RL+1hyAsf+Uxzt 3BGxju+1Jb+a+CHt2vbce/C85WFds/9uf8hjLWPWMcWcxucpv+D3wJvzTnye 7TAHmsbZZRnfs+/M85BrkYMSp9oH4j25IrGZ/aEuTPpL7kT/R+7d+ondzJGu 8GzCZnKXvl+T60nID5xDN0fn92INc5PFCo67Y6u9XL95PeVRfWIO0HGz9Yy2 zXGkjThXwviePt79IAdi/OCYjByVefN8Zr1b8hV5/o42RFtLPZ///Oc3PM78 X+XA8aN9GyN7TDG/8+H2N9R7c0/jEfFv4krmvuQiPEebcbyT75R/+0XObDw3 R/e7DJnHME5T39j/KRahTpVbkluRX5pP066ZAyfWELecn6DtWI94v/STsRXx iO+7JdZYrlM+ZepX8Yb4PPldv5eedm8sZK6CsbTjo353rEafS59gvKL9kKu2 LO3Z9kO/2PPUwdSR99wzl9J3HDcO4D69HfP8zncke47E4zLlcygLjvHEkZuv sH2Tf6QdP/nJT476Uh/hGMdybDvJ1Rj/2j7oP8kPicnmQJQ/bZLYyTKxpexH 0f2EajuM6dq2vO/0ile84tH6Y8Yw5oS2JXK72GJ0wTnU9p9jRb9FfuG1iJRH 22LsoR1OMaTjbcrK48vxsq4Z3x1jkgsRB61vzgNR3pYBMbj9cb6ZPpu+v+2c 8qvEmPoI5ou9RoZcwc+acQ6t+RReR39Gjm++urq2upbzeZb0IQ95yOGSl7zk 4eIXv/jh1FNPPbz1rW89W2zB3ATxujIwvjBuYDw+8V7nHYjfjFub9+O73y0D jnd55pSL9dyQ88psY+pIzP/DH/5wO7pugVhOf77KYzC2sKxqiz/+8Y8P3//+ 97fP5uKIDzysO1yvQZnQbzq24Lgak9p+YmX5B+9BnaW/5Xy8bZ45B+YPnCui TlBW9QknTpw43PCGN9z4MdeB0z5y/ac//enDKaeccsSPiW/Ol9i22w7yPeMs ObBzAuTdtB1iruMRY525ETmScznOMzgf6H6RQxkXqQ/EUeIA/S3Hq7rvWKxy 6jnmzWir9vH9rX+3jTxv7DHPsK1Pa1upz9RD5nQYF7EMx5f+s3Lj4Tgy9X3s Yx873PrWtz5c6lKXOpznPOc5/MIv/MLhghe84PaOyJe85CVn0zXmpqlTzDV0 vMkZyU3tkx0TGSOZtyU3Js5Sr1b5qraXvqky4PoE8szWWU4UTM4n8xW0o8Yy tNP85jxPsZvnKueUzT16H2PhxIvpy4mh7p95PG2Of5OXtbwx1LGi18xX9p2j jVzom6nH9k/MFdGvUN97r+Bx3tcU/tv6PA+bI79nPi/PVxtvzAVXeTy2s3Wb Czq3Rlk55nSug7g58VVyauKrfctxGOt8DO2R9jXprOMq2l7b0t9SLnrM3If1 g3pkn0HuwGuKtZSVYy+OIX1bbdwY47wRx8OxutdLUPZtA318sYG44big93rQ gx50OO95z3u40IUudLjoRS96uMhFLrIdweXEgXnPTdvCHBH1gLFr29nYrlyy tkYsYr6fuj3xkvKGYl65I3Wx/NlrGSs3ch7nY4tBnpthfox+wPrUcm0Xzzdn wbkOr3/ovdqHrlVznO4cMvcFKB6XOxLLeY4+0H6csUx9CfP0zGNOcRI5kdfw TfXTBms3tidiEq9Pfx7wgAds+xpnPRttj/iSc8Hjq13takf8mJzKfTMGE+Oq A+SDbT/HmePaezD2dq6B4+9cK7lGPh0D0yYZAxmziWeMf2qnzcOwH9V96j/r WNlzjwm7WafLO6/CmIR5v+kc9ZC5Vd7fXCC/p+/N4VHXnduszOmT7MMoR451 66Vc2v/yrm9961sbtzj3uc99uPCFL3w4//nPvx3B5nDlc53rXIcXvOAFZxtz y9xxKGXenCs5cuXbc+bK1PGe533YBva1R8fZeZDKdzWnSt5MXlu5lR9n3PI3 1yA692KOQvnYn9KPWjeqR80NFlfpg6qD5FjG0UkWnmtwPEY8JedjroD6OMmh 92e+nzhkbkmf3Lq8roh4XTzOcx7JVzCPyTVtuS7zede5znWOns+rDTjn6JyN 8wXtS8s4JuVchfP3q76SdxRHbRf1Bcy5OgdLruj8ADmNx5z34DljpW2+96je 8plS6hDjBca55r3UM56zvyFH4tw343/mLMhpmMNhfsjrtcwZGrcSb+2DiNfF i7aLeFhZEV9ybdbQhzMEe8ONg8PnO9/5tiP8+Gd/9mc3/W2/2Q7Oa1UnyPHp n+jDOBbO8frIb+nTj370oyMMZCxFGVCnHMNwXoV5pokbU2f6yZx129F2Vbb1 O+Y9HZ+Uzyd9VvtYf0tubBlNc83ELWIybY/+i8/8OQ4wBpDDF2+ZVzLOTnjS tjJeY33M9TGmN0baP9fm8/f97ne/w7Wuda1tDqRrKXKQC6Se/J51GM985jOP ZFo5Ns7wfKHzPR3PcjHb9fTsWuVWeRNrPGdFrHZMSn/ka8jz68c5v9bxIq8j d/HcZG3W8wwdC+Jm+90cG/0BeXnbSFwnn2DexL6a8QttlLysMjOv6nmvn2q+ mvP9tAXW5XLtS32COTjbVvlxDas5Rr9/73vfO9zsZjc7XOACF9hyxr/8y798 +JVf+ZXDL/3SL22YnPOve93rzoZPbpvjf64XYcxJn0Zf5NiDPqe4R91wOeJ7 yxf72D7GK+RRHB/neei/2gZylZ4vVk/coWPBOLQxQnW4PI73Iz+uL6y+M8/V 9uRc8xWOY8w50lfPYxQryAHb3raL/o1xCfGe5egznPfgvKRzBcwD0v7aFnKn zEMnr5b3S5fPpLz9V/IZWaec5/PantrctI+J53vJya33jtvpi4wPtYP8zjmB YhXz7LXVziUY54kNxZHq4TS/R58x+dO2h5hM3+mcCrG+7fb8NDGZWE4dqYzo xxnn1f9Oax3o/7xugb7N9s6cBseU3K3XlAMUezk2zrPThhyfEqfKzSrP1JkY 71a3utWWLw4O5zOYXJ582cte9vDhD3946yPbzXxgx4mxAGVDXey1jF+MbcZm +hFiRX/jteWsifd5Xe1uenaCawboZ5hzmPLmtHWOK3GHHMQY7bilcyXpQ3W7 eND4mn7cczHkTs7b2Dbz6b2SyFGMr+b9zLeQMzm/OHH12o/XpRFXiMmMt+gn ag8PfvCDt/UV3d/NuY6O0+c+97lt/XHWx5Hjcvw9X+pnNdkfxlicP2S+pffm vF1/67X2W8We4gnzLm0vf6v/Y/zAPLpzpcRXcti2x3EXf28d5izV3cYi1U3y ROZ3yNs5j1P8pe0yZ0PdoK4yn0+/TjlUl8gZi4XMqTqXRowih+79bWeMHYkX Huf2J/3O9S960YsOV7nKVbbjtre97bY2Mxic3EUwOXsTZj46n+EUwbhcX67G 2Jf99HMvtDWPMeMd58OLVc7TEo9pn8xLtTxtzO3zPofpG/GkbaZeMV5h/Mh8 M3GabWZuK2XtVztGlQG5hu2DvowxJ/GefeEYTc8g8TtxhTlK2jkxyfyWOV/q Z3GlWEo96f3tv1uvc6fkXOHHeX9ecm/Uk+bgK6/kj69xjWts75duv8hfffg5 G/s/25jjavss4jRtlDEy+R77SLsm96NMiUuMMxhjOK6tztLP0qe7n8TwyqH3 JofgPAexlLbC+KLtJB6wftpz9aM2lHEOhzluroT+n/Pb5JkT1ywfqA+ib0p5 xsbMUU48jLZQGUZv88zoKaeccrjRjW50eMtb3nL49re/fXjnO9+5xX1Z9/a8 5z1v25/wIx/5yOFOd7rThsuPfOQjD5/4xCeO1q8Qd7hWzM+N0R8xf77KPzCH ytz5lPMiPtFv52/GmuaGEyZR5pRhzzf3Vp/mXKNziLSlyp9zBK2TNswYgjEv f+NcDuczii/GUGOOY3DvgUvZcLzMkchzi1vNyZHDOmdDP8l2eA0f9YZyJc6k roc//OFH6485lxQ7LRdMndHnzJXk/aeVUdtP/rC3v1YxgLkw+yHjLH03Y19i H3Hafo51UG7EE3JOcq+23RjKnBtz0x1b57Gdd+Vcg2MNYh/zVO0Lc3aMr7vG 1DyfuQTqW/0L55Uq244Pef+0xq0+iOPFvGqvr/6S87Rs86Pkzsz1THiX9qVs YrasNc5c3WmnnbbpMLElsd8tbnGL7VmExslZg5E1nhe72MW2fWY/9KEPHekm xzHXO/5lPEedaJu8joZzkT1fOfRc5y0dw3ksmSsiHtG+GDM1/qV+M/boWBg7 PP9Of87xJb90HFqdp28lv2QujX6celgbdBs6LsYb6qjjcto8ORvbUsxwjNHx zXXtU9vEON37S0ztY+7T92w7Hvawh228Ivsf107oW9vurHdLrPec5zzn6Hf6 mSmP7Pd5cA6H8QvzBYytGLeybMszTvS8GXMuzKFZjxhvdrz6N2M8lnNMRk7Q nCCfQSRHtp+mzXi8nJulb3Felz6AOQZyy5ajfNl+r6HgmFq3ORbOhzI/R+5D edAGXZ71THm4PFOWdfDhB3e+850P733ve8+mFy1717veddPt4HHazrnwj3/8 44e8NzLzfg996EM3/W9eubLw8wn52/lA6lpxqWvIOsdV/k+e14Nrc2l/zI0z dmK7jEXOrzl/RN7DZwJrE/TV7pevdyxX+3OuoHrO/FLl6PlF5094f/p+xy+t t5jn/e4Ym3ZMil1tw8Sj2H7z57bPeDzt+2+flzo5l9l6c4/kK6KzyR9Peea2 LXic+C/vB6netT2VwYTDlA31jDyE8nKcznL1I87bERPo9+y3ieHEBd6HuTLa D+d1e51zFcyzmMM6l+TYyXkB47F1hHrivjiv0Os8R8bYkzk58gT6WHMxy5Ix LbkteWE5jttDH8m8I2PFtO+Tn/zk4Z73vOeWc8ha+OYcnG9O/fe61702zP3u d797Nq5WuWUOO/u3RK/vcpe7HN7+9rcf5fA5HuY39ofEUM4bcYwYvzEu5Bia xxK3m6M0R2a+ivMK1X3nCazXzOFxfQC5EMeXY0le0j6T83VOsTJnrEju4mdi nFNkHpF5Wc9nmkswx8b6qle0A8/LdUzLrehTzeGYi2D+wbFMx7z+kHrdeDjc IDobftB7kMdUBtHd5I/Dj5nDbPywek+e5cV40rrMOnueMSLzHvRVxS/zdOf0 yROIJeSPjLvts1mm5Xhtv7ftxRfmPthejin1qHmZjn/tgjZFn8Ay5C0cP+o2 15cyR2ROOOExYx3nb6q39BfkP7WpyosxQnGsvK02U9vP55/8yZ8cbn7zm2+5 hrxHITw0bc9983dzBNXzrOU89dRTt/0Ter/Gn5zHTX45NpDnot7whjdsfJpj Sn11rr734zwA57bYpraLvp/+vvjI+Yy2s7lRxpvUG44R8xK09+oEcwLkE45n ur6j8wvlll1/x3lLzsu2PcwPOD/vOfJ+lmPXTpjHdJ7WHIFjREzmHD5lbQ5M ztN2Vw7pt+d9nLMgp3QcwzZUv9mv+q773Oc+W/4478ejnbDe1BU8znMjL3/5 y8/Rd/N1vp9uen8pZTjhE3ma+Qnz4+Rw3r/G17AdzK+7Tue4qqP2y4wdue+H ZVNe4/xr/SHnbj33QGx33mzyH6yj7TJ3qJyJg9QJ5yimvSnaPo8V/VFtgjkS 1m0+QR9GnMtvsYfsC5v3hd3ylrfcYrWU5XMNnSurzeT7fe9738Md7nCHDVOI ofQTOXKPrK+/zW1us61Vvsc97rHlmT03Q39Z2+462tXaaOZqiH/kqYzLyaGY T2WMtZo3Yk6F9XEs6COY466f4rMynOdhPMXfuAaR87XFEebSi8e0h/aXsZ3n 0sib2U/HcPRJ/M25Ea6LYK7dec0+W9i5EOahI4P4bf5mXLE/IIdhjogxSeY2 +v482qVxPfsJ5f3SL3vZy86BY35X9HS0DK9b2bux1vKd8iHTd1/rMixrnCY+ TbHHNJ8y4a5zWn43mLHK96nOmh9xbMhtLSd+d76E8TPjOvdlkmdlQ6wyN3Ff VnMbzltzbu0973nPNmeX/MSjH/3obZ0P453iBOddquvZyyLPh4Qft17HSMwv Za3Gc5/73O09OHluNVw59kZbcH60uMF4esrBkVvT73NOoNyRbXPuZLId61vH eOKIjEeZdyFWVJ7k1sVy5vwcH5nDkmNxjsK20bppB4zvGefZB1GnJiypPOz/ OF61Mecg+73l2k7m4+j3PD57/XRutT40c9A3velNt/3oGbcSr5qvyPPSZ5xx xjl+3zvIl4vHjoeNkdP3vXzI5CvNWSfMXsnN8ya+jzn3HhYT02gXzjmRJ9IG aMNug33GpKvETueyys+ZN+m1zP0Y46f40DmXvfFkfEFZUz6Zs3vNa16zvbsm WPzqV79647nMY/Xa2g55W85lbiTrK8JxmC9z+4uB5ShnnXXWhuOZL8z7Ir/z ne+cI0aqf2Qs4/whx8j5efPc6Rrr76RfrXsqQwymvNwG3pO6uOIh9jnkrbYV 8gDb4YrnM/61PFZ8eLJp2o35wtT/fFYHOH/uuR3m4Zn3sWzdL+o99YE2l/Vu wePM5xWvJ36X9zWFH7/4xS8e77PCY+YuykE5buTOe/jr/Id59+QvrScTjpv7 GFf5G/2IfdIK541h5oaMaclJphjBut462kfbY+VtPldO57zeZFtTvmkal2ns HBtMvnrinskVZN1P8sR3u9vdtmdDGz82Pixn6bwg8wbNc3S9W3DceD/5MOJG nr0Ov86zfXm+5DOf+cw5xoP4Ra7pOu2/j+MFe76fueMVZhuPJgy2PzQusC/0 s8RgjuGEQ3sxq8d+avvEk4hj1rPpfA/aYMeuR8fO9zOXm3DBXMJtP25MKIPo 9CMe8YhNZ2MD7JNllfXHWe+WuY89frxns8bjFZYfl/s4GXy1Lu/VT39sH16e TflNeDxxyJ53G6nj+QyedF8DrkGd2uT+TXkK+kL7AceBXuNhHs7+0ied7Jjw mpW+tP74iHe9613b80mZq8h+xT/4wQ+OYjzmOBkrT7nQzuclJ5zy5JITf2k7 aVPh1eHomV/JceaZZx7xpela60PvsyebKSdqPbVvnzirMcG4PunBpFcTd5js fS9OXc0r2W/w/MSH3H/bAnmc/b/5ornQpOfEaecfJt438Y6VLbgdtCfGMY96 1KO2Z/6/+c1v7sYeWWsfnYyNcHzMnVY8tr/xmlUdJ4vzezib+iynyTevxs5j sNJX1zPhpu/DGKxjw3yefe5kU+Q4K3+86p+5Odf6uM8rm51kP43Fqjz1P22J fuU55mBx1lBk7ZnzJ2kjn83mugY+w9sj/DZ4HF9nPzZh2sTncj457OQ+spdn nodKW7lOwDjiMVvpw6S3qzFc8RfnDPz7pK9TGfsJY+SEuxMXnOxoagN1g/ek b1rd0/a5Z8/GSWO92zON6aTTq3aurnHbp1x4xjH8OPoffjzxhtabZ6HyjoUz zjjjbL5lhZMTLnvdxeTr2i5i/uST6JesGyuucRwer+xgwrcpnpp0e9JV11mf 7bmw6b7T+Pf+XH9ofHE7mMPwfNFK3vRzbDv9B+vpGK3GrNdnLjnrILIHUPIT WS9sv9WcgJ/F6Tl+7zWZ/7vd7W638dzJVqpr7Le5QuWUnEfyH2nj7W9/+8M3 vvGNs3G+Ce+MFZbPnq7SX1CWLeO5hZUPX+H/nk+Yfud9eF/6NmLkigu1jLH0 OL1b4edUp30COeYeV2R7yL0nPzJhoOXt/llenieIXmf9cfG4NtzP6mM++zzI C1/4wnPEOqv+5Z/zxxNOr3DRfdjTq0l2xrE9H2efe5wOT3o7yWHVvlUcuOIU lMXEX2gzx5VbcQ4fbKP10/2e8Gjl46pf4bPhxFn7e5Ob3GRbX5xzxBTqAe83 xbf1a8XvBz7wgVvut2skJhuY2uexaNlw8Pe///3bfMsVrnCFbS/l8PXiOseI bVzZpv0jY6bJb3A96EpPVjo+6d/ED1acj77EPmjSGfth1zvZ6YrLTJzGdU15 iAnDV7ZJnF3NDa3afBxGTLhvP9p83YkTJ7Z8RfZgmXI+bUPm84rHLLOXqzAm 7+HVyn49HjyYk96Lq8ybp/rZnykO4rjbZxzne1f4PZ13G1Y6P9nHSo8dn58s Lu/5nknnV/f1XHywMusns6dP1k/c//73P3zwgx882xrTPSxfYWfvVe6YNWtZ KxfMtL+afIbtklja/qTtWWuUtc1ZbxT7yffgJO1sJXP3xWsZqE+ULdebe4wo f3NS49hxeQjLxO2ZsJw8a2r/cceeXk1tm/pyHA5Oh9tqbNnDosmGVm1d4Ydt M7qQmC7xV9b0cB7Jtpb3T2c9ftZXrNpyHLb8b/D4OPyyXB2fV9/31oyZHxzX RtvXno9f5WWOk4HPr+4zcYbjfMC0bug4jsI4dA8nJ/nwnsXhxGR55jlzyHn2 Ihyz+0tM60pWOj6tuSY/zmfyx9Ht8FrKxHhD32Yso461D/k7OZBw+0tf+tIb vw+3J/+2PKiT1r3j5GrbPRnf7vIThq2wbG9c28dJT/cw9jgMpn54jdGkpxMe 743lyeJxPzkX7vvT753MMdkz+9x8Yfqc+bzEdMFjYloxpfcNP877QV772tee Q6f38Nj4NK1/s/0ZZ/ewbIVB03zopItedzLponHbGFlbXcXQK97I9q641J7P M3bZXlfrA/dyRtQ9Y9ier1/hQTEy37NWIntO5N12ifmjU9Uxxm6UMTF3qn81 Hrln1lckD5J1cK1rGlPKqnL0mjjm5YlJ6UNy3le60pU2bpN1csUV38ecq22i jzS39m9sg/XDerbC7gmzjdfWAfsYj7/Lu+49fzHp0CSvPY6y8iPUqRVXmbjw ag0nf9/jWhMmr/ClY5m2nvhpvJW1753PW9lk35/X9RWrdqzaNeGCcSXfyS96 0Fbth6f72LZXGEtbsN77t8mPTjKe/LXHZaV/xr3j8Nhr8OwzjssT+ZoVttHf uMwqFufvWQPxvve9b9vfJ8++ZQ+f4Fgwc8I/34+y7Bwk72sf2xxA8Dg8vOsr OGdKe/U86urg7/Uxwd3YRp7ry/4u2V85OWY+q0cM5zOZxnznEnzYHizrCbf2 /OxU/6RHtIcJt33/lX+g/p8sP+fv5gG+J+2HunHcmE5+cg/PVv02h6R+8ZqV zeR8nwfJejc+m2O8af74+c9//jmwbuUPjvMx05ge5/vpmya98zXTvT1etBfm H1mvdXZq49TexhzTOPS8sW4l08neJp20z9jz29bDFc+f7NpYbp8SzEku4s1v fvO2ji3zFK985Su3OTvWQw5N3Zj6Z1u23hCPkz9OvqLzebQN4rDXC7hv1g/e t7FmMDZcJbaU/Qeyjjo5DT/zvHoOctIB46/HhO2ZrlvpjXWDfnuFpdR56u50 D+vZZDusd09H9/B64qdTOfv1ym7yQ/YdU99WZaiHKxudfHt/S5syp5I5j+Qr yBPcvzyflPc1BY/5+wrnyIFPlkOvMGSvzHHXTeUmv7a6j2M3P/ttjsMytKVJ T1rO9mi+vPKne7Lf00/rD3kj9dXt7sG4mfyJ+JK/88xzMDHPHYc3xucTL/ns KsfG8Q1xY9I5+49en/xx5/PabucFcvCZWM6bUW624Z4nrqeePEuYPZnT56xZ 5rOBrJ/P3nCObsWjJtyc/BX7uCcn6+nJ4DjrmmxvmofmuNFn7NngdHiMGbNS F6nbE44a3/f8j7HiuLmwFeYdh/e1wcxnZ01l1mhmzxXzIfYj6926v9tk077u ZJ4RWY39cWUnGRwXm9uPTdg13ct2Ud7n54snDJn886Tnx3HiyR58zaRPU9vN U6b1sP3N/oB4R4zyOubw3ze+8Y0bH84zRK94xSu2/QM5rzc9l28b8udKPlOf c5+sgQhf5fqK6Z7FUvJg41zLrfhP5ZC5w/T1jDPO2Owlfiiy6J6Z3NOo953W QBP/3ccpfllhuMdpslFj0IS1lvWkG5PtrL7v6TLvueLSvF/+9rp44rb1d7Wm ldce5x9WGLPHF6Y8B20wunDixIltLX7mIdxu+qbgcZ5P6v5ulmH7OMU+e5i8 51f2yq7q6xq7FYZbH6bfjTPmjrRZyts67tzLyqam2GWygz1/63q5rsF86Tif zTLk7ayPGMK9V4JFecdi9hJOriDvrOvc19Rfx2ITtlg2K5/mnFP4KZ+XnuyC crK/sm6yXSs77r3DdfoOv65VTnzAvf8tT/Jy2xfbTr2yrU2cmvo4cYUpDzPJ ijLg32zvSpdWfGeyvZW9TtdPsSPx0TEnZbmyPerTyWLzijPY73tOmW3Ob5kT jg8vHq/anzWW17rWtTY8bt0ng3Msc9zc0iT7FQ4b911m1a5pXFe/maNMfVz1 rTbmvbXKibzX/oQ9xhr7/wmjjEvOMa5kvtd/5ifar/I67mfU99nlHUjJg2WO eMX99rDN+ZvJ3xg72Ne2L/mKvLMpnNU5YsvG+y21rVMM4XrI9ZmLSduzh2d4 etaUhPdERvRhq3VdxOjVOE92ZvmYC0y/T8dUZsL1Ve7ZWGZ+usKLlf7vYcPK Htq+Ff6tdL/t9f5Ee5jk/u/ZKv9O/Ywr83xe8l1Zi9Q20M9XF7N+P/PHmbOg bR3nH/z7dP44HN7D0JUvnsambT5ubPd00hg14bnzZVO8Tz628s979sIyE77s 8WRjnMvUZ5gb871Sxbxcn3mrF73oRYfLX/7y255Tmb8rBnKfh+YEjI32FRNv nWzd86/U1/wdHGz+mLkCXledL7/nfaexWOG/29R25zPr7bJONGtLskbppS99 6XbOe/e3rj4DTjnZp6/8NM9zD1Dn7Fe6MOmU7Ya6NXFI43GvsT82N1/pdj49 H+O4yrg/4fxkQ3t8ltiyytvv2S5x1HtATBiQc9m/Ivnj7BnAdpuDxK+HH3e/ zak/x2GpfeTe7xOP8+/HyWzCSOoLscByNBa7Dc4bm0NZn1a80Do0+X22ZZKL 4y/H4+yHv1v3LQ+20dwquJE8Vt6dlLj83ve+9/Y+O+9vT99OjD4Z2dlOad/9 NB72XJ7763q34vHqOt7PGGv8sC8x/lJGXauUe+e9q3e84x23fWCe+cxnbnsm kiPTdv2cwKqd1lHKi20rzq+eo+Fe8dYf5lCML9Q7+iPr82SzK95mO2O7Jh8+ 2ad1lddM/mfiMra/to3lfI3taqXjttMcGYPYUt7l2Pk8HsSv7l8RHtR7WI4n w21b7+qZkMnXeOz28hVuu6+hPduHT3phn2jdN6+cxqV17OUOVrFPcWPyLXv6 536t8NkynjgAOXJ5cj6Tw8p8WWLxrCnuujLnYSZcnfzfZCcrv048YH3k7lnv nDnF7MXpejmGfoZzshXWbWye2k+8p1xjZ6eddtr2rGs+v/GNbxzJjDZeubev xsCpnR7Xyd+yH/UFK85nHaJPnWS/spdpLKc5tdVYs1+TftJ+bDd+lx3H2+Pn /NBKf6d+UR/46X2qJz/U+yVfkTmP4HHyx4yDbItZ7xYdylw5ZURMmrDG8rdc PSZ7Y7qXW+A4GI+PG98J41ZYPWG67zGN2+RjjOf93vt6vCd/P/melR+07H2Q Q5kfFIfzPXwz69azfiC6E55H3afeTHzjZHDY7d37nXLrZ/A4cyPJIXfPH67r mHwUx2bCpkn2qzGm38h9qXuR40c/+tHt2cE815dnSZLfmXxfuSvf9+uc82qs 2Sa2l+M62RvHrL7NORLKvd+neRvrpG18ZUMTt7ZcVj6QMYB1x5jcMuR4ky8l ThjL7Nspn+bBPGYr+4td5Xnp5Cts77w2XCjvB3nVq1412tXqHQkei5VdTTzD /mTCWc/vsczKdvO3ufXeevgVfk12uLLlla5P78aZyrtO32uyyRWfsJ8ib/I7 zoh10auPf/zjW44rsdLjHve47TmhzumlHPV0wlX7o4n7nIz8zUOan47+JbeW 9QxZL3+5y11ue9dI9isK5hGzW9fEJcwlJ5lYP8mTik/2Ra03bc2cTHIqXasc G+O79MxFJx2grjsPYT2aYiPrbfWScp/qMedbrSFbxbHG45UNUv8mjHfdxvuV 7U72Q38Z+U86N8mW/Wh7PT98MnJP+RMnTmxrgorHHu/W86lPfWrbiyvveCTW 1Q74/h++J3CFYeUOXsvrPlv+U38mX0pOOeUyJ982xROVk98JsYfPjh0YbzI3 6HdC8h1cvoftY1Vmkpnb5Ws6Dny/It8X0neKldNd5jKXOeS5oPBOYsfEwVa6 N/XDNmo8nvxU214eEEzLO6jPe97zbus8znWucx1+7ud+bptnTP6WuLQ6OEac C2O/puuIZ7wH30/K98emrsSl4fF5N1Vy3d1ztOVd18pHTTZjnZ5wecUdyC8n jjBxgik/cDJcrPeZeJT582T7e1iw0hvK0G1k7qj9cB7fn8YX64HvY4ypH4hf Dj/OfptT3rz6Hj3PmtLkjz0nw/d1e2+BPdyy/ky2an2axnBvHIxT5G/mPjnH nHZ/83hNsdI05q2f7y3nu9sjq77fou9MYl6+Y0V7NFau5Go/bd5Lf9vf07a+ 671H7pVnzDL/FMzIWpy8HyPt87wNZTzxufKZVZvbhr4b3nU7z1tZVT6Rc3Ky 5z73ubf33l3kIhfZ9o/P38HnG9zgBpuec53F1EbzjOYKJjttOyb5Gv/y2b4x F5t64uvyTPkv/uIvbuu3uS+R8WjyY+bJlFVl1HZwrUbv0djW/TgO/yaM23se bzqmPtAeJ6xl/uA4DmxO4rijMilP73UsZ85o7ko/5nVFE4+zL8x9c03wOPvR d79NjlXbGRuJvmR9xR//8R+fzQcU140pk4+kbFfto54zx3MyfnWPR9kuVlzc +so2UufoXyf/0PO1a75rnM9PFI9XPHPiJPyc9IOyo9+2bdhv8L2gxaKsl0j8 lLWO2QswzwM7H7WyXcqz5Y2p1OPIIpy77yQl3nruZbKpPIuS9WTnOc95Ngz+ tV/7tcOv/uqvbrgcnMtn9jWqD5p8XG2v8Z596MQN2x63ze0kj7JuRt7J/WTd 9pWvfOVN5tmXqO8CNA/fw7hJd6driMfpb31h32FvDJo4kzFlwu762q7j8576 K1w+bv8bY7i5C+v0WBUz64sYj5iP2iZXfL3trVxX5WjP1IPcK7m1rNGc8sfk Tsm/XeUqV9nwmP1uexmTTbo7cdlJRpQVMYVrKc1pibFTfoA47Lrpx2r/7Zdz FFNOitjn8tR5ctSeix6Ej8YGKjvGsvbv1q0J26hL9kPlrcZp6mTaEwwKP+ua 2fjhF7zgBRtOMjcw+ctVW2gn/rtH7p+5wviDYOEqj8VrK4eUDW/PWrKf//mf 37j8JS5xiQ2P85ncxfnPf/7D6173urPZovWk96xv6LtTuScbx4L6az2znlZf eHAsy5/POOOMbe48+cG3ve1tW3ziuTz2n/Y9xUwTP6Lf9jthq4vTGBn3jMfG 1vateTm+Q32F4Svs3ePAx+3FYZtsPMB8IZ9lt6+3Xa/4/DS+tFnnY8g30o7M J3Q+z/w9bcv45LN4HLtkvrE4E/2tHVF3LU/2qzzEMSH3pe5R3019aVnmrl1X 21r/v+IBLNNyjd35vk/rifGM/t9Y7CPlYgOx+76rPt/JofcwyTjCdrhvzEXm fGXFd9B17PI+u3vc4x4bp8x6sa9+9atbPWlj+aKfnWB7iPd+v12P3oucqe0q LhATnMPvPdm35CKSJw4eJ09x0YtedMPlrMfL3vc5Fz3megXiDNucsYhvKB6v 8rnuL33zNBdn3CGf4BhmPVP2uT/llFO2NalpR2PaSd7T2gvjNq9pe3Jd6q4f bizgWJL9W8WXxHl+p86lfvMN4+XE1yjTyd+bu07YSDkTM9oucj7mqthX+4UJ qykDcmXLx1y5eNz5vIlL1l4+9KEPbfPAeV+T198UV9ivzrmbU1KWxfvqQ3Me xcT+TbzwuZ7nO4bbnupXy9bOG5fX5otfxYK2p/hT7uD8eOXTa3p/+wu/f7Pn q6O8r/tCzmzdIhaX47TttC/iSMrmfJ6pq2/rs2DBoOwXdfe73/1woxvdaJsr yJ4L7X9zCfnOOS7Pn9rflGtW5vnOuKAHOVRlnTY3V02M85xox+exj33s5keC weHGxeXgcfbTSBs6bpV3783nB6l/tNvqVa6hffegnjIOM44RN4gtvT6+IH4w Y5B1TXkXRJ577H3t8zrW5vKTD6+8Kz9y4+o35x2of8ZEtsF66ntWJ4txrnuF x2w//ed02NcVc7huhfyu408bqX9zPp31Oefk9jkGbL8m2VTmuWfXH+d5ad+3 MWSO7AuTuDX22niuWMH5vCmmay6IezD1/sQp6zN1q7o2zYe4HscdLFPMKua1 H607+hKbLS/ifWuHrpNck99brjpf/Kk+N66g7CiDls+5Ke9bXWn7OTfY9tbO KrP6pfqa6t3Xvva17d0dWSN26qmnHt797ncfcdi2r3XmvH18x7R6Y1/Vo5je XADtgXIiP7beM09UWZW/Z71xsPhSl7rUhsPNV+Tv7P0ZnEvd5b5tU+XhOJbc gP6oPK/t6DWM04zzE5ciRylGVUc7dslZhPdnvu85z3nO2fYqr9zoVzpe5pLW xeoex5U59En3jfOMo+37ycfbzrath/mG8XjK2zmeIA4Rfypv4kcxYrWuibpL PJ7yv9ZH5kNX6xZpM25z+XHWB2XvF+JcOUnbGjwOP37e8553xB3JEdpHjscq D28exXZR/4tFtTvyIOYOGf+S7zlXW6ymvrfNvWf6lXxd7LVY7fk4vnOeuQyO RdtN/sF4sOPBvnZcqr/kO84XMu5sPbSr6lljgWJN6+0Ypo4vfelLm0/OPFie 580eOKmXGFmM5xivOJ5zMcW92n8xkDFHZUVOWt0jD+M9c03a1LryLH/m7BLv JY6LbgeDs14heZfk27J+vv62viJjnXgh9bR/9Gntd8eCuFKZVhfIISwzc1Xn Ga0TvTbnM9eXfQ2SAz9x4sRRfrHjnn5UluY4zvsxBuvYcq1q9dgxY3WLeso4 mThU3SQ+MB7sd+Ie/YfzO86FO4dJ/+Kcku9FnLA/IM4Tq80tzd0ZqxErjGXE bOJD+U7e/ZU9ar/+9a8fccK0pTynfc68dLhT4ifmK5jDLQ6SM01HZcr4nUf7 wdgp58pjJs5cXeFahZbheNN2yD/bh+pe5VD8LjeiTZZnNQ7nWJNntCzzD85j OB9LLlveQv1mPGnbN6clB69PSx/jdzKeeSdn1k8Eq4JL5A70e82ppj7O47Wf 1OnmJYuVzGMxR1z7rq22fL57Dqb1Vofaz8g/6/Ey95hnVNKvHMknZ14y/cj6 oeBz4v70k/pbmZAf5vfiNjlhcwppZ959Uhyf8s0dD+bxaBcez/aTWNA2Vofy fGz278x4nXnmmWfL8zFeIr4yh0s/0u/F844rzzN2MX4x5uy11AXyQeY+mfNn bohzTl5D2T7UhhkLkvPSv9OvFGc8x0I/Nc1ttL9Tjom6P+W0aHOMmSu74lZ9 ab5nD5jw46wVqu5VN4gJZ5111obHzB+3neSf5KWONbgepDKl/OhjGq9O/tCc hLZA3+Qcg3kY8wf9jZhQ2dYP5Kj/Zc62ZXlw/NluxgTEAeNxx5j4RA7OcuTH 9MttOzlEbS/P2WX/s4xpOHHyE5EhYxDqNfNIacuEKcbjyqd9728Tl+w55lcY Ezie7BFMzHqErC3OWrHkXJt/pU7kuqyhz5qFxP5ZS9YYIPcrrnYs0p5cn/or f9o34yjqC7GO+THmN6b5HOo55zMp19w793vNa16z5fiTV37KU56ycWdzv7an Osc8BTlK7ZBx55QDpE4V+6nbxDwe1AfGm+Qqxlb6eo59eWjba35jzttzjE+c H3abPZ9UmazwmLjF8aYPJt4TjzlX1nEPHme9W/Y1yXfmr+tTU/8HPvCBLd7r 8yDsC8dlL1+xt9ae8zPtV8eTcprywhzP4nm5mecoiAeOk6rzjoNie7RX6ijt jzGuc4jFMvLkCY8pn/Ly+snO0XrN22RDlSHXbeQz5/Ocbp6zS34idp33KnEu yXpK38NcNOfzPO9CnjXFOowtOb9LbsHcneeS2sa8eyPrEPJsW9aF0IcRkyrb 97znPVv55GeShy0PjgyCvZyXrR8mt3csxXifOTDGcK2P8vJ8AOPetpt4Zvlk bV/2U45Npi/JMdGHV2/qS6prlCvza8as4mb7WR7HPJNzBqv4nLjLscj941+6 ns+64vwOcYP+nD697SJXL/Y67209Zw5mlVP3HBt1k7bHuJsYT7mxD40Tsq7p xje+8Tafw7lPzg3m+uSPM/bZ/zjnWxdj6x6U5fS8DnG+ekreWuyg7vQa8t0V 32I+glyV8xTEQbbX8wTNKac870nOUF0kt6e/r063P+wr2+1cX2VRrtj25ZM5 LM5vEQN7FM+DP3m+Ls8Q552b3Ruz9+08X30Y20J7IXf2/NSEx8wnWna2pcok 9bN/rTd/Vyeii9e85jU3nl/c5POFxRBy2xyJDcKTg2fBsV7XfufI38GJYDR1 aMprGRNoa8zVVm6rdVLOtTJWpr/tvfNb3kGSeZ1LXvKSh2c/+9lHONyYsXY0 +X7yRPeRuX/6HMb4zdtwfmTy58yfMDdHPWFsxFwGsYh4NOW+PSfknCB5d30X x6VjYK5NTuBxI1/uddQ5+izie+Ov6lyuz995f0L4Qmy1ukU/UhuIDnP9MdeO kwO0380jT2tXUn/l55iK/r310057H+aDiRO0dcYMzKlM+UvqfOuY8vOOhRwD Mh9X32Fu4nq5Xo795LNqvSf9s59/og8mHqT+xOdZx3rFK15xi4myHwlxlzrN nBDla9/huXvHVVwbRgwgt7TvqU7QT9IXlUeEFyeHGm6Y/YOYN+sYlMs5H5b6 81xI5viyJ2e4JrlB8ShY3HyF8+/EKsZ5jpmoY8zlMb7g3DZ1j7la54DShs7v fPjDH97GND4m78NM/NOcTeVPnWMehHldcnqv32zfbU+OB+iTPObERee2bNvO P3OtWGMFt2vKxRiPzY875sR7xr70icyDd+xoh84LMXdInaAPZMyQcve85z23 2DX5Y3JP8tqU/djHPrbpf9a7pR3MjdSWiH9TvmLKydOXtS+Mt2gH1HXnbYzF 7L/tsXF88+jURet8sZX54/Kn6iyx1FzC+Gxs41ph9pv5FvaXcRVzLPXLvEeu zX67r3/96zdbjT991rOetc1tESdoD7039boYRPumbnNdE3Pf7QN1jr95TYBj GsedPeJbstdnOH6emzCn5L3pu4nX+e3pT3/6lj/vfhG1TY4/1xVQF5gzph4T l8kbqefEZeIGfSo5QO3JXIv6HT51+umnb3n0rC/J3kmcX6SP4lg4v2m+wvif bZ24UPtPm3A82PbyYExXXWeeZprfoz9xHc4VuN62p32k7hJPqLe0tcRNqdP8 mDI1JtEnk/+0zZ27yv4r0evm0jr2fo48fCp4/MpXvvIczxhxnQ7zP8yN8XkQ zl84N1IZ0kf2PHWC3523MY/l2E1rAizD8rfGvObmzo/Qn3CeoHEVYypeT99D Lmx+TTkR/yqL/N05qehKnykM7+t63Jvd7GZbzqm+xOtQiIXtZ/vHWKuxmGXI uQ3mvp0Da56KcTz1khg48bnwgqtf/erbu3XTP/qh1uMcfseX3DZH1txn79DU l+dI6h/I1YunbSu/cy6BsRf1hXOq5FWexyNXpS60zVyjR4xvW3NETsmPZw+P 7N2RuZ7uRUI+4RiPdXTMzVfJZSon4u+UF2HMbl9vvaPO57xzYJxXKcbVNzj3 51iZ8RnjEfNB55vpC8svq+e0xWnNE/WCczet1zks4nHyFVx/TJ/Uz09+8pPb 3gDlxz383Kdz3V5/3GdCeKzyGpxbdf8pB87DT7lMt8u/NQamnyfmN7fKdXCM ezgO9i/EZh70J4xFyUvJpZxHpS2Tq2RMg8uZgw9mZR+E7Hee+KdjX/2lnjLn 1/uyXsYQxpSWtW6SWzk+dX6Pvqx6yrg+R+Ly5CeSZ8jfbSvjPtblWKw4xzUc iR+yDi57F4YvF7OY+69sppwN+0V8Yx3Ml06cigfvQXyjT3AOl7qZz6y3eOIT n7iNf9azJtdYnG+OiPjT/pHHrPruHLLPk3OwDsZ79P30bSm3J6PiKDHYeVNy JPeL86LMb9Aemb+ZYpoJd2jrlEF9FGXGPAn9Vufk7nOf+2zv3OlzsZUfsTGf yUllfLN2k1hsHHaue9qDZ9rnjetJVthrzHPuknVO+3bwORqOi/MtjMe9JoBj 6Pwm81zTXITncT3f6/FmG8injG89l/ZlXvZJT3rStkdYnnnOs13lG45bOKfi WKLlHFcWs1nG9fVv+w/m6Cff5HZQLlnfE96QNcZ5d1jzdYxB3QfmXZl/os/N 71mXEV5y2ctedvNjkaPHjHMYnKvy+FROjOMo92ndsTGdeQHmBOgHqEfOPXd+ J/OdeXd8/FeetU7s1Hy6fbp1yf6YeMLfHBuy/5UbdYd9oa/hnITnDJgjoT7S JulLGGuY2zC/wXqZFyPf59gxj0LdmzBiijcpC+J029f5vMSyed6HuUc+m5g2 h48kX/Gyl73sbNjJGKJ65Dz86vkQ2zQ5sb87ruPYkWeu6iT2cw6MHJgxKMe/ vpR+3NjG+id/uuejmEvZeyZpsiH+HizOmoHE3ydOnNi4XutnOyffN/Hu9pG+ gTpNfaQs6A9pQ8Rsr19ujOJcSP4OV8ha2+R6o4e5bg+XqDe1S+6RQqyrXQbj g/fhJllr39xKOWj1YopXjK8ce89j83fqszGZvqS+3z7Ac/vVWXKXrKHJ3MHF L37xbe4gNs7rpzjS8Sd1j3hs2VMO1QFzSPaVHJa/kdtxjJi3cmxIDKB+Ole9 aktlyPa0v7Yb+y3HRdVj+h9iBw/2KWMT/5n5vMzxMF5ln/M9/CRz813vZrk4 vvbRvjUfaF498ejpORhzDeIZ9WC1l9KU8+H8C3OCjMWck5xiF+oo5xwmvaaP tZ/hOduK46mUD+9JrJ28YThx1kAlZ+G8QmVnHORhfKFvpP5N/Jj1VubGJ/N+ jl2P6ml+D04GI7MmM3G3bar9Mled8lHOKTOXkd8yR5L1gOHgyc+1LczjrXRq 8qFT/qq6sdoruH8759b2OiacfCO5Xv6OP0vOKr4661uTg2fbaCsTf+Df9gku T52h7vQ8MZqcdeJR03jy03rNOqhb5kIT9+C4taxtdsIRxibMlRBX+lncZi6t dTcnmjHKfvSZX574To/mj1/60peeDYOpI+ybbdPyPQ57KV/7WHMD82DHyZO9 TLpbeRWHmW/03jeTz6H+WT86voxHnfewTVgHjF9pS9YXPO1pT9vWG2RvqIyT 5yB4b/qOtpc6S1428YkpV9Ly1IXJHiaccn6KdX3+85/f8LF7s/O3Sd7WM9bP eN7rAbp2JGP81re+dcsl555ZR0f/OPEG3s/6aBuaYp8VF2F5y9r1UnZTXjrf o8fJWUSe2V83711L/GTdI14yZpv6Rft0/ydsbVuYj6IuTTZMfjVhCvs7Yeae fkzlXC/LclxYV7GX+RFzLOrdKm+Y3/N8FvF45esT93D9ceU04aL1yLE78dxy bP84lz/lIS1P84xJt9lmYiPPl3+uchT0eStOWJmRu0y2aF/BfDw50mR/+T05 /fjT7LuXZwHCiRmnmI8y5qKPMF+1nVlviOXE6Qkribd+Joh9sX0HP7KWNuu3 giPWAcZClN/07Buv6Tw+1xby2YmUCVZlX6Ks6Y1MKTfXT103B7BMiS2d17Zf mvDF/m0an2nOnLhZHcy+ubH37FmTveLS7/rkCf+pO/SpjpOoE/QzbL9tkhzf us13VXNvyBzez2fFXyZMcp/sv8wDbaMrP9i8JvPYnHNtjN1cSO/Zsqkn5bL+ OPtXZJ6ZuV/aU2SSWLHrKyh/8yb+PXGCyd9bX/fkPPGH6aCs2i7ORU3tNsbQ Jlx+4oiTj+Z55wbMJ9luYzb5T9bC5L0uF7jABQ6nnnrqxiOLh+Rxvr85hmXT 652Hpa9y3p5tpQ/Y88O2Z8ohn3lmLnsV57mzrKNlbpT8w2NhXLbN9HrOuzNm Zpve9a53bb4g/i62kXo89zPpY2XuvCXb6vFp291mY4CxgrrT8ef8qOtouWBw 9mnM2pvkgpgHapuYR3WekHlZj8GEg/afU9+pqyzXsqt3T/t+xuNisHWE2Dbt S8zxMJ4Zn8gvmxfjsyqcB6ZdGdfLj2PT4ceMd2xXee9t5lOyvxRlx7Z0TPn3 yeCo7Yd+mHg46agxw9x44tbmHuaExN4JGzkuk5813yfvNXZ7noE6VL0vDmS8 8n6LPB+cnP8TnvCEDYuZP5l8odckTmVpCxMnaFtXud+pH57Hm3i4fWP2UQkv zh5HWeuQPtv3rXi87ZC67hy120O9yGe4TDArOh85Z38Lj5H3ZtnjA5P9rvy3 sZZ4tsKh4+IuyyFzDnlOKOsHs7/SU5/61M3PW/dtF27XXp+q+1McTW5GfXee 3jnW8viJo04+gbHLJB+vNzCH8Sdxm1hNf8+1s36Gbcq999quryget6/1F8Sb 4PHlL3/5LX/MdhAvc3DuesJj67H5aMeGcpvmN8xX93CY49LP6Zh8x4T5HpOp T9P4+7rK0Yd9RcYzcfOb3vSmba48WJyYuusSiev0g8zdTHM25VSTDk9rwaej dUxrStyvPUzJb+ljnpVLPB09i05P47SaN97DK2MWx5k2wu/JX2TPuMtc5jLb eyPbHspl8nPGG/uQFR7Xr638xNQPj9nUb17be9Q+M1+a58GSn0lfM/dXfldf upfPYr3Mz/H3vWunc9Q/6hLXNU2+ZpIRuW/9w8oWe42xZeVzfD1xievsvPZl wplcFw7N9W7FNZarfWedUfIVr371q892ftKZiZflYE7IPpMyWOGccd3Y2O8r bs61wZY1r3ef7Dum+K2H2+Vx5H2pdxzD1tV4MTaS9bF5x0XWw2QtTO/LdtI3 UecmOdpfTO2kPzQGVB4dV7bHNkwsJp5y3iNYfOLEie25sjwDymejzIHYX+YZ uO6SddsPT3pEfSEfyZxX+Hr26+nehsYg88ZJpvbR9o1uj33VcXyBduT6KSP6 scooMgtXDi7H38f3kM+1Lsp5b45ixYWnOdCJA1Cn2e/Jv1I3LX/Li3U7T2Ve z3us/L1tnL+TW018cvJn0fk8v0M8pp1wDBIn5xmDrD9e+Zc9DuLzK1ywPIiF E6ZYRpY7+zPpt3207dh9ouwnuyFeE9MmTDmOS2V8su9N9rzJ+tszzjhje2/A xEOP40V7urw3nsbjqa0Tv2f7Wr710c5TLs8tP+pRj9rmMbKvfObYJt217nd8 uV6ca4kcY07Y575TJ3t98tl5birty3jUT9qvrnyw8dr4zHomLJtsf8KdFQ7T x/a7OUQ4cda0Bg+Cy9nXP35/0l+Pb+812bv1ZYUXbv+e3q743nSs8iWruie8 nPBgdd9pDDinb2ymH40eJ39MPG4Z3rv8OM8ZdP8Ktss4OfmmyR4mfOA79mq7 uf9qXnvyZ+Q8ky3s4U4/J52b+j2Nx5Qj8ji1bZRZ68j1yVfG92VNS9YVv/3t bz/Hs9SWJ7HBeLvymZb/lJPZ0/f26bh8xKRXOcKL08+8iyj+pvtIFjMst6kP 5n72I5OuTvKZbCr1plz2uc/cV9bC5V05E++dclXTmLttk4ynflsHLWPrvX9f xdv8O/1MPBBMzmfyGd07hzy45ffmbVZ4vIdjxAHGYKt7GGv37j1xIOIh5bvC lKlutpnPHvPevJcxs/doviLPU2YOmXbudmadTOY2MseSOiZfN8VttnP7F/fZ OnKcT2v5SRYrXPDYT3Imx3L8PukR7cU4vCrvPrc92Sfnfve735a3TE4ve080 ruyzKMWstnWyD9rQyca89jOT7kxj4PzV5HvzneOe8nnfTHAuWOw9s3j/CT/4 3bmlypVx9HFciuPBa9qmxIinnHLKlrfLs5Dsx4TNk47Xx/j8Hk6xfuKUcZWH 9aBcmOvEJ9tKnSmT3My1r33tbQ1G9yWiPUwcZbLvFVZaPm2T9W3yoXu/U9cm f1OM2LPRyQ5W9+Zvzsf6+j1+k9+Cx5lf7fN5zj9SX5o/Dh4XA9xX6sLKf1pf J52l/ZFPrLAh10y56ZXOTfd3G8m1HNcf1/6JC01c1fmNzHkHn8KHM6eV2Dhr kxg3GX88xuwP8bD3Xo3HSq8muRpTnbeY7NTlY9+x8+yJkvdaZ5/hiZNMfmCy Jf7OOUZzQucGJt/cdvp76gw3zrM3eabii1/84pEtmJtb39h25zJ4bsVjGDsa w1f+0rrhtpiHUmcz1591cOHI2dcj8xeZx8hvzr1O97BO7enYhDcru5p8q69d HfRLzHmteJT1bYU3vsfetVM7e//wkeSL8r6m8OO9vGiesYztZF6/5ywv3t9j sac7jHeJw54j2PODkw8jnq/k4ziK7fHc4kruE1+zfyp/N7bnCO9NjvLxj3/8 tuY2z7Tm2V1zLvtZf/L3KV5djQnlxjbunWPfqeuOJ6bYODwgepTYP31ObiZ1 TLbNsZl4EnW0a426vshttL5O9jNhFmXfnH7WJie29Box44fXJljfWdYxtW1l 8r32GbTvFd65XuIx75PzwYXkkpOrzDrLvGexe+ETA6b72bb2uONxGE4791rk aWz3/BB9gu3S93L9kw0ZU6oPzqHZ7szbYhfGY/vy1hdfmdglupgyLUvZTjGx x3/yyZQRY19jneW+x5/5u2VL+a24TctOfqHnjXk8xzEzHtN+U/bLX/7y9nzu pS51qW2ta/SdY0b58D6Whf2Cx5/6R7udDtax4gEcf+cOOBfPOdVc8453vONw 6qmnbs+/Zd7CY0x9Ikav8Ng4trJ/49rkO1fYzL6nLxmnYNQznvGMzY4ob47B FDNM3J5+zDrN3/f6Rxsnbtmeeb2xpQd5ZMYway3DxxIbJEaenmtge4/zdyvM NE6aFzivbH1gX6aYgXW4zomTW+ddn/tlnLZ/s42RryQmCR7nWajMcU/j3e/J V2R9RZ8HMeeZ/MXKfiefRv2cMNRj6/PGI+u/bY9znv7NdTtnZnua9HmF9znf WDpzWeEe2acpeaPsRUFeRz03BtW2OPfF/CD95TQO1IVpvwuP4ZQbMw5QzuYl xbHs/5k1VY95zGO2Ne+ORSjzvRxAx3CKAabvxr+pLMd+Gmfyk6xNPuOMM47W IiSvZDmsdH7FW4nD/W5ZejymPvR6c3b7JZ5nfVO8GFknFkg8k/xmntfJ+w1W XIb3m+zcNksZreQz+SCP7VQP77XHq1cYvNKrCX+Ow2xjJe0ufj1rqbLGIrnL ljV3z3WZy8hcf9Yf29asx3wmm23b83UeJ8a+xCTfj7IgLpFveM0oOa/xY4o9 jMPkxcYhH8yzdU1tYur4t6yhCud4+MMffvjCF75wjjW5xMMJAy03t8c6ZK7k HCbvx75OcQ+5LDmyr+Wa+D7Pkv7mOTy2w+2e/NvU15VNTdg62Yf7x7ZPtkSZ xJ/kufXMcz//+c8/2/PFfkbG9bjOCYcmX2J52W/s8YA9HLLsJj6TI7wtz+pk /WXWASTvlDUxlCH9+iqud1so8xXHsc1bntYHY9jKRvZ4sevv79Pz27SzqR2+ HzlV/g4uBBPyjEHkPHHa+sazzjpri1Xe8pa3jP5v8vXln6ucpMeE9XCeY/J9 q7LENK8X6fVcQ+eYzbrNvIB5N/HeezrRBnu+7wHIXmXJEYUXR7f7TjPuj1Ce MvFc+/wJM8l1plwy7drr4ldYxnu7HPW+9XRPtXxmP6rsmZl+x/cUv81bqldT rO3DOsr9xd2+VQyz8gPUD2NK+5bvWWcRjpyxDGfJb34+tnzA/GPi0m4v7+sc kP2pfW6v9bpw6qmfq6SMmI92+ewrkj2JsiY7MXP3YuI6zIlnO5/XY5WbWvkn 8zRytxWHWPlu1/G/8SPEwYkzWe+mcW27g8eZO4qf6/rjSe8j4zwvHTwOx2nb 6TPIkVY5W59f+fgpHvEzB7Y522+OaQ/IqT3stzGVXJrjRh2vjNw2cqW04Utf +tLhgQ984OHSl770xqsi8z1cmMZtspvanNcU2P4Y3/M37kNjWVh+1NmcZ16Y bSF+ZH+2xFbJiyXmpU+kTXgMGUdNuL+yO9qD/SN5CfHFfeZ4mh/x3vk7sWXy flmfGPugf2adXNPFOlq+/qs82xyCbfGxxym5H5r5+Apzasv2ieUNKRO/k/0e MwedtXHBaM/jWp+Nx9bziXtMeRbmZMzHp/jRa8emeGHyh+y7ObI5prkm22ke MeX7kq/IfqhZ/8n9hDxGOZ9nd4jH5BET7zK2rziJ70OssTx4T953wi/7dfLO iWdO7V39XWyjfRC3e672ldzimWeeufHD7Bf/4he/eMMlc4lJll53sidr94Gy sFwmXDZX62+WE59Htgzc1uzHnOeNcmQ/Yb8jrXXblny4f1O/Jrt27s0+3Xo2 6eQU6/B7PvPcROZk08+s1S+emU/wWnMQt2WFsXs+aOKUEz5RD+zn2p4JM93+ zIF0rUzmN/MOkqyXmfzFZKf9zVzDZYzHlsEKyy1T+ufpPqux5zlj9NRX99v1 Tzoa/5ZcxS1ucYujfIXlU9wJP06uM7gy2bptx7KiPB3H7PXDMpt0fDWGxGNy EctisjPLzrrgeNj4UiyObmY/gMyFRmdf+9rXnu1dnXv93OPNOed9myb7mnTL Y2c+Y71zu8qp00fu90qel3N5jiXxQGLavPc416/WG5g30XZYJ/eYdb+rExNe n8zYTTzAZZmD4d5ZuW/WjWTdeNbqfvvb3z6SiWMP3mMa3ym2cVnjO3V50qOV XZq32C9PfoB8o+eCD+l71mBlX+XwO74HaNKniX9YL429rsM4fRwHpEwnvPAx +b7JJ7Be9muVB51sOvw4+7smp9f1FRNHzjhlHXz8X/ixc3+0IfdtiknoC8nv p/GY4kzql/f26b0nffc4TX7acS7v1TavnmNk3jq/hQNn3cSFLnShbZ/p6Cj1 cMK5Xs99fjmuE4dk26gPHSfuLUW8Zr/ps1zevHLiCC3TPX3yrETmJpJXDRZ7 LKmjq77wvO1uqqdtYA6F9jDxFObY+rvngIkfjresE+Eryc1knrzPWHUPPdrX Sjen2HLSW8p+svEpt+YYzjrc6xgD2Y8Qi7jfdn5PHJj3hiWOzhqBj370o+fo G/FravvkA1bcmTkuy4T+ZarXcpq4ofXR/djr13E+YZJv5kWTO857HJPL5DyB 9Ti5oeSIkgvsmBlvay+Olyb+ZzszPqx8F3G4Mvc7is2rplye5zEmrOi19iHk KGxjbTh4lBgu3DBrg/JO7tim/R1lQH9jHJ582or3TDpivDdPMN/ie869V0Z1 adL5tjvc8P73v/8We5111lnbXA/fy+mxp96s+JBxqXKwfPZyHh5Hy2LPp9vW iM3tW9/xlWcsEwudOHHiaN1SbWriUu7ThE30N3zfJstMnGjF28htas8rzsK6 +IxgvvcZ/q4dynOW8b95fjHYkvfWRAa2F+PA1P9pDFfzZhO2mEdMcjXurOQ3 YRHjEdZNTjbp4DQuORf9idySP+7+Fbbn6lHekZmYu3icuovflgu5x55tTLg7 lZv6UL3kO135jiq+n7TzaW7TpHscd/Mmypo8gzaZ/dfyHHDyxOFIWVdAG2w9 03p3+jTamPVkxSvYNs8rTj7fOtiylZ/jceqgcbP3y3qD7NWW3FaeHVpdZ9yj 3u3Z68RjbMPT76trp1h30tkJmyY9jPzDc570pCcdrnCFK2zvEc136pNjET// ZJymn/Z76tl29mnSGfOJPQ5k7jjJr30hHretWUPzgAc8YMOM7kvU/brb1xV3 3cPhFZaseKs5w0qfVvozXTdxs0nH8vdqT4vJj+Q5sKzrzjxEYunynvxO/phr w3PynrbO53nuipzZvG9qg22AWGGd4UFZRyf7PrS+a6/n+g7S/M338ljP7cMm vZ5+z8G1RykbHQwn7D5AnSM1l2dssdoT2muj6OPJKa2Hq/7ZB1HGxIKWaW64 75spZ64ueq/mnEsMkNxp9jmJnnSMyouM3cYOyplxDK/h+Dh/wmv4PnXnaljW sp1sq/2d1kjw/dSVVc5l3iD5mjxXnWdgJi7J9vt+XMPf8eA7HXOUZ6zkcxye MW4213GbiFnkIeVC9UVsc84lf5H1RMlhBEMY/5m3Txg7xXjTHAT5CMee7322 fGh3thXnQlZ51wkHyaOm8vRD5APRoeQ3gyHRn6mP/V487rslW2/1qn2s7vRc Zcc5GT9DO2EzOYHzCtSbvivQ7xCs7jO28xph4qnXiVHPHVNWlzvuidGyZ+R1 r3vdzb9lLUrXYzqWN2+rDP2ejimHY52ZeA911bg76fyeLaRdxJrGHI1Ls34v z3X0XeV5v3We98je5ilrvmedov+mvU/8luMw8UzqT9vewzkslp/0kPaRnKh1 nW2o/sX3p3zfWZmymZOJfYUn5zkq2sCUb2idxV6/x5x6XZ5hnkYcMIdnnDhx 59ZPuVonqYv2fda3fEY2iREzT5WYqes8GVM637/i5Y7vV/yYdUdG1d/ei++B Jr/Z479TDiD3qX1MnI+6zdiG812sNzqUfEX2nm2ey7bbz+wjcqUrXelo/wr7 OI6BMdNY6dwk/dZku/al1lH6v+pIeUjfI7jKK0/rdRnvO//Ee+e+n/3sZw8P fehDD9e85jW3PTKzDxDzq8YbXt84d8IE8vFVfDThk/VhhdmTj5l0ulysupTc cPLh8eHXv/71t/z46aeffjhx4sQmgyc+8YlH+83Q37GdxqDJHxgrjMHVb7bX eQA/NzHJZ/IX1NvqjvGS+labjz1lPKt7+S1YFBtLDBo/zXeTc6zZZnI62gzX l3AvbMfj9DWUj2NByrp9Kd6zz5PfMF+irKf4LO9Cz7MOeedb5vryrHX60Hsy Njcusy7rra9pG+n7+K7eHI2pbXOT7RM7jHH1m/XDfBcCbZq65Pc4EQ+ydjB6 Ek5Xfmzf0z5nLU9kGe5THTS2Ukd4//JUrj+o75r8cQ7KkfpJH0Pf3/p7v8oo +zoyl8E2MXZkm9outtH3ThuTE8tawfipzF9xz8j6TnMq++/WV//NMa+cyYUm vsBxs5+rbpIbVJZsK/0343jGxvk9+dC8a+2CF7zg9v6ovF/pYhe72OF85zvf 9hx0ZECdY76Da+Na/yq2owyoA66D+sR+c6zt/yl3zgWTExALeU3Ho+PVdkXH EhNF74rJ7XfWgmUuPPPmiSk6rtQL6mTxgpg8vSOzY7WKHYyb7K/trTKjLzGm Trm7ydcx9uR9I5+shYv+ZM4qz6lSZ83x2Rfmd2xTjB3bD+oc+0RZUxa0/5Uv tM40fmxsRMxoPTnfo/pRzOlY51yum/C496MfiHzi27O2MLjc+LQ40f71/m0f 33vt+SFi3BRTMjYzJtLG2v/mLMgjbL+8nrJa1UmOTV+TGDZzFBe/+MW3OeTa GHM05hLVlSm2tSzoV/yOWtpgvhcb2k+22b6m54y5xLraF/UlR85lru7UU089 XOISl9hy5MHiHuc5z3m2fEX8X3l/9K86mM/6xtTX8Z5yc8RZjlvqJBbabjim uZfjVGIq5UjflftSTpVB/Ez6wLEgFycH6Gf5QOoLP0wsEf/d9wskn5F9VjuX 3jFvDEwMIDZ1LNtO5q2nWM9YX17qeI2YN8Ux5qvmfh1Pcm7qYvU7Oa4HPehB 2xqU8JjuI93xdk6k9Tv/ZO4+xcbVGeaI7Kcqz87/NxfOfAR1ovaSIzrRuKi2 nTGv7hMLq4/En1yT8vkeXMkzrHlGL/kK5+bJW5M/Tv4ncxP5rePao3ZRO2ye wLyU+Pv/cfauL7t2Vfn/35Glj5vca5rkLoP1qpdBEEEQtNqXb4ogfJHUCnFT UrlJK7FckaJJGxKswMpFQVYEvkhCKsmXQf/E8/Nz8TsWn+fwmOd9911wcl/r us7NnGOOcYxjjDnmPM2d7XMai+x3ghvmfpFhxxrRU/s067Jxtp9p209f+D9c h/3T2U/lve99783O/Bxzha6VcGwbbPJz2rf5u3Cw9sNpW2w3+uOcr+VqPhgb DHZ4zDhyn+SM8cnMl+OHeL8n/JjjNa95zbPPf/7zb2vTsDXrBf3kQNeip/Qj sUDw2DG1+UrkkfZbXpZbZMZ3sQVjd+y69bWx2TkaP8vzdeGu9nV5tut9jM/8 n30eyK9Td/Oud73rxhH5Pz6O/YjA6XAd461x0v3wfHWe47UyxhvLsH1R5Np4 Ef/cObSO76Mvxov4qcUzGOOvfe1rz37oQx+62RFy+MIXvnDTEc8VmEc1r/f3 xpTgscckvGdda19qLpkxjA40p8jYRp99fvNh3zexT+5l/w0Gs3aK/Ba+2teZ r3o+j3lzZJbxTZ88tmmbubDxL/piPG6e3L8ZM3N98NiYbU4RWTYvdh2c22d7 8v9j79RVojvs58V7N+E1wZtgmeOf6HBw2bbbzzMX8/fGaHNq8474++QHMuax 1YyNfbx12/pofDImcx5rgpgrf+1rX3vD5GDx61//+lu+gho/3jXlHIw5ip8R WZiXOg6NDpj7NYf098EnYr7ouf23cSnjbsyNTuXe3ANOzJF7dbwUW7EvMBe0 X8/YojfI7dWvfvVtnRB/X/7yl99yPuxlGV6U/hk/rTux99w7bbavaJu0DbVv XjG+Oe+q2eo4xjGX86PRzcg++srzqL/47u/+7lsuNGutzZ9s7ys/FZk0VjR2 mxs7P9g6Ffszp3ANl/mux6nrbONTjdnGYXxPeGueDZ6AL8Tc4HGwhfPs/5A9 WJT9NpPf7TxObNg63py1x8h6E4ztvJTtMrqW38x1zAfaPoK7zbM9rvYlxiHi dGop4YSss6OuLWPaett50M6HmsN2XYj1ovmxfVr0Ldd0HrJ5sX1O5BVZOzfR MuEzOpS/7Lvx4MGDGxaDyeQByVWQv3jpS196m6dBj9yX6GHzvM539nyu+9H9 tcysB8Y+P8O8KbZmjLJe+Tzjlvlmx4WOJzI+9hnBSa5FhsgO/AWPOfBp5OPR L/ZP5Fm+l8fZ8bj5Xdqca3ruMW1d+TfnFRJnen5wzSk7T8A94gfMkR27etw8 nlxPnSTvWsEvff/3f//Td+O43R0jdF7RHM31DB4v+1TH2Y6nmx873nJO337R /tp9tJ37fLA4NuE4l/pYYiVqUfDL9u2OSajDA49Z+woeh0e4DZFRfMDyaTnf NuechucQVs7Pvt047hxLc3TzW3M199U+zvWd2BH9Zh8gcjWsNSKm9Hg4b+d5 X69XXXGW8dg5DnPkFY+7XsQ5np73chwSnI6eJR+ZukXLLNdE5l/5yldu682o p6aWljkEOB2YEkx+xSteccPlv/zLv/ym2NQ5lp6D6blz+3X704VFkVfP+Szb tHwd3xq/O4fjGN94lGdEf3JP+6D+m77A3cmXvvjFL77JC/khSz7DmfmeWpXw geaGznm1f7PPjr91n+1rzFHW/HnkuuqAV61Q+E/PAaU95tuNCzmfvQXAlh/8 wR+8xeGsp8G3p73GgJUDce7cY2V+1vYRvbLtuU4m+hEddj6v8cTxeca78xPO XSR+zTlcQywGHrN/BXGCuYXtAzxmvfT3fu/33vx3Yg3H2ulr/Inv03MQllPr h3NOnSM0ztjf5rf2mZFF7u+8judCnOOLHfDuxqx7hfex/tl5ecvd+m7bic65 pilxgblP87L4Y8/HWi6O0VvPzPW6ZqzzfM7TWVY8kzwwtTTMQVHLzzoP6tzw T9S6wZHJU1Bby2f2XCRuMPdpTLVfsn27VtacNuNjjth5KcfGxlfjinMyzmPY 50VeznsG81YcYd13f+3TIvPIABsjd/ySl7zkFlPAi8Fh5Me7uvBt1KiEH8fO zQcd3+U5weXmK85z5Pv0O32zThrnrLMr9uu4wzmSznPbtuPfWjdjJ3Bj6lCQ CfM05L/C7zp32f6m+bvHzDIJ5uS7/D+27fml1hnrn3HK/TSm0HZwNvPLzk8Y z5M/Jl+R/YR8vuNIuB75dupLqa9wfNP25jxGz89EXxqD3Jfur/vonGjHPy2j jt8cP/R8o+2ctlIvQQ6HnCjznWATfeH5iTXaRzTepO9e/xN52l9HDpFd5ouC xcvufE37e+v8Wrvk2Nf1BNEXeAr70YHDvOc661vsX2kfe68/fvz4xmk++MEP 3ngznCZzD85Zd3xsTm9b7Ln5jKN1JH0LHtjmzDW6f+YmxibPY9le3d72r80H OhdiPxE8Ti6Q9RDUooDH4C/8OPOj/OWdgtileWHnYI3HzvM0n4ps2mcbYzxf Y64XXTb+9hiZr7cNdM2w9bbx2GtN+UscwVwf+5exZxzYYw5jm3dclzFfz27O 3BzOeGN8DVaa4xvfGs/cz9h5z820XucAt8FjMCd1oznHeaPkj5lbhzNFN8x7 m2tEhzKenOt5NOtKzzO1r/b8nmOW9Df5ccc1zieEc3JOz+VZl/gLB+S9B8Tm 7I1JTqft9uQfzYuce1v5487xenzT5sZs41Dn6p0/ahxJPs051tyX3/iefYrJ STDfT36Gd8JRS8J+HNhHOHT6Gt+ETFhv9Wu/9mu3WIL5KudYjMfNYfqzbce+ puOCzmcaE9L/zi9EBzL+jpWcF8wRfuPYv3G3fb+/bzwOluDbqBVM3picBRyZ fDLfk58nf0g9Jfsoc7/Mn0cG5ub2sxkX5whOMafnjFuHcyw97vp3+7DFL4zP 8WXmC6f1d9g0a4GZI2bdK/oFV+C85m0e91XLtnJRtj+P7+J0XQtufDL2deyZ 5yxO0hw1eAwPYn0en6OnPN8xCfkK1ucxD0rNjnNYjt3cR8eTxo7239GFpTvO PTRPWlzS/Qx+WBb2Vc4h85c5O3ge8wm864FadT/HtuYxzf3N3cwj0g/zG9fR WSfMn60THZ9lzGN/jrHaf5vTca/IiuuYR+EdqrwrGRzGN7PnAr43WAQWB787 JnI+m/olfBicmjVpPNe+33OXtuH0qzlozzGtXEXHRx2vm6Mn/5O5Nf7St17D 4bxbz881nnn8U8OYWpuFgcmDIWuwmIM5LGpWWAfAe5v/+q//+sahWfuYdyuS K0O+8GbP9RujI2fna6ybtlPrc8bDuSXn7B3/e51wY6598OKRznEbo9faptgL n3mvPXN9xA+s7yOf4Roj9806srhK5ys6h2w8Xj7WvzkH6jlA++/Ym2Nd60za ELwHg/NOs8znJbbqfV6IGeDH6EaPibmAc7puW8d4HXd3Hi7ya0xqrO45H88v OE/kXFrnWakhRgbEkcy3MGfn+Ndzf+s+xtXFH3q83VdzuY6pHFObE+VezmfH L5krOI9qjshnavDhHMQC5C7Ja6L7iYeac7q99m95DvaDz+Z+ibkTu1hXjbud 63Ps7djcsUzPDzXH8F/rmGN1xyftL+y7jH0979c50q45tT8Nb+Az9aKZk/jw hz982wsPjpP9WNNX1uGDxeTn4czkz9irgLwibTAGtJ1Evzxfk746xnGM3/7P WOU4OTll88D0v3OOxoF833zZcXTnGSJr4jB0lfwO9cpgEfc1n0t/rPvpi3MO xmSfa8xNfzLunduMbrjm0LFx65DtNH4764usL+HH5CuwH3MD5x3BZjgT+3Yx h47sLNuud2tMNR61PhuDck7re8dBfb/IyDkUY3XzleAH8Q/1j+g8axmIz5N7 tP502+xj7F/WfL7bGT08zUF0rstxYH9POxNrO7fRHNa4hR6Qj8EHk7dkLjs5 Gc9x2o91fNK+1OPEX2QI3sDxmL9yfJ2xav/Z8mou7Phw5ZmcR3QM0zF1j2Vz AMf/9oG23c6xts9YnCvfkWsnJ8HcKDwZmSf+MOcIF+A6ZEi88Y53vOPGmfGd 7JOCPea9zs0LrW/pX+ujcbLlme+NL865rZqVnO/5e7fH8VrXafThZ0UfklMj l0MMhs8npk1/Osdlf2zf077b/zeHcxztvOHSPferudXiV4698izuCQYzl0ms BDYb24yxyR8jB+bzvD9dyy+HdaLP87g2hjWnzHdLDxrTPU8cDsH8LDEO61Iz T4tMeJcbmEGM/ejRo1vcnnxD39scYeU8+//5zm017qR/yPX0HuWF0/4//eh5 GdtHuB2yIAf8x3/8x7d4D6wkLwE3QwbBSfNu665zKW6DZWO945nve9/7bjVL 7APdvscysL4sLtt4v+KLjsMaQ9ZeSbb19pcdXxnLzAmM7R7vfOc5FtqH72du Crmga52rszyMZ4nd4c/YHnwa/kROlfWhzL2i29GBlUc1LrZOnXJF6/sVz1jf T3xkYUXXazROpGY0Ms1z/u3f/u22bob5Y+wWXApXNja3rvnoXHBz5s6xmzus Pi/bd4zs/+d5HpvoCfhEnI7PCR43niROYT969kQhJu33OVju1v/O2Xs/Ueei rO/ud+uF8yTdTvOV6Dh8hNw4GEROmPkBZAw+Ey8yV8B+ZMnPxIbaJ3Sua+nX qt3p+Y/GMutd+tH36dxduJvnm3y+OTX+Fk7BGhZ4GTk4MBLbblsNv8892g96 3HKd7c5jQq6TNZ/s1QAO+Xzut/busu2YQzcOuI3GMvv4zrXZLtax/ErzxH6+ ucbynblfxoJ5cOYmPv7xjx/5oOsN/JvHib/kmsCkrF3HhtnHAHvOcxtrOkaI zBpPGkO6Rsd67HPbRvpa24P7vMaqOXQ/h5iCtXzUqFDzxdrh9Jm/yIGcI3qO Hjl+sw93DGBf3zlN5xTbZ3itQcvS53rPctu98RIcIi+VfEXbv5+HH6L+hPkG /r9i7eC+n+f3YLgt7SN7b+ge99bftW4oGJp90V/4whfeMIi1mKktYo0h85Ls 2fGf//mf38R9+v7ND1q3Ov9gPpcYyLmKxXfNNc2v7IOCl+ESnpvjc84LHsJ/ 6Ts5ceboqOEL7sYW4x8z3u1P2+c3Z7Ku8NexFXvfgcnkRvgcP9mxXet220bH PV0TYF7v+NE22GO71vy6j3l28zv7gIyX29k+MXkN1uTBCcAQ5zAdd7X/s87F B66cAXMf5C8ePHhw021sGewHs+ijfUNk1Hlg23D7mOawbfORWeN75xwa69v+ O5Zpe/f/w//BXOY9mBNl/SzzH9QsY+8veMELbgc2gA/MfL/zcYkp3AfrnnNg zoOt2Nxcqv3V8m99LQexJbhELib7ckVP/N4KPrN3AetB4Mm9T07w1P9vLtxy tr89jUv718VtOvak/bSRPAT7YHIwPowL/pTaIvYIJ+4x/tk2zP3bP3d7GrNW LLw4dscxzdccb/VYx64yN5D8BHlGaiXwscx7oJvMH4UPN+/t57evbL/TOuVx NEdO3AwusNcH+YusPV/4bnnlns7pJsZ0jYPz4u2Pmwu3rJc+ud22P+Nm+0nz EGOz8x///M//fMtTPHz48FbHHlyz3Hp8/XtzqcSrPgcuBUck9skaSnzhH/zB H9y4dPt9c4OrsW75LQ7b+rrspHH8pOudw2hs873i98jF/fZv//Ytf0P8gb2/ 7GUvu2E0a/g5+I5YuXPGPe/kGMJ44jzGqjtpLFrxkuXi+MXxFD6U/YSI3fls /DfGZj0Ia7D4e3qPVdpwtcd/6/OyjxNP73N8xPeBS+TVWNtNrg4uDBYzD8Jf ODK1tc4L2df5uY2xy+81jq9xWHhtObtv5nELz50DA4uZi/vqV796sz30kTkf bJ/3HIdHuK2tM/39ig08lqd3s3VejL/4+0ePHt3mjFnX2Xpp2fWYnupqPG/l dp98ePuXzkFFd4ypxmTnsWO7jZfus3WC86kjJqaGz1jfI2PHPsacU97VY9m6 wV9y0+SYwWTWVZIzgp+AW9Qp0B9juu3Wz1icuLH2hK3t+8w/lw4uXGv9aO4U ThI9w6azH0hqujmwefAZ/5R3NnuOwvMEzuVYR7te0L9b94ytjU/mDI6pzM2Y uyWHCkcOHi/Oig1SVwHGJV9h2+2cw1Wuoq9ZdrR0buGi+5+8KjE8NWuMBRjM 3gDkKuDGfH7mmWduMQ7nZVyaNzSWti6aazRvbc7U8z4dD7dPsY3mu54fj56Q G2benXHBV+JXiV+bq0bmJ//ivpuHmbc4n+T4YdmoryWmJHcEb6OGi3alPig2 ENmlr8Fd2+4pRsz/vYeeZd04Yb2yjDxO/Rx/th+1/Bz3ZIyZa0Pv2MPfvOok t8Z2+2Q/+xSz5TzaAoawnoR5E/IY1Dozb/+P//iPN0wx5i0+1/i8dHnh6fLV J+zutq/cSbik2xS8cJseP358w132ZYIbg8t8zj4r+ETiR65bY916FZ1fHLf5 8MmfdA6uZdf3I86hzot8BT4mY935NT7j3+Gb5JGbS/UcXX/X+/QtXO64qeOc 5jYLT8KRiV9Y74RvzL4tYDL7LfCZflB7Ty2nOcKKx/q79nnNDR3zNIdubGje 0DzW/iaxCz4HvsMcHbEN9b7oIjicvQq7DY1TJ87uOKf9Z+db0/auI7PdxN8x fwpPA5fhaeG/zUUad5ffXT7F2GKftnLxzdfaNy6sWM83vw2PcU0g64nI1VDD 4/fdd38sR+OL2xh+Zh/vtpiT5NpgMrkqcJm17OgKbXr4jfiJnDbv3rIsrX+p 67A+uN0dZ7QudJzdtu92W+b2a/YDPX/sWIXf6B94nD2asvYRuwebmfuCDwTH l32v+KT93um6U9xwwsUVI8ARsWl8aN7buHAp7wdhvRD7Cjmm8XNO3NHY236z r12825zhLv/Ec9lbgXwSY8G48DdrUqkRIbfK+BAXsGcb8wDE/cnvm0+efH3H icZX62HLc8V0tgXnjFx3BtbCbZinw9fDh8kPMyfZ/V8xR2Pp0pflJ3NO+9zW x+j54gQc1D1TZ4fdoHfpp7mPOecaX/8/sl+8rnHdfLkxoH1Tj1Pz6n6eMShz mdRYksPH7zOP2v5m6Yv/7zrojpG6zY3tjXVcF7niCz/60Y/e9oOiNoPaI3LO 7OEXXx6ssx2c/J/HJtdZf9uv9dE+5ORfjcv5i3/C18BD/uiP/ug2b4x9Y+fg cPbl5mBOG5xz/v7k420nnYdd+riw7Sr2P3E8xon8I7wl+Qr3t+UGHqNf5I+j I57zcp7CPma11/1JXqNtMb+7BmDphH1T+gaHJFZkbNhLK+tSyV+wxolafPKr 1AnxG5wh89JgRdq6+NXCh7avcBnH97b/HjPHQ83zwi/JS8D3mVMF07Ct5rIe Y9+j9cRct3GpOYI5dsugc0zx3dZrjwnzeuAAPj347VzwkulV/GRcbO7p+MS5 CR/N5Rp7r+Ib8zVjMn15z3vec8tTsNaGdi6uufrZz+7chP1/zz21Hq4YKNfD vWjbw2/wZPZKpRaS/CvzEPYFttHFl9q2Tz6i+9X20PzecUP+eu4W30H+FIyF a2Hb4DH8n3gYm4Yjp6aK/5Mzir9sP9Fc0jGG+9d5A/PJtV//svHmlbk334PH 5Lmph0rtYvSrsRwbYo4g9RVu72qD8dn9Xec4x7x8S5/v81r/MqbYPzUUrEXl 3TjM65E3Ts0V+RnGFR1kDTi5V85hzRp7mn3uc5+75TOcL2iOsvxj/3aKl3Oe /XX0gXN4VwCckvU6tCttAodTU7n8wvJPjddL1msMfa/WwebM7n/3NToOl0ff 2L+B3Dc6BzdjPQN9akxpPG5+2fzYeL3w3fjW+t39af7tZ5sLo0+MFbpEDQk4 By4wp5bal+ZfLVfbRtvp4mvto3yvJZvlSxNzIX/2UgObqQMB4z75yU/e4sX2 cZa1saxrq5aM/Xxj0Ip7rQeRN7kVOBR5OmyUOJf1Taxzws7pC+eQeyU/Qa0r +zOypphz8EEd7zS3Oul02tyY1vNl4ZZtS+ueCw/QF3L89CG8cGF78sfkK7Ie xDyvcyKt4x6r7n/zrLt4/uKCp9gyvzOvShwAtsXvuNaF89E/1ov80i/90g2b f+iHfug29tQtsC6KtZnMQzXfOvmOpcducx98j4/APsBhakrBLebnebcaOBz+ acxoH7c4zMLj1rUeP38+5f77WcaG5p/hPdR/MYcMn0G+YBefqR9lrhid9Fj2 YX/o78Jp1nxkbL+/swxPR/vK3AddIH/EHhPMwYBj9AHOkneWcv/OUXtO7sQt W69O3HQd9leNC0v3+I62gWnsHUA/qMsgp0EegD6S/+551+a6rQetS8s+zW86 54Kdsp82GExOkVg27z9lLwu+J18R/YzM6APz22Aatps98hLTdCzRbV523Hjm WoXFQ+862o7yGfsHj/Ez2EH61rjOXzCJOr7UV5zwszH9qvat/zZ2dJzk8W0/ 0P6/x514jHEit2ecdJzkPA7xwK/8yq/c8gP4WLjDpz71qad7IXtMc63b2PO3 jZvmavwf/40fx/cT66J/yLz3EnEcueS+fH37butS/t++rdu77Mo2ucbccvCY gFuZe8nev8SU7CNCrNL5gnXYx7mf+ds427G+uVfnJnoeJX1NLRznYQfk7+Bh vNcjta70i/UHtME+O1gZTFh+rrnsCa87duj/2197LH0f253PQQ/hXPBlcksc 5JnI0zon0743/Uk/jN+Rc3NTc+TkrLkvMevHPvax2/4MyBcdAaOoJcg7T80l 8hfcZY6CA6yOnXm8F+5eYcwJzxYPXsfiNT3uORc8JqcPT6GfbevOJzBG1M2Q rzjVsK38ib9zH+7yH6f7+/sVL3Q/M1b4f/w+/tN4utZIJKeZ35mToWaD68EM 5gPxvXBZ4uy+DwfX8zv5ksePH9/mDLO+IXWTnE+9KJw874jAB8CF7SdOPHbZ 5knXOjY68fWlT8vXLU5kX9O5gTyXOAP5gb/Mv9Bv9pvkL98xD4ZMm5uYn3bO tvOM3g/COBssMWf3b8YM55vNwzmYf8BHgxXkX/P+O/wL3xGHsU7cGNp63RzJ 2Bg9Mt7GDk/cpn2i7eU+XMb9i0zBBOZbqFVkTRV/4aqModdgWx8ix94Xrdc8 Rq9pQ2IN9t+G8yHDBw8e3OZJsCHv8WWe0/rNPAvXffrTn35OfNw6ujDXcuBv MK5jDePYFee07p/ObdtgDg/dITeJ7F2j3GMKDoPHyVcsbrbac3XOCbcbu9Pm E9avtuS6yJ/8Evuokr9MbqxjhmCJbSK2gO8i1ma/dfCT3A33evTo0W2tAzYa 2cGvwWu4LhgL1uDr0WVyJ+hn9h3OflXvfOc7bzkhfo9t9Hg1x2ke17jd/i+y ab5lfuOj/WyPb4+j7bo5WeRJ/Eg+nBwfeMz8N/FA8Ji6F+aMWWPNfkfkmZEV tUr4RQ5slL/kozmIa/MbB2vSOMhLkzdgbPBx4Ajfcw1xEjyMv1zPPfk/1/Ad a865lnOJiXIPviOOYZ7o+c9//m0uCU4cXH7e8553w5TsT9U8337vCh8zfifu Zj4aXelxbH97wuHWK7cVXUVmcArqsIgJ4G/wEzgGdpH2gh/IkRog+Cx2AjYi 054bJx9BPTC5OHI+2AAHa2f5Dj0hH7/wbfET2sscfvbftv4uzmDdTbzYh++x zr0rd7F4YvrvmC24gyyJS5Bd3n/bsXVwEBsJHvNsj++Vz156lz6czrsr53LK qRhrjMXpO+NMnRi4aszLtY5fzUvz3JyPLrF/C3E3tkeeF1wl1sbmyW2RG4Ez cYQ/wa3ZvwgdpZ6DWBCdffLkydO8ROflFk+80rVl4/4t3y2/v+Tqa0982HJu Lt65I/oK/oJfrkNMbRJyIkfEWkNqFqntg4sSm5B3hqPlHSboLrlbcv18x/k5 uB5/mP0L4d2cx29cy73IXbN2MNfw/9yHczmP9Y7kqvjM/fieMWdvhGeeeeZp vgJcpj98B5f8p3/6p2/ai+aUCzrZbORubmj87FjQOrO4j8cknzN3f8IKjyc5 AOb6kCk1GciKugX8F9wOu0KvGVvm0qhtwm+R88WnwZfhffhY8BzZEishd/ZH Yq9WbCu26Trs9HfFcHwHdmNL3BOf2Ryk+cIJZ66wJz6ycxVX/PjEN7ttyBvZ kGuBN7q+wnYa7k4+lTnN1B+3H/a9lw9ZuOmxdr+vMOLqu35O56vw88Qz6JDj 0bQlPsL6274imM0Rv4btMceQdVBgCnoIzmCjHNTh8H9sF45BLhrOHt/meZzI vH2u/79sceGx+9RYeeJlV1zCmNG8xTIzpjh2hGOiR9hr3ufJkfokcJfaSngu vi18F95FzgnOzGf+csCb4bf8BiflwN6/9KUv3XgSMSxcO3yb78ANruM+5EUZ P/gYMTOfqV9nPQfxCn+5Fwf/BzNYS4RvDQ6DP1mn+23f9m03/+F5isgmY9Hj 0jLO38bOhdMZh+jOSV+uxnTxwjXm/ks+hjw5ukz/iWuoG804Zu0yY0z8gP+D s+CryE/hS5kvJO5I7sF2YExYsZrlx2+MOb7g8Td4fGzZ17Xu5x4nDFu24GuW TbVf7Fx921rwJHkcODHzRpnP67jGeIxe4stSO9o61vJax7Ld7ucJW5e/X/iz uEb6hM+BTzF3TI3SysE2rvX/nUv0Z7AVG8fvw//QQb8fLWsD+Y6cMryp/a9t zt93zVzLc/nx5lnWY8v1Kqd/9dviXst2bTP8Rfd4p324cd51z1wY3xHrrro0 j+VpjE79Xz6qecHKhzdXiL4Qy1D3gk8BfzKufAaf8c2pSWx7bNmuPgQvWi9W vsK4bQxe2NF6fPLbJ67TvAROik/LvrZZixHflBxO1slRd8I8HX4vfPk0jv38 E1fgN7gROEyugvaccHsdzWeW/1r20vL09W3LPf6NxznA4PBjPp9kETwmPnny jXjzqn/dRrdl6fzJdu1jlr+6wv2+Z57NZ/K/8Fg4kPX9NBarLz2O6RfXw7fQ C2w1duq12mA1HCt21+Pd49nzTW2r7a+udPukU/fhQyvWWePRY2ydDDbBrYhh wS9sF5kQtzCfQ/7c2Lfm0ywbY5HHI35s5ciXTZ0wr/lofAW+lzwIfQB3OMBi cCl7qnl+sP1Vj1XatezmLns74UfriO9tebptSxdOY+55NXJ04HHmNZFL1mLA TcjNgR1eLxidOLW98XjpGM+HZ8EpyT3BMTs3a1lfYUTb/brPFTc84YbPO/EM PpPzIW7I/hW2dccuqa+gthJcXvxs2fjKWZywY/n93OvKd/ucfn7XTfEd8Ss5 ZHgs5znO67a1rTYvM57mO/b1Jy4Dj8lPpIYgNV3E6sxvtK0sXbjKKbSsco7n +a7ut3TjpK9XfK6549qTIvIPPnEv8Iy8IXPJ5CTJSySX2W3o9qZfjmlWLVXr S//O4b0Rrsa6OQ1/sRlq1qkHw5+Q9yYvsvzJCRfdR+vwSTfuwmfLzn7gKj/y f4mZWpb5PxwDPc9ePjn4P7l2Yms4sX2obegKj5eNJ87nHuSGmF8nLjnZaP7f eQxjvHWv90I7+aiTrl7h3rL15CuoEWCfF68HWdeyPhEfRw5tjXe3a8VNp3tf jcFJB22jzRnbL5ojwc2Yl2GtXutGY8HJP7Y8e+6DvFrmqfiLnsKP0U3WQhLv nmzuZKvLB652WQ8X51vyXvq6dMx4nz73fe/yrZEpOVj8O/rk2qWWwZX+m190 HumkT9GVtLUx0/dqX7Z8TOrCwGTyxtmzxvqwbND96z6sc1cMd8LZ++JD45vr 7E72apuzf2NeIHWMiRngJBx5TzD5Dff51Nalm933xB/8lr2AyZtY7i3LhRv3 tY0rv5ff78rXX2Eg9/B8HvmKXjeUa3gOfSZnH/vxvgZX9nLq5ynPZf3sPiy5 LD20nZo3Jef1y7/8yzeemr3GjC0+v9eLGptz7uKC+Db2bWF+A44ANwaXmftg 3qjt67TOp23Ivt05ksV9T/JPTNzzPws/2yecZG25tT+0vUdW8AD2PYPTsCb9 5G9PcX5znPa/+Xxq0zoaH1t+PiJrjztxI34XP+PvFwde88YLi/lt6d59j5Nf 7dqmVdt11X/Lwf7s8ePHN96RHB15C+Y8GWfi0lPb/Kzl4+NnuzaF39AlameY FyLXdeIBJ5/UPvOESa2jPfdp3LJM8137iDV/yjpI8Nj5CsvGNg8/Bl+Cx5bN arv/f99chuV/H3/SfOpKNx1P0xfqqJhX83qptrWFWVf2bwwAZ8hRs68htRTU 2qGX1FqGJyxsWTh6sqVly8v/tU65bwt3XQt/WkvWeNx8o/Ml9gHE9KzLZX+6 XtvYXHTZw2qHbWHZwcmulv8xziwcXDhCTTv2gS0xvo6tmg+3bXXfck5z8e7f STev2tsYt9aZNw4s3V8yZu0IdSfMn1B3Ro0gcwLUy2RN30mfrzA5utO1oPxl /g5uxdqR9Yzlo5avbBt2nLX8mvF06VbjscdwtY/fwIzsIwCn6zF1e1kfSn7s yZMnz8GPkz4Zh+9al9cyW2N/1/ltyydcju3gh6g9J9+bcbbMc8/GnWXHPifP b94M7rPvF7Wt5Np6nxnriPvdefyWxfJDJxlf2WrrWN+/dfgK6/u8fA4eU7fv 2slV630X319219xojdFp7E52f9KjpVfUXJCDIRdu/enc+7JRy8k6eMKodf7J r5/4SnD5rrroxsZl88Ta5D2poSAGpAaY/X28V+QJj1fd2Wrrkjk1/+SJWEt9 hcVLL++ylStMuwvzWz4tgzWWYBE8n1zq4se+L/0lPwTnW7JtHDUu3ndOr+UX ++28erftyteexoa6KupF8K++j/OCa9+JKyzwmIeLe40vOsoaEuaBmYNYeHfS k4Uzyy9aZ5Z+LHmfrl1+4ao2o/vhXE94MOdTt08On9rTE25ccaUTb1h2fxeO N+617vi3pUu+jrk9amt5Z2H6f7L5xiLrtW12+bY+7McW57vLNyzdbuxYYx2f BbdgzSLxHzXFvb/Luv/VXP9JD9uGU3eIb48uXY3vipXclh7XbscJj1s/Fi/o se6Ylu+pmcUuWAeZdTHLzvnL3jb0GzxePKplsTjOCY/XPRa+X3G0xv11Lz6n TdmPg73Ult8yJvdzF6at+NxyDCaRZ8Sfs1Y683prDuU0N5C9V7Lua8l3tXFh k9u3sPtq7PpZp+sTF8dG844wcvhwgK5pMyYt/Fl63GPX2GpsaA5un2HMcmy0 xt6/5XrWWxOrk5M67QVzGq8r/rZ+t231M3oMTvdc2Hiyq46ZOMJ9WWNDTT9r 7Bjf9gHr2ct3Lv1fbcp1WQOSvFdj7+L9V37/qo0nf36S7xpjn+t8VuyDfAXr T7M+74rPs0cDOJK63RN++P/8a8z1EXmddKT11ef7uCsOse1lbFj7CU8lNki+ r/lpxmOtyVmcZOl7np0aAjCYuhzW8xJzZH7NtuTndO2sn9862rnX1vlT/rFt cv1uXVo2dsL2+JvsK0OOgjiLfYJdS9y5GvfHbb7ihcHFyKj3DVrc8iS39nVt n5GVx4h4kxwYudO8C6xrUTqvbJ2OnlxhQ+PIwimP51WsdOXHTv4jbU7shx1R MwQ2sP4x5yxftvDV391HF6NP3JO1JcyRsyazZbT6s3Dx9F3Xm7SOnOxitXfZ o/U3OoEvI2anBjT7ztp2/WzmwJw/Po3X1biffIbHufHZscQp9lkYfvKr8Zfo E/lcavioB/ZvtpX037pv2Tiv4vE5rePhMzV3+EDqlLN/YGPwlf8++aKTD2+/ tnRq4Y45Tj4vW22/0/4jR94RQjyGDIyhq11XR4+X+3/XfMUVH7xLhqsdXq9D XTu1BcSTHdO1f227vOuZXZ/mOOGq1qmvsdxXexpD2md430FyNMSZ7Jt4wnPL dPXzPnprXIrMwS18H7rE99m7zzbbtmM9NZ44hlrXnfD4yhaaN+R8/rl9uZ71 IHkfRvY/7ueHb7B/Dr4IPO773EdvT7p1pT8Lk/zsU4zX+nD6jho+1tOT++pn nnSn73ey0StfhEyxV+Y+WDtsfm7ua5tr/naSVY5Vi3PC98blu/q3zjv5DbeZ PdPQN/LH3lNz+bgrvT+NicfLvuRKTqcxbvl0nWDLM2MFR6TGgHmCvL/grryd ZXqy81P7TmNy6tPqv3Uqetc1HcaW4DgxAO964/0N2X//vm29qz19vetQ+Uu+ mH2dyB/3u2VOvtV6tmpXLYPTWLTPOenLwp+FRZYteziQy+NdFOjO0u3oNPyY mmvq3e7CY19/mo884VZjsNvTeHXV15MN+97UH7NfF3sO0//mM6cxWGOydP7k Q7LGk3wb8/HE8N67K/Zv7n2XLZ38iGVnPW8b7DFwTH2lTwsHFr7y98k3fDkx FnWGjb3Lnta4t+yv5qeW3jW+tPwci/m7tVZrjQU5cXKp1O+Et/G954t6Xuc0 ZgsrW0eWzfY4LF29Gr8lm8g4sQAcgnwB9QDUXmU+Y+nhfe2zn+1x95ww84es z8a3wxOX313Pa31a+OLnWBdP/uX0nFP/eyzcV/wbegMeh6NF9h3TwSWZq6CW 0LhpfbVMTpygdaD7eMq1LOzwb4s7Liy1nmZtCD4J7pac2Em2i78t7Gj8dayX fRP5HR9P/RvxCTV4Ptf3O3Glxmu3r/OQOSdj6/slBk0N3uJFuW9+v+J61jNf x/7PcBrWBgTzFyb4OZ5Xdd175LLwOG045VAji+6n8bj17gqz+ntwCu7C/sBL J+4a39bbjn3bN7mNix+0vnYf21ZP+OHnUdMHl4CfhssEjxNLtM2e/GX/3nrX eyezboJcH3uhJe9lvY8Nd43G0u32a+5Hy/OUi1+/93f9fPtUPid//PDhw6fv M7U9933zPlNwOe9WOeUKVltPNms7O/nX1uml1+u5xoK8GyLvMg4mMj9JDTY2 lPXwjsmar1nGV/q7dNj9zXk8n72SyWX7XQuWR2Oh7bRjL+vkwrCT/7RvvQtj u299jXUv56Nr+B3mT9G11s2lS/Y5q/Zw+XjbgW35hHU9Plf8qs/tfGzOpf6W tax/+Id/+BzfsXD0hKVXdn6SwdJH+yXfb+nrGtv8Rv/yHjpiAGJKYkv2OvXY mSO0fq32ref1dT3u+HO4IeusTtefxrD9bPrmubtu11223+NpW/dc8kn30kds hBwma8uzz7/t276T+gp8PjUBPY/S9XvWgZZLY6r9/fLTd9lK4/WJFyw+xGfm h3lPIliBPIxd3c/T80421OPacuXA17N2mFrCJ9+I57v+K/c4YXT66zmlvOeN w+9wbNm2zP2slRuwDBzXr3jBcSZ/wSjm4KlP7bkoX9N134kp0pfWl+XHW9et EyddbPyJfNd7ay1/v7Mo+sC6XeYsWR8BhvW9lz0v33Lfuh7jnb8zdvCv+WLb uJ+9dDf6BRZQZ8ZYMi6WbfPO5QuufIrb3r4wOo6fYz9813q1LS4d8DOMFafY YeG8+3TXOpYrHrl4XNZLk6/I/EqfbzxmjTH1s40LvueSc+PksoElr8bUE86e 9HOd63vTB/oNZ8Pfsk9ifk8f+52UC6uXvFufum/Jg/GZdwJRd4iOf/3rX/8m HF15kuincY3/w//BAPqV91MEL042bftZPNC6ady5kkfkl/em8f4q9If93k8Y hKzpe94zmOuJh+EL/E1/Eu9wruO1notaNtf2crIP/q4am3zHX7c3cwC0K/uX MLYnPmTub33v8+Ongv1dR3CyHR9dA7T6erIj6xf8hTXhzOPlneetk71P34mz n/C4fYzn8qhBIFdBTQc5Pp7jd/G1nBuXTr65/UHa2DpyOu+E9ct2un/5nXpJ Yo7U4C4MzPV//ud//uyDBw9ueNzryJc9NofxWvnwipyf+wVPvJa4cwbmLP59 5RrDrTpmiO1nz3DiHvbgZW1IdD95DduD275qtFrP07beA8Ltzn2Yn8Dns5bA 74DsvMPJD7btBdvIDVA7A5ZxmGO6Dx2vtR88xQHGu5Vfyf5n2PA73vGOm841 VkZWtI/2gm/BHj6DxdyD39DT+Jn4HY7IymsiFy6d+PVpvt167rgl/w8+xodG d3mfCO86YW34wtvFey3v1u2sA6L/yCO5A8u9caYx0jq3cqT2n7alyIdnv/e9 773NtxDvLP/XmN7t6XPdV/ej48RgAP6c9y/SjtiS/dTiMtYHz8u2HTVOLtxO 24wBlqHxO/09xZDWKw7m86g/xteh77anvi54zLo2+oyNc5iDed1YnsP/w9US Q1svgn3hGcbs5lvGNsskOhQbxa7zjmHrVjA4777NX9YXMa9GnJD2p93pkzlZ rzHotlpHPB5pX3+fXD46xnw1Pg+5B2+Co722wHbdthC5BK/SD7+nyhzWPs4+ oPnu4sC+j3E955HvQ88++MEPPuWyjXORd/qa8fT3wd3I1jq31l24L/bpjRen o/2mc0KRfdoev8FBm+COzP+77s3PXFzCuGOdyjhy38jCdtT3PuXNgiXxc+vd fr3WObrEX+yEtTzk15KnaL92krH7veZmWp/tqxxD8K61t771rbf3K/N7/FTu yefIx+33s1Zs0Fx1HcZY4737tvrc9+42pI/kucidZv9jv0/bsuOaz33uc0/3 22Qs8ZUcsffgbThnrg2mBIvzDnDHprnWOuL5wmCZ389uDkg7wp3CA43HXBvu hb2EY+CD4Gv4JWpi6R/zxr4n54STpY3us3Gh/UL6uvxOrrWPYm6E9xwwHsS5 PJecEjGaZdx7nZ70hfMyVuYNPS65r8d/ce/lI3O/2LixPX1mrQDrbrLXqPlL 5zUsm/hP/L65ca7J+PbaZOuu53DbhyyObBwyL+i9SIzTaYexEv1ibzP8PO/2 c7vaJ5rX91/zDfuhjiE7NmwOmufHFuLfjGV+bssFO6CWgjWteR+wn9Gx1cnv nXKtjU/2p8EE2sv6R96nmlrCHsfYVPTI/M7YcYotly21LI29zfFtGytWab3y d+HH1EvmfaYdx+Zc1kzgl5jPM44Ylx1jByuNg+EQOdfcLbIKnjVHaxvKd23D PC/xuWOYYHAOzgHrwGPOyTuhWcfL/zkfHOS89DF5zNzfGOdnc6SfnQuNDCIT cz+eSxzCvCkchPGBN9PO+BHOu3oPkPlm/F+uNY9Me7GzYL5zBYsrNl5kjNPP 9rsctJ/9adEzZJ3n5jmOW+ID097gBvLk2vQh/bTP4ei8l31n/Hm3s7m48chY G5/lfFrndNOH9C+1M8w/9ZhZho4hjZV5Vh8dl/ccbg7nvdKv+Irk432e+9e+ lb3eyekxD5A22K/eFWMEF0/14qd5OP5GP+BKvFPmXe96103Ouadj5c5dOD5q /GicbD9vP9h5h/Z1i++2z7WfbJ/DM1gPQv6YejfGJ9jnduZ6cAqOQ74iPj68 NRjFX8esraPNkZ3bsP+y/huTOyfT/jC+3/YcPXdeJf3nnPBf9uSlxuGd73zn Uz5mTI19O3/XfQ2euH+5Np9tc8HX3DfvQ4cjI2tiMt83HNG4YZ+PTNpmaStY mzYvHI0dOi5I380vFjZ3jNPchPcJslcHa1/cpsT1bi/Pjh5FHmkT30eu6bNz y4kBHHt57LtttjfPf9r+zNvNfc0XfL37xm/IkfnyrDeyLvva9I+DvgQrm8Na F3o841ujn4klOtee9lk2+c2cJTbAs3n/KJyN9wWyDs+yyJjYVsPD8lvk2rht 7tj51+b7tI18F/LELmJH9qPtg60vGcu03TlAc9YrPF55pc415/rOldqHeV8V 8yPmSuEtxACMZc5FnsZjnkd9xYMHD251yMmjmxeGEzjPau6X8e+8a/uMxuOV 7zRvT18aT4JbtqfEuuY80Tv6T/6YOgswJLjq5zvOz70cgzpHEXm3XzEeGhsc V6P/6D5zYOQhc11zmJaDOVvHBRkf8x/Hc9ZZ46R9IYfr3FzTbY6VcedaaqJY k4cNcR/nfHreMnhh3IttB7+dq7JvS9/sJzIO1o/mi+lv66flaFvy57SjY73k uZEReTDq24mvO74PvsaXWDbx186/hW90TBoZLT8fG7KPaqw3T4j/jl0Q3xCr kadgjX/8h5/Tsk174hMcAy88XvF82zxrp5hboR3kWY0paXvsOHO/0RnrUs5N 283PohPW585Ltj3El3g9feuUfZ7H0vER31FbRf4YPGYMotOOV5ENz2PfkOBx eFjuFe5mzhiuwPcrBlsYm+s8J7diDet0Ypk8K+PgeSHuF4w27uT7cA307U1v etPtnR7BXtuteazxODFV52JdC9V+xPdzvib4AY6xlu3x48fPmX/JuGaMWnfN KWK/7SPctr5PxqDnEswFnNMypuVZ2EP+z1wxOpa6L+u7dTVjEX64YhLrQ9rZ up37GwM812Adbd/Y+ta/pU/OR7v/joU4uA/7C5HnY12r55bS/uiluVS+Rxa2 mXyPrZpvpF2WZecU0s7wYNep5NrgMc/lGfxGrpj9ONijwrzdvrfzJMaG4KTz ZY71uzbVuYfYFX/ZW5M8HnsjmutFPxJj0PbkE9M/+yHjd/9unp1nhJd5fNun ONfivIB9Xw7rtvWV9oPHxJJ5f5512z4LOZE/Ao+jV+YHxv3IO7zZvjw6Yr2N /jWndJzW+aTmZ50zc17LepjDckicyDn4XeaPkQf5yrTZsU4wP/bmeMQxknla 7uF5AOte+u7cJ89/97vffatL5j04fB+/75jd9+t5IMcOCwODV857xYbCq3oO w74xcXLG1/EuzwWDmSOlH55Hdf7S4268izwch9pH5Pxwtfbplrvn5FrWfkbG zeNgLmE76vk063ViDuTGHC31YeRrnDs2pzXm5n7pW3N820bGh9+CRfktXMRt tMwaI43ZGU9iM2rif/qnf/pWmx+OZa5pzhX9t/1Zvp1v7jUOlrs5G7//7u/+ 7s2vwQcztxefYv+68jzplzmuuU9k6/yU5wTsgzoH7cNcoOOHjuXMFZM/4n0q 2Dvz+cnPNWeK/HhPI/Xt2fumOVjjsX2E9bR9U+tC7CK80Xjc9aodjxt3HAv4 mbZB42vkhixYR8Z7Q9Ke5siRle3a8WrzNMevkU/nN9z/jAHvKiZ/kr1pwjXM +9a8r3NZzj/4mXmu82AZt5xvm2oO3TrWuVrOY58ZOD6+PHbumLrngR0XGXuN QSv2zLh2/sFj4TYbdztf2BhrnuMxtm02pnteAV1hToKcBfaW+zoP4/o186XO Eduf2t/YLwYbnY8ynufZnuPtfFd4CvuNENswlx/+mftH/hlHy7TzvysfZB7g +Kt5Bf9nnos8BXUV5C2ct4ltRV/SHtfiNG9zDsrf2cbNo11rmbZ17qXjXo/T wqG0N34leEw9DvNHnkfhfNtf5vPgOuCxfVz0K31s7LJtN4fsuC/9MUZ53MzZ Y6fmXM7BWfc8T2QMjW+Kf+K7T3ziE89+53d+520/u+hm/FPmFeAhyLVtPT7E +enIs/O0zpV2XtL2xzov3oNDDsXjY31Y8wrGfHOwU2zZNm8fYsz2nLfjL2ND +vKhD33otucLvs2xuHPwaYPrcDz+jccdR+Uebrf13mNkfhy5OYbIGEWufO8Y PbLPvXsOKH2PjkXvWW9ErE29hXlY+xfnHzqnEF1NvY9trn1Zzu85PeOj59ib P9In9kKCF3Mwz2RZuM0+Yqtrzrf5ZfTXOVjHvW4LORPe3c0eL87/RlfMpa/y w517ytGxu/m+85PmZml/510b4zonlvva3iJT4hH4F3hMG4iRw/0im8gEPGa9 K+/iDP401kVPnUu0vcQvx4aDxY59E0e5Pxm/rgm0rXZ+3/lkcmGpMVg6nLZy P+JL1lWx/0DWu7hfrrm2/ax6jMYI457zdcFk+7KMFb9T30OsxjqRcFjjpHMJ HW/Y55jj9TyR+Y6xJ/MHPX9qXXUOILZBvQqcJvt/mS/ZV8VO7VttY+aK9m2d szaeNOfpeZOev8izncsKxrr2PDIy92yO3TbLZ9bDEFvCN3t8V3vCy42jub95 v+Nfj+vidtYtx/qe68g9qLNkLpn5M2K0yMjnOAbsmKqPYE70NjicuWHnKOw/ w9E+/vGP3+KszF1ZP+1rgy/UbyZ3Yz+55Ol5B+NJ5BZMip533rHXWbZ8PS/g GKr7yf9TXxF+HCykX74/z+UdjWB3avrNd4xXzbVs78Gf9g/RnV4P65jSORvP 63V8YPwMB3W9sOVgfxl94PmsWQaTqXc0TrgOzn2NHmTc7KOdm3Gu2fNDjl9W nhCuguyZGyMn6/xwz4n6b3TD2OvnesxzmAOZ87ptjvXSt/QpfWGdMDV71OWY l+Y663w4SeZijLvJKcXnO/6LPsW/e/ybn2ScOiawLzCfSh+79sGHcbT7Hyzh L3Eoa/XYl4B6hcax1kvrR+7lGN360vIM7uUezuVF1+OjLSPrHfMVzOF94AMf uD0vsULjpfvseNe4Y19hDnaakwg3yz3giHB04nh0P+PYbU+b+D680hjS+SrL 3thlHutY1xi6at3SH+OR84rWNY+34wjwmPxx9nczP7GsUl8Rfmx+Gtl5fmTV YPmz85Jpv+d9cz+PlfPIHTs7J7fyQS1Lc/LGGb7nHeLoI2sSPVdj+YS3R57p Q+NVP9tcynpl3TbHSbxCnQVrC5ivd8zt+Po039k+2Tnv2LDrUmhH7pvxsc63 jrUP4Xj06NHtfTLEYMHVPif2nfjCtYeJTRy7+5r4msbj5u0dMwbjnE831tpv BAM7H5i/LQvf3/rLd9QFwJGpZeQ78zDnvtrXmc+49rjrK3KvztN13BpfnJjc HJ/r/uu//us2XwEukGdyLZVl188N9tiXeKwtF+dbzS3znXMt7FdBW4iz0AuP gdthDG9dOeUxPe5pW+4XPbD88zz7lK6t6Dyl5yKc3w8+BT/4P7lx6gl+4Rd+ 4ek4h4MYh3g2GMWeSsTMjQOx/YxNxwDOyxmTHdPZ5zbWOMfkfIVrpDO29rWd A1hzogvfUxcAT04ew1y8c5mLt5vPr73DTvi5YmM+E4MRQ1IPg47av3XsYB9o v9N+YcX30b30K/bqNrt/mVcNJ+X/xLvkKuDz9ovt+5y3NH9YcaXPc198T8vN 55s7WCf8fXN9t6fzz21L1l0/M/JHbuQsWN9GnQXnugbAfWm8yP87nug8k+c7 81vXHyQmtD+0jnDuhz/84dv8CfGwY/y0wUfXEPjeuc541/Zsm7Y8PZ6/9Vu/ dfNj7J2RNniMHWOu+CjjbNs1pud+tvHmdr6u+9G5CvOp5Gda7paP8Z96N+aK wOPwMPt982PiTtavwY/X3l7GA+O0/2/+7PE4jdOpXrzPWfvgrbXwa0505eSR FeuR8FV512nkGv7lnKnXSnT84vad9gG1H4lNO+8QHOHdbD/1Uz91W09JDJz7 nPZac365/c8pVrS/bFy3T+17xcfzG+0kD0a+NO1vH9W+1OPjcx0DuV3hI9Y1 t7nno5csWh86dnLfjcnhC2s82w7yXLjdw4cPb3W8kZN9S/udlRvw8+2H2y84 tumcrn2FdYy+sCcd75zA7zPfkt+MN463HH90nOBYY8X5bdfmU7kfuZ0f+7Ef u9VVIL/4DMcnzlcsubmvHS/a70dmHTN57iW+uX2t57g7tkmb/L1/s83Dj8FY 1oOkBtfPyTOSr6AODDy2/MxZrfPGxrUu3Xsdnc7vWOa0//Pa48y61n1q7O/f +Y0cGvv68a43/u85Aa9NWPzafXR95ZKVr+O71vHmt9SOUbNAvYV1yXL0+Bgb oqerzW2f8enhbwu/e0487f70pz99W+vIXFBjom2oMdPj2b+1T2n8Nvdt/9p+ Zfn4xonlx1Z7rtrWMQRr9bIncvDD/qPX3V75qhUb2UcZo9Pn2P7yj8TH1C8Q 03z5y19+Tt+ad63cY46OgdKejOt6r5t5cvSUv3BiMIccXXy+Y4nuQ/rY/sbX OQ5xnr+xo3OOxmz3/TT2nadtn+1z0jZqWuEx6EnmwNum4x/zXu8nT548J0Zf XNA+ztwke+pHtu0z3fYV0+Rz85KTHS0/dsWn8xz+wouZQyNnkX0V4/szx9Pz s37W1X7Bp7X6Kx8SvYkvZw9u+At79JDrM550f80Zw2+ig6dYwdd5DDNmzY1b V+A0xBa8lzB7NZknta20PS1/af0117F9dd+aG5mPNtd1jLPk1vq5MN4yat3P efhQchbUZRvvVszY2NzzJ3e9c6nv57jJecLwCuqnyIVRo2juaV1aMc7Jv+W8 q9h1cWRjAHXPxKi8I+7EMZbudj+Nn60XzcO6TYn72rc0/zPmXMUDvQe6fSR5 PmIB5vPAGNtFywa+6Hc0uj93ceGlZ4vfnv6f53UMeOKjC3s7j9DX2FeHL7A2 hHxO3uOU2rle0+sYup+1sKR9TmOGc1aZ70mujueRi4TH0D7a1uO2fOrCp8ah 1kmvje7Y0M8wd2JvSdajYd9Lx9uWO862zJozXo3fesbiPcZAY/PiBy0Tc9LG Oj+j+5J7Z66MPZG9dt9xyeJgjYWtZ/27+996sTCVdhHP/OZv/ubTfR7NHT0m PX/fXKf1e2Hv8sHNv+EdP/ADP3Dz7eDUiUN0OxYnbVnaHpavsc2e/NHq28Kg pYeLy/Id64PpM3OXmbdrWUXG2Be5DWqzT7Z7dcSnO2bJdZ2H6HFq37v6Yrz3 /Wy3J3+Q360XjBf+mZot/DM4mHpm79XROYCVK27fbdvrMbQ/z/y+5354Jv// 5Cc/eRsP6soS+6ftJ/9z0pGT3SwO1BiYc8If8NusRUvdanOQ5sXtN6wnKw/V XOpkP6fDtticqfvZz1nxj2Ww7NX3QGeos6D2jfir+Zrz3ktebmOwZ9UNXXHa xgbaBCempoz8cXMI66ivvwvjly2ccCEYE7vjLzgD/2N/T+fsO+a2/G2L9ulL /xuLl+4sfO32u+/BnsbEpYdue9oNHqMbrOdMvqL9W+TDGiPyqdRX8AxzpbSj sf8ufDYHapzsdy+2bNrfNG+IvjrWaF+w5G4+w9oQ+DHv7XDM7bj4SgdPPN96 088NJmWcXKeWZ3Mu2Ew9K9j31a9+9dIv9m9tcwuTF/4Zi2yjaRexAzyL+qS8 26w5gW2iZWYZRb/bL3usGquau3osjamORa76fzWezr3l3BV3WM85ss82axtO mNkYv/TMfUm/r/ICuVfvP4zfpLaTvFy4ccdQebZl1VjUeBxbW/sdtx16LGO3 8A1sD1w2r40dLw4R+1yyWvrr7zr/ZJ1oH9ycz0fab39x0lH/TUzA/s4Lj1v/ qHcLP168znZ0hcfL5hdnW1jSvqXvveb7+pmL2y2bpx2M7fvf//5bjv0//uM/ nvax/e5VXy2X1p/F60747fMYU37Hlsgjk7fIfLj5U/exsW9xyiWbpdPBYT+T vbHZWxNb4nfPHS39XjZlPThxq+WT1706Dmsd6nYs3D/5s6tYy/raPoO5vAcP Hjz7G7/xG7NGx/mJjP2quemYbLV7+ULfH/unVgcdotaq+feySz+/5wPukpn/ 32NjHWO/Cvab/ZEf+ZFbrsL2drJtt83nn+y1fcfidSf9bF3uNjg30rzmZJcc 5B7BY/LHxMPtnz0OvLcCWyN/3L5k2Vn7x8XlT/1cdnbCu4XZp/6e7MafvY8p f/OeKvbvXTjiuOgKN5q/tH55vJoTNXfKZ+yZuIU5D/IWrsfxvbrdrf+L4y/f 0TgRrA02sAcXc6DURzdPOOnkap9xbPGPlQ9cfb7C2e5rt22Nk9vdbVochc9u I3/hPdQsgoF555Dng9f4L/z1GJ5srvHYcgLfeW8J9o+Oozv2HVf63Pe1DSzs PenWSd/x6+gR7UsubvnBE8au50dPo1MLG094sfik772wabWzcbvtm3wF7wd5 9OjR0zV5eVZzN/LH1OqAx46rl75f+cY8/4pbrLzJiWcvH+nzV02wbcxjs/Qc Xsy6ROY6Ut+9uPoJ3xf2Xn1nbGyctJ3FRhlD6sep06ROafnU++RV1zic/Hme nzVA2cOcusmHDx/eeJfPa7lfxYZt38t2Xf+X/4c/9j2t78s3rPsv3xe9POnO SU7uS54PzrAfA3UWXQfbtRnxa66vWHx1xV/2I41J7AXA3CL8mGdnXK5iy+XT 3NeFBUumS/9yDu173/ved8OalYfj3GXTK9/dPrxjjMWR7sLjxQevfr/CdY8J n4kLfvRHf/SWH0UnzAHcPr7/q7/6q9sacmoCr3xE51VONcMnu+jzVvsXDi// 28862fjyv9EPxpD31LO3CrHTyTe7z805W0fcrpO/yDh1vG9dym/EmuSRmben 9iPY0TZ80rclj4UpkV+wFJ1hPxNyj6zH+/Zv//ZbTjt7HjhmM35ecWb30eO1 bNoy7nzn0hH7gXx/imUXrruNPW4nnmCflDwTfhMfT20T81XMyeDTPG7Nj3uN Q36Lvq3f1jiGo/MOKXg6tTqtF319sCxc1Tq99CPX+JyTzwh+BCvRHXQZfoF+ eezv4yNWPxr7TrkEj9ka88ZF415z8VMOsnXFMsteHeBx8hUrRuIgf8x+BIlF myM4VmpMvrL1hY89/02bPHeybLFjspO87+PP7FPTd3IW7MG5cvL+3LJvLHU7 06blK9YYJt/j8YmOka8gv//7v//731SrZD05YbBzETmCn/1M7g/u8+514kr2 QnzNa17z7Mte9rJn3/a2tz37sY997La+6MT1204aR7ttbn/jdrff353imB6T hQ/LTyybWv1Zep5nMWdGPcOb3/zmZ1/3utfd5tKoI+AdCIk9e57Rz1h+p/Hf Msm5vi/vJP7Zn/3Z2ztonKdoXVk8vPPhywcYj3pMlu83TvKuNGIH1pV3HueE 5fZNHeOedP7k3+1X2qd0nGU9WLwx916Y7TZmXNhPiPzRo0ePnu59cdI/8sfY O/y4+9/6sNqweO8JG3qs/DyPa+cW4m9al92nq7jjhIXUJjGnx/vb15i0zLp9 axyurjuNf/vA6DH/Z38LeDz4yJxr6oOiV41frYdte+vZ1h3y6eDIK17ximdf //rXP/va17722Te84Q3PvupVr7rNV7FvTrC77XXp7/INzSUW9rTu2E7Xea0H rRN38d71nHX/9kGRG+uq8F+vfOUrn/2O7/iOmx/jePGLX3zL95BTjh73WFnf uzZ5+br85toc9ndi/pf6dXJdneM/yWjZFdd1TN1H69Wya7eRNfasyct7iJbc bQsnH9jPXjJc+t+cpLHjCkfuwrzGAreN/jP25CC8HqT9SWwZPaKOKfFNPxc9 buzsubxlV6fvu89uf2RmmwiHPuHOyS5PGOHnkxtFh4nJwb3cx/FA8/fWkxVz Lb/WmBu7W+3ufCb7RoDH1MvQTtvjsqUlp+YWtm3X3bEn80te8pJnX/7yl9+w GGwBj9/4xjfe/rJnbXKirqFqn3/CzROGdv8XX2nZtO0t/W2dPOFAt+eEGZZb eCTxKLn+5z3veTcfBj8Gi1/96lffYgtwmrwg17l2wRx0cc7TWObZqZvkM/kR 4lzmzJZvi+x67iZ9XPVrJ191xXHa7vjMvAM2xh4fyKrv022MP3B7Wkatx43h 6zzjsvUzurFyAHfhcONZ7NLPZk8a1oOQS/LecNbfYAExO3sC817BE3dpPD5x 4Csuv/xQzxmvGGSN27LhflbHKEuOnEP/2WuFd57aF6z+t09Z47/a3Mfy7+57 PmdcsTvqW6m3+J3f+Z3n5HwaK06cwM923sL5X3IVzDuAxWAK+4GBw+AyB9+z 7qFrKBfn7nqQyGWNR8vqSt8Xp7V+n+SR79fc3cKc1tP17NyLuWHs7Vu/9Vtv OIwPQ17Ij/8Tazx+/PjWjuQRer1H86q2h6U/6fN///d/39ZOsj8CeZPOpy/f crKl5TfvwuDTOZlHJKZiTwbmOxcHaZmuGPXkE5Z9NedZPH7p4F14bL9lPnq6 JvcmXoHzGo+7LTl4fx5xROcrekxaDotnLftbeLq4an+39OLKB3gczF06n9u6 zJwZtsScGbrs/q/ntd9pfWm8vuL00Tv+9h6fPW9M3pa8Be89gy/n3JXjW3jc XNJzOdwL3s2eUvBwchNgCgeYAr/jAFc++MEPftOeh3l+OHb308+/8rknvG1/ d9KtHrel79bBvv8an9y35Rm84TvWJVNT+6IXvegWQyA3c2T+sr9k9jKzL1vr e+3jmie2r2Es2F+e9cfMATXOp+2Lky9+cJd9NZdcay4db7G+iXeTUVNLDrnt 5D5jZbxpHDlx5nWYL631du5ff3dqd+P5kh94jL/k/b/ey94+PedT74asGMvc 7z7YaJl4Pip66nNPceLJr/h+65kneS+efZW7j+6wRw51o9nrcj375KPajpb/ WDrf7XQbGyPCg7MvFvlIYsDmvku/IwPvzRVOzG/cm70p0BVy6eQ7yVeEExN/ B2P4zHxD5PZ/nWtfsrniFfarruFov54YsX3kek7LxXOnPT59rnEzMuUz9Tm8 i+cFL3jBzX+BxcgqeEx9CvOhzGWBScFz1/PZNv0My8/9ye/kGfHR7JXmNabB cp9rX3LiVZan530tQ9tujzH3z55ZXIuf5x1p2Y/0Pr73irv43LSz1x62744N da2386AnP99tuGs+01w85xO/MEcHP0Y2zQmMmezzyPwNa9xPNrMw+Oq4sjPL 6srXnHD6yq/FX2bfnp47OflRcgHMh7MX9Emm3caO0d0Xc4cThjf/WnhvmeU3 8oOsyyWP2+u7Gk+MIeZFcO0vfvGLt5wnc97YM+9/p//oDvtqUndC7hMsBqNT L0Dcyb4omTNqXG67bVtq33al28seg6FX/udKt5ae+buFMwsDgn3Ikf3TwF/G Bb9FXgccfulLX3rbJwV+yNpG1gQQY7A/AXMBjKXf/dE5qBzms/b7zNtTv0Ed GXvsOj9h/bIMW99OY5bnrvX/+d05kcbW+PvHjx/fZADOmDs3lqxxW36Ja/1e hbQnXNzv/Vr2vnzA4tRt5/ns92q0/tm/G2+JwZnP+9Vf/dWneOzxtC/+7Gc/ e7O91OR0+5cOn7Cl46Dmhd3fu3ziCXN9bscYkdsJo/yM5LKooSc3S51FdKVj R/fRenrCj7t822pPyy2fbSfkVPCzxMfkvOFbrD+g9gKMDG/zfl1cx9wlMRDz Pszzks9iLpMaLWyFmDt1qNTMUjvF2l90iHiYZ+CzqUnG17OnLns1pJ7Sumhf sPRpceDOq5y4QOuTx+gKZ0/43DJvLGj+n2fxziNwljiU2Aq8ffLkyU1W2Wsd zsz7OBgzrvn3f//3215WjB/1qOSGyDNQX0iOlbku14Su9pHzIDbCp1LXRr6f vZ6CWR0LLi528jc9ZvbnjdVXvo1rwUPaip4yP4W8Gs+X/2x8yPn9jtSOC+Mf vG7yyied8Me/tS6Yi1/93jmprnfz/I31mb/kj5nPIu6x728/fcLDHLbHNa4r 3lhYlDEzVzDnbps82Zdj2MXHzCXAFPgKPIe1NNHN1p0VG7Vs7ooDTv7Z/bHM 4mfCLTgHXMWHwm2xaWJkuBn+5Gtf+9rT99+Ar9TXsB8G+Qj4LefDp6hnzt5A nl8Kt/B706zH3I+13DybtVasyfW1aXf/3/JsP3tl11d43rJrOZ9i4xM/N2/r 9nruE/9NnS8xAz6NmCL3Ql7kL7DBrAUx1kW24BN7qPB+cfgytRH4P9aUeK/0 6Aj3olaM+VTW5rDWDZzLu1SXDBZ+2nf2mm9zjZ4La5l2DtnxYOTJu8jZFxpZ 4T9OY3riYUsnbJu+3jrcdmvc6hzbwreVS7E+LAw0ZkX3o/+Zo4LLZL9N3zv1 o9wDboRdMZcT/9NxftrQGNN54cVJ3e/V34XtzXvaV/c8SL4zvrWfaz3o+8Jj wDR4YevoGr+TP2hsyTj5ee3zFo/vNrg+jlpTeAfzbsTF+UteAT8M/sKb2ZON scXfwuM+8YlP3HAiuOG5hRU/2T5bXsTH3J/6CzABjLKcrbNtE+Zryx7bThs/ W/d6bE68vG1+fU67Fpegz8z74guRP2sYG8vcBj8zeuDzOQ/cpT6D+T5iFnL2 5I9Yy8UYZo0OuE/+iPpmciOM+fOf//ybnwWr+52i1sE1f3OSwcK+lR+6qufm XPQb/o6fIbfmGN/6bJ1vXTlhi3W1cTn45jr95bc7pl7cYHG9u/I81lfnK7BL fGnWsIfn5y9jSB9Z/5X5vLS72xG/7ndaN75aD/v9jwtzl/+2LeeeS05Lvm1D vm+f7/HL+fhy+AYyyxrzhQ/Gx9aDhTWNLS2LjquC4cYB803OIb/LOjDsMvNt /AWTwUfm5Tje/va333gwuQbWvqQWfc2xr/Hxue57fAn4RA0TtaXgPTF76ks7 RmqbbjxuPVi2aTzuce0xMka2Tvd5bqPHJf0mjgBbwGDyEOyvxB4M2ILtcNlj c337OY68s4N8EtyY9QAf+chHbjIl30y+iLwH4834Zp41a07A8OxvsvzPii37 t5MOLJ04YXmPHzJjbUrqgcxpLA+342SrzRlO5/a4ructH++xcn9O/ubEARwv u44XWaA3xDTgou+T97am9gYbSv64OWYOsJh4I+9G5bzGYXMov382+G1Oexf/ yW+ujTUOdB19+9H1/qyMycq58xl5wPOwua6zsM/3exNPa6nSnsw93DUH0LzK cYD5Kp+RKe91Yi4/a8GwT+rRsp6OvAQ4iR6s/ErnrxZ2LH+y8I/7oztgPzkM dA6+lzF3nN/vIGmdtvzSxuZprgns/Uobi1c81Dpo3Wqui65Te8LePMxjgi/k 9egH7Vp7jl7l9BpHOj+Q/ma9HbwSP0dtRnwv48u4U8OB733LW95yG+voW8dZ PYaWaX5bedHFURceLx/O78SZxGa81zo8YGGq5bXGa+HG4lXWl1N+svOpJ51u HmDsaPzK955bz/WxD9bnwY/JT4Ufp515P1D4MVyLmCL1x5Zpxsrveev6aue4 +H/2BvP77ftdtad+N76extq42Bz8Clf8/JVTYq0wmELuIm2xL/E7642zrcfR hcQiLYPce+U18/+c55wU90S28CXWHmQen79Zh8Bn6h/ib42BaedpXqI5Q2Tt e+Qc51yCXfh2cj7U5BHL550ntIU5rdQSXMVMaV/GuPdaTj/87M4DeMy69qtx 31hvu6LNzNfRF+YvWTeU3F/4yH04VP/WetdjQVuTS+J75gPgys8888xtrDnA Y8YbPCY/y5ys29P+rTEuMjaGXPGClVNNn9a+Wcif/At7K7EvdPvHpXNtEx6j hdONx82NjGXdt5aNdbnbx3FXbsYyXvw5+Qpq96PLuUfmeuKzmJtljgc87jYH j9BDvxfbY9b95v7cm3NtF+t93S3j7odlb3xCV4P5a13CiSMsPxjs4x7Mi5Br zT7+jZ/tBxbW2w87x+P1HiuWt/z6fcr2i/xlX5/Eq/DicKbYK2v4khturuG6 oPUu3s5NdFu7/fnLfRl35iGoNwXHyG0y18X34HGe6zE9+YF+1inGij4H63vc 7xr/YHDaxT3Yl40aCeZ32Y+V3Dj3z3Vr7uMUc7deNzYvTHJMQx6DepgXvvCF N05M3phxZw43a3WYX/XY3cVhg1+LL536tvYScx9t19Qcs28i+8wht+Zw5lfr MJ5YX5v72d4yhql1Tb8co3u+pvW39aV54BVX7LHvNsKPeV9T5vOsg8lXBI8Z S2Ix6qXazox90XdztZ6jzTV5L5x9b3A9ONrvDF44HVtJvBv8oO3kToL7wf7T 2qe26/ACj1N0mZpccnJ5r0L6kev4f9anGTfzfNuSn9UxQo72U56b7Tgk92Bu HryACyeOzbweOUdy4eY4kZ311O33GPaYdHvXmNtnoJPMGVIPx7wE74Ng/zzq VvJMv6uqOU7jfs/z+/eMh/Xtivese0fWyIb3eJFvgQ+zhzCcmHsvXtV2u+z4 dM7CcOOeuTOyYs49sU/mbrPuj3kC5v3s15uLrxx8cC763DVV7TdOezsueyNf TA6UehHrdO7ZHHz5+fZLK7Z2/BkcCMb4iN4ZS5ZNtj5e5WxOeZzm1/yf/Cd4 zFxA8r3pW96jmTo43lWetYxLZ+NzGj9tG5GLZeN4PuPB92Bonm9s8DUewzyf a8ixBM8TB8Mf+N7nNgbms/PaGSM/F/lRn8vcCXX+9C2+K/3is99BmiN6kHjc fNocxH4l9uA69qWjaT/n0Ff+st8INaxwJLgTa+qoYyO/iQ6l38kf0e70I3vN e91z5G2+EX/a2Gw+5JjBOs9fcJiaMHJAzIGZj+V650I6ronO2H9b5uZEzYWa O3Xewz4UOZCrYu6J9RrwGGIl5Nhz082lVkx7iu+NYebafZ65IQc6Dk9gnV/2 evqWb/mWW26I9bWWR9cVGFubt3nP/Hw2r+j2ue/LZ6Zf5L2JM4mVMo7us/HI 2Np4EVtqzpb75BrnD8Mh0W84G/ZrPGhdNa517NOxVPPkPmf5YH6DH+M31/ul g4epkaEW/cGDB0/3E0q7HCsEA4O7zg1zL/fb9hEMSj0H5xG3BtOcB8l3jVvB wfCgtD33sX/JsxuX+Y1rOHJNfKf9Av3HL7GeiPWdnJv+5vrgWMaxZRSdTuyb 9vm56UP+n3je9hC97NxC+k4dAweYR3wDr2P+LvfItWm/Y5zlC922tDUxYvoY 2/X1th37ueQRmJdinTDzUqxdwM+lPc1XjLF533fak2cGm437zru0L+OcyNry TfvBjJ/4iZ+44QeYR61CbCP9yvmRiddEOl4M9jhmcj6tfYR/61jK+JO1FdR6 M1dLHoVcPTFc/Ll5QMcutunWWetF+7ycu+J59yX6xjXoILEbsiRvsXx5t6/X 8jv+MT/r57WvtR6Gf7SNNz4Yn437fm7HvB3ndn/a72EDvMOV/Z4Si+TctI+/ PIeaVOrRk69we4yX7VNsl8Si+PDYUudMM69jPGy/7Hxw5Ot7+fz4AHQ0vqDj lNieeajbYF5q3QwXAePIG1oOwax+D4/zVvnNOm/8zVwqWGOc6LjB97Jfip4l JmD+n/x/9i/Ief18+6D2DW6L43/zCfNq5B6uHRvIfXLvtJHP2OhnPvOZ27oA MBmdY57K+O/nms/bN+R7YzmfW5bm+fY3lin1f8RC5KbAN3Ly5LqDu5k/sL7n t/iJjhONtfZr5hj2tbl/rvFYte1xf/Ip8Cz8W9rn8V4xvjmSeYN5ALKzrlnO lqexqP1h5itYZ0hsjr/oWMYcLXbV8aOxsnNrnc/re3esGhvvmNj2vvC5/ZHt wDJvG+34Mu3Pemn2yTGXM+cN9wkesxbW/e0Y3PgTXbGtWF4rV9P81Xq44nXr aGO17bV5Zuby/Q5Q9zv67jH3M7iGNa3E2MSwXGu9Cbaap5l/OmeRtuZ3rjcW Ov8d3p12Rcatb3wHL6afnEsdLHE2c+z2h+bm9kELN4OvGSP7HfOLtDkyt37b tu2DiPu5P+dSF4evoyaAXBr1y4mb/AzjUscylnGendyV/YT11efxPX6WfR+I +8nx0K6MAX3ovGOuzfNpL+fye2JT56uDacuvmW9YP1Z8Z5vnfNpJLRT1bfFF C6vajs15Wr7RDedeW+6Oc22/fX/+T502dRXgie2+eUB0xf31/c1BnMcwR3Z/ zLGaBy+Zenzsq6I/xief77jNtnGSCd+Dx/j9zOfZlxjb0CPmLJi/IF/R/s65 gpab5WWdcN6y8dl+3Lm06G/nKyzf9vMdgwcT4LfgVezFPCE213js+3MOnJOc BfUByb8nl27OkPjU49L5L8fbyXllXDMnGd5J2zniT9w25wCsS/A89t6gDoBz cl9jYvSn+Xqe5T1tPKaOT3yt/UbyIvbNkQH3SH7fHIy92ckPkKcnXwZmp93m ubatfJe4MuOx8hqdR4zvwi6onaFOgfp88C25n7TPOu64pWMq89aeS2le3Ufr SM9HmPdEHnzH3gbkK6jt5f/Ru+Zb5kHmu5FP/Ffu3bkq47Pt3XlFx7CJwcmT kvvhYCxzTecNO2cZeTrutV46PjW+21+1Hac/xnN+d9wVuVjvFs427pmn2g6c d3IbyFcwz84cd/qUvEbO4Xz0h/V51CZ5jrZzEsYAx6jm6+Hb0SP7i7apzjum 7bbl6FvkZo5kntTts+0799W5b8dmHTehD/Ancp6sbfCc5V38ODKKn4mOR7+M keEmjsuDL4tXmZ9nXNkHCDzmvR7+Pfc27uf/aUvHqX29ebXl2zKLTofn2lbz /PSJ38G/J0+e3PSTeXjWArM+NHKMP+o2dV7bPtQ2ZLvh/+TTqCNivQ95PPb5 QN+tOx3jNkfsHFts33js3OrKS/iwv3ZOI3btGCl4h+9ijQX1M5G79bzzE9Fv c+DIy+PbmNh5s+Y/ju1zDc9mfyu4MRzZtt2+3rFh/+74w5jXOYceO/ug6FBy mc4z2O80J8v94vM7L8I58e/RUWOxayAsRzCEHA5rf83BE3unPVyP7PC5zMt7 jsIxfsfBzdVWPrax2nFw8+DE4fa7kfnKs/qZHf85xun52+iPOWdz0Fyb9wpm bUh+M39wLGFsym+RtTlBPgejjHn2cSvOSr/NHailwW+Qm3K+wZwu7fYzY6f8 5jjGOQnPlzo/ZMx1HJp2eW7F+mcfyPOY7wGT2VOHvAFza+bTeVY+Oz+c+ztX a50LP8YWsAPi/IcPH964eeKH1uX2j86RxKcZo4LHPQfv+gHny1aM1zgTbHV+ LecQrxG3wbdoW/Cm85bOb7Wvsl9xG4zHa/60uUuOjDu/kddm3xziy7S/c+bO NRg3mle1/8v4mKfYb3juzXpsfbGfco7BuYjEw57/tEyd7zPnNHYGB5KPyXwe deSxf3O29D31xw/+//dUtl50Xtq5CNub5ZZ7x28Yy5x/8Fwr97Kt5bleR5Bn OI5L/UN0OLI1fzRHsQ07lnSfMrboFH6KPXPsn6Kzbqt9iX29fbXzBca7lq1t ouM1x3vRHbgfc2TkZYO3fl7HxMbmlp/5le2ia/zSx/g45zM89p77cFts+/yf elX6wLoWOCxzfWlHx7rJQ7lf5itckziQGrs3velNtzXFxPrRoY5jzQsdqwSr zJvNK6IrjcmrltV1BI2F5rid98h59I918uQhk39x7qAxpnlNx/TOZ1jG5hOR jW3SNh5Z8Jeac+ZFWTef+Y3WG3PNlqPtovNVSyebv698Qa7Pb45XjUUef+fu 2qdZR+yn7Nfdv/gOOAExLHtE2ZfTLveTNoLH5Cvgx5G/bap9bPtH+zxjltvZ +uLr7J9yfn5zvGYs6DymebbHuZ/jGLbjx+bL8DTWmTFXRn4ztSm2zVwTzO34 L3k6Y4V5bnTZ8jR2LZ/oazmXtlG3gK02/40tRRc77gxPNQZYTsai9nOOL5s7 h19kDN0W3zsH16KzzC1j09Qa8o6A1JB0m1e74rezdzM5TPZ9YK9h5pZSw2bf ufpq3e3YJDZoLDU3avztWrPmiLYPY6hr9WLX6BHr5PFb9NWY0/y4/98x4NIr Y4jtqrmKccwYwJpGcvLUqZgfGm9W3twxceu39dixWsbIfiZ9XnP36V/aZC5n DoeMzb/Nm523s+4aBxqPYxfMH8OPMx/l+L3x+PHjx7e6cvJ3nZPImBrrLTuP rW3N+Or6vY7hXRth/Xau1nHo4rS5f+zHdpvnR+ZLln2v6APfw6+oPfnCF77w VL7mVumv5wQ8/+OccXOLYLHnnN2+6NjKs+eZ8QPkX3mHE9jsfIpzQ5Fnx+nG 4I4bjUeZK808UGNYxjV6k3il7ajnTPoAS8m/kL/AtpmDy7XImPwMeyIQA7L/ fu5F28B09q9hbR33gGtkj3ePR8ewxvjI3py/c/bGasfjvZbKeNxzfR5T43tk aL3lPHI7zGkQP+R686yu7+3aJWNx10D7mebIxtzgm3Nc0SO+IyeEzNlzv/NY uZfjYd/PXMM8dMUsrZeNixmLjseNJ43HnJu1ZYlZg8P2KeajPWfauRD7E/CY fFn4see30rbcj/0YWUPF/hX53TUljmEbD52z8b1znvHS8Zd13dwqMjIeJy63 3XRs1uvYzMdOnKzxxPkF2sFn6j2ZF2VdTeaqgqPmdpnL8jydeap10+NlTu08 xIqX/RzLIe+aZ60euQvz8+QYk5tofY5cuh7ONmA87hjAOWnnwM117Hc7Vu+2 5DMYTO08a+VSB8E94blwROaMiNvZn4WaYfSFPUWp8WS94q//+q/fcNs6mbFr rnuKq3yNfaX7EIxZe1YYH7P/0spptl2bq1om9Ac/gy52/iPPaXzwGDRemb+5 5sh97vaYwxjvGS+wOPlRvosuu87Je2f0mESfei7F8y9po/MrHU96PDuO7dxE xsPrq2InnmNYftM4Fp2yrJwTpAYq79Qxl+Jz9CM6w3wecwSpd3P8ap1atWz5 f88vOl9rTI7OWGbWfcd+5tP2S5aJuZjrlnOeddzX5jdjvMctckaexLvkLPBx 9gGJi8x5M77ul/HGOR3nRI255pPGAuOB/RrnUC8AbsEZc0/nq+3PVozQsrWu OW6zHjk26372/zun5mdYPyw/uEr29YEvMD9NHJc9J9nPgT0c8JfkLMFo9sVk XznGLXzVuto+vXOojVkZo6U30b/e02CtIe4Yznrb6357XobzORebRg+ZM+O6 zif4OW2r3aeVmzCGm6taX/z/fOa51MpQ98E+Gx0Txf/QJudtOt/SOYyFm54T aX5nHMm10SXLv2Pz8KKr+SYfzeWcc/E69GA6B7yOuSiwpPPXve6R/Tazf4Xj ntOeUJ6n6P0uXFMcnE4bjZmRY/ymxybjZt1OnW/r9ylW7Bjc8rRu9vyS48Rw H/YHZ20Ia1Wd13Ne2n4++uJzYwOOXfO7scm8rfmSY9HwrZzH3oZwJ7hidMbX 2i6bKzin1P4r59pmPQ69z4J9t/HIPtry79+WrMAh4nTeDQr3ZQ+dHGAyB/UZ 1IKRvwgG99ya/1pXuu2N4SvOs/5lPLJP4LIN5y7aZjq33DLiO+7NnCc2TQ4t a/Ett76v5er+d7562cTC8+VP46dpE3UV5IucG3RuqNsXDDDnNjf3Mxw/Og95 4sTGdOeGOlfm50bHzUeN986D2mZXbjGYkHbD5Zijy/o883bbEePMOlbOpZ6g 6yizT0r7feN171W19oVZ9UCuRUu+x1jm/Ti8B4vfn2HbsB4al83vjLnm/Asf 0k/yYczPs94iGG097xon+xPbYd83/Vvt7/1LLN/s/+VzyDlRy0Vdwtr3xOPQ bep6LGOo5w8cO/W+VgtnPOZrb5aFYUtH+MyeOdlflLUcHOHJrLFjDTH5VevL 1d6t3l+ncbL3M1p5Oc+t8Pe05/HiNI3Rbmvk0X6D+zO/8+DBg5u9hhu5vd5/ be1lucbgNDbN+fO8xGPm7VkDwnusEi+kb8Fx63zLoPM/PXdhPuvYs/XUsUzz Cfv35kjN01s3zdmSh3Dez3zGbXK8RdzKPDXr8zx/2bwh83nEGnmnSuR22qM1 eyD1b70P39pP0OfaluO3g4mN5UuvrTdX+8n6/s3x7MdcO2QfwvXMoSBP/H/G qXX5hCnG02X/LZu2pdXH3nOcugQwibgoY2x+5DmDjn3a9uJ/c+/eO72xN+f4 HW33wae1v3frRtrOvB7vjgsfxj+yto/3VOV9c+yRsfrV9zb+L/3N0T7hdCx7 8NicbGPJovdh9z2om6bf1MNnPNq3tX31d33+1b7qjh2CR9hI6tjCTdjPCj+B z2w/0c/rd8DbTjx30/NlsdPkwsOr2u4852WdzeGYvPNF0e3FBzrmaJ7TNmDZ cT75dfaDZo+ZlTcw3rAWHjzmHZh+XuPdwr2TLdmuWy/yHtrox8JKy8U63fv0 r/uaJ7R/d/7H+WXnoBZ/YG0IsSJ/78vBOi444UNjxxWPcX8tF9pFfWPW9PjZ zcX6+SeZLtw4fe93C7fdnfxx76e79poNFrDuizoXaol5J0b+shc7/PhnfuZn brZqjF2+ssdtPf+qbXcdrX85+Hfaj3Ph5+I/7KlC/pz8+AnvGmNPz1jtbT/S nAL76XkufmOPY3IVcIFlG6fn9Tg57+eccvMKx9EdZzd+9dg7t9P9XHjXnMjc 6mQzCwPgx8x/IKvGmFyb79iHKWsweYbj7caLu7Clx775Yd/DvrFzncsvrP5f /d7nck/nihyz+JntB8n/wI9Zkxz5WE65v/XDPLP9SmPwGlP70dYJ5zX4jlpd aguCx2n/yb66LS3Pq7HNuR3jNyfs+13578UJuX9i1//5n/+55ZDJH4PFmc8D j/mO3LFlZ5/l/OnCrGBN7PsKV6+w7so+/18wvPGYPYXxueji4uVXbWw9u2ts /dkc0nMLyIpx4X2T1Isz/2qZtp6bNy089nxb13Y0R3ZuwWOb+3QeaOHkCUta Bo3pzrs4Xmz/HzvkXOJq9mthLpZ+RDfTXuMHew7id+HHazyuPi9OmiPt7Zj8 lKuyDbU/uuv6K1tojO1Ypfmj75nriaGYGyUngA4u7nvCpMbqxVUd56yY4PSu nMiJtZXUf7He2PawDrdv+YblUz2f1ZjX/KrvszCgx8hYbF21P6fei/kQ8Je6 imeeeea23oPYIPhguS8utOLD1jmPRf7f8VzzpPzucbp651rbzxXWpw3sg8Q7 2JDDlU+4D8YuW2mf2T4yuV7XI5CjoM4Nvev7L0w48WM/x/kF47D3YaEdtm/n WE94sbDB+NB6ufyd+2Vu4/v5+vSDennm6Px+6TXeXA8/BruZt2rdsR6e/PFJ xvfxx32PpZtXmO/++DlXttdy6/Fb48K9qLPIfhZrDqqP+/jfhYmW38mGjIl8 pjYGPH7y5MlzsLr9w31s1r5j+RXruPGy+3A1rlfYcMJ4nsOaXPCX3DE5in/4 h3+45RPzO+3xfH6Pxxpbt7ltt9tiX7jGceHx//VY9oINU19OjED+1r6iZXmy zfiZ1baTjTZP8JwL86fUQvOOPOreW3ZXsVHLsPXaWLzqFDt2XPmGxvsr/Wtd W+es+y/8ax1DJ6l7In6lJiC8fmEWB3gMzlBf0bxnPWvh7+qDx2eN+X1stNvh w+ckN9T+yX1t2XZM032xzvCXeWRqfOHJYEBzJMv0rj61zFp3T5jefcjnvL/2 85///DflrlabVi5z5RKXnZ7immXLV/p/hQPr3DyPeTvWnvLOVudk+A0dABuw 3SvcsYwXP+ez4832Vyf7P/WldfcKM9c94IbwUObn4aU9J3nXc7v/i7uf8si2 Z+MlGPPw4cNbm5wTvdJXy3x9b57p2gbPwXXN7dUzr/TyxMVOsuzYdcnw1Bf2 +Wb8qEvFl5wwn3N5fx54DD/2s67sqe34Sh+v7O6E8eu65urNfxfOXsm19cz3 aZvkN3Tj/e9//w2Tswfn6RltCz2vfJpfO/mKu3ScOjfmC6iRNv72eWnLusfS qaWn9oHtM5fNt1x6zHtMTm3I/6kxJpdPni32eYXrxgnn/v6vsUPucR8e0fJe eNw+ddlBfsMHsd4280EnH2t9Oz3Xn4NtS0cXt7E8/+7v/u5W10LdxxrfE96f dOOErR3b3IU13f/TvawX3f/87fHyNY3r+bw4O/aZd5W7FnvxRNaDME/A/Ohq 3126eqXXmasz9pzyale20P7E+Nn463Ft+cS3O57tHHzm/BL3mg8xz0+dBTq4 cM9yPeUS0wbnsht37uIa7UvIKWKvYNR950Gtd+vclmH7uHWPPu++9nPCsxWL krNAX5nfct6wdbDv2THVlf61P1j3c1t7/qHve8Lj1m/nFNwO8o/oHXV/znee 8Nh9Nm70+Ky2Nh637QXLmNv+8R//8Rv3O+HF0pn7+MCFE0ted2HS1fe20xVr rGfc9ezWm3zmHT7kj9njI/z4JHf2o4cfU3980if//z46lXPx5dl3q+19+a+7 5L18Fd9Fli0Pc9Gu2Y7OuY6m1w/7Gu6ZfUx515Dx2jqc57f9n3xY2/tdONrP 4zNz23kHnNcv9H3aLhcHtWz57Pm85nPdtuBEY2njdtt4Y1v318+FHzOv+vjx 46dju3Sj85P8zr+TTq1rF+dvvV197T6d8PgKbzwOzA/gb6mj4f+JCa548LLV Ez6ecr/5zf4s/p8xiL6tvpxi3oV1J47WbW3dW76u9d39WXoRea7c1BXmn/S7 bYkDPHZ9RdqT2MT3ZP8KsBs8ds5s+YUl5yt9SA12arfv298T7ue3K/0/YZp1 y5wmbcyaEO817fU3XMNn9kPGNsifRU9co9nzYO0rzetXbOP7NSbk+9ZP8tms l2ZdyKppaXlf5e8alzO3Ehn0fdIe8zDXjp7w90rXbWvtx4jdyc2gt5ZH60dj Wtv4FZ9u3em8Yez+PjHkVb7iZGf9Hft48B4VcgThH1d4fBdOW570zWvYTjZj mf393//97X2/zHFHl09jah1bsl7PW5h3wr7u14kzLEzI+StnuXjpwuOVw/Dv mc/7yZ/8ydtcXWxqjTP3+exnP3t7PzH1bi23toe7dOe+R/e37e8+/mn5wauj xyNyyRpNr4d0fXLXnbP3JnjMu057XBvLWk+tc8Yxj19jZI+99TNtAo+pr2A/ P+9R4mcvzrN82rIF60Su7zr1vu8pd9H2c8VrLK/8hZuRr0j+eNmRvzvZ1ZW9 XeHGyR4WDt/HDnzuyh3zHTrHmgvqy+333IeVj285Xvm55beMj/kO/WL/Kuan sj5/teP/FRMaB06cwfprm0o8l7gp53U/V9zWNpjfrc8nX7M4TXgM803Mtyff tDAh9gRms58QeNx6doW5Jx/Sunuao2i7uwtvl861fS0591g0N/Qecr2/We+R w2feV/fDP/zDt7kVfl+4f/IRrU+L3/c497nm0MEj5tzZp5z5xuzht+KD1l1z n9NYNB6unPcJj5ZddmzZ/TRW5nfHEuAx/IE1IF4H0DWoyydZv0/+4T64vGL4 5ki5930wv+XiceI35njIkxHDnvJ8J5lbhs3x74OdXONngsHsqUctOHrX8Ynv ed84urG3Mbnjx1NcuezNttB43NfEzhszl3/PsdY0B19TF0L+Hzz+yEc+8k2Y 0fUi4DGx0Fe+8pWJAe0Tlo5exWInPD795s+2s5XnO+Fdx1iWa9us1wd67bT3 uPAeUeRqqQNlPTprQ/x8x3zWqaV/xtRe62ab7H6t+T/sgniIenPv/bd82hqH 5UtOeGyesHTe9ud7n+zxhJttA5ER9Wzf933f95x6t8XljVkL/+57LNxo/ep6 GffnZD9X9mAd5r7YMT6Ive48TqcxNq7d5Z/sMxbG5/tgxp/92Z/d5ha/+MUv 3n5rn35fnG+bvdJV36v988oZpE+9Pnj1sZ/fex+1nbTtXdXf5TP5CvaNZQ56 7bthX8DeYMjX+YrV5iu5LjtdfV33blm13K7sys9eMm6/2HLwd97fovdY7Dwo 6+GYA2VPgZ4n7L7aXtezu93Lz7T+ue/RIfgx+x6Ru1jj5bhiPbN1t9uy7OM0 jlc50j5n6dxJTziYzwePVy1J69G6fmHSXbjRPPg+dn3C3PW9f7fvy9wGfpbx zX6iyy+3D7rP85ac+nzH/8yt8B4a5o6jZ5b7iRvfhcfNYRv/1v4JzVFsYz5/ 4Xb7+rbL5hs51pyfz7EdeQypAwCPo7M+xzk3PjMHRD70VF9xZVPG466nXTra euO+tl6ceFfjRfvHEy67xmL5V77Lew28H7vX3aav8GLmlHiHBec7x7zm6awz Sze6f25T69vCfM7hHSHseYid3OXfV1t87/vYSMvYOtA+56QDxuP2n9Zn56pT 70a+on1l52Duq093YViPiz+fuMqKF92O1U7bfLgX44mfZb4273E8rT9Mu077 8F3Z05X/SE6CXAWyzztKbLtXc5VX2LyetXjtwhTr7V0Y3bjb+Nl62nqZsbF8 W8ebL+Uacpy8f+z3fu/3nsOn3Z609fHjx7f91tlf9WovuftynKXna9zd3uZ8 J3504px9fduor1nr3XNN3kcXnU/+x+vp87x3vOMdt5ofYhG3wb6l+eZJnuY1 8e/eC919bZ4dDoPN8n4M2h/7WWMROfQ+evbXi8ufsNZ4bj3t+57637pmLLL+ p71wRNcfL7/R9zvxA+tf49XC6JOd5hzrgMfd92p77t8i//QX3w+3Yr00+zec xsa2kH0qPaZd89JjdOqz+8QcNnuPsWb9xMVPuLFwf+HEkusJuxtTrYOx8f5u HVfj6t+MBQtT29/xl/PAY+Y/ybFdcTf+D4fOvlE9V3MVb1zxiOZli/80h+sx XNjWvtNcq/3zlS70PAP3zJxebL/XX2dsIx/qrb7ru77rVvOTPp781Ykj/V/8 f2OwsYRrea8cHAr77fcxtIzz/6vahlxr7DBGXnGS9hv2s8uOFh60fucz/UO3 2Se248eTvTbPznc+x5i/xsjtWNy2x7l5atvs8n0rXvn6179+2++duVrvP7l8 6fIZy4e3zJcNWy85l30z8AvM5cFBmm+ceHD7p7t88fr9an6qZWAfZPvtflv+ PZYn377uYbl73I3Z1B+T///ABz7wTftX5Mj3f/Inf3KTMTUZ7kfL2mPeuNfY 2P1Z9rL0YPmYK27TuH+FbbalNacUDtE5Y9s2R2pYkDE1ZvDkvCvBaxG7Td32 5UuXD1s64Zrg6BPvkmTvw7wno20/dtmy6HZ07UPzg/CvU2zSfmP55GBK89Er vpZzmc+j9ot3BF3No9jeFi42fi3/0fI58efmVYs7rDHv7+Lz7U+ZZ2ddMnnF fl7jQst38bAlb/tWj5XPZ38b1inw/u7sV9Hz1ad5hZM+NN+xjO+Sc49X68/i IdYr3+uEFf7N3y9My/07DuE7sBU8Zv+KXlvVvIRaGvSbuVv7mObz3d8lM/8e nVr5ax9XdrqOtteW8xq/9sX5bDxOn93e9h98l1oMchtwFuaWyNeHYzvHsPzo 8hd9nPxY5Or3KKQ2hzWD8EbWS6RPjZseg35fWo/JstkVF9qGTzbQvqExr6/x M1uf4IvMpZKLW3nU1rHT8xsfjCULU5uLtR0Y104+5cQJm8Nab548eXJ7Vytr 9Fufgt/h9rGdxS26/4svN2573HlXKXVYf/u3fzvt6sR9w+VaJtG92KExsO/T sr4a45UHOvnMxp++Lvdt+ZoDux3+fz7zl72BkB3vPY/NeizTT54Bz+D90nlf U+uaY/cVO/v8/O73JruO15i7/MTpvjnnNN4nn3yF6z0u0eF+9+/K8+T4i7/4 i5vs2NeCc7I3rN9rexdnX/bZ/Qke+d2rrs3jOtbGM+9NLBkdWvzIObD+bOyx //H7VNY67Mag/rz61vJY+mVZRwepP059hf1D+5Ur39zjcdKxU66p9c73aM5t frGu6fvm+/QFvvTgwYPbWpCWZevnCftX+1vnFufJZ/T53e9+97MPHz685e/N ZdoOT7Vurc8nXnVqw9W4LD7VMohfMAafZGcf2TjbWN3P970Tx4LH8OMPfehD 37RG2nrLX+apiUO4xm1o3Ew9mN9H61yrz8s7CL3Pv9+nGhk0Lvge6zfnz/xd 3vfk93D3ug6/M9FtXu9s8ro8Y7Tf58V55CzIvT969Ojpe83d734XZvOPKxxa /j/jHNwnp/e///u/t3uzNp5xTJzT84C5r9+NlX4aOz02fkdujsjvqv1t76f5 9bYn53D7/vED8H/2koUfpz6x86kdg6V/J9/NOa4d7/ofY4drw7vdPca2i8V1 TnzD9sy8JePqtXCNA8Z793/d94R5/q1xn/0zmLvm/W/Waz+n8xZXfKP7fXVc cfCTv2zf1/7/xOvaV9geOue49HeNL+MPtsIhyFf43Qlc23s6M97Ef+SpTu97 7/caei2x10oYe4ONxsHoZb+rsN/zGkz1O7bdHq+ny/d51yFz0OGo/b5Zvw+8 35/X7Q/ueF+hxn3wkPc2kLdlDQ6/553iLaOuPWj/4/FPPxenpT30ERxmbUrq 27AV9hRgHBln8zLfg3bR7tT1NZbZB+Z9EHke19nHrFip7c1x2bLBEy8zJ4js 4cbEzdQDkS+nr/T/lHNpm2q8SX8dcyxuvfIY7kvbr/dQjy547JtftkyM5+TE qEeFl1ouzZGbry08bh7evtNjb5mxRgGO/i//8i/PiZmMI8bkHtc8Y+UHe24h 7b3PGsLlY1vPVgxwwnuPb2TQeybYL9v/GQudU+A+1EqAx8lXeLzCc9AVzmWe IPvRR4eCi8atYFC3L7YSnDOnMh4bk4xFxnquw/aDq8FWdDpjH07k9x5GbnyX fYHC0XNtsCXvDe+2RabLHwWbg8d5Dp95vy7y4y/9yfPD27qPGSev/2veb4y2 ToSzIhewOO+v4TzWxrOuh3G0XsW35f7xW8g1vmatC0/bMp5+h2XaZAxaONvc t+cGOmfROhWs5GBOhH0TXv/61z/7qle96tnXvOY1t3lo9tpxzNN+L+O6MMy6 G5vwnn2LM3rskrtvLMs+KNFjv7v8ipM2t6df1Poyn0ftcbDwlDMyni1/Zzw5 +cEeE/pKLSX19vhkx1jYQfT8LtzreMd6089fOaW+14orTnMzK5ZoX2Q9NZb4 fdbtC3195nVyWCfhx+xJkf02m3NkrIPH2b/CGJk5q+Z7nT/w+62CdelHsNC5 huZsxsDgbGNwxr5xyHnN9CtycYztNpmD+7rmV+bvkUPuFb/DOdQzUGfxcz/3 czf+6LaZnztutW50/qCx2DmV9IvnRA7ZQ4D6O3gje29xXXyp+5W+OIez/Fz6 l35nPBxTWFfst9yXztf0PmJtV+Ymzo9R40b9Le8w5X2mr3vd6254zHv0eJ8e OdbgoPWycx95RnPC5JkybtbVjIF9q+O8zpOkn7lfuLH5Vcc89g9tf6ljjN9t nxNb7nxJ/7Wvbdzv9pjvE5Owd8Z73vOep2Pr9yf1eK6/J9+w/Ef7AtcsLb6/ ck/2580dHcPld/soc7v4aOf1HN82dzG/Mz9gb3niC2Tod/8ZT8MP4VXg8Ze/ /OXnxG9pj2P/xvZgSXAi2N14bL/csQL3iu5lv0v7pGBIMDWH8xnGfD6Hlxgf 07b49NhJc7f0zzYR28r1fi7t+8Vf/MVbvp4cX9aUWCbxAeYR0S2Ppfed4Hfn R+KPkmsAj/OcxJRgFTX7yWk435txTwziMTX+Wdbpq3PikYvz89FB78cU3TS+ 5LtVF2F7yPk8n/vSJ/oGL37rW996q/t+wxvecMPnl7zkJc++/e1vf1pvksN2 GN61OOGyJ98nfbX/sR3Gtv09n52vs0801kW3O/cXPaH/vCeQfd9jx43Hebav bazo3I+x2Pyq5004yA9R30GdfbAhttf1ncaq9ntt9x6PlV84HfYlp/40Rq0c Uz/b/Nhc1z7evtg+yOc7bk/7mNMBH8g9pT3OhcZ/B4/ZK5k4NzoZXIxNmy+l 9jB99eF7B1Md/51iF8d4ea77tfIK0Z3+Ply956GC8467r/Lxzp+mLc3haSfn 8c6r7/me73n2b/7mb55ioXlndLjnM1sHbAvO+3isg6fU4YLN2c+NNrzlLW+5 2Q3PS245visyM78OhnkOgO+C+Rlz+6O0K/KMX2p5Re/oj3Pu7dc7Zxc55xmc /9GPfvTGhcFk8Jh+vvGNb7zx5Je//OW33BzzfFzn2Mqc3PnAfDanMvaGLzsu 6DkQ457H174o8uq8YsbCPtvxVLgCOQq4Mf4mtmBeapt3G20vjlWsj+1LPTa5 J3rw8z//88/yjjK4RsY1crI8zC2a09ovrvxB5JZnGzuXH3Pc0nNRvt6+zbGB Mb39a86xLnQda+d9Yq/O2Xp8mPcn50TttrlI9DE8iN9Yw0fekXq34Fu4sXPN flbnFzyGixs4L7XwrzHIHDb4wN/YcfTH9WXBK84lhxA8SjuN9Z6Ttz3a/+UZ p74HG/lMTSz5NdYvMe+S9ltPXPdhfXVcbszwM8xVIw/6aH7MuyPIV5DH5h7p L9fFJ/KX/0c29jHcE/uPH017uUfX8GWfj3D02Hz8h3EsbU77zbM7l9FxD3sH UXfLXoUvetGLbpgMJwaLk7d45Stf+ezb3va227sDkb15g31v86LFHaP/toGO ydIXx26e58jRnMQ8Ive3n4/Pyv05n1wBWMi6Lq7LOES/8te+2kdjvDmKn20M Ne8HE5gboU7LPjLxJ/dwzGfuZGxrP2AOaoyxH1nxU+dV/DznVnNfzxE5dnEu dsVryR+YcxiTck37lLbVXEO+gjlZ8LhzRuHg4RDUu1GzxVx19LG5pe3EXDnP 7Hxn9Mo89LRmwHmt5iU9t9a5LtrqnEqwo3PMwbbmyM5xdH1txqQ5jn2O7YI9 uIjr/vVf//UpTrouJG31850nMDexfeYZkUPsP1hIH5EHMT3PZz/EjDPPAreZ hwkuuB2xx9yT85zfaTzOHHDjbNpqW29sbZ2O3MNj8AVf+tKXbu8Pe/To0W3/ UGqs0E3yl8lXgMdvfvObn+Ix/yc3hz8kj09sz7vdPvOZz9xycPiZ6JvtsXPb jvmcu0k/o2fJgTl2SDwRnTdGG2cc63dtpmUWPGbfg6xFpF08x/hgH9CYHD2z HjmfaN081Yg+fvz4Fo+wJsXj7ns4NnW+p3PrsQFzeOOI66qCn+a69pn2a8al tMtzIM51ty2ZA7s2IPYTeXcbFx54nskxFQf1guio1+eFg+R+qXf61Kc+dYv3 mM9zHtv5iuYI5pux0cgtfYy9r/kTx4qu8ekYIbYQLu8Y37kJY4B1LuMSH2Mb 6VjTOZ/wZcfMrRv2sfz/85///G2vlT/90z/9/yo7s1Zdrup7fwCvvBGTmGha YzT2bVQi6rVgb+yOUWOXaGLsm3gMYnMjqImx99j3BhtEUCFiVDQoEowiARH7 j/H+/0/B2DwZv7lqHzcU77vrrVq1aq05xxxzrFWr/o9thn+4zay3GLvNozyP wxpw8gCPF/EOCa6f9xiljzIvLnhsTpI6BHeDM65bx/zOV2Oj0e3t9/YVx/Xo LeDN7bffvq1b+p73vGd7ngVMDbaCyz/4wQ8Od9xxxzavEN2YcTzG8C699NLt fzCbZ/6JRzyzwLsC4JTodcy/YB/cGfvmenDoxCfnqe3/1gacKzQex66Mb87f 7JvxixzrHMjtxXHUi3gCPyVGUR9z0/BT+0vHiB6/dhzt8QCPd/OdOM5YIteH p1vb97hv2sy5hbm2ca85UGt6wR5jZusJOd55r3MG50eOAeaZ8ff4cGzT10ub +NjU3TbfscHjJ2kbbI/nxvJ+8D4+Y0PsZ10W2pznf3I9x2vHXn86ZtiOwyvN j6e5Jp5/nX5uXmGsDG/NOZ33OU64zR13zeeMhelHx8fEu+YAzpNcXt51yvv1 8AXrC+k7j6V1X+Z/47392bzNOg2/0S70HxiE1mo8cd6cnDdziVNux3XHpOb5 8Qv7g2OescCaBcfy7CC4CX+lrcBV9Aa+sw4I7w678847t2Pj/4k9aELwNbAW XgwWgxdwD9t/dE/myqKpUy5rHcJPGANEj6WNfvnLX26ac+dd6eNoOIlnyR08 nmJd3fHcY9C2TY73OGzbpzUxymGdbfJcch7KTrsag2w75lyeq2UtvXGueW/y Xa7NM75oJdZxnTuYp1jrTFt4XMJ4MenoxlJzXbdra0qOSxPvDjZaW5rGpXKs 62tcb+0/3MPjL8k7nU/HrrBp5kxEd3L8sRZB2YzL48fRj8370ucTtzcWBiuN A+Fk6ceef92aRTDQubS5WO6RYzMPOzpma56eu2S8zr2nn83v2h+cx1nzil37 /tNW4Ay6Pbym/bJ1PfPd1mRyLeNj69qdnzCGS25LTkS7Jr9NLp2yzPHSxrHJ 1jsnTtExKfdPf1Nu7oM5avBa5lOyNjN1Y84avPeqq67a5saTU7DOK+Md0d2n 8oODcDYwHQzGxnkGxzlo2ibtzvHwcOYugy+sE8kcUHR+nnljnAx9Aw7Nb+h8 lEf78QkGR6cPHjtuxeacp7SWlticXC7jqN3/5gzhMeAw9eQ9pvwf3zAO5b7N 68ybjL3GMttcc17sDB0TDPnFL35xj7l9zpuiozsOZF+wyHzS2nBiXuOv8wfr er7HXCvtMPHh5hHGAs8tap7m8bVsvr7basXtrNdwHthKP6LDm3+Z93LfXAfO QQwGQ5IjWwMwp3a7eZ95XXDE8+uPezYmXMxxrXU8Y0XaxOMKzv3MCaf+Tv2t J9hOzRvcdx3Xoq3yP/fPOhbkJWAQx+a3zFPDt9miFVgXWOkljsPZT7norfFt rsHYF5orc2rMoV3HtEM4Wuds5l+x5fRl20JsjXuDu4KPYB4Y+5GPfGSbp0Vs Itbz/CK4h4+Dv2B1xoyMDbbj9H3ie+vR1tOs5yTm5LfYjMdz0C0YJww2g8tw dLQPdBPWJUFH4Z6Yyw+Pts03v209Nn2UGJU+Ct/mN+NYY2gwi9hKGzK203p2 59LNRR2nprzPWrO5SOyb+fSs88n6/859fY3JT90X9lXzEOfQ5vv2f5fneRN9 H90O9mPX0dqbx6jM03w9a0Dh8c1LjX/WTpI3pK3AVq+NZ9sxf+ScvB8k891y LeN36p8tdXcMbk7juVDWKvLdeOz7yf31HMO0tXXj8DzjY7DPOTO/JefMWJ/1 w5SZ+7b2lf5y2+U6zle4N7gba6zBB1OHzC3LuFrmfJgHp93jC2kLzgN3Odc8 K7pH+oFPrg0G8o7plBdMyPkpw/1m3c7zBKxleBzS+IFGw3pf6LzgLeOJzH0A g1kbn+c0wBKuayxP23t8xvEotmLssP5pX26+1zmofaNjbjCGfoFzo5cwl5w+ ZM4GnP7EiRPb++t4zibzNzwe0fpl/CbYa0097WsdwX7e/kS+hR5OO6f/PEbS uWTaK37aeJz79fwdc8b0MfkEWgXPBpr7Z/zH9mrdLeX2OLl1AseL5nguK+Vb q0gMj34STtbc1nm8c05jjPP/1tOtvbQvhOu7H3yPjlHRBbJWKTwl7ZTN8YZP 9Aryksyv8HhS59odQ8zhO3Y61nu+rbly5lyEi7puPS+u+3fKMVqfiE+aF3qu V4+7mRubDxsrHZOMK9FaeLYUjgxfTc5qHm8bMbZZQ+H/5GJejyM+aE6TOATn hOehCYDh4WPhaIkh+d9aV8pMnMo+jy3DgZnbDKcE97EvcJcxOO4ZrRbNFu7J 9RMvfR23JW3veWf2YevkjhHW9Iwnxl7rCLYn6wK+fs8hpb5oHKw5wBgpWEyb wp3RocGpq6++ertf5oPAH1vjSyxNDLZu5OeU8r/ny4df8R2Oyvzf5FTZzDeM u7n3xGFrjcaTYHb+b2wEN8i10CqMs+1Xjm/WBPybbdV81fzH/N7nNG827zPf db7bm/Pu4FHG1p1Lp608lu5Yaiy2FmL8nvIVPsmz4CpodNZSzD2D34zH8zwI Y4DWSdJmPV/RPD7cd3reM5vnYE/rTHnc1HlBzxl1/pNjHIesQXf+a19vjb/3 +9zG6tjulBPE1hjLZ+yI55qsDQRvPfbZ85xTJ+dCzb8cY8zHuA6clPw7vuhn qtOX4W3xZ88XzPXJz7EH8BeNgXEI3qmN9gtf5LlPeDjzIsAkYkH6LP1jDdy+ 0ryneZf7OD7nOXeOR+Z3xmTjse09fuP813N/ond4vIDroW//+Mc/3vQDOCNr GWUuCFjNXEfm19EW6Pi0R+qc3MR5m3lu+iS4HJykD8D/cNTE1vRd4l1ile2k 9bqOUz7W51IWcym4J2I7dW+dt/2/Oamxps+xlt1Y4jjRcy7NjXKedSOXY7sw buV45zfmVs3t8rttK+VYXzRGdDvlN/QK4jhcxj4bPI6t0y48R0C8RyczR7VW YpywHmm/it1Pz5T38x8+3hhuLA9eT+vk5pz4sjdzbZfVcSJt2fbkGJl27nnP Hqtw7KJ94cXMs4LXBIsz5mCc6vzC8cX5jGODtTrrLdQFTgqf4trgB3WP77Z2 Hv/PmGvKJB9nrilYyxxI+C/zy3geg/XumXsG/814VPuJ2ytb7s026BxhwmPn 1vGdVV7omOr8wvyleYLjueN+60eOwY6ZtBvvu//whz+8zc3jGcFzzjlnWwcU LOOZV/QP2ti829wmPut5zekv6oRmAObDqXr8IzblWGst2O3stvHYj2O8827m 6eRZsvAbcxhrQea0/r/1i7Sl54Fb20ifWfe3/mOu1rqMx//M9a1HGMM7hzb3 tY26DXOOx5Lsq9bJfW4wnTj95Cc/ebMX6xSNn1yD5xeYg4SNNaaGM/RcIOO5 57D18+qeO2GMc+xsjsPv1pen50is61tbMl81rga3+KSN/NyDdef4i/Mg5wDB 4LRpz+VLvZi/D57hk9bOXF9jurVxxyrjvzEq+2J/zE/l2byLL774cN555234 AE7gW+YB4WjRm+F8xGx42KMe9ajt+TfyKt6bDc9n/gL1N59J3poxp7RBbLnH JDsf9b057zHOWjdyG7jd4sMuz/G+ccR43LE8v8Xu3PaxWedFfT/8hsbBWnOM oaM/X3TRRVtf4Ido0oyb42vRy+LjeQ4nPJpYylxr9GvmAqJhM7+afoymbp5o faf5b2sV1ii6jZKvs24rz/5T17Szx+uaN00x2T43+Umv/+Nc3PwzdXNO6fjm 2G5e47zYvCptFJ/oeUOtvdpunANbI+6YZL5vfsycYuZZxtbbhnJPrLnAXB/4 VdurMSP3leutuHDPaZsw2bzG/Zk69rOS/dy762Yu1rZhvuU2znWsi01zLlpz 6XJae8j/cCf8MPP4g1P9PL/nRsXuHPfMlR0LzeEYZ4LH8pwa82vBVdakxJfR GOBZ5M/EaPQF8JdxIjRgcOMlL3nJtpY967uDwYwjgA9uu9h36tnP+qSuxge3 9ZSTtJ3ZZ4KNHleNXVjnMc92zF7Zm3MM44LjQ+K91xcw1rS/WrviE0xl3hxz bcBgcg3mQNPWYCua0jve8Y6tvZnHhk4NFtN2tD2/M7+aZxHpS3CZGAnORxey 3mDfzqf5qnE624Q9fBJT4PfMR8zamtbekx80X+i2tU2nHs3zOlduW28fs+9Y P3Sstl84NzBv7TaJDZlPreyJ4xzrplzWukjKhRexNjljEWlL55M5j9jMMYyP Zw5Sa7CxffNZ/m8+7PHE1Vr7xhnfq+85fpJ90zpE5jZuq9SxMTXXy3G+P8e+ 5NpusylfMu/o3JxP8n5878Ybbzx67sL16LlDjr19LdfBeUm0I/A1z0eAwzxj wQZX5plink9Bg2Q8Cr0T7sOYPZon/Bi8Tnz1NcJV7GvOZzo+dHvZz1qP77Ed +3S0EMc/4675r+Oux4xbJ+lxgLRvxjSaO9im3R7mlmweUzUfcj7EtcA2fBIN gHGyyy67bIuf5DTERXRpxg6Ji2Aw/ZfYynwV8h3GT4m9yfFa9zC22Md73C7j BI6z6SdiNms1kVev+GFwqO3evpZ+9HNI7Defsk/aL5xD2pacTzVux16sITo2 Ofdq/zPf8jywxjdz8/Rv62Bsvu/YALkGcTXru5k3ui0pl1yIsQhrcp0XN+fP Ma1r2Cecy/odN9Ybmk9P+/udKr0u0qRfrjRG2577JPfXOY6xPb9N3NtcIbaB hsjaC8y3jc26nTq/Mnfpe7SWlXpmfh24j/8Gj8FmfDlrtrNWFPkv84JZo8t9 lLwtGkbnvp0Xp607H0v9GoutU5pH5L7cFrHz1CG8O7jiNm/OY33DOYZ1Bh+X NvA7OtIm/Q6L5vn23bZD32/z0h6bghMzHwUfRXeGAxND2XgWHLym/xJjL7zw wk1LcKz0+L+1VucVHSesMbdmyrgteTX1SvuHj/XcL8db53TmM93HiX/WQY0T xur0uzVc93Pnja1Zmtc0RrsM52OrvNx4Zv3cmNGc1ziNbkn/8i4m+z7X7/kK zB9l/nueD+j8PtdvnaHnrrWmYLvvGOi8wHi89z6sKV7Z76ztNVaYn7Z+23mt sbrz3ORCGQPr/nM8Ya4QfcD87tTPfec+DceyT7n9+9nMlENO87rXvW5bXwde E24MJmftM3wszzM4lhjr/VyF893WA9ImzQe7jY2xqbtz45yXfW3jiUupi3Pz YF0wwjpTbDd94dy1NebmQdaRjSud37pvmn95XMnjwznfz0sHA5nPgL7B8yk8 k0KfEUvzHpRgM1o0mgXnZa6F5yM6XhsXmremXrG5YDo5HXNz0K8yV7N1MmN4 8wnjn7Ep2OHxn2Byc1v3i3Xl5gQ9vma/dvvbr83Fmn+1PhsNq/06eWm3ue/Z thjfIa8hzyEnTb2Mf14DAu2Y8SfitTWDtNeUrze2Nm46b+gYNOG3xwAbh1u7 8DVW43qN084L3OcuIxjceW9+n/SJKSalv5nDj20zNypY3H7jMfy2fbdf403q zT7mo4HF6NVs9Dsbvkw8IC5QpseWPQ4WHcJ82Nd0vtgY5Djl3K/5vW3WOXPs pP13ynsmTtK4M+mMzvnym/lv7CrP4DfHSr2DXxnf9Gb/No7bd60p5P9okZwH vvJsIPwY/AWPyXP4DCbzfA3HrnA4/eA5BJMm1DGG4xjzOHHixDbm5NjfuaTx t9uhOaptmH0rTpVrrPSBtkVzhilHNebYBntupOu14pU9PmS9zfy9bd33xVop +CjaYuyksTPlM4aTsYIJE1u7mDTd6X2P/T3H+N2E/Z7C1RoXPsbvS3Rssc24 r1LfxB/va93aWGy+dFwu0zEiOhLjZsxzgP84tpqXOKdufch+ZR0pfsE1KZs5 bhnPYyPPZaNfibO2AeNl9tmHst/jzrEv8wn7gfHLvuHfHL9yTes3ncd1PMr8 ENfJeBn/M9cxFkx2O9lb25J1qSkfsq3n+vab9FXzbtctfcs6B8zLYa1ncDha Mvox3JW5hsGE9JFjonOD1mP9PfdiznLy5MktjjOmmDrFLpwvmgO5zMYO+4L7 2G041ak3ax+tM5gX9jVsf+ZrLtP1nnKmHkdIXO4xKnOWthGOYeyAsYI8n+c2 saZDmay3yTgCWmRrwb6HFfZMHLHb3Hl8a8Or93ZP78cKh2nfitZlvHBfuTzH lI4XfS+TtrHSacwJEyPJU/Cvz33uc/fge+ai1mpbUwk/8Dwj4wzfmT/OWAGY zNpnaNY8L8dcYTiX/bRzMGOH78HXtW7quk02MelSaa/28S6jeZH9M/5jW570 hdYkbQ++Ro9XOP+adDLnS13vxpTsNz+M7TuvMiambYi76BbkVcRVNGMwmdjK 8xloCuF2nUc1prltzFOiNTofpFyuyfz1lD3pNvaHFf64Xe0vPb4/YYjxr3Nd 29XEwTtmrrB1VTfnTsGZ/OYY6pzNOW3XzTaDfsx4LLls59+2P85jDSnWt/r7 3/8+xivbsN95NWHnhLF9Tn+fePJ0vvvN332MbWHlX/097xPv2N7X9H5fr+tg P0Pne81rXnO0Bucqxnlf85mO+9m4HnOl0I+Z1wZ3QifmM2uwOxfr+NUxsvm9 535OuGS76jKnuNX1bx9u3mr86/aZ6tz7EhcT8/o847K/d59ONrRnf9P6hWmb /B57M3673Xg2C22C8Tue88Q/8eesrW07ad+fYsOEfW43xu9Yw4Y5ePzunKLL cRuv+rDtoM9b9d8UA2073Q9TPOj6Tn7fbTJxiz6m9Tfrl3v4z2fWE2KMfxUH 0l7oFcyPzNh7Hz9hTmNRx5bWI3K9xuz8bjxuf5/4ctvU1PaNu9O9T3HFdZl8 03FwL8fJeYyn8Xwb8/zzm6/R+ZnrNuFB6gBPIq+5/vrrt/5mv7nsisOs4mfK DRc1B5jySd+v8SU2OvGh7sduq8azCf98XttJYlCPpyXPnuzPcyyOw+Gucx8z 2fakvbW99z2mH6g3+5gXTFxnnTzmTrGP++pz0hY9xpO6GceD6+xnDRvWXGFs P23onHDKYxoD2j8nbjfh9gqfV5jS15niQZfX1zPHacztuvpesKeMxxqLV7aS 76xfQbzj3XjWztInOY4+JeYy54b1CiYf7TY/rn1WcXNlw+6TvbkVK3/sNp98 OTiRNpxypCleuh9d1lS+8SrYxO+/+c1vtnm/tHPHkLZl36d1cpeJH8GD4dx5 Bs9+k2Mn++9rtG7K9+BANmvPk4/s2cgU71Z4POF1x8Acl7EU6y2pX/Ra8/uO b8dhy2SjfS/GcXPeKZ6vcH3CFHMGj0PCl9AU6HNyINtk85aOPe1rwUn2Y0vM 60DjQp+3HcSuJ40o7dntM2FCeHyfM/HelQ92P7tsawbd5it+uIejzQ1yXY/R 9rjCKmbxO2M8PA9EztOY5vvBXuHHzK9gjsvEIVb3ZW4xld+xeYXjboNVO9nm JpzqOja+pl2ae/r4yT6mWNNxrevd7YC9s/4mz13R3q7PCqc6/zWPxhbQodCL 6d+eUzth4AoP2t5Srx7Hcnt1zF3Z/+p6e7F8wif/lrr2uKzr5ngy6dxTffdw 0/2+uhf7wcp/Vvc2tZf7IjEGHOD5HdY1ZQ5Ext+7LNtk32fKNnaxZjXrO2JL U843ceTmIf2726RzvimGdF/v4cBUlymmT3nKHn9w3fv31NfzPXqsaqWjsYHH xFLWc11xPb5jszyfxfqcHq9cYcSEycamtvHJr3zfOa5zxil2eOsxo5VtN1+d zpmO7Xu31tL3vMKXlEsbE+8YZ7NGv7LfiR/a1uDbPHsJvpM7OdZMXDCb+2vi sc2xY2vdb477nfNNsW7PhiYfmHx+lT9N+4I3kz62suE9Trtqr+PK7raf/Kax vDmE7ydb3q/GM1yez8Jxe3wnz2R1LoGmyfqOjDnFrnPdxsoptjT/6lxy0nMn 31vFuhXGxQYbm/vclT/ttVXjU8r2nJbUw9w/7dbjPsxZ4ZlY+mzi+DkPvsYa KIzpMQYU/9uzseaqxlT/3m1z3JjdhKer/Z0jrHzU/W89zHlG+3LzNF/fnGVV 7yne84wec4F5FjL6bI91THHJ83M4Du0QXnxSz7d7rDn9P5XVGNg+kWMaD/25 wqEVV1n5cuyhY1zrqo4L3ebto5Mv+hi3zZ4duh5dv8bZKd/qNjBOGv97a6zu 9kqZtAXjfIwPkdtOuY3tIW3YmjK/sXYzz28T29FEHWf3OIo5RNtP48RkNz6v 49BebGu/ZmstpHG47XC1fxXvfS/mwlM/N99LvzGPET7GmtmTfpD/0eC+/OUv b88sMFbvfl/Vb8XpVvzONtl23ji3as8J845rw+ZsbquOX6vYPXGB9v29OuTe eAbrZS972bZuGnOPm0d0Hzp+5BjmI15zzTXbnDbGBpsb+N6Mx13HVRt6TK5z L8fbCWcmXjf58Kq8KXbkWM8VneLd1Eexp1VfTn49xd6pvTpOda7anL7bmL/W +ib/n+JbPtEWWYeTOXCMHzg36rl/kx/kGj/60Y+2ebHMmWxbmupuG5owJeUa I72lfvbBvdy6fW3Ko6d8t/t20qmNYyvsn/TY6bzJlhw/g8esNe928n3zP88K 8A5q1qBCR+rxwslHur7T1rZlPu+6N25Ndtnxuftriqv+nWuvYvbq+8oXuh36 WLdxczw0XzR9tKGc2/M87CvGVjCcsVnWcWP+U3DTtjbVe9Vv3rfKM+M30cmm eNbnuK06FvT/7d8r7FzlE40BbsfpuMnG3Edt012Pqb0aFyb7ncbg+/7clvnu uWzdzmzwJzRJ5jsyvtexYLLp1JHvtCnPK6Ed8+6XCSunOeJut8a7rmO3yarM jofTvgn7JjyZ8HXyi2lbnTv5yGRL5jWuG3MlWMva43ldBt/xc+a6ML+COVMr ftPXsO1O+1exZ5V/TNx3j3O2n6343XS9Vbmrtt/rp85XXU7qlDLwnyc84QlH z+hM/dEad8pH52BcnfU7rfHbh6dxlemebZvGxL73qZwpBvW9T23atrTiO32d FRbs1decqus75SHH+WT3+6p9+tzVWHfHDfe18bLbz2UkV+A5XNbtY/1Oxphc R9sln5kbQGzlGNbXffGLX7zNde3nKXocYtJTVr48+b5xe9KTe4zAbcjfZDuT TU/XN1at+nJlo5Mtr3h9H+d7w/fhYmCt42wfyzO78DbmgcOp09+re27/nmx2 Tyde1Ttts/KLvXvuOq1i5dTGHpvrOTOnW++9zcfhD7yvl7kWaHXTXBnbSH7j OTvWpGVNRsbvjDuNW91PU3uusM1+3HlDc8HGh9jMHh53m6/ad8LjyT72+qNx wMf6/o6z11U8732rsdLuj44xzUWn+Q2+j9hqysx8VeyKNcFcjjHJ/RSsJR8m h0avzHnNI/faI3VpXWivbzv+NK6t2nLCzdagXWaX1br86fTryiZ7W92zj8l6 9KdOnRpzmOxDP2a8lmcWGF/t50onnbXbdeUj0/1OGJxy/XzmhBmdz01t0nWb OJRzplzDx0/219eb/HzyIbcdx/D8Butj8o61xADbk9uEjTyUecY888E8GPtN dJj28Un/bb7VfKzxwuM/ft7XfZrjJp12FcMm29/DP7f19KzhKrbk+FW8m7D7 uM11aSzw9Ve27v9tF73+QeZPr3IoxyY+GZNjPdUTJ07cYy667arHfCkb/Rlb JJfuGLvy5wlrbA/dD/6t8XelaayuM12zOUHX/XTi7R5etS1OufNkf40LcF3m eEc/dnt77QT0Y7CYOY28z8A6XfzNzweu1lVp/LZG1HzA4x+2x1X/uGyPVXSM aMxOuXke39xh8tOJz+zF0caUCQtdd45hDWKeDeGTfV5/3todn8yf4D0/zKdg jTa3t33OvjzlUY33e3bYtt33N2kDHQumek66QtuGY+HEoVobmmLRqo626UnT 2cPl5lZ7XLjziNYgcg/G3F5zPXbqud9Tf7DlGPRf5kmAy+gQ7R++d67FehU8 68c7ETO+vOIZ7Q97uO12cN/tlb/ys1VfHcdlu86dF+/hs9t6up9+rrHr0LEw bcCYEbEPvdG+yPesR5t30IPZcLC8X9p27OdR8pzWKgbk2n6XZM8NaZ7Bb16f Y7oX22RzyImjhxu57n5nzApv9uKn28X33L5m/5rWAeS5V7guvoPfZG03r9FH ecRJNEHmGbMO4iqOTNx/1W5eE63j2Cq2Onau4ldjeft/4/GEm9kcN32c49Xk 08G4zn9s+22nU70mPtVYZBueuEnXudebacyd1mrymnB+br2v6z7CTrAr3kmD X6ccx/s8R44GxnsK+Gx/Sx32sM7t3zEyYyaTvRoHGo/bx22LE9dtu+19E7/y 9/hrcwgfN/lH+4jP6bJic2ArOn/G4oPnwWO/q4B3mTLGxHwq+wF96HcQZD3I VVxLH3gN236edeLKWVPSa7zbLtoHJ84zcanM3fYaBr3e6Spfsq7cmDvVyf3R 9badc32erXrqU5+6zUmmXl6HPvVmzT20Pea+eL3tqT7+v/HGOO7/Gzvbp8wL Og71b80J218n/OwYMmF049tUl4kP9b312Mnqes2JXW5fey9OODY73vp5rn5v Qo8leG3zrLkc/cJchM+cz/MDPHfEOglwLL+TxRjPcWgVvJOEcSaXaQxd4bCP W/XzhF2Ned1Xq/5tP/N+c4W+1iqe7HGQlX2tzpnyYdt4ykSv4J3d+HW3gfGJ PsPneX8hz8e3n+Qde3kHV4839H0knvvdP42Z9gXqEJ6eNcobL1f42cf0vAPv n7hhY2V8wnicek4xvDG588PmYLkG77Bk3fhTp07d411EeeaHZ3nQNFhPgHnL fheD+9J+6fZoDubre73sXhO5/ct1bi7p8yZfaKzvY1yeY5Xn1XUMyrHuC3OT yY+ah/Xxjb3uV9c77d1rUFprsB3kN7/H2O8eYMt6znnXiscFkmNyHsdlDX/n nGmzfLIPjevqq6/eNC7sLJqG8RPexbzlG2644R5rvHasNC/z+iWTPzlGm+d3 nHL5aav4V2NJ59KrON92b67ouYsTpjcPbzzu+WP2aWMqv7kfug0Zz2OuqvE4 ZRIf/e4A5lagJd1xxx33WEcm+b7fleN+cC7kvvI2rddo3+t3ZLX/re7Rfj3l WfZfzs8a8LH9XvvAzxZOOtZ0XeeBe/l0NJmsf4NmceLEie0ZHN5zSX9kHRfW WeQ31vICi9PmzVcaixt/GguDJVnX3e9G6LzC7b/X5h3reiy48/Gp3InPTPl8 dKDWY6aybDtuoymf8/1NemC3oTG3c4Xch7Uy+tVcIxt9gCZF/+f3jOskJ8Uu Yhte/9o5jm0x7cOzIsyN5Pk9sDc5V/yIObDoYLfddtv/aSe3Q7ev+yT1TN3N u9xvk85nnaD5vjmbbXqlFTs2r/y1sXvSRqYyp2sbxyY8Txzu3B1svfzyy4/W P87vfCb/ST7Ds9KM5zFm1Gs15t1lifF+F+KkD+ecYF7W2fK4YHDR2q7faeN3 2/h9XdNYo3+PD3jdbNfBGk3rflO8ba7n9s/1fV3HE/d77Nf3x/t7mY+IVsSa Fuzjk/E7nr+D27Av78PouDTx2QmPjQ9pB/rS77Nrv7PPx5cddxyP0/bmbJ0P +Hg/+zzlN8batK/XmU272077el1W8+6Ja+35vuuTHMV90JwpbR4uY24cXkC/ Bo/BXL+PMMdxDPMb4yv9TE5jZO6d+/3hD3+4vQeB8T3Ws3Jc4Z1Q2B5Y3THJ ZdrXGnO8tnSvxxpMiv8aH9qH2v86xq1iaec8k89OfTv59aQXrzC/28P1MSaY X7KPdQ5YIwQdyX4SPM7GuYz5oSWBx+3z8eN+V1/3ReOxsSfvLs77F2Nf4CP2 iF0GI2Krjf1eyzbXSHzOu8SsQ3vt/tTd7z/z+uQTP+s42jmNMdZbym2MSN24 T45hfgXv0yKHYe0A3nn6/ve/f1vjgjnjlMWxtFliSOfvE0c0R+l81u9/iv9n jCgc3u8EcZzpdxH7HWTGkY6Fzk18rH23cbe/9zvy+n2RHkNNXb3f+ZfveeJc 5kXNj425xpzGIz75Dbu0FmeMip2H/1qzyLhH3vsdu288djzruECd8Os8g0Cu hYaJ3THvqt+P0Ji14iCdd7q/bHO2o4lLrviPy05frfCvtf7Oa1bjefaT5jZ7 3LftoOdtpN1tq7GLrAE2PQ8S7AtescYF/BgMt0ZlHPF7Ea0RZ6xv8h/3l/Ow fg/u9B7e+FDs0hqr17b1e8k6FpgbG4/5321uvbj/nzb6Jtr7FDfShvHLXDc6 AX6Bnzz4wQ/e3o3Ge3l4F/TZZ5+9veeDuUjEqXCj1lgSR1qXsL04r/a4Uvqs +yCxIuMEjl3pD/cNv+HPxNLgicdwMxac/R2zrIU5xqd8vx8uuJV3Kud77iO4 7P7w99j7hGsT9zHmTrF1akvPkbEOl/5L+wWv0n7B43DonBv+4vcnT9qCc3Dz 2tSV+e68rxo7w974ftFFF23jEzwPEm4x6UkTj2ybcyz1WGViCfcRTLVuEl+x 5jeN9XQON+Fuc6qVDtHntU7ifp5yBnO7aOb2Petq5rWUh37M89LEyOBC7i22 Ef86derUFi/Rk7AB47vxxPqdOWpspueXOd8NHhpTzZ+6b5x7Gavjsxnn6PNa 1/L7c6O5ZA3iKcdvLuzYmjhsTcbrUqdeXDttnHiSvJTvjG3z7lE2/IT3VoLH F1xwwdH6FtEeE+88Buu+91yp9E9r+Olnyko9jFvJi9M+adv+TF9zbOpGWRl3 stYZrPWW8z3fMvs9l8A4Zx01uJr/vS9tnLbPlv5IPZ1rTG0YHE4sC+fx+4Qz Dpfrp45c37EufpM4YuzOGLnfa+u2Cp6lbSZdydqBx9bS5/zO+m+PfexjN/tK 7Oedpdgcz/R53YqO6RNWNZ5Fl3HMy/+xs8Q/61sef3K8yTGJ4801T0djdPu0 zmHfcd5lTOoYYJ5nrdXxtfVR81D28awduTDv0fQcxtyrNcnw49tvv/0eOq3L 9/zY3G/nopN24jae5rM5VvZ4UJ/rMcbYc88FCy+LJpf29bwh123Sq7qvW18K f2mczL2H25tHBidYl401YOAp+Eg2/AT+gu/QHzyLx8ZcC87hOT2e6WMfn8xT 4jv777777m0fx7H5uPye3ziPT8YN+R0NkY1jcs2cyz7m3OQ6f/3rX7dj+c5+ /uczG8dxDscwpoQeTp7MJ//j+2ycxz7yAH7PsTxnxsYxlMFvbOzjd5dHGZzH /xybOua8XDN1y/GUhZ7K3G/mIvCd8dXsAzfBVTb/zvfU3WVyHX5Pu7CP+6Is yuC31IdPyqMOHJ/24HvXk/25P87h+slFksckP3Ee5RyC6588eXLD4dgZHIBP 3lfNd3Tm1r/tC861/JsxPDgQf4j/JQaZN5qHJcfOOJbzWee/8f9pvKp16IkX e12b+KjHq5yb+TkL8/bUy3HZOU0f1xoreAw/5llot4djQrDuG9/4xuGDH/zg 9i5kx7RuH4+Xtk5kjcL4Gl0yfdXaPmX1nCH/Zhxt7S3t4bGicCrnvGmncKbs 9xj5pEu1rhg79Jhk+I3zeufRsTn8h3PRhBj3hqPgF7w3GBy+9NJLj76zn/lw zFHmvdGXXXbZ9j+c5tGPfvSG2Wzoz+xn3JbvKZPvnMN7idGsnvSkJ20+yTXY KIONGMDaXtSHdY44n3L5je+Uzfl8UgbfOZZP3rXGOo1ch3P5zkZ55MJwL+bs MC6BHTInluf30S7hCYz/kwsw5sT/HMP8TOZccw7ztfid9W5Yp5R9/M/Gut6M jbBxPO8m5DkI1vg4ceLE9p33JLM2KXWgLtdee+02D4y10Ph89atfvX1nP8ei E/GcDmvrsL4IG8exMe+QcVb2cRxzxTiX8jmfeWPMleF/jmNNVcbR2Pg/+8BG xtK4DuVcd91122+cy7HkqGzvfve7t+Mpl/2cxzps73vf+7a5qR/96Ee3HIt9 +C1rgbG2CRv7ePcp6zVSFjYQHL744os3HOaT/9Etbr755nvoLPbvSa9ezVGJ jwXXMvaR2OFxo86DjSHGD+Ncz+NaPROy4lM93uYxip5HZjxu/dVaSuoYHHF+ 7pyPT/RjfAD92Dk/341X7GN+BXPe4Ezhdh4DS+5tDSFlTTlgzjOf72f20m7B N/NWby7L4zPWHjpnd77a4zwdY1faku0s95T8IDnPND/UuXzuyXXJc634CLgH xoKR4S/gHnP6f/KTn2y5JnOTWNuNd8Dzrh4+WbOWZ7GYm8EaMrfeeuv2nBX7 4Tt88uw7x2fjWD5Z55byWIOGc3M8NsCzQ/zGd46jXI5j438+eb8BG/MoGSvm O+vRoHnxP/oY53MucZ792CB+z3Mwn/nMZ7Y5P2zsZ2N/Np7dB3PAmI997GPb uysY6+R4ygBzsFU+OY6NcziO34NN7GPjf7ALHZVPxkzBKr6DjWAeG/gHjuU4 zuM7ZTIXBpzj+GAlWMcnWMrGs5RgOfgKvoO5/M5YLbgLlrM/n2B68J59YD5b 8J5zwHownt/5JN4wDxL7ufLKK7fYQ6wi5vDJ7zxHQKxhIw8jNgePifexNXCa /2n/+E+PqcXOwznjr+FNk87XGkb8IDjisdVwPT/vYp7Z8008x2Q19tpaRmvA lBXcdW7deb3xJNjXOqFxsPVV4xLXZr4bXAZbTgxK2dZ6OB8/xPbIizy+Fh4Y nSx5heOFcS71TbyznpVxmWBoj3ukbNtE7s1tF2zvMUlruOGtwfFcJ/2QOUvT eO2k9/e4gmN2j4l5vqk1C+dHYBI4DBd+3OMet23htl5/gDonF+18suNGz8Gc 7sv+4tzAY8fT2IZ5yTQW7s3cwnmLbSV+5XkKsd2My9G/KcvXtCaWejlPtNbm eQ7k9cmn4nPO62Ir9mVjhbXDjLVFQ0aToM+4Bhvagudzcgy+hfbAb2wcz2Y9 IxoL/0dPYWv9hC3Xyff8zvf4K7oJcQXszVhF9GP+J/YzZjRhmfW8cMtpLLHt xf1jjdHj7B67ctvmt+S/Pc6VvjU/7nobo1tLDqb0vFdzTOfq1nmNx9a9PZ/R fLHPAY/J5eBXKTc4kvGbjH3CdYjJcLfWuM0BM/busbXUL/4Y+0/Z1oE91uc5 D4mhGUcxfkzcNPHXGkG2xA1zcY/3WkNe6RUeJ3Fe5Zjp63q+gOO/85r0F2XQ zvCi888/f8Nk8sZLLrlk4zt5j2HKoq9sw9bfPRa1mvfW8SPjeqm3MdD19PiF +z1l5diVjpR81XO97JuOYTneY1l9TWtn1u6M89bzPFbsGDnlR6vxIccij6+H D/S4Y7TcjGl6vgj7g9me95l7yXya6K49Z8XxzTbQeZ3HzzmGnBc9Bxsj7qMv wZnBY7g81/Nckh7b7Ng7cYLYkP3A3Lg5k7mMdWJzzsmXzOOnORbGYceR5gu2 /Rzn/jWOxsZtN8bd1kbDYWOHscFf//rX23oh6Me599xLMCtckbUr6CfmZMSW 3VbxS2wkY8jWqmMfreub2/TvniecfZkX4z7uOXE5Jvwmvpvy4tfN0xyLYyPh le5b9qXPOnZ7jNMamfUJ82HjlbVsyuF41hKnf8gZ0e4znpRy47c+N7aQvjRW 9JyRzIGy7ed+7CvBrOBVjyl3jmluY43c8zQ8hyB2Elt1POjxB/eTY6a1Ledq HhdxnM//1CfjYLnmKm7t5R/mG2lDx5SeR5+6ZWzLc9ucb/Z9x89sw7l25yfm CT3/wfcE38bH0efR6uECaGF5JtQ4PMV280LbneOY9dOeY9jzWKb5WfFfx/dp vlCP17kfPe7kcXj3Y2yudU7H+/Bjz/MIl2pNxtwvcwlsn8EK5haiHzO/Ivaa +zHHZR+aRtbknbQRa8mxGWOutSZjWe7L/bsq2/q0+8y8M5yitRL7r3GjxySt GTR+OSczDvlenMO7L8zPnacFpzyH1PGODZ8Ah9PvwTDP5er5Lm5Tt71/M9+L TXgOWPM325XnihgfGs+Dq8Hi2GHKyHHWCs0p7X9TO3Z87vuwzZhDOM47XscH mg+n7Pi87dXtvjeHJnoB+B+ek/qG//ccvdbTPDZiO7dOlnInjLPf9JwJ6gDf AheYx0HZsQ3P62oNoucMeI5Vaxc9nmUM8Hic29W4Ym1y0gmah/SWenS9ss/8 OG3buopxcZrb4dzUnDX3ZwxyDIMfox/Dv9KesTlza/5nPIZndJmvk7Zzjmtd JeNY5vXGBX/PPfpeO9459jsW+96b21qHcn5j7ms/jYbSfmB/d5+ZN9n+XV+3 v7lfz9N2n5mrexzQ/DCb5zlO3M2+6fZN3zn+Ne5Oz2C4Tz1uMD3PG5yLrtka kTm05x57HNaxIXgeDmvOHB+2buXxaduoNWPHjFzT/dJ2OGnerSWuNDzPkXb8 6bbwnFxzR48p9b27L13nxuCJ59iP3U6NFR2T7MeJET3m1uMpnafYF112xzXb vv1jwj/j8aQxOYZ0LmG79jxpr12Z+3QfNh73OEhssjmrdbPgMfOlMv/YXNba H+Uwrs08JOaOxien8VLniK3nNCZ7bLLtYbIzl2mdwvtdnv0nbecxB2u9LsNj N82Jps3xq3nD5Mv2Z/dHxyvzd+eLHV+sM5kH+5qO8d22U95pnc/PZThX7N+M MZPu0LzI9uiY4FjaccL3bExJu4ULeKy05yf19VJ+51Up2zHQWmbnbx27OrZ4 f9uA7bdzr5yb3xJD3J8rf3fubV9xP+W61rtSjvu6uatzGuOmMd45sXHV7d34 PrVp6ts5hfvXfRb7Nodq/5uuG5v23DLXx3NYU/eOMV0n20zzRo+LMd/t6U9/ +jY3KHwhxzefuummm47wuLmguYljtjHWOneXnc1tNmkSzcE7v7HW0Rhn2088 7Hjd8c0xZ9L/jbXG+x5b7jp0rtRjhbb5vjf7m3HDvK/1d9uUOUhro/FLc3X7 pfVy+2lsOOdZC7CfTuNyjZO2gfzvHNdaU/zHWmLr8Y3tzhsdq1vTtw/lnoKD rYX5vq1TJEfw2LjbKRpq8Dn25Hgy5XzWYsybcw/ON5yvTDzT8cYYbd/0dcxf raM2z7COmPbveNj5c4+t2e6bO6cdXO+uX+smjlu57jTmaJs01rT+EA5q++64 2zGz9W9jD2sDwY/RIhJzYtPGEPYxT5O59Tzj5HqG9zfuug2NA+nv3N/Uhp3n mK+5TY1Dxu7mHY59+T/Y1XVxn0SrmOaVu4/j984FeozANptr9Xhv6w2+XutR tnO3jXErm/2s+8dtYXuJnRujje1dl7Yxay49PtjPyNg/un0d76zpGV+n+zQ3 6X3OkT0mY7y0buEYbb8L5vW1GzuDya3D9Nh3+sRj8s4lGvNtp46LHotwDrqH tx3jWu+bclr7n+tiHtYxcDWeETxuTbB1IPu1ecbE1VI/5429f8J/c0zHEvtY 7CPtZV9wOzpuOv9p7s3229/+dlsrjPn5GVc0HjvvZq49/DjjeZ3vti5gjuw2 n+KXf3c/pa7W4hxvVv47tXVz6saYnNPjztNc8ub+ndO5nB7zSB+47Gmt1dVz Rc0vXKb73DmT+8v40vHROVSw2/fY1zAWN7dMvxmz3E7GHNuL2yxzjJKjR6OO L6QevnZsxmPJzhmMM4315pXOlWJrxpz4n3EhWonLMiZbZ0j7WZvsOhrHrJ04 Zjb3aJ7rY1J+47HxoflO51TG72CxbdP1nTSMiTOlbfm0Pxg7zL19zea+jjGx E/Mhx5FpTnKP306crzn2FA8mHtlxynWlHPQK8Ji5xc0v+x7RKziWdQ2sKdgO rHt1Ht3jsLETY6qxYirfOpjtYcpxe16L8dB45rbae/7OepSPa127j7Em4Hay LU9bP3My2ZRtuuNdc9bMowqG2K+b44br2887f2+/D457LNQY4zkVuXawxz7p OB2bcHwxPnCc446x3pjmezUepi0zPyQ8NmsOtW6Zenj+h2NhygvONh57Lkzi gMcS3Rc9t8JjHYlzxmvrQe0bqzkQ2Vp7ciwwDvoeWwfxGLnLTl+anzhntr43 jWUY53PtPmeVaxt/jOnmXj032c9Mt427PTq+9PXsr+2f9gHHBt7NBsbyjOs0 Bmm+icbceNz5ZOt19quOY6lDryHbGOM6dC7SHLzbpPP8zPnsfMRjYtRlejdP z9l1DGlMdP+m/h6j8xj0cefHPozl7kufa95hjsrcJZ6F5vlpngEiDjOWy9xm 1jDheQCe+wKDnCMZ+yeNwhhuPdh5DVjD82WsgcO1sZ/m0NYGzEma7/d8W8do +0xrefkdDZe1krhnnktzTpl5DX7OYtItYkeer2xc5JP9PEPHmqmMt3itbj// 13MwjO/NLY1HnVt0zHGbTuMDwevmu62tm7PYBx2f3L7WI5y/tV3zmzWVaayk /SuxN35qfcN+P/Ev29Eqr/aYTo+HdQ5kbGpdrXUPb805k7/ld3yStV1YX6Bz /s6ReUafY7HnKfakT7u+1l7N36wZrda5a9twrmA8aJuMHuB4FL9znLI/O453 7hKMnt4/0HlVc2lzbOdxjgvm9eb25supr7VK86m2lfA+uN43v/nNbV5j1onJ xrN/PIPFM0Gsl8D6E8yPnXK/zoFah8g+66B8pzzyL+ZK8swX6zwE01p/7XzQ fZ1jzVHSDsHp5nf2J/COtThYe4h1johPsW1zTs8JsUbjeMRveaalr8U+1uXg eQranOd4vO5oz6tuLdrzqYzPxgXrH9YkguMdR4wtzY9b57Dvdg455anOzW3P jtXWW+MPjjfmiD1m3voJ/5snNW7Z731PHVusk+YaKa+xuPHa85cnPtUabn7v cXlzHv5n3jc2Ax4bh6f4hH7MmlzEe2u0zimNC81tPX5qjuxYkhjYuVjrEo7z Ps42MOnaHuNwP1hr6DiZ8bx+h/hqPaiO846HHuexjbZOOWkizWfMTVa8JufQ pr/73e+2/mMNT8YBeNaPvoQbszYJ682Q/7AuG2vlwGnj+75muNmkB/h5tOAW WMR7zFn3hjURWH8sebpxxzhufWKaY2D90zpJ67CuH/jJOAnPA7MWHWsxZcyE drJOkPnSbttcK9fxXOjGSuIaz1llLR6PZ5p3Ow6sxip77rk1AmPlpHN0jmF9 eqXbmRc4LrbfGM9iv8aPxqnOf4zD5rrGWdejc0r7mTXA1MH1nzTS6Rnyzqnd FhPfim92PJj01z6/sZq6ka/im6y1ZZ20r8H9sDYW6x+yDmvO9zX6no3H3W+O Fc4FzbM7tjXeNEdvHad5lDGrsT37nO8Hh61T+H3S5vS+ZttK51zNPyaObn7c unHn6L5X/99tiB5x4sSJbY0i1rEGc/zuvrvuuutw4403bngFZp86depofXbz tsbExMBwwHC2zOUK12QtKnCQtR9bT+05wq3HGL/7OZWca07u+XT5nXYlt8va oj/96U/vkeuaC/jdAH7O3bjZ43aOH5zHem7kIFmLIFjpvg63dzt47lT2Oc4F 16d3KTQWGyNaszTnbfuL7dqH7Bv2F2NGc7n+3drhhMfOCb2G1VTvjjXWT+03 rf+2f1mf7GdwO1a19uBx+LRVsN55c3Nn18u/oeeBx/hea/KtQTCex1xlOFXn N6ucyNjg/LN5/Wp+k30+NmOdwlpS2sncqnFqylcc+8N1g8fGYmvH0/sJjY/d d8bS5EVTPtC2bbsyBse3na/a7nxcrg0es/4iaymy7iL6ad8va6CzZi/rFqFN 8e4Baz1ZVyE2Yoz0OkzB2oyLcTzrYrIuEmtZ5hjjWTiyOYAxJGNtxv2em8/x wapgqdekQMNm7WZwknfBcs8eewv3z3zhnJ81Q7KOXrg3W/YHU3PPrMF3zjnn HG655ZZ78GnzY2u+HW8Ss1oXyjF+xtvzuj3PrvnvxJmm3NxYHh9qXG18cL5s fzb+2k7tK60ZWx+0nuc2M/8377F+3BpeY4x9fOLL9uvm5rlW59nm550fmDc3 b2Q/egV8ATxujao1cNa3RmeEY7gNWxMJprf26JhpfurcIfdnrGw8dds43jiW Nrd2zEj7eCzAOUNr7I3H5q3mvJPNmsfHfzs38LmTVjFdt31ixWHMm1gvBk0C zYA1cMGQPFPtPI+xPvoZHo2mDG4HU1lXjrUZ0WD5jVycfIlznZOzoaGyvi/r 8rJODevxPuABD9jOp84Z12I+O8+Hsq4vnJKxZcqy/sd3xuBYg/S9733vhu2M fQQLwgm5R9ZTzvrIrNsMPibWMVeT+fZwEO6TZ//RtrkPNJW0QzCaT87J+s0/ //nPt3E66yLBR9oha0QzbspaxOAxvhUc4fg777xzy0WoF+8NRdsgDgbTuR46 N9ejDfP8Vc7P8+msM5G1b2kLrsv4/KR/t7bu/MYcbcodjXWNR+03nvfRxzjv Ni62bmxMn/RjY4AxImXHX8xZmyOZ205Y7Ps9nfrb56acoL/3GGIwjOdBGNvI eJ61MsdGroMPwI+xl46F5uetxzamOBamno01fX++F+/3/TteGdPTD83Dp2v6 vnK869z1b3zszfV1TuV69j3mOv3u1MZk19v16Xrl2sFj1rkFK8DY6C22LbCB dVV55whjcKz7if+zdj2YyZrqcD7WXeddHnBu1scNL6NcMIj9YCfHsj775Zdf vvFjcBI7o0xwC7ymTLQS1hZjw9aoR7CH8Ug4PeVQHmNl/M+cH+Y5cI/gddZ8 53i+w/EZ9wgeg23Ug5hErOBYYgvxh/LAtOAs1wer814O1p3knSPcN/gXP6d+ 4Ce8H90d3kK58BzwmFjDmCbHcK+snUY/UA5r3VJHuDp6PWv10/asY8/a9rQ/ mj/vHsgaRMQYYiHvTKHNuCZ15x7oD/SRvGcmtt/8rjXM5o3GaOO0faltuPXA HkNZ2ei0v3HS+u40dmdfddnmmMbh6T0/Pc+r8TfHdv2mY7tO/r66H7bMr8AO w5V8nHkudgYew2eme5nuaxV/GmMaG91XPd7q46b+7vXzug5+52hrQFPscP1W 95pj+9kO99Uq/vZ9Tu+pnviDr9v/d07FJ3oFfos+DJ6Bdc5JUk98GT8/99xz Nx4JHtPn4BbvS+JdfZwHPqAFswYr+JJ5kLxfBGzgPRpgFeUz3453UjC/4kMf +tB2XNZ3Bu/ASTAQfkn9iBngDscw7kY9eIcGGMm57KMs3v0Er8U+wczzzjtv 4xb0L7yBsWrqxr1zHhyWc8BJ7ocYA+cH/9BoeM8T/Jf2ZP4F785Ap8u67WAy Y3SMTRIHuDewFJymzTJfkDjDde53v/ttMSNYm5hErKMM8Bb/YzyVjVhEe8B7 wV7qwD70bng0++H/+CFrxlMe981vXJ9253hyWMd95122bfNFcxD7U+Nw81dr au2HPVep/bD9v/3KHMr+0Pa94iyOKY2r1o07PnS77OF4++TkzytNpP068yvo z84VXDd4D/Ea38PvGgOmdm5s8vWDiX2vji3TvbrctKX7f+/ajb+Od1Ob+fod O7PPHHaK9dN997U6Fqy2Vexze0zPdJv3olPQh/Bj8MRtkb4Ge+Ch973vfbf5 FvBOYjHvJcHnrd2Rd8PTwAt4GVjGuuYcGw6ZvBj+eO9733ubX5G5Z9SFdw9x LjiDHgF/vM997rO9HwmsBQPBaOaHeD4FHBoeCu+nTtSZOQ28e5B7QYuAo/K+ K8qhfeCp4BVYCdbFT+HT5InwS+abEKvAccYfiRHECzbmfLKPMsFy9sFx8SHG B2k/6gf+Evvuda97befQ1tQRrYZrM56aGAHuUi/e/Qc2M2eZOkVT4L1SaEf8 RuxADyBPQfuBN2eODuURY5i/SN2MVfRx9Ktodcfxw+aGbd/Nr7xvwq49215x t//FJ4wFzYes6za3s3/7HuNTPc91hTMuy76/4m/dNnyih2Gz6FSca53CdcMu sCVsFt7hOHg6eLxq673Y0308lZ02NMb3vLT/JS5P5/b1+t6nurZtTmWlrh0H VzlFY64391XbQfbB78Bj3ivKe9fAxAmPwSIwkDkWYCtcFKy74IILttw/doJ/ cyy5M/OawVl4IWucwGfhxNau0CnAFfCJcTU+g01wZvg0eE9Oz3vd4AhovGAd mAfGmReBYWBQcms4IZoq+Ay3Bs+pFxwSHKPtwGh4NfW47bbbjnwSzAWL4Z2s IUA5nEdboWugu8Ch4bRwYdoFLkPMIVagzXC/1CVzSuCt97///bd5SbQTWMg7 +SiTGMQYYXQUYh7vSQKTyQnSxtSP9gf/yRn4TtngMRwfjTljJvQv72QFj7kf Y6nzsbbb9onmMLb7xpvGgPZPc6uVba/8o+3cvtl+0Ne03a3GZPZ4zsTVTye2 NIas7mdVd/R/chz4Qe7F/m+MRrfDN7Dpzn/2ttO9l8ajjl2NWXscsc/ptlrh ms9pe+v+2rv3/yW++3/zkolnG+utD/cYbn73fcCP8VfwA1wBN1xmrgvnI4/G r8EiMBHMxf/hydELw7nAqrPOOmvD+MTs4Irn2ILH4AploHmAV2AjXC7+k3kC 6ByUzfgGWu+znvWsjWNm/NJjM57rQTxATwU70TfAMDAfbk1bo1dQB3AabAs/ RnPAtvEF7hesBrPBXvAZ3CeGhCdnjI3xOHCUd5Si32ScEg4Ldz/77LO3GJa5 zLQP7Q8ec4+5PuVQJ2IZ/hW/4xOtCE5/4YUXbjkFuEtbUzZ5RfgT/Qs/5p1L xKPJbtqGGoOnPG3yp+aX0zWm66x8ZfJjb82fVvGA72mPnuvUczFyD3scr/10 z/8bQ7r+07Hdftgh9sH48kpjiQ5DboR+iF3uYdVxOOn2dtzc27r+ezHuOMyb /u/42lpDa2Jtpx0/uj6ng999zGSHnT82fluT7rqjPcKPme8FzoIRGQt0ToT+ C6YyL47nJ8BS3leM1sBcOPDG8RoN+cwzz9xwmfcwojcwT5283+PbYNEZZ5yx HQ9fRb+Ag8IFMpfC826pH/wTPYQ6g6nxt3w6J2XcDJ2Eec6Zh8DYGHUJHsNh 0V3BLObypW3AZu4XvQNuzLx8NF7iCvfBcZ4jkzU3yCuZOwefp30zFsYxjNeB obRh5jrQBugdxLc8B0n9yQWoOxwdPZA6ZQwOnL3iiiu2+Mh7w2kX8BxNB79N TCIveMELXrDlNXnWJW1lHXDivunLjuGNA9NciNjg5BPOAe3rky+sfHLiTis/ 8ljSKhZNdZx8eooZU067OmdP62gsTlvDA/A9fMIcqbGefsh6Qonfk17ReDTF t+Pa9DiM28PsbrsVV53Gz/zbxEuNmXt43PWYrj/Vs++1OYIx2fF9yiMnDoFf o2nCN8GDjD35GLgh+AWOwC/RCOh7NEzO8/OZwR1yZzgiOA7vBY/hpXDVxHJw FpyER6NNUC7YDZZRJ7SGHMsn5ZCL/+xnP9u4OufBM8GdtAO4BNaBtWho4ByY xZx62otroAGjnaAps4+6o1mzgcfBdPgkfhD9mTlp4DHPk4PzXDNzEWhvnm1E EwD34NGcS66ZNgd/3/nOd256BeN4mQPGvL88m562pVzuF60ELYOy6cv0LfdG mzJPD22ZstD/aRPeoZZYRv8y/ki94dueM9RctrFgwhTbqm1z4gnNWz2G3b5g H5meeW0caN26Y8sUa6axnAmr+v/27/a5KY84jovuxZ0+Hx5AjkQexG+eB+DY mvnHjCnAMVpDXXHzCVP+Vz6bfauxhAmvj+Oijv0+r6+9F1dX+Nq4bltp/pq2 M+9rTrKqa/tBY3v6M31FHIVnMQcBvRM/h0OSi6NfMi8B/gy+kPeCS/ErsAtM gHuFz4JNHAMnQwcBD8jB0QrgveTrYCP74HxwcnAerg0/Rn8lvoPJ6NNcA26K fkEZjO2hUcADwCniBGN+6AdgH/kaZXINdA2wGC2COMB5jNfBN7kG3+H11IOy iB8cl7YBW8Fo6s3YH1gPnoLHvDOSuIDWge3DZbkumEcbEi8Yz0Q/R7Og7dFq aGPmV6AZcy6cmrU74OfkGejH1uFpF+ZuwKuTg9DOtDdzMsBwODB4jF6BfkSM il5FP6KvcA/UMX3UmNL2bWyZdLHmcu0X+d5zvqZcsbe21+P8zHy848iEqc3B co7/977VNft+j+NnU37RbT7xL2wZbYq8q3EqZYYXoP+FHzePnjCv49/E9dKP wSiX19g+ceHpmlOfrzScjp+erzxxgz1+0Dg58YHmEVN/TvXztfZse9LPuQ7+ jtYIFoF/4Ba5PLrniRMntvEpxuvgaDxLAZ4Ez2MH4E/GruDCxHIwAiwGSzPO D1aC3eT/6L6Mq3EOWINege4JdjEXA97NdYkB8Fu4Y/J/dDHsAq4KJjIfDb0Z vOETvZc6cI9gNJiIrsH4INye2MP/HAtvZD4ZcyA4Hw4JzuX+4LBwen6jLPgm MQqthOtSDvdA7KE86p/cgrgBXnIf5AC3/f+cEw2b8sBzfIb5pGAsbUvbw9sz r45y+ORdzrk3vrMfPk//wIPQTWgP8hr0CsoGj+M7xBraiety/upZixU383wl 5117PKntee+4lf9MnMa/97GTvxurJ5xe8bIVj3Rb5b46119hjv1uuldr790G 4DGaMLoU55of93N68BTGuTP+O+Hi6t6nmNj43/G6cWYVvxrz9vTzroOxvrVZ z5VPfOo5lp0brfp9Va9c23NFJ11+sv3OyXwfHc/x629/+9vbs29wJ/CBXJ9P fBedlmPA7TxblXrlk7rBz/KsBfMhyKsyzpb8mDYDa8CKPNtAXk/MJ78GV7Ke BJ9wT/gxWgicFC6b5/MyJoPWilYKTjOPGQwEr4MbXBe+DU4RWxh7pq7EEP5n vghjJeAh3B+NBB7KfD1wjO+UDZajb7OPunENeAjYjyaBTsCcJL+3k0/uj9iE f1AGsY98kjmiaECMyeE/XBueD8bSflzf47FwHfajmxDTaBM4de6V6zLPL/Xh 3ogz5CYnT57czuM3eDKxZ8LN2LdzKNv1hNt9znE+uMLC48a2Jnz2nJouLz7T fG6FS3u4bj/aixGTrjHh7h4erOIWXIacDr/0uLnxOJ/Efo4l95ravet3OvP2 ul5pl1WfT9fb0xRW2lHbj/dnfMTrP1h78DNO/dzdpCHs8YLm55OttN6R+k1j yF2G8dlxPvdpLhHdZDUOku9cL2tVZHzasSH1yBys6KR5Djn46bUUyN2JB3zG 7zr35VjKyjPCbpv0BTk7WIreEB2X/6kHx6Cd8B38AuPTd5TJ/tTXORJ8FI4O b4aLpO397DufxCC0bOIN9ct6FdSd46kbvsMnsYKN4xoj0TzQX4hL6EHwan5P fAKz0XXQkjO/j/LBfHQg9sOzuL/2p4k/TDF88pUV55h8tPnV5GsrPmoMaT+Z jp3y00lf6N/2xoamOqzwZYVL030ehwXke3kexL4UG8r8HewG3kDMxu7sCxMW Thxwys9dl9VzbFMcmmxhsqe2o73j87/X0Mr69X5m1P2beVZZs6bXJmqOv+IO q3bpNorv55nerFOQOJp29BoZk42ufGRle13PfuYpmLjnA9bOnXtNz4zn+JTR 80iM1/neawxMnM98utcN6ee92n5ynNdH8RpQuTfz3Wm8qZ9hSzxLvyRWRQ/p +05dXO+c29pq+i7700cTZ2m8sG34nAlHJ0x0XdsHbRcTJh/HI1fbxCV6HGfC Y++zDXR9mxdNfbOKBZOm7HLZh+7HuC25bPysOUfWCmFcAn6c8bwJh1cxsWOC 78nP0fcaEhNOuV2Py6H2coT4QWw/Np65UnCscM9e98r36vWroqGmTpNdd47V sX+lfwRPvCac3yeYdpv0IGNS+8aU603XbkxrW3e7NrZ2PzY+tJ24XGOW295t 2xqX44bv3f3QefAU98zRXYfMaci6Ql6vxf1pHzenMHb0GixuV8eynkvj+4j9 tt/7mmnXLqcxtO01bd2+29fw/TpXcg45nTNhU9ub273ni/Rx3hojV5zN1578 YdIAG3PdNuZvK0zqjePhx3BexmdW8YhrYHvoaMHjbpMVr7DPTe0Ru08O6PdE 9D1Mbdh2y2/T/EP7Y3Oe+FGwDoxDE83av/a1jo/GyOTeK44/5V9dv8bhyVaC /1l/t9urY/DqesGXts+Jv0990D7b9XT7tO+t/l99n54F9/7pnqd77/Zc7TdO 28ZjL14D2usxNl9yfA2mT9dyO3ZMyT01b+v2n7j45P+NIX3t6f8Jdx0XpnY3 Fnst3x5/se2v8m1j3cr2Jr+f7n2yD/NP53HJ5aZ69/3HDv3M0jRPoW3PPJux BuZX5N013Z6JR9SHsZA8n+c41eflHq3B+h0yxraUkz7z+7HaVmzD2ZzbGVcb G3odwWBo1kr0enFoAOAxWmPePelruJ2Nx8FJfpvwwDHBmOX+d1+5fVoz9tro 1ipsP+Z3U1zstl1xixUftg84tnUu3fZ4Ohix8p/mcpPtdVyaYvWKK7ktmu86 Hnot7thr6xPddq5zt+XE5zqHmI4zP0jdbO9T+6za/nTaxNfMvbidXG5+81rP vVbuFBu7z1YxdS9OTGVMPCLnxb+SZ1gDct47cbzGPK+r25y946ZjMp+M5zH/ mPkVk68GvyifefzgMeMGXTfn08nl/N7cfr9Z7jv94/Xmg3urGM5ndBQ/z+Ux 79Qla9N7TVbjuN+fFAzzOyG97rnXk+3cwGvMxt6o6+r5bY7LuzO9zrnLTzua i2Vd9ugpjl3JM3LP0Zb7vQHT+KMx3jlK6uCyvea9y3G7Wl9tvXTCBduk+Wlz nsSbYE/rXB0L2Tzva+LFLt/+Yd/MbymL+8pa8W4f22bHbutdzbfNFzpudnzr dmlekD5vztD34nONZ9bDHc8nvuf2bJ7MOVl/u9fonmLPcTjasaDxtbmxbWrC 0G7jiQfHNlN31828Ksd73VGXszevxHVnzJj5bugVq/tNPzNXlPmpfr90txvn +hl+x0SvzRXcDDbnvQd530H3u3lvxq79box+h1DaLn6TcmOnwQ2/jyFrX2W/ 1/QODvV7Im3vsb34YvMF243XFc97KIyfqWPeQ5/3VaT98n639EHH5n6HnN9R 73e+GT/7PZfBX7dxyggWuc393qFgut8d5PZoTmOftxbj9xc1jjmeWrd3uca4 4J63xh3Xw3brnKrn3vR8m6xlnz7t9wKmPT2m2OusOzdd5fzNmc0LjO+5H9+z 28Xxwjzb+JnvHgNtbjdpmOY35luNzc0Bfe+u96TT+7zOC6fY35w7eNuak/lI 9gcPPbZvO0s/+T1A1gLcJ8bO1Iu5lMxX5/mkjh2+B9qS+W55HsR94nKNZ3k3 jdsytrp6J2Xwo8c23O/R72x3HG8sSn8G540/jjGtQ7A/3D71zH3aT+3DiZPB EWPHtOXaxku/Myg+N/Fcz/2IVpH2SZl+H1B8wO9a4tzcs/3cmlLO8eZ3YTjW 5vjONdLnjpXOezrH7HzA13Zfp6/8DiD/3pzQObLHqO1njUWr9xN2DuJcz2Pf tkWX5T63lpf94Q3W4XyM30fqWOAxGL+jJ/v7vOBD+s7313Fjih/2u2Bq5wFp S7//drI1xw5rQrl324D1etehY5ptLVjm79azrPe2psA+v//Vcc/akPs/92f9 NHHJ7ynsuMonz8qDsT/4wQ+O+PakO3Iu89J5TijrnRhf0o7ho8mnMwcs/dg2 l2sEj8wn0jbNocxrrRE0X3J/BqMcq+JTwVxjvbUDx2LHS8dI5+rRnDsHm7S+ 9GnPsfO7MnM/6ZtoFskPeowpc3zdPynf8/fSBmkj+4r1BttjzylwbpuynEPE nv1+QNtM4pl5R8eJ+IF9we8cMg66Tonx/f4tY0p8NvU3DpnHWVtsHDNWGbvs qz2O4njn9xylX23Pfk9227TrkLLDQYIJ4SXBRdtH95s1u1zX/NR5pHGkNRNz sH6PV7/7L/c15QOOycYI971zJbdlsKe5cvOB9Nukaec3+4BjRfq7dVCX53uK ndq203d855kl5kzwHFO0htxX527Mr+D5H/Tj6HSONemLcOPu95ST+zB/d16T vrHG1MeZf/d7HW2LrXUaj30958L24+ZVbsu+h2Cx+b3H/q359/s48+7PzLGz jbWezvnx29SDz7xH0/eT+6VdiJHmmuZOnivQMTx90fYZnPS4jvON9Hv6K+3i czreth843zAfcrx1fZ139/m2Z2OMxxra31qvSP3T18ZKc9D4R441J3ZZxnr7 dzA25Xlue85p+3Sciv2nPa0Tpm7WO50DOHanzmmD5ratk07aU/OK2JzfPZ77 jF80Djsvi+2Fs0XXi1YWXAgvak21NePUsTHZea85ojE29+j422NJ+Z46O9a6 z6kva6ow343xPOdauQ/zEdZH9Hw3awrGGuvAwZaUEX6c9+B2jhHbcB+3RmY/ 7NzWONf5nu3Z+7s90//mc+n3jimdq2Q+cNrG4+lTG0Ubdj6RuqY8192aj3WM 2HLuu7ErbdPjT9ZzWh9oLG6e1/qYuZDzZbez8bjHOVtrc2xofmtMMFd1fIzd dx6Ttu1YO3FSY9GUh1srbDvrnMp5tq9ruzMP677JdXLP1pLdNmkvY6S5u/Xu 4IDzjNiJ8d623xqa82n3n32+41GuFd68yska32wPbrvWzTpf6tgfHHEcbR3S xzlXNh5bK7Ge4r5J/dyWrmfiIMfcdtttGx7z/L3rlvUF0mbsB4+Zi5F1XlpT 4DP96TkJxjTuKxhkvt4cvvvXPttaX2wz+OZY0Jqq265xov09/d7jDLle56mJ zeYyPe4cPAhnsE87fuQaKS/1y+8eL7INWAsyhjsXTr3t/90Hxo/cQ64fLdp8 t2OZccTcyPxjb33n2N6kMXa9be/2qbRBj52YX1uPsD85FlifMnYbpxOvfZz5 onHDGOr26+u5fulf81PPPZ/4v7ElfdN43FpFa0HmFLY/t719srUg607mL9Yy 3JfWNmJfqVNrKq2P5zcf6/4xHrtfzAmN3z3O0/VP2daL7MvGPedDvifbK3UL HrPGYfiYtRe3P2ujoFfw/L37usfJOSfxM74U+87YvPV562GJ1Y5Dbp89fuR+ cN+k7NTJfZ77tT+7jrZTcyfrCMEox/SVbmwenXkV5gXuU+smxpjU1ffqHNN5 UMoIz25uS3nGTGO7c7iOfxMHm3hR2tf5XmtQnQs1tluPtnbr/M/aqWNk7qHx ojHeHMtYa27m+JvYl76x/pNjO343P4xdWONvjdJx0X1jftq4tJcrOD6FNxtf HZdj++ZGzZuMd/ZNx2Tzb7dT++wUH6wFTjaZe7OPk2t6bovzoPCh2P/Kpv2b x58cL61d9TGts/leral0vGfdEusVwZS0e3yK/1m/An7M+hX2w8Ydx3PrX8Gg vEusc5bkLYkZxvweB3P93Pex3bSX8SicvT9jC25/a1iNUfYDa9oe/0h51i2c v3JcdJuOGdYtzCvct27b4KvLcb3NVVtvdZ/7/tofnes3T+lY4T5y37DP2O0x 4ebIxlPrBsmx4/OtFXgupfMY80TjSWumtonYkjU8a45un9atzHuae3ee0PzV mN08sPnrpE01tvR+91va2H7q3NY5dmPoCo8712pdx/wmx7ltc465d+7BnC3+ ZS6TvDH+7jniweDWnaypUJb7JfVprbftsfMqxyu3hbGufYhrgses8cp8N+uL HJf7yXMH4DHvWoAfO383z/G8sIwhWSPNFp8x/hnLXJ435xGOmZ37p4zmjc2T 7VP2Ncek2J/ttsdj3B/OS3qsw1zIGnBiZnRkc4vmDo4vHsdsvuzcw/zMvmRb dowz/lhDjn1Oc7PNX2yDXpepx1amzbytOYlx3j5kPHW9OieMvQVr2gZtG8F2 x2Dn4eZ1U67eGO3cpHODcIcpL3Y9jWO+1qRjtj33mJqxvbW87PP9On/z9c1T nUt0//V9ua4pK/ZtXa3zjM4BHHftH/gS6wXyaf0gNpj7iu85F7U+4/hkHuNr +l7NzZILR3fs/MJ5DBoD8yvgvDwv7bHL3KdzO979xZrfeT4vfpg45nhuW5ry wM5b2ufMycyRjffO78wpOpdxmzXfai3KuW7i4KRxt723Dmxe4fp7LoL7z3NE nGM1flofiW+nrW0jsTPnBdYy3PbO/ztHTrukH6Idh4OYS9quY0uxxZ5n1THW uJN7dvyLb9pezIcyHpH27PkB7ltjUMpNH0a7cmyybut2ckybsNFY7nmM5uvW kd3XjoWu9xRTW7+c7i1t5P5yrG6b7RgV+0xf2u/MN+1zU1/aD9MeaZPYi33B dXJe0DidPvcYOWsesNmvWndzLPfYuWOp65/+b94y6aZpg/iKfcq5StqO8RT0 Y56B5v1hzJfKswL2jZTDOw+iV/SYiHHb41hTftrjsM7Fcn7bao6bxvI7P7Ru MvHFzgl7Hoe1Tcdyl9XY5b5J/9ovnJ82l+nxareF69aaa/Pz1lUdW9JW0Yqa 97Y23bHV2uBqDNK+FRtOPOi5H7YZx/Rp7MM8MnV0vt1Y6XpNcb9zq7SN8wjn w9135ospy7mw+bMx2ZzJeZPzvdYTJjw21jYHnvhrOJ5zKcfoSWNLPEdfBBfY krulT1MXY5d9Iv3Q8WjSxdIHHltK/W2/vQZA37ePMb/M8bGx1Mt6p7WuzsVa T524/dQPnacaj1v3oV7wYvRj3iWQ2GJcsQ2Ax2gbwWNfK/dkbtvz/Yx57r9V zPBYsXU5182f8Rvjp8frJn5rn+/nFMzbnMM5Z0nbWBOKzQb/sGl+s8071k9+ 5vyg9Y4ppqVPU54xLTlTcjhzAMcuY4vj65QjmMM3TttPbOv2tdjnhD/G32lt lOxPjp86d07jfDr3wfGuR3yy+b59xfYY+3ad7b+NSamL9Vljpe0o7W0dsJ81 mvylr9fld0xw7PFYm/HYbWM8sk5kDSzX6fjYelnHPfuwY8nUhuYdHdNdVuvW bQ/BY9vnhJ/dbvZ/++oq13es6TpO/AWbRq/IeptTW3ue2M0337ytBcc7DtiX 5wt6PCgxM37j8XTH0sQft3XjpW3QGpg5cWOLx6rtr32dnJ9zgnW9Jkr8Y7L5 XN/22jE/7dFaobG9ua3nIUzjXp5D57mEPW/UHLL16c6328bahjrPMzdubcB5 qjUFcxu3n/OOvfED21PObf3WbWmMiT21n1orNs8yNhsDckznddZjW5Mw3zIm O+51brlaS8fxM/fufnYOnWs6R7QftKZs7uP7cv1XvN99b75pXzD2NTa5jXtf 6+3OXW2X1uiMS/xm/5v6tXMK33fbVdp+ypnc7i6nuV3rFXxHp2AOG/Pdsu6c OY/Hx3mvF9oG849jxx2v047J3/wseOeivu8euzBfteZjzsO+5ADuM/O1YKHx OHU3p7YuYLybxr9t1/ZRzz3OPueFU37f3C546HpM61j1mLY5rG2PsoOJ5u0d p1qLac7X3M+/h0vZ31oHsObsMW9jYsfy9EnbkG3BttQ5l/dPYxneP3E5533G dudU5uvOVexrjWltw67nlFOaj08xp22hsaZzXbeN6+O65hjnLKuybLf2L3OD xldrs63BGsPTjhOGOG5TVvQx5yKJ/z5u4hPG4km3a9trndDt0NjbGqLzIedA 9DvP5/EOYN4paTyPxhg+QRngMWtd8HxeY0pik++/+Zvtq+3B9pV6Oh80l4zd Ulbq11wz5dnWY9e2Sfer/X+az2G8MP67XzoWmiessLd5R+JEc0M/W+K5c7Ef z1NJTAtv8lwuz6GxfbgNjdPBohw75beNacHc5A2eR9bjIOZIk/91f7SOZIxt nI29W++atBFjg3N6t2XjQdrFdpJrTbzd+Z7HR+zzjcfmhM2Njev+zfmbea25 c+sSsWvHGftoayuTFtC+7P+9xX7Mi1K3jjdtZ9byYweem+axDfOEtre28XBI 95f9tMdtjNduq25Dx+e+72Bljgseo0GgH+dYyuL49Fd8nOfzwGPmVzj+tU/5 3tJetpnu62BJazQ9z8WYZ5sxz2uu1xq0czH7Vz+34TEWc0Dn7W7vXNMcKtea 5hm5LzuntM2YC6efG59Sh+j/PT8zde+1qB03evw7dQ3GOxfId8d15yWZk29O bk3WWGf/Tvt13PY+Y479ruOhz2t+GQxz7HV/e56I7c64mmNth8EJ8x/nxs3d +x6dq5m/NEY7dtgOPeYYm+x5Ac4N3L8ur3HfPDf3Zi2i7dc4kPw1Nt16inEz 9TTPbO6f+nXbdG6Sjboz583jfOaqaaf46Ep7aP7l/k0ZUz9aOzUe555jQ7lP 9ArWpEBHTh+kr9L3ydeY75b1j5OD5jrWyN3mHTfcXuaEXCM2bUyyH3iOsuOa 50hHJ+j5gp0zWhN17LO/OnYYj91GbWudt6WvbfOps3Gzx4g6Zjn37d+NT8Zb +75t1By6+U73Td+Hxxh8r82fHf+N87H71js6r3OfWBewdtVcKm3rcafmZY43 zRE6h819mHeYQ+c+3Bcpy5hsvpW2W+XrrV+0bTp/dR+ak+U605iZY6391RzK eYc1jLSH26e5ZjDQ9uGY5f6OH/R63ObCjYdT+zgf6rjrdm+Npes9aTDteym/ eV8+XbfEsuCkj/FYmDUv+PEzn/nMDY87j2c9t4985COHT3ziE4ePfvSjhxe8 4AWHJz7xiYf3vOc9h5tuumkb3+OT3z7+8Y8fPv3pTx8+85nPHD71qU8dbfzP /s9+9rOHL3zhC4cvfelLh8997nOHT37yk0fH8/+pU6eOts9//vOHL37xi9s5 /MY5nMv+r371q4dvfvObhy9/+cvb9pWvfOXoN47nWM5l+9rXvrYdz/aNb3zj 8PWvf33b2M/G91tvvXVba5T3a/NOVz6///3vH/2f7Tvf+c52LJ/f+973tjj2 3e9+9+h/vud8nq1hy/7sYw29lE9ZuTb70e9Z+5T1qJnzwv+sKYKOxEb/sLGP XIZ5ihzPb/zPfp6xZOP/HEv/cgzf2Ue5qUs+c7/UN9/ZqFvuhf1s7Mt+yqKu jAXnO9dPmWy0E79Tp9wLx1GvX/3qV9v7G3kmiU823o/AO+55jxj/8/4a3l3P e+15lz2/cQz72Hi3Pceyj2P4nXL5vPPOOw9//OMft/2///3vt+P55Bx++/Of /7zlenzyPzyDsRH0uL/85S+HP/zhD9s1KeNPf/rT9jvH88k+zuPYbJz7t7/9 bRvv7v18sp/fmZ/EM1X/+te/to3v7PvnP/95+Pe//71t7Ofzv//97+E///nP 9v0f//jH0bl8pyx+Y45tjuOTcjiG/7MxxyfzccEHOCPHsvGdjeP4THlZbzDP 1PI/x3Bt6scn1+LYvOMmz2Dk/ZO9ZhZl8Hs4VK7F5mfGEkt7/LfHXXJMYoqf qw3Oe00bz+/J8R5rzr6en+c4lrEiH2ONK3EtuVY/q5Y47PsI3uNbzGHDv60F 8P3ss8/etgc+8IGHhz70oYdLL730cMkllxwuvvjibXvQgx50uOCCCw7nnHPO 4QEPeMC28T/H8/uDH/zgw8Mf/vDDQx7ykO075/P9vPPOO5x55pmH+93vfoez zjprO+/CCy88XHTRRUfl8fsZZ5xxOP/887cYwLH3v//9t3KpA/sph09+y/Hs 45jLLrtsK49zzj333K18jk39+S11TL347VGPetThcY973OERj3jE0X3yG/dE 3TiPtuA4/qd89qU+lMVGuTmH749+9KO3jXpwf6kX59KOHEOded7mYQ972PY/ n1yHLefznTalfo95zGMOj3zkI7eN/ZxDXbOP37kX6kOd+Z97zPXYx5b6s+Ue Uy/qwJb74njO5V4pizoxP+cJT3jC4fLLLz+yETbK4H55/8wLX/jCw/Oe97yt LH57/vOfv+1/7GMfe3RvbI9//OMPT37yk7f9vrenPe1pWx5H+2APXOspT3nK tj/txv+cy+98x665BsfwP+ewfjfPmGZ7xjOesX1yDPfx7Gc/e9vgHvzGd+r9 nOc8Zysr/8Nh+H7FFVdsG/f34he/+Oj7y172ssMrXvGKw0te8pKtLO6X7y9/ +csPV1111ba98pWv3LYrr7xy2/+a17zm8LrXve7whje8Yfvk/6uvvnrbXvWq V23nsP/1r3/9to9zr7nmmu341772tYdrr7328M53vvPw1re+9fCWt7zlcOON N27/v/nNbz68973v3dafQXNkY//111+/HfeOd7xjO+aNb3zj0b63ve1th3e9 611bGWyce8MNNxze/va3H238zrn89r73vW87jjEmvvMsL/k0G+95491CrJ/O b9SFubP8z+/Uh/05lnPhgXC8j33sY4dbbrll43bwLfaF/8Hd4FRwNngdvCzc jmPhe/C18EE2eBv74Gjsp6yUzW+cz35+D+eD4/EZLsj/OYey4Hr5nTL4HR7G fvaFB8Jx4CrhdWBv+At8Cd5CW2Bn8Ivm+Hk/uMdFel68dRprgM4te65A67St HXlM21rB9Kxz65HWxPp450V+7ijxMTHQ+bxjrzkC8ZzYHk4QvgJ/gctkLWKO 4zf4SjhEOEv4UDiDeQUb38OXKIdPzoObcG54E9fk2rk+v3O8y8mxuW7Oz36u nWuFA1Eex/Fb+FWODz/ieuF/fMIZ4Y7wzfDQcFJ+g3fCNeGd7Ie75lh4Ltw2 fBeOC6eFI3McfDXcmGPYzwaXIK+AZ/OZnICN77fffvsRjw835zc4Pf6QvICN 79/61rc2f2Ejj8Kvks/we/IzPvmfY5LTBROcD+KLHB9fJ98EP+L/fCdfBHuS b+Y77xDOdzANvOI9Pfyf/eSxYBkYB5ZxDnhF/sr+D3zgA1tO++53v/sen2z8 xvU4DjwFD8BaMD+4C3aDvSdPntyuTR34H9y+7rrrtt/BZbCcmEDMIE7wSdyg DM5905vetMUV4gix5dWvfvX2/UUvetEWq/hODCM+8Z1jT5w4cXjuc597eOlL X7rViXIpk3PZR9xjI0YS94iFiX98Tx0ok1jJ3AXiaPgBx1I+sZf4TdylPpTN fsrhvMRpzocXcCznEJcZf2Mfn4nXnE9ZzEcjzoOxHM9cNsbg+J/tqU996sYF 4AnsRw8mNuJ35tF8en3C6CbB1ry7PscHr7PWm8+xJtvr3vacd2vh1ux7novH 4XoOh98BYNy3/t/vE+zxAWvsjiM918ZjDR7T8TyInr/R73azRuo26OdBfJ/T /GOPq0X36vv2tfr6jpOua8dQa3U9R8FjQa3r2YZW85Zy7dgIdpZtGt/q8WGP U7Qm6zF7t6nHAjzW1fM1rNVPz5ZZu7bebB265+x6np95Reru8UTrwt56vaye S8N3Yn60iqwrGH4QbpK1ZsID8m7HPEcUHYFjzAusd3Be4j0bMTvaRzhF4nh4 CnH87rvvPuIU6DrRcBLno7+Em3C9XJ/jifM5NuWxcR7ncAz70ZvYz3feO8fG /5wPX2CDL9x1113bZzb+Z+N3uER+R7viXDgI++EWfEYH4zh+5xrhKuzjdza+ sy8b52b+WmPoapzX69Y2PhsLp+fJjFX97oz4lvFoeh7NfmjscDzwMT323Of4 +n2eMbfHD1Kuj5vGx40zfb3OFToO9FzBbsfGbeNt12+FfY2P/r3n23mM2fgX DOwx5h5vOV08bjuZno3p+rpfep5Ft3HnbF2229nn9Hwo477bpOPb6j6nOOi6 reZYeI7d1A7NbXz9rstqXodtq8epPO7b4+U9Jjf5btd1KqNj7Mrfna/nmKms ycd8Xs8hcp3aphsrer5C9jV+NLa2D7o93JbNZW2j5pieC7vC4+n91uE+Lmda n7x5d78ndvXdHK39b6rPcc9dmI9P8abr0Xy6sXh1L90GU10n/5zmTE/5yIR1 0zzx9s3u68Znxwfz96l+q3ee5xg4GLysY3Lbf/j/Kt9pfO/rh3d333dZtsHY Vbir5/I6DqReq7JX97bql77HrvfEWVbxrH/vXMt91vuNdcaqKQ9dtXfbl7nZ FDMbu9yeXd+VnzXmTfHf1+P/1HW6L/PSPb9ze08+ZHueON3UJyu7yjVyzgrj Jv9b+f5kQ773CcdcXu6rOWNsZnVu36/9LnNFG6+nfvfvExeb7mGFTyu8aq7h WNExc2r/6Trpz+PqOOGXY0n7w178WWFV+HfbVceAzk322qnrYB3kdPrDdTMe NW/zeImxt2PUCvvb3huPT7cNjdspaxXrpzLdbt2f9pXGsynO2Ncbqx1bpvMm X/V1uyzb46ofu459X1MOOsXK7suuS/tCY/Oq7r0/39NOje+Tjbjffe9t79Nx exixh1VsztW6L1eYM/nAxB1y783Rs3+KE+0XKztpPrTC+eYFq5jn/pr8N/s7 LrWvdPv5/iafmeyq23XCv76Xvfbrelo3MNdZ9X/KmrB3ZQeT/ZjP9HzwVRyy P9u/VjjcPrIXF3vbw+rJr7ovpv0rWzP/cRus+rP54ypOTr4zXb/z1e63tq09 n2i/T8xf4WeXYc7va6/weI8vTe2Q9vp/JySUpQ== "], {{0, 347.}, {356., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{356., 347.}, PlotRange->{{0, 356.}, {0, 347.}}]], "Input",ExpressionUUID->"35a42c58-aba7-\ 4263-80f5-0316ba66e920"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJysvdd3XNeZL9hrZh7mcf6Feblr3du227IkZlLBluTslkN3+7batmTlQGWJ kiiRYk4gCSaACcwEc845gQEESYABAEEQOadCodJJhd9837f3PnWqUAXSa/ph owJOnbD3b385/L+vffj7N/+Pf/qnf/r0/6Y/v3/1y+c++eTVr/7w/9CHP038 9J23Jr7x+i8mfvbGW298Muq1/5O+PENjNY3/i4bjJuG4g2o4gOuPQXiOqwYd 49LwvMG0wd+5jh78nr/z+FzqnK5L5+HzemrYXpKGR/9z6XuHzsGvweGp85jh n9uje+D7oFePR1K/0vFe6rquuTeX7z2JJL1PepBX/o6fy9PDf0b6fTI5KMOc V+6F75PuTw0HbpK+S2ZeL6mfNam+1/ftz6drjk8dlzpe328S/kjya2B+Mz+n zXtgmO8cx8v6fXDtMj8/zsh2H+a7f+Rc6tlduU87Y7gyBv3hmeEGR/C5B9Xw BtPXg9eN1smmNbNokS0CtePYgjWDN8dR9+A4BqcBrLqB+fXX1FNDr6Xr6c9y LkeGK+dPylBrkcKvuo76XQqzyaH4SQ6qcxsMpu0LR+0ZvXdcJ/g/3lMGo66a Yz3Ufatr+mtBz5jUc5rM+Dx0/ONYy/Y5Fw7Nd8ks+P//MxhTTmB90ocre9MM m+fSCWAqgAGPzqNGUg03qedE0xRZP30ux9Pzos7B627brgz5n8GrTx8MRrwU Hp0MrLkprAne9LUMreRz2E6Kphhaq+ilK/esaKmif4bGm7X1AjhNYV3NG+OM 946jsaawY+7PG4JVMzc+dpx0XBmsDTseA0e5sPU4x2XSs+EwmYvuZseamkPG SpLmKymYcgM8RA2b51SGp/e+l9qrmt+6jBcZChdqf9L+CPAvGfSdYw/qQcfa Sf83Pi9yFL7N+V3b0ed29bp6Pp0L8iaZJ4NxeS7GMz2rrXCqMAyhm4yJpKvu PXUfgz6P5c+urfeQobUeAjQ3tQ9tfe+eZ86t92OAFyTdAH9gPk+fBwNYe9Q6 Zlv7XPx1OFw8iqZlw9rj4G24+xf6RWvozyfPl8x5iv4wvRGeoPFkfqP2tOvz YLVOejiDel31dTV2HE27/HuR+VU0UfDtD4eu62h8p3Dg0rASdE+W5/Nz/s6n ebaiUUkag7KedJzNeEoqWhPkM05qThRtZdqncMl4UjKsworQUnswhT99DkOL GWeW5SBhOYL5FG4M7U7tPaH3mi4bmmn4oi/LBV8zhjPMugf3aYp/ZJffHkXr HiUjDvf/zPuQ97bGjZ4zi14ty9NzPyjr6tpq3wkGLU/RLssJ0BZP+BOvk6yV a+SeIO8IyjZGRlN4cgw91DKbq3kk0yHL9nz+ahtZy9AeO0UfXB+Lep8I/VPP Jdd0lDzlGRopQ+8lR+0N86r0G/rs8/DBFAYNRrzAmjnJwHwG9kUAG0YGdrRs yfvHTtM/PGTqDpn6hBM4V6Zs9ri88nHw8Y/w339k2PF42rBiMXl1Exa8hA03 Su8jUSRjcSSjMXo/QO8jSCZoWFF4VoToBg0nApfeuzYd69GxLh3r0P9pJN14 atgJ+k2C6A6d3+Hv6JW+cxMxerVkJG3SG2QQFi2L5pXuwaFj6Dcuy0WWLdhU 9IxwYBGtsxRdsvxhcOoJni05j6LDPu6cFL9Ur4ZXugF5y6y7woUvc3nBeVT0 bpB5p89vh9KiTBwpvVwNx0vRq8flf5m0LZOWPQ7/y4WrbN9l0sl/FN95M6Yi b/oULJk5FasWzMbGJQuwfeVS7F29AnsK8rFn+UIcWbMEZzYX4uzmFbi0owA3 Dq3F3VMbcPP4Gtw+twE113ag+vpO1Nzah5qKg6i5fQS1d0+gvvo8Gu5fodfr aKi+heaaO+isq0FP4wP0t9YiTCPUch9hHq3ViLTfR7TrAazeOsR7HiIRakAi 3IhEpBXRgTbEBjqQiPYiHgnRd2EkaE/EYwnEEy6iNCI0YnEXiZgaVlzxWitm 029iMqxoAnaE8B53kKRjHRo2/c5JEP4Iw06c9gjtIYf2Eg+XcO7QfrBo2B4N 2i+2fGf7tFdonebvIo8I/SQa7gSG3jsG466R/0SO1Dqyr2t4OdZaybe27KtH r/vj4OxxcfIorD0OndxcVIStG9ajeP06FK9bi+00dm7YgJ0bN2Br0RqsXZqP NYsXYs2iBZg/+St8+LdXMHvSJ1gxbxqWzJmCgkWzsGrZXCxfMhNL8mdgydLZ yKfPS5cvwsIlCzF7fh6mz8nD97PzMXXWUsyatxILF63FsiXrsHxpERblrcDi BUuRv3AJFi7Iw7L8xSgsWIbly/OxvGAJlhYsxoqVBShcswor16zG6tVrsW7t BmzbsgM7i3dhx5ad2FW8m8Yu7N62Gwd27cOh3ftw/MBBnD16DBdOnkDJqRO4 cuYkSk4cxdVTx3Hj3CncvXwJ966UoOraBTy8WYK2ylL0PryF7pqr6H1wDX0P S9FXX0r7oAKRzkpEex4Q7usJ48302oJYXwvscCeccC+99sAL98Eb4EHvB7qI B/QQlmkkeum1F16MRryP3vfT6wBhmnCcYP6RIEwT/mlYNBJxes+YF5ruymC+ zHtGRkIPy02jY5k0LZu8ZmRvJX8ns/7ucb4Pvv9HsBiJWIhGbXpNoD8cQygU Rag/hp5wAp0DFtp6Y2jriaKlLYSym9X49rv52Lf/LKprOnG/rgcPGvtQ09CL ew87UHG/CeU0rlc24lpVM86V1+PI5SocOHcXe07fxeaDZVi35yo27SnFtr1l 2LrrClauO4YVaw+gcO1eLFiyEXMWrcHsxaswY1EBvl+wDJNmzMM3M/Iwacpc fPb1DHwxaTq+ojFl8ixM/uI7TPpoEr547zN88tZETPrgY3z7yaf48v338ek7 b+GjN/+Oia//DZ+9+xa+/OAd+vwqPnr9VXz+1uv4ZuJ7+OaDt/HdxDcw54t3 kPfN+yic8SlWz/4Ma2Z/iqJ5n2LtvM+Jzn+LbStnYM/6POwvXo6Du4oIyxuw f8d6HNm3DacO78eZo4dQQli+fPYUrp0/jdKLZ1BeSlguv46q2zdRfecWau5V oO7+PTQ9rEFz3QM00Wh8WIvm+jo0N9JoaqTRjKamFrS2tKG9vRMdHV0yOju6 0dXZi66OXvR0hdDXE0Kotx+hPn7l0Uff9SJEY6CvD9FQiPZCCFaoH1Z/P+wB GrQXeE84PAa6STbqpUH7ItZN2KdX3hM8rD6i6yHCfz+NsNB2zyL5xmLZRsk3 SYv5QlzGIMk/PJIWyUN0nAyb5SGSnZwY6Wf0Pck/npvw7QAih1tKL+CRoM8J R8k+8j/iNa0tHUS7VuB6aTkihMNEgv5PdF0G0fYE/474UYLOE6PfxOj3MeIT CX1MnGh/jM4XtwZF7zBylsXnsfj39H/aszHmhTTidL44HR+j/8WspHxO0H3E ow5itEdiJEtGaY/EIjYN0gHpczwcJV7LI4aB0AD6e2mEIrSHYujoDKG5tRuN LV2ob+5EfUsn7ZM23L3fiPJ7D1FaVoULJeW4dLkcJTQultzChYs3cebMNZw5 exUnz17B4dOXsOvwaRQfPIkNe4+hsHg/lm89gILtR7Fw437ML9qLaSu2YnLe Bnw7dzMmz9hE+2QNJn62CB99lodvvluOaTMKMeX7Jfj402n46JNv8e4HX+Kt dz/G+xM/xZtvv4+3352ITz77QsZnX3yJSV9PxudfTMInn3yGSZO+xtQp0zDp iy/w9ZdfYurkyZg7YxqmfTMJUz7/FPO+m4z8ad9iGY1NeXOxdeE8bFkwA9sW TcPegtk4tTkfF3etwPld+Ti7axEuH1yGG6dWofz8Oty5tBG3L21GxeVtuH1t L+6WHkTVjdOoKS8huagMjfduo6nyHpqr76Hl/l2019yT0V1bhd6G++hrqkFv czVCzZUkG1VioL0asZ5aRHrqEQs1+zSV9fXgCNJZm3X5mIXW5jbieytQfrNC Pvv6oaXkHitGx8UNrafvSSZijCr5YlDkJ5GhBI+MVZK14pZcz9eBAzZdxrhg N0G/tUDnGZRzO8xbSL5y+LyETYvf03EuXzfuyT0wJmXf8D4hGSlBPClCvClC +k6ErheVvTBIr8AAnT8c4wH0R/kzQLAFiXdqRAdlDESTCEddOsZFb8RF14CD 9rCNVhotAzYa+hKo64njYVcUNe0DeNASQW0TvTaGUPWgC1XEC2ofdqO2thMP attQRfT/7t06VNyuRfnt+7hVUYnrN24T5suJh9zG9Zu3cOXadZRcuYoLFy7h 9OmzOEPj7JkLOHnsNE4cPSWvZ06dpdeTOHrwCI7TOHHwEE7s34ezhw/h7IH9 OL53Dw7u3In927fhyJ5dRJuLsXNLEYo3r0HxpjXYSmPzhtXYuG411hetxLo1 BVi3upBklZUks6xE4apCFKxZgxVrirCksAiLC9dhwfIizMlfi6kzCzB12grM mFGAmbMKMWvWMnw/dQ6mTZmBWd9Pl70w/fupmD1jpqx1guafB7/nEYsl0r8n XMUicTQ1NJN8tRi3bpSTrB5LHRO3YbP8PcDH0jrHiAYRrUnQoln8XZTXnrFG WIkpTMYFZ0STYnwOJZsk+HyMPcaO2FeSIuPHIiznM66Sgl++lhNjXA3K94ko 4Z7u2aX3Fh8v51e2roS/d/g7S64r9yxYt+Te+f/xuO1jVPZLwtNYVrqDTddw Yoxp1h9s0SXknuX8mhck1JB9ZSXT7JKyH2WQjEPHePxqKbuNXIeflfeNpWxH SpdO0QFH2+94bhK8p4m2WzyvNA+xqCs8JkojHjd8wZHB8xCm0Uvf99H3vfR8 XcQDeJ90hh10hGySkfTotdDeY6Gzk17b4mhuG0BdSy9qmrtQTbzgLr3eeNiK K/dbUVLVjrMVrTh6uQ4Hzz7A3uN3sfvYbew6cgPb9l3ApuKjmDO/AH9/fSLm zV+OonU7fBpmnimIOX5vni9O+ltDXSPmzZkvdC2INXUM8TbCgCW0TPM44m9x WiMeCf0/W89TPOrKiIYtwaVN3yWYL+shuKUR4/fhOCw6n01EyKJzJvi8zDuZ l0ZtzU8TQmvjsbjmrXH5To6huY3RuaJyPqJpRIcGwgn5HT+HHBexFC1kvEVd oY8OrZ2TUJiwomo/WRp7vBeY3vO+lL0ZU8/Ie4HpKw+LMakxxvfG50hEbTmn a6m9Yxl8if1G+1JYdgnwFnm1Pf9crO96/Cq6s6NsnoRPhXN1LtFXbeUrYboe I6wmXJaL6DP7Ofi8LvQxgeMtRQ8Y/8aOSduU+AKdn/FPv4nzXnKVzOPLTvQ/ PobloxjNXZTmoqLiLgoKV6OqupYwP1SvyMpTNdYePqjD7JlzcLv8jnxO00vk /pVf3bKZbtiy522HMEOfo/4+Y/qheGtc1jou6yS0w1byG89ZPM70yRa9LB6P aZrHeFX0UNEnR3isrBfPD/2f7YK2rGtCf6Y1YdsG82KmdzGNccYg00Ba+2hU 07q4ugehT2w34XuMKfrl70lDczRN4xHX9J+HLcOSVyuuzqGuq59b72eeH6az PF9xh/ZKwmDdVvonz5Xe83FN7/n3iu7aSmclPdYimZznSGh0wtb005PnVrRT yxz6nkW+0bhl/DJe1TzRoGu4dC6XdADHtrVvSNHkuN5n8jt6BtYRXLbD0m89 3pfxlBwl+5XoB/O/tWvWo6GxVbCYTR8O4s3W/kd+9rraesyZNReVd6tkToy9 XGQiiR2C2MMtm+cwITYol++Z9Ptwdxta62vQUFONrqaHJDM2k8zYgkhfB63F AF2H5p/lKlftvzjvQ547Ple8m2hcC2L9rYTPXvocV7Ywvj8ajC8nEiEeRzpU LETPP0DvI9o+TDqQo2y/wvPYFkfzxnY4w6eshPKbW9q/lPI5uYIH4ZNsg+Dv PKYT/Lyu+ED5+zRerbGm7k3j1jL0JiWTyu/kmUmOJMww1gSPvE/kHE6a/UD4 R0LLoAl1PyKHMOZsW+5V+eiUb4f3LuPNias5EjmX70F+r2ijHCf4U3PI9he2 pbMN0JK9Q3uAbZiCaUvkDn7l57PE9h+jfR2juWb5xVFYY9rNfKY/hrIrZVi/ ej3qHzbJdXPZVNLsKzz39Hy1NQ8xf+4CPLhfq/af79fyFF01PiK+Z8YarbUV HkBL9R0c3FiI1fO+x8LvvsKK2ZOxdyPpQUeKcf3SSfR0ttBvSbZzeO7ZbmoL 9nhfxQYG0FR7CyWntuH0wfV4QPpQrJt0c3qeJPPMgTC62xvRUkc6UdMdtLdW oavzIY1G0pV76L6j2q/uqrUSWujIPSsfpyN+CLZpif9VhonZSPq+WRPDIX41 R/tonfQhfgbtb3P98xv9XvFdI58xzZP3jrHNDl2DIfZXHYMivn8n6MPl3yIV V2D8t46hGbb2BarnEzlQx9Ok4mg8329nfDFMRxXtpd/zmrgqJoz1rLjsQ1fT A1prTQttvf9Zvr9WcpWwVoSW+mbBz2P5IPi+6dyMNZbXmJfaCUdfR60jyw/G x817muWrzuZWbNu0Hp9//AnpO9tRc6+GaFsjHlQ/xL79R/HOex9i+vSZpJs9 VPuI6TQNj54zSefq6+jC4QOH8fX3efhkch7+6+8f4i//+VesW1mA3vY2krHj qK+9j2+/n4y3Pp6IV958C3/+y6v49z+/gtdefQPbtu1AX1+/Hwsk823pWAPC ivjjnaHD9e36yYCvPKn9p+p5XeM7NcP42NP89Q7S/L6WpleWq+NP1HmTdjIQ q5TDZu/qmDsTF5V2r+Y+3Iz4Ph2Xo69tYhts4wMO+HtN3KF/70H/hB/Pk/If +75vx/htzf8UzlmGvVpyBVs2bUJHW5s8/2P5KVhWJTpWXXlfeChjzmCN+Qbv 40Gx8WlcE72JhMI4uHcf3n/3PSxdWoD6xi4MxJKiLxHk0dZtYUvxISxaRP+r bUQiHEVLbR0e3quS9xbpE5V3qrH/0Emcu/YAZXe7sfvAZbz77id45603UHX3 Fsl6Ydy4cQPFu3dj1+Hj2LjrEIq27MaCRcvw5lvv4+Ch42KjNvtd1sVWsUk8 POMfzYwHdoP+zFTckmviVCSWJD1+lOOmVCyRWjcTv6JiJm3la/djDRzlT9U8 I2li8bLgzI/HMXhzk35sn+dfx3z2UrFxEoepYlE9HUcTjCVxAu8VzoK00wzF p1wTH6PjIgx99Vw1UrGGEN2B37MMebWkhLC2EV3tHWrOs9C1IbTNUTpV1b1q oWtBHmpkOvb1JS1lj7AITHW1DzDpyy/xxuvv4to14nss29pqL9Bt0OdB4uNt OLDnKJofNKG3qRXFa9fg4I5t6OvqQLh/AOW3q3G/thURxiiNcG8Um4k+vv73 13G55AJCoRAe1reir98SmT8WT6KfdI27VVWYOWs2bt+uFFnJSw768+PaOl5F eLSt9r2nYr7dZFINHX/BPEPxSx3j6yqcyrNmoYdJE1cpa+75sSlmzzPvUvqS 4+tS6bG+ubGWNpKp9U3FLyMVP+3HU2rM+XFz0PQ4GENAWE8GfbEKq0kTX+co XuXzAJ/WD2qsadrrqBwCR+8xi3hv6eUrxM82o6e9S2h3ms02Qzfw7R9iE4jj 3p1Ksa+xjsDfJTTeWO6LRJWOx9/1E9/at2c//vCHf8OMGTPR2NAo+qPFtjPt G+djB8Jx9Pb0E43txOYNm/Gnl/+EN4j3bVy3Cc2NbXQNzVdFLiBaORDBpQsX 8enHX+B6aYWcg69tdDybrj0Q4mvvxdIlS0l26xD5TPkUdVym9nUrPpCKzwkO P0bYdn07g8haHFsaoC1OcN789eP1sn3sODouS/kwUzFwhm44xu+eEeuX1PhI 6twJL8sxil5pfdLEl/iYDNAdP8ZYx3c66bHywf0iMqC//5I69hQ+noxM5eei OJ5/fTdwXrYdXLlcgm1bi9HZ2Z0WK5CJNaObM9+NRmKIEF+7S3Ri8cIlaGpo UTZX3zbnia2FZUXGU29XJ+FlI17+1z9i+fICdJLcJT7lhLKxmXjHyECCeFxM 6NOxY8fx17++hlmz5uPa1TLCYEjbOFyxz/FxvT3d2L9/P+bNXYTa2jZlHxYb qtLHYrE4GkkeLFhRgFMnT6M/FJb7dJyUfG7p+zWvmTYeY7vwn037v31bl8lH yMSm0Q18vJm4UKUfmBwHE98RjNlNyXtBHKXidP14+kCcnM/fndQYkodgYu/9 uP1UPIZtB3QazRu9YKyxp2NNMnUT/9yez7NT8m0qzp3tMZcuXcSOHTvR1dWT NmfZ7GoGa0zbeK1vllUgb/5iNDe1+bZsM8SvKTTARm9nJ9auWoU//OvvsWrl avT09Ck9ntc6ru2EWhdj29oA0avr16/jnXfex7binQj1hX27nvEVRMIR1D2s w9o1RThMslkoFNf4dhAlvTtK+yhMx1y5XIoFCxbi/v0Haf6vTJqdzb6TibWg nTtTrhhObzcxn2mYDVwjm5ySSy/LdtyjZOxcsR+PpQeakSMmLhefD+rsjLV4 PI7z5y9g16496O7u9fGdbc6Dn2XeiMYw1hYuyBe6xuvo56JovcXYFPqJjxUX b8K//ellrFiej+7ODh3fqOVhpqdxpatKbBnx4/LyCnw48SMc2HeIcBWT8yjZ NCkxmwPEl08eO4PdO/dLvIOJExB7O8uB7H/p7SWsFmMN4TFENC04L8PFymSz ZWdiLPM3uc4ZPE8Qa0EcB79P49mB82d+ny2eJxtGOPcw1zkfhenM5848T7bz BXFn/Gh8XDQax5kz54iu7RJaE/xftucOXo9/y1hbmr9C6BrTO2MDMnYjT+eD RIiXnb94nnji/8a0qd+gsa5W2Vu1HVpsAGzjimtfK2GtrPQmPnj/Qxw5ckz8 TGzvHhTa7JBO0I3yshu4cvEa2pu7hA9Lzp/oknRdG+ITampswIoVy3DixGmh oZl0YLgY1mxrke19tt+Zec78/lFrl4mtbGufC1O5vs8Vs/io/WauF6Q12WTY bM8SpEvGnz4wEKV1OIXt23cKXVNxRKn9luseDF27QVhbsni50DU+n7GvybPo fCVXfDge6Yct+G7yVLz79ls4ffIIomxXtaOig7HtOU58LxIJkQzWJfzx2pUy vPnGGzh+9BDpIQNiX/OIFsbCvbhz6younT9JOGuSGHUrFiW6FyV8JURPEr8l YetmWRkKCwpRc78upZMZ+4CXnu/4KPowXAx08HfmvNl4y6N4bS7+9aicqEfl K+UaufaU+V8QC7kwlYm/IDaDchfzlcOHjwoP7SHZW8Xs2EPOn22Omf6UXrsp 8WtNja1pWJPf6PxiV3R90P+ThLHLeOetD/DNN1/g7r1ShAlvzMeZRjK/q753 E/du30Jvdx+ulJTi3TffwKG9OzHQS7Ikx4CEQ7h9g/Xm1XhQfQt9Pc0ky3XS 8e2kYzbTeaIqrpqw208y3k7aQ7t37iUeHh1iAzK61H9XfpD5f6583Vy/G46e BrGbnlee9PPyc2EreF/Zcu1y7Z8g/wvy90ftjWx0LUjf+vsHsG/fAezcuRvd XSGRsbJhLRO/gjWijVeJ9ixfthJtrV2Cl1Q8sYeUH8fEnTno6Q6TrH4D+UtW 4auvpmLu3LkkS63AOo6T2rAJJ0+VoKmpizCYQHXVQ0z6Ygo++vAL7Ny2B21N rbh07iI++fAz/PsfXsF7b32I99+ZiM8+/hxfT5qCs6dLRI91RW5LoLGhXuwx rMNGI5Zv+07p/EP38nDxy8PxxP8OrGV+n+3cQ7Hy+HkojzOCc2HkqWB8Sa7z 5uKtQfwwDz148DD27NlHdCWsff7uY+GZ/3/xwhXkkW5gsJbGd10Tg+Iqf7ul sMuxtG0dYZw6cxUbNxZjZWEBtm3bgrKycuLjCcKZJzEo/f0k450rxZrVxTh3 9grpE724WnINqwrXY8HcAuTNXYG5sxdj/tzFKFyxHg8ftIqOKvos0bXa2gek j2xHS3O7yjP06dpgmv3gcXjS46xlNqwNx+OyYTIX38y1Btn2yePwy0xsZaPh uWSDzPtKi8kYRhZgrO3dux/79x8UHiqxWDmwZn4TjGk7d/YSFi9aRljr9LHm z43Jt/X9P+octsQ7EeZsFUfIsWpse1VxZwmJ5+aYKYnZYptbf0JifhyJhXFU rK/EA9pEx+IY4N9wrKQd8LMQPeVYcPZ9ik7gDKbxzUfxxsehR4+zxplY+0ew 8TjyYVDG+UfOlXk/uXCYKUNlo/1G/h/uXgzWdu/ei0OHjhBdCw3RxXPpR0Kf NNYKVqxGZ0ePyGspWsvHmufztE1PP4en7OvqHlhnHBR6xHFYnEsTY3utrfBh B/ZvegzD0Lk2tkg3kI+eem4MoRWPGsHjMnXPx/lNtvXOXLfhzpFLR83Gr4Zb 48xzPkouyFznbDaW4LkNXoabG/6ebZ2MNbYr8PtM222u3/JxbJdgrC1bWkhY 6/Wv5z+fsSF7qZpYKh7BTattYOp7sN2MaZGJnzK6nIp/cxSdM/YzJxVP7fl1 YkwMj5eSyTLw9Sh+kms+s2F7OHqQ61rZ1nY4mpO57x+H9mTDnD+XWXjwcLL+ o/QBgwWJt8g6HzrWgNa8vz+MLVu2Cl1jnTTTbjsc1lkPPX+uhOSttaJXDMGm X7NAxQyb+gSCP/p9UjBCuEtqfwvTLI6Rtl0fhxInZ6UwLPF1aTRLz6upx6b9 yn7sgZvMeI6htMrURZIY7qxzrushBOSSFCZy87khn52hdvL0a6XOZ3DGuRfx gO9PzUnSj2+S+dHDcbOtdQp7ubAznN04m10tG9aM7DRkj8lzq/iE/r4QNqxb j2NHTwjWsslomTSdX/k41mFPnTqDoqL1aTZ5c1z6bwcfWd9E9nDcHlbOzCVv Dy+nGP+vyt1SfJnn15a1ZdnQ5I8Y/ixxPkKTIXExtrxPpmog+bWLNK7djOsG /OPpdsakisXXfthMTPv1IRIqp0bi0TnWwPZ0vBIk3mLQNjFuXAOE1prrf2Tg PBe2gv8P8rFs9CQXHoPYGLreg7puk94T9KwRkps7W9uwfvVanCSsRfojfu50 rvUNXpt1gZMnTmPDhk2Cu2wyzXC6VSZ9Eb4cS8/ZyzzncLLWo7DmaplPyYqp +piOXltHx/qYWjKeps0mHtf1a8UM+rUQTHxkMB7SYE3RHzdtWP7a6jhjHb+W qp3j+jFxvO8SMT0sJ1UfjG3a7KfT/j3bVbkpw2Erk2Zl8r9MrGViLpPGZfqU zHoZrNkmjlRyOxwMdPXgfsUdrFi8BKeOnhSsOVY6RoaTORgTp0+ewbbiHSLr DScXDifDBHm7ycPK5N+PknGGxZubijcwdeL4WszDJRZc/LKOzt9IyPukjs3x jP6sdZWUTc7USXJ9WdTUF3TS4iw9BGUWVSfJlvhornkjdW8chTnfJqljzq0Y 6fURjhGNK/9dGr1P8VK/LqadnR5lk72Ho3XB90HZ3fiaeGTGL6RjTeeAsQ8q Ss/JNoaeECquXse8aTMFazHSAdPjnbLrNHI/dB7ObTt25Dh279wjsWy56M1w WAvqZ+ZZjI6RqVvnkhcejTVdv0tjzQ6sFcfhcr6/m4jAioQQG+hDIhqR/Igk /W+Q5UrhV1y7i3musk+bXBSJq+UYW6mf68mw02ofqthUW9cVlJguS+XVmbqb fs03zXdV7JcjOUl2JExjQNevUXWVVEwlP4+OhSQZQOWVZtcbs+kPj8JaJk5N 7lbQ95SJ6SHyFtvuO3rQ3dqJzoZmVN2swMr8Zbh87pLkWJp9O5x9R/5HxzHW jhw6ir2790k8WxDXj0t3guc1NrvgHskm0z4Ka0O+N3GFQazp2pVc6ysS6sbF 00ewZP50zPzuC6xbtRi3r18Wv5gbkMmDMfRGXlP6hKJNRg9O1XhNpsVOShyK lsMkn9SXH01NSo0dpgdE0wb6ehDqakF/RyvioR5VW4ZpL8cGc307T/lBGGtJ tkdaQ2OUDG3K5m/M5JHDrU+Qdj3OPpfPfO1oAr2Et962TrQ3NKGocBVuXbsh ueKZNqBs6+hoeWKAeO6BfQexZ9dewZ3jx2HmxkImbQvix9J5vI+i9486fzas SeySX2cwqfM0SA/v7sbpY/vw+l/+gOfG/gueGf0j/Py5Efjy47dx/fIFonUx lSNsGVwYeU3VqfR0HUGfntgpO466TpBvKt2H7c7in3FSteFsLXtxnSw7FkVd dSUO7CnG4oUzsGD2d9hTvAEP7txCIhwSPi/01NHx5JLzqWINhvOTZ5PDhpPr svGU4WT5IXjTdJz5wiD7Q7t6sZqwdu1yqcQuujno0hC+RM/IcbkH9x8SuiY8 1E6312aTszLPnbl3Mu3P2eyUj4sx37bEvgJH6Qierg0udIloS8WNMnz43t/x 3PifYOzIf8a4UT/Cs+Ofxq9fehbzZ01FqKMDSY6ViiYkL9eTvB2mYSSHuLre oO34OXkyt2m80PPlPfF5SE6nE6ATOqaKz8k5itF+ND+swvwZk/GrX4zHhGd+ Ivf26xcnYPJnH+Jh5V2ieazDJSS/23bcIXQsG//MxNrj6BDZeNqj5OYhNNHo 4TTfPZ09WLGsAKXXrss658LaUFrhCV07dOAwjpMOy7GNkveQTOX3PIqmZQ5j pwnKAjmf4THmICivqbwC83+FgTjR4u1bN+OXLz2HcaN/jNEjf4BRT/P4IcaO +BH+4/e/wPnj+xDu4BqDzcTHmpHg3OdwG/22nfYajy4MEK2JhMO036I0YjIX HE8nNTb8YctrlOtLxHVuftzkqKoc6kQ0hq7WZhStWoZfvfQMxhDux4z7McaP fxLjRz+BX/x0PFYsykNHS5PUNGT9QTA7DH16FA3Lhc3MmkG5zpF1fcwwWNOv HB9ZsGIlyspuSl2Ax8GaXIMGx+zs33NA6uEkeN/byob/3421oO17OL0427Ob 51X5va6qWcvHMr8eiGD9mtX42fPPYPSYJ/HU0z/CE0/+Lzz15A9o/AjPPfcs vvhsElatWofNm7dh65Yd9LoVxVu2YkdxMeG0GLu278DePXuwb88+HD54lOj8 YZJhj8k4fvQUThw7hdMnz+LShRJcLbmKy+dLUHLuIkovXcbt0huoKi9X41Y5 7ly/jmP79uLDt18nfv40RhPWRtJ4esQPMWrUExg75ml8+uFE3C2vkBpfkk+v 84gdd6j8lSnDPw5Ny4a1zFjJrHgIzrkembIS5xisWFGI8vLbYsMJHpOLlhis cX253dt24TjNq+gVdkqnyqxXbbCSi/byyObDzcnDh7m/bJjm97Yvd3HeVpz0 7jC2b9mCX/z8JYwdNwajxo3CU6N/gidHPokRo8fgl7/7D0yetgJ5S/dgwZK9 mLNoG6ZMX4UZMwsx9buF+PabOZg5bT6NOZgyeRqmTZmJr76YjE8++lzyuj7/ dBLee+d9vPv2u/jwg4n48P338d5rr+OtV/4L7//tVXz29tuYRN99PXEiPn/n XXxCn//ypz/h589OwDNjRhCd/TFGjnwCo0bTPhjxBJ4a9RTeeecd3LpZrmqn 6PqSgo+AHpA5HqV//iP0LdvaBfe5zLvpOxPUSem3XJ+wkOjavXtVvu6XC7tp fJ8wZbB25vhpyQEN5pCl+wiGl9OyYe1R8kIaDcvYX5lY83sN6DwElq+saARd ba0oWr0Gv//9H/DMsz/F2Oeew6jnJuDpsRPwr398BTv3HkdXr41Qv0d6tie1 vbimUSRsSTyc1BRknih5ZXGVAxYYnH8YDkVoDMjo6+lHf08Yoe4wIr30HX0O dfWhr7NPakO2t3Xj9t0azJibh+d+/iuMHDsG48aOxAjC/lOjRuCZF36G2Qvy UN/Yourrcy12nfecqpM+1P+V1WaVQy7L5L/DHZNLVkuXtbTdj/YF1+pbmr9M cop5n/gxXX6d9lRtEanHp+UQ/szxZDuLd+Lc6bMkryZE/k2rye8mEayNPay9 zknP/chJq/26BikbaTJga3eMzdXsGS9V51jkb4417+8mGfsGDhLfW7FsHdYW bcG0WYvxn6++hV+8/Ae88c6H2Lp9Pxqau1SdzISnea/SJ9Q1UvU6UnU+UsMN 9Okwcy3x9boWm8m5d3T9GNFJ6Te9AxYullbgzYmf45nnf4ZnJowlzI3HUxOe x4Rf/BZfT52GivKbsKMDSCYsDIrsmVQ2PB2/H5TfFI+Bv+eDtCaXjDQcP8nk m5nHmXUMYkD8wPT8zY3NNN8rUHv/gR9j5um+BbaWX335lmtG0VxEwwnJCe5o 68LWzcU4d+YsfY6n9UTLtXey8b8grcqk10N+b3Q8/7PCWrDfRyoGJOn3seCc ayvWR7SkHXfLrqJwyVwsW7Qcdyrq0RuypIbdlu2H8PnX3+HkqfPoItoj9cF0 LbLgPs1Flx9Fh9U6eAF5NlD3z1F4S9D3Pf1x7Dl4En999XW8+OJLeP6l3+Ll V97Ah19Nxxd0f0UkY7bUVkkN6KQdl5gY6bdgp2Mg9V77Zz1v2LXJ9lyPK7Nk 8r80rLlqPRhry5csRUPtw1Q8o6NtNVwjTNfN49co4WwgFKdXVQevtbkDG9Zt xMXzFyTf2AvQnH8Ea8H7eSTWArpl6reezv3XPl9P+yJpXQfZhm8laJ+EUXXj IlYtW4L585eh5Npt9IdtTWuUjbWmph4bN27Fw7rmQByvtvc/4t6HW6/MfW/u ObOWgq3z6C3JO/NQdqsS35EMuHHzDrR3hNBP/Lu2oR2bi/fg+8nfoeTkQdKR W+j54soHb+onWbay86TVdwjul1SczKN4oG+X/Qfw5v8ueAw9d3NjE/LzFqL+ Qa3v+xP6kkjp66qugaPqH0dtH39c82DNqrU4e/qc0DXHzi4vPdY+0XR2uNxc 83s/vtrT/SdMXJz2Q3q+r5vOEwmjo+EBDu/ZgYULFmPX7gO4XfkA/RGu6zYo fmtH275aG5pxeO9BNNa3iA7h56W76b6Uxxk5973fv0XbvW3TU8v44FP9P+7Q fc6dv5j28kWxpUjtiHgSnZ39OHXiLNHlfGwpWoO2xoe0l6LwuNcJ10fwa0S6 ureWwVpqb/pz9Yj7f9z/ZztevjM8m9a28WE9li3OV1jTvMjnZfEU1hS+iLZF bP9zS1M70fN1uEBzwbFs2WTK4e4jTX63lf8skSXGIztdS/q98Ww9pAYAzy/7 ceIxREN9eFBZhV1bizFzygwcOHQerUQf4uxXZL6qe/IoOm6jtb4eB7bvQkOd qkOXTRcZDkePxVd1by6z16Uelx7B2FGOObpzt1Jyf25cLxWflepDlxT5bIB4 zNVrd5E3bzE2FRXhfkU5Er3dcOm5uT6plST6mDRr7QnNT/o2Alf3rXz0nsnM m8jFN7Ppur5NgmOp4jYekpy2pnAlWhoa/f6Lvpwes3RtW4UtpXtZQtsYg4y1 TRs248rla1n9sMPRtMz1kfp3cVvXn0nXRXPLeCkfpWBNaBT3MyIds7kBl06c wJzZeVi5bgfK7zZJ3oId03U+7UDNIfEhxGkO6mndNkjNJb6+0Wuy2WCy7YVH 0QT1nIO6NozWGf16t6YXm6I7TONu3SjDvNkzce9epYpTlphDS/eM45wNoLk1 hA1FmzF78jc4e3AP+jvbxKcgMQAe1/ZXMaoS8yayuKOxNtRm+bg0esgz5cTa IEy9X17bmspqFC5bjvbmFsl180TG1DYbS9VH4HrYqqaxwllc81bmNSyvXbt6 fYhd7FF0aQgtcDRdi1m+D8escza6keoXytdU9QuteJTw1IU7N65h0fw8LFu6 Cpcv30RjSx96w670B5G6XWybYhtNQumvIq/bvHcasW7tKtIXbgveM2vtPQpr 2f5n7tm3RTgm/ihdlgnKn/zK8W0XL1zE9CnTiOfUy140cczKv0/HkEzG/Sa6 u/pQdrUUSxYvJR6Vh9p7NyQWifdRQu4FsieTft6HC1Xzbeh95pLXhtv3uedo 0N9bvLZBrAkdD2AtaM+TmJKYrhUssQqO8JpVhatx9co18Zk/in/kwpuj7RVW XNWGDcZrBm1GQf7s+HGItuKZsX50NNbg/OmTWLxwEVasXIey2zXoCyWkx0eE c65iSt7k+uJuxJV69K6ui8UyUnNLM9auWYmbRE/isVSd6Uw+ms1/Npw+FLxv U3/RCdSdDMaRm+eMRmM4cfwUvife39rQovypUisoKbIC062k1JBTNpgBeq7r t6qRt3ApCpbmo6q8jGSILqIfcc2ztV5iKztUNt6TSzcYjt4FaVvaszqeH18s g9a28s49hbWWVu1jGhxiD/Q/S85JUtdlYbrWJLrBtSulQvceV77JpL2Ghiqe nVA6fADrQaylr50rdZatcAhN1eXYuDIfU76dit37T6C1O4IQ21L7CWdsoxmI K/7PdeS5lj3XCoyrvhtOQsUzNTU3Y9WqVbh69ZpfmyTTjh58De6FXPknQ3Bq pUaw/lvmeblO08EDhzFrxhy0NDZLb0Hb1KmWPiAWTB1e7m/DtRtjiSRq6jux bNUmzJvxPS6fOopod4fqcWVrW7an6sEH9dBc8kCuz9kwmfZ7Y8fQdIn5IMcB 3blVQftgmeKhmp/k9NXabqqPhK4BznTtZtktifMI5grk8p0N5YWGt3t+TXU7 YMvNtl+M3ZZrTve0NOBA8XrM/HYK9u4+hLq6ZvQTxrieJPcxCPfHha6xTTBG 8hrXs48QnqO6v4bxiXO/veYmptNrpBcKx7SrGGFVY17khrgaYndM2H6vApZx JW5W9xCxgiNhp2I7uHaxrpEYi6o6ctLDRvfosEzdXFoD9jPs3rETC+bNQ1tb m9TUl5jwQKyio/e+JT1sdE8B+tzVE8eps6WYOT0PC2fOxoOKq4iHu5W+5xis D+b0sWfjKbloSDbM+fXx9bzxs3Kcxs3rZVi7chU62ztUnfEc/DeFNcfndbU1 dVi9cq3f28DKwFouvGXl9U5Sy4bWEPtakPapmuJ0/f5ePLx3G/t3bCfdfxEO HTyGrq6IzDnzDOk9JP1dLOlVwLQtwvyUcCiD+1VJrKnKb+AYjdamVqwuXIvj x076WFO1r4M9CYx+bvnPbCccf5jvzUhIPw3LP45jFGKE99hAQuVga9ulsZnL eej8/b1ci2QHCgsK0NHeKT4wji+0pFa14/dWUn0hVM1yS9egj0Y9tHc7uHDp DubNXUzzswCXzp9AT3erqrMTVbU8La33J0z/k4SpRW+G68vsj6IhaTKXqTcV VfnlzE84ToNjD1YVrPSx9ijZ3qc/NGdcj3llAcvSd+W7oM8gVxxKNswF+ZDC msoBNbGX/vOxrULiaHtxt/QyNq0qxJqVa3DvfhPCEUdwZuseO6pWv6IjTL8Z X/0h7n0WI/pmSc8WmWOu0W+r2PP2li4UrSwSOYnrGEosuviXPN3zKql7FClM BTFm6FHwc3AEsZgY4J4ztt8bydK8RvWb9sQu3tPVjeItxVhPuhf7SmPSx8aV YUVd1dstavDFvoOY1ITlmincDyQaBfrCHioqG7FgcSG+/OIzXDpzHKGOdrp+ 1Ke7HIOQiCV8fElNeW13sHWfDKGnGXXjMmPA02pBatodDfiGQ7R3Lp67hILl hYS1zrT+k9kwm4ZfOmdtzQPxb90hmS8tTlofY+SXTMwJxhxV23fQU7Yt1gO5 Jlac7pFlK+knFTe9kG3xMcVJ1i2/ehZ5c7+XXjHl5ZUk1zgiq1im1rmub25y 31UPPlv3/klIDQex3UStlO/QVT2T+2g+tm/biZMnTxOfVfkTikcqe6jMh98T 2cj46Xs6V5yY2VPS80X3MHfFFqD7wDi6hqquD9bR0YaVhYXYXrwTvV1hmgtF q4WXJ0xOjfJv+b2d9T062pZr+h2GB1xUVFRj+vRZmDdnHm7c4Fo6Cm+O7okh NaIl7pKezwK8ON1vdFB6IylceX7Pmrj2h2eTqYVH6P5KsUiKtnGdqNOnz0n9 2o72Hn3O9BjPdPk2Vd+Aa91W3asknK5ApY4RcU1d+wDWM3UM305rK7nW03ZU 7kMT6e5CVek5XDixHVcvHkB7YyXJGaRLxfvR196IUwcOYtHcBVi9pgg3blWS XMZ9y4K9to0u72jfuO7bE1dymfjamMcl1LB0zL+jexdzv82d27bi2OGDhMt+ 5XdwTKy2lzq3nxflPRbWzHeWphu2lvFcO5ULavaI4lk2WklXW7p4KQ7uPYhw 34CqiePrEkmFMb93h14n21zL2A49VWOdcBMOO7h58x4KiIfNmzcXF8+cxkBX l/RXMbV/LW1rVPKjI/TV0f58xzG2IWUDyPasZn2ZDqZjLUH7eEDqLfpYS6Sw lpUve4Pax6v631XevSdYq6qs1rTE1PLPHbeX6rXh+XI1Y62vsx2nD+3F52/9 G/76H+PxxqvPY1neF7hx9RQqK27gyL7dmPP9XJL/j6O5rV96xyUMxhKq3pa/ VwKYCOo0Ri+ytC9M2XA9ldeUSKC/qxPbN63D7i1rEelpo3uzZL24f2k0oXrR qH7atvKDudnp/3D6q897xC+m9VFL8/xEUnIbuB9UM+k4yxbm4+RR0iX7w2L7 VP17UrZFx0nJPMbP58cWuY7uVaTmyegOjQ0tomt/P+Vb6Q/d00Y8leP3dV1j lb/IsXEhulY/uP8K11vPxMNwz8o4Yqyx7TxM9GwgHEVvTxhHj56QWEnGmpKV rJy2CkWftU2EMMNYW046bFVVCmvB+vZBupgtvtPcG/ct2LN7B377u5cwftzT GDv2xxgz+n9i/Nh/xq9eHI83//4uVq3eRTpmj9B0V8eiiQ6QMPWLUv0w/GH6 AzimP6Kt46M8FRclfSBpbllmCYdRXV6GuVMnYeqX7+Ne2SUM9HYqW4Ore2tJ LLnpZ+D6tf2H030y9aC0fad1UJWX4olt2WHeHY2hnuZ06YL5uHT2hPSy53qZ Ko5mqL0+de6k75MI5sJyvJFj+uVxLwDin5ev3sCM2XlYviQP9ytuIs49k6MD sAb6EOmsR28T9xl/SDjv0725cvtIMn3YxpfOMjHXOWYdtLc7LLUV1qxZJzTO 3GNOnVEPnl+bcHn75i2xm1YxD7WHYi3bHsiMTebXttZ2kr9m4GfPj8OEZ0Zj 7LgRGD36SUwYMwo/HTdOer/X1HZKnIP0hbPTc2GV3V3b29xAnnlAx031hVNx HdIjQfpBWgh39+Lq+dP48sO38esXxuPnz4/Eh+/+DTu3rkeou03soco/4aX6 8mi9xcuyx3PZrVI2SkVbxXYkMY+O6m9DAn1/dzsqb5WiYPFcvPXaf2Lz+kL0 dDRJvp4n+S+ermedxU7ux28YrLli95WaElp+VX0hSM8lvbyyuhEbNmzBzO+n 4OzRPehruIeyUwew+LsvMfn9N/H9xxOxa2MR2hoe0G9iMH02fLkwQKuD62Hp 2u4Ga6ybhQhfR48cx7q163NiLdOWwnuHZWXG2p1b5ViavwT3q2r085t6jbnt hOa9sW0wrXlQU4uPPvgA48aMwPjxozB67AiMGj0CY0ePxXPjn8O61etIX+/V +b+2zsdM8SXlPwzmZ6p5NjVhDNbYx6Z6NCo6yPMRCUVQdecOvvzkAzw77kmM G/0vGDHiB3TtH+OV//gdzp84gBjpJJ4VV73QeB97g34f8sf1Y6XkNde35ap4 O2WPdi3iNb0dJCvuxIfv/Q0v/WwUnpvwJP78p19i49oCNNRWSy5fCmtZ8maz Yc1VcUpMC4RGGB6s+1Q+eNhOPGMdvv36c8z97mO8+8rLeHHUU3hh3Hg8N2Y0 /vTbl7B5dT46Whs1z8ueUx+kHYmE6lcpvYljygbJvPTo4ePi0wz1RXysZcq5 qfdGvlC9gO9V3MaqFQWoe1Cn+JiWXdP6K2Sx9QVtHDzq6xvxxZdfYvyz4zCK 4+zHjcLIMU9hzJgnCXOjULx1G8K9vaoHp616Omb6E3yakzZU3RcVZ+DK/kpo m5nqK++gq7MT27Zuxc9f/CnGMdbG/xhPj/wBRo78Ea31CHz12QdoeFApMWLS P8pTfkg745ly2dOHyK4JYzsx+HBFPooRnyy9fB5/feUPJEP8C0aO+meMGvnP hPkf4ZcvPSt+zs5W7dvRtUSGyEsBv76iP0ZHTfq6g3+M1s14//aGEtLj63cv /5qu/ROMoGcfQXM/kuSZCTQHf/7jL3HuzEnEuFejMzQGx9gchvQzjivbGNt6 BvpjOH70JM31Nnof1efIXrNJPYvSQ1RedkLo2uqCQtTX1ml+kJIXstlOhtqG VZ9qrqe1et0G/PRXvyCcjcHoUU9gHI3xY0bixZ8+j0P790qNedUXLunnRPr3 p3l7Zp84x03FTVpaN1J2SdePyW5qasXi/Hy88OJzGDOe8E14Gzv2CcHdWOLj f3/tL7h7u0LTzaSKYXJVbFiq9lt2epZtX7F9zfQXso3eQvSip6MD+Yvy8Owz YwjnP6G99hOMGcv38iSemTAa773zFt3HHWXXC8i76XhP2WCy+SnVUDj1pCet 0jMHSLa6WX4Hr/zvv9L+HomxE0Zh1Hhah7GjMeqpHxN9G4H169ZKXUjGcDad O2hfM2ujdP+4zH0/0TLOLdu1Y5fwVbU3s+tQ/pw6yt6YIBm27Oo18aUyXUvo XO5gbGGu/Z6SZdU+Y/tL6c07+OirbzH++RfoeSfgZz/9Nf7jlbfx5nufYuas OaKPtTc1EO/m2huerzMbm15KTza9tgI+be1DUn2sgrJFEu0dPVi5ag1eeImu +wznUo0gmkI4HzcSE2i+J34wEdUkI0j/GSOruSma4Ti5/Z9ZZVTOi3RSPnxL 623tze2Y8f10jBk1GqNHjiL6OhYjRxP2SZ4YP2EMXnv1VZSVlQndGMo7jfyW kqVcn/Zlw1tS59grvZZzNe/dvYu//udfMXbMGLrmKNp3xGNGj8Top58mrI0X OStM+qTQBx37ky6jOUPxF3d9usY8lHMaObeR6Zpral4EsDqkHpujbC+85oy1 5SSvPax5KHarzLpKw9E1gzWW71iGCZF+fOZCKf78t3fwxntfY9q8dTh44R6u 3+9E0aY9+OKTz7FpbSE6Gx/Apf3lWKaHbPoeV1jLnNek71tT9Q6UbMO2J661 e+z4afz2X/+A0RPGY8yEsRgxiuZ49BiSHSdg3uw5aG9pF7+Rk0brlYxoWdl7 QOSk5Zbt1w328w7ofno6upG/YBHGE9bGjiKsjR2Dp0c8hdEkM41/ZgLefudd VBBd4zk2+96nBSYPye9NGrDFpeVgJ/3r+v0+WW4luvGw5j7efP0N2l/j6LnH Eu+cQBgfj1GjxuDnL/wGBw8ck7ww5ltx3T88yD8z64WoZ1Xzzs/HfhuW1w4f PCS5ZSpXID3GIpvsZrB2/coV4aFNDY3i5zA99lJ9gTNtwemyctC2z9dnnXju wqWoetCEnl6SldkPE0uitzdB+kcTVq/diMnfTMLhvdtIP+xQtcXt1DOnr63p w6X2h5En0uyPcm0PHR29WLd+M37zu9/jZ5wrN+EFPP/ir/Hy7/6Ibz7+HNWk b9ts4xJZz/P7dPt2siy0LBvuRD5JKFnZ1IJkrHLMbX9nF7Zv2IiXnnsWz4wj vBFtGUl0ZdS4cXjpV79GAdHeru4+XU8k5S8wWHN13T9fRwzIzlnXgX/H+KDn aqy8J/n0L//+j3jmhRckd3HM+GeJtj5D9P7XtCbL0NDYJr4m1es+6ct9xpYU rF/r27t03BqPSF8URw4eIZntmNTmMLpBJi1Mk9+0DucQr79y4YLoBm1NLbo3 o/JlmH0f1I0z8St82TVxdC662ruweeNm7DtwBL3c54zt+pzDwLpzxEVfn4Xq mmZs2LQVefPnYs+2rSSzV5O8H/J5W1J4ddKXi809SH4S2xfZV278Zk7KFhAO kdx67DTe/+gzfD19HqYvXI61m3dhz76jWLqwAKuXFOLe9TJdt8Xy+7ObXsa+ 3B3El7++Aaz5eo3x3XnSbybU2YbLZ05j9vTZeO2NiXj531/DmJ/+Bk9O+Bme euan+PybKbhRfpf2XlzZksX2Yeq26XuwB2H6J/o81eDNTfFsZXehc8QiGOho wcWjR7A6fxny5i1E0ZadWLZ+Kz74egb+9F/v4qXf/AlfT5mBa7fuoq8/IjEM ptYS8yPed+KTSQRrBQ76dQ5Nj3nBGvFQrjN0/OhxhTVtP8iM1Rgii0qfMguX z13AGrYDN7cR9hylX2Wx/fg6ol5fO/NcdP8192tRWLAGd+9Ui21C6TE6biHi SFzQQNhGe2cYFy9ew5RvvsbqFUtRfe82IlyjTOvjwWF4BdvNOVYyTHIC5+C4 tvE/qviI3s4+bNpYjHVbd+FeYyc6iN738fFRD7W17Vi1fB1WLF6K+/cq6F6I ttiqloaxWRjZz7FTMmLKJmPioJR92dbXlJgCkjvYV1Fy+iRmfj8VS5aswYXS Guw6cQOT89bj759Nxa/+/BesJprb2dUnMpJDz5m0uIaNpbDmKp1AYS0w7/q6 ji8X6TioRAzxgX501D/A0V3bMPXLr1C0ahPuP2hDx4CNFprj8rpe7DpyFR9+ OR3bdu9DTygsPj1fPtYYlnihIXWlBv16dypmSq1jqLef9ILdUq+PseY6Jv44 N9YUbXQlbr/k7HnBWldrBzyjy2fu70zanWEn4HOxrnLm9HmsW7cZPd39Pi3w fJqqexmwb4143kDURTsdd+DQCXz79WRsKliEuqpyevYB4StekJ5q+Vdq4up+ pbwvuK8V15xNDAzg0qVzmM/9dhvaJKYtyrRU5wzzb0M0/0eOn8f3U6fhxIHd GOhqpXPFhGcpmTYhGBKs2aqOmthGHNVDxHUs7TujNeJeupwjRLT7QcUtLJ4/ D99Pm43SsiqE++KiZ0bpnKFEEm29MVy4VCr+y/vVVcpWZSscs+/SYtnAUXk9 qo87vwcsou1xn3YrXxXnUNuRCMm7VTi6dwsmf/011m/ai9qGHokH4RzBGNsb uVd61EEfXfvw4WNYuGghmpub9DOmsGb88Jm80/jKVH9OE0vCcSu92MFxDcdP qZpWWXjmEHlPy7csr10+fx4bVq9Fb3u31N/1c+VzYM3QszQ7AfuoaN/s3XsA R46elBgMH2uesYEaW7sn8hXPRT/RuY7OEEpKSrF08RIsmjcbt65dQKyvnWhu VHrseZan6ziS/h1ReTomBk7yl2n+uf4c+0CPHzoqvFTkXra3xlWdV6mZRqO9 qx/HTlwkXWEB9u/Yivb6+1KnQfXktTX9Mvmkxh+m6uIKPeN74GcgvER7u3Hn egmWLVxA+t0G3LhZSbqRrf1Vtu8fiNA9tzS1YemyfBzcv0/szuKXYxsO8x9n MANr+n9p8o8jNuBoTxtKz5/EymVLiH+sxPFTl1DbHMJAYhDRRFJoptSiYVmI 5Mc40Z5bN25h5oyZqKysFJlG5funYy2oK6XZG8TO5Pixe1yPY+f2XTh/9oKq RZJDxg1izdb+QCsaxblTp7BxbRH6OntUPHzg+Xxd3E3Rdl9GcgP6OR3b2tyC LZuLSaev0PcfxGtAR7FUfwOOBxrgOFuiDxyDW1FZh6VLV2DhnBk4d2w/2upr EQsPEJaU39Lh5+WYA/EZaPnFUrG4F89exOplBWisqRMcJCSekf1FluTA8H62 nJjwkC7a6ydOXsb0qTOwu3gTmmqrJfbQ2B1N/2qVg6f82EqW0fc8EEFrSyMu nTuBpfnzsHbdBjysa6H/uf6zyXrSb5K0/lzrLUq06PCRY1izerXkuim9grCs 7bGOyZUx/MYyuVme1GGN9YfQdP8+Th3ag7kzpmHlyo2ouNeA3gE6N/urxF5h iwzCuoLUl+P9wXaYlk4syltCdP+SxCCZGD1TG1PFpxjZWNf7D+SeWdqeyKO7 s1tqJFw8f0ls6sPlm6fJ9hb7HyI4c+IENhatQ39Pr6pxHLC1BPunSL+xIfZ0 lcvJfK2M5O6d23ejTWJNlIxh+mME/W+p+wjE7DvK3sP9Xi5fvUn8Jh9zpk3D 7dLLCPV00p6OiX9dakNwnoHJd6a91tHaghXLVuL0qWtEQwK+SYkJ13l9LMtb CeWzoOeOEl29Xv4A8xcWYsn8WXhwu4xowIDk1tvsW9A5XY72Ebh6TbjGaz3p MssWL8S3U6fj1KXrRJuNXuf6tFzlrwxKXRhT/7ahqUPq+pecPyO01PVt6qma GCKbWCan2RVfb39bM07v24k5U2di2bK1uFNN+n3IIvlA5RF5XBOYbShyHnW/ fi9ymguWj48eOYE9u7cTXerxYz5VLLzOPXGTGXJyCmsmjkdsOl2MtS24fKlE sGYHbPHD5S7IfqVnPnvyBLZu3CQ9EhxNy5T8Ygk9MH3tgjaeFJ1V9xYO9WN7 8XYcOngUPT1hP+bH2E48L4W3oF3J+L/ZR8f8nOMK+vtJV61qxM6d+zFj5gw6 7ya0NdaLTJaIKB+w9LTleSRd/8TxoyQjbkRjcy8iCVVLgWUBpilc44vjw5UN T8t9jtK32G99v7oBG9dvQv6Cuai4dpmu0S98xtU1IiUvjNaC5csoPePNqyXE v5Zh9aoNuFlRg55+S2gsxz2q51P705ZcvEFdQ16tZzhs4eyZ81i7sgC9bS0S 66dif5XcyXPDOS8SY8c9WHvacf3CKRQsWYgVKwpw/uJVNDR3Ijxg6zqDtsrP ZLoiPgxtO9Q908UOw/baiIfSq9eJpnLPznqxa6nYdhW37udUZ+DMrJHsaR2L 3NXRLXaGq5evyGcTbx2kbUH/oonx4P3EdO344UMo3rSZdIw+v7eK+n2Aj2ep HSGYcRROuMbDksX5RNtuiv3Gr3fsYz7dfpLCvSM+eLGnir7DdmqOz3bR0R3F jj2HCW+zsHbtatwsvYLO5nqJA2MbJMf8192vxOIF86QWSZhjgW1dD1fyVlRM iOS9xD3N2zzNa+KiF8QJi/VN3di4aRtWL1+OG1cuie3CjkcFczwfHF/d1d6J S6dPI3/uPGzZQHy3uYvOreIRpQeNrjOv6s/zs0HjzZNXLwGJOWpsaMby5Utx 41qJ1I1ztC7G8VCeHSNaFSF5rge1dypwZM8ukiunomj9RlTWtqCXn0/nzUn8 p+ArSAO031TbMUzcFN9jTfVDLF+6FBU3b9FejYpcbycCvu9sWNO1KfwcBhqd 7V3YsmmLYDehfR9DYuKCWNO0UWFtAIdJXmWshfv6YWp5ZNp+DS3LxJriMTau XyuVGLiW5jbdK28wTb8wvDTdPsr6rIr3kFhoE5vFNCuu9lxfKI57NE+z8xbh y88+w6Ed29BN6871GPuJtx7bv4N06KXo6exUuA3Efql+QIOCW+a9McmPthWP slSMX4zuPxofREdXFMeOncbM777B6cN7SE+qlzgwlse7mxpxcHsxvp00GWfP lqCLZBb2X9uaFrtGb2A6qNfK0zUUjD+XY7S4NkKYZL2TZ05j44Y1JN82Sxxf IpIkGkx8O9qL/t52XDl7FNMnf41p0+fiekU1QhyDxfRacgkU3/VjPHU/Godz 4JO09p6dFhPmartzd0ev5NWfOHycrhFS/C/hpey5PlYDdjEtO5mcYsZ4e2sH YW2r5NzFHxNryubBWIvi6MFD2Fm8TbAmeRCmRlkW23nwuxQPZz14h9R35jwb yQey0+2+uWqxSYyzredQ6rTbIldJXRFdd6if9IH6li4cO3kRU6fMxuI5M1Fx +TRKLx5DHumtl0uuSn6S6Z/h6F4qLC+zfhcnrHHuA+sJjq5/auzAxnbH9f9C fSwrXsesWdMJv3mov30JN84eQd70aVi/ZiPu3rlPemZUchjihEOxjREtljrx mg8orDlS+yUVe2f6wXBssIOah3Wik54jzEV6iUaT3hzu7sSNyxewYNZc5C8q wJlzpagj2hkm+ZPj4+U8lqd7NCgdgnuUS98XiaNmO6Qle1f1OVK9GJQNgHu0 D4jMtnJ5IekKLZJP72g6n76uwRxi45Nxhd8yz2xpahWZo/xWhd+PMdNmkY41 43twhT4c3n9AsNbPdM3ykOo1PDQ3PN0+p+h5TfUDrF65BvfuVKZy3zLya9Iw 66Rshaa/o1/nXuuAfr96Oh/rd2Ha2x2dCZy/VIF5M+dg5rdf4fMP38H8efPQ 0NgieqLYVrW/KSgDSFxhRMVhqTrKmu6Z2EDb1bHBHnpDYZw9dxrffPkRvpz4 Go03sX7lKtyvqiPZgM7BNum4ui+mv2LTtwZ9GcnoSp7nKBnV1ELQ9jE+huOo N5F8XLRyBVpqK1F1qxS7d+yQXsEFy4twq6KWaJmHuM4zFH3YcXRPIW3/MfGF Gmue0CTVN0bJK4OKj4vcRnuDZIKbN28jf+Ei3L93l2h2TMmJGbJZKtZY5YOa XL1oRMl39Q8bpM7Q7Yo7Aaylx2O5GVizdbx1NBzBgT17FV0LDQSwBgTzPXyM +DVrdJwIyRnnzpwD581zbcu03LcMfKZ8PMlAPCb8WIFUjwxTw80V+4bFemeE Y9+TJM87qK5uxIIFy/Db3/1RYkce1D4gWhORtVf9/fQekV5Bis5zXckBnYel co9VzW6VJ6FkX8khJnrV3lSHxQvzMOHZ5/DXv72GilvlJCP2Kt0lru4pHh2E qSuZqkPpwe91pX1svr7AejDLf3SP0f44Ss6VYMqkT1FUOA/TvvsUn3/xFY6d uoLWjjCiMbVvJCfF1D8ytiiRt5PCOyX/y8TDyHeetlnonCBtk2YcMi7aiDcs y19KuuBJkXlFhw3ymEAcSwpjFsL9MfHXc/4a0xXOW+f8ToU1vZa2WWsTN6Dt R9qOrvxbEezfvQ/79uyXePJg7TVfD3FMDK2q7arqICl5L9TXg3VFayXOhO9H aovp3N3Mc6XrrwaDKRtiylYcsIXowTZZhzHXn0BzQzuWFRbh829n4rtZ+fjk s29w8sgRhNqa4YT7Jb9FZCjHUvkKYscalD53UeOLkVi0uOJ7zHMTnGvaj8qy EuTNnI0F8wpw4NhlLFqxAdOmTcX1S0cRC3UqG1+Me0C7osMov3gg347jObU8 oOKUHMmtkfoIXHeV6ElPVxcunDmFD95+E//273/Etp27Sb/sQB/n88fstDU3 sfH+HGbanExMf9AGZfQwoQ2Dvj+TY8+2F++S3gQs47Mcp+qnpfI5VP63qUHq ivxhagZzvl51VS2WL1uJivJ7fv0K/m0q9y8g8xm/vqbFjK9d23ZJzxbTYy9Y Q0XOI1hTMTwe+25sz1+fhvqHxD9X4taNCr+PieGjbjb+mUGvlb04i77spPLU /Wcn+T5B8tKNsptYmL8Mpy5cwY17D7F111HMnbsEW4s24OGdm0iEuiTXWXRb vo+E1hd1XrzQtpiKy5IYcsIB57+UlpwjerYYmzdsQ9XdOtJLXNTWtWHT1m3I Wzgfp48dwADJVfFwQu7FjvE5dd6yxCVZKn+R5zih/Zi61wvXXkqEu9HeUIND +3Zj9pwFmPjxJPz9rY9w/uJ19JGsyDSEeXOafJ7FRvqokV5vzJNnlzj5MPdT PIs5s+dL/jmvn4pbdQN+qUE/Z0jVhHR8+saYq7xXI/2z7929n5Y3LDmMmb5Q jTPhybRHe7v7pPYa+7j6SVax/frEKTpj+XpiUtsmlW2O1+1ySQn9fiPxz1Yl G8TdVL54QD/IlPmy+c4ysSix7n4tBFXXgHOtd+3eiZ20Nzq7QojQ2nCN72Mn rmHKt7OxlHjf/ds30N/ZQXMVEZ7q0m+9AeIZhKeBzlYM9PQIXmzOsSd9jOuI nz95BPkL5mDzjkNoauuTuWPfGNtLGoj3bNh+AN9Pn44Lp0+go6kZsf5+seE5 fH/cPy/GsnZE6FeSbV5Sy0b1gYnRfYR62nH/znVsKSrE999+i227j6GkrAYL Fq3CgX3H0NnRL+tpaazlwlFOGTgH1gwOJPeOsHanolLq2FwhfYrlH8abq/2j hg76WIuleKl5ZaxxT+PqqgdpPlRZp4zcuuDgvRgh/WQ7yWoH9u0XXUXoV4a+ qvoTaqyxL8BR/bk62tqJd68SG3IsFvfjikwtllxYy7QpZ62tFRyW0tsHwn0o vVaCefMWoKqmUer5iOxnKZ9ee08E+w6dJ7n+W6zNX4jG6kpEQz0Idzaj6tJh 7Fk5G+vzvsGFA5vQVn8P4a5WVJddw5I5c7B6xUqJUZGau6y7Gp+No+x1/dEk rt+uxbQZs7FyyUI01JBsHOpFtC+EEJ2/re4uOhrv0ec2ki37xaaSiJF+2dOF m5fOYPWiuUR7F+PIqctoIpksTLypj/TPipt3sJJ50q07fn7YcPjJNnLV+TN+ QbNXmQ50d/aheOsObN++U+zvjm+vcXUNClP/SutlkVStPn5lrBWSvFZdXZMW eyv1SHJgTXpu2Ryf0y9YO0i6aCQDa6ncd3MfnvalKX/svTt3ST9fgrraOvEv mDzPTKxlYmu4EbSTuD7OHJFzWpvZxr8WO3bskxjMhNb/XHkWkoVYx+uO4/LF GyhYWoDZU2dg27o1WJU/E39/5Tf45U+fwovPPoH/+reXMGvKx1iWNwtzps/A lvWbiafUSy0kFRdn8kg9icGwpYZCEn2kl5RcvSG22KV5s3Ht/GFcPLUbeTM+ x2fv/RVfffQ6XW8pmmvKEO2pQ21lGbauL8KSBYuxc/NO3L3zgM7BNj3lZ2C/ DPODNauKpE+M9DgMrF82Gpbtf7nm0cRjCw60zZixc/zYKSwkWaGro9Ona0YX M/kbxh+r6jopWYZ/e+d2FT1/ISorq326pnR6Ly3W0udbjutjjX0F27YWqzjL gYii395gWnyaug9d1yOhYik51vzEMZUn2NsdgokDtjQ2MmNFsmEu1/z5Pg9t U2GfCvvPSi5cxOK8xSQr1Eqsr9SFEh7P+lBC4jmYd7GMUf2gBfNmL8a/v/xb /OyZJzBi9A/x5Mgf44mnfij9eiaM/SF+95sXsbxgDRobO+Q3qmeB1uFd5V+y tX4mvYsTg+L7rKiqxqxp3+Njwtff/vMlPDvmf2HMk/8TY+jcL//yWeTN5pjj 9ViePxd5c/NQUlKOju648GPPDsTREE3h3sAsQxWI3astFe9rpeSLbPFgQXtr Zjyseg3m4rh+bC/TpnKiodOnz5TaGoaPij8rE+e24qWm3h3HI969U4W1tOa1 RF98m0cA1+KnSQTlIsUXGWt9GmtnT58RrHHcoR+vqnPgTeyZ5EHEVb2gutpG 2o+rce7MBbmHtJoOpqZPDp9sNjpm7i0YV2Bp2ZWvyTEka1auJT1mn8QMSc0B 7r/MPnI3oWJ4uE4Kx9VwDgbNUX19K777bjLGjCWMPfE/MPKpf8HTTxDWnv6h 5PO9N/Ft3Ci/TToR16vQOTp+3j/7l1zYOnZW4tCZHnEcXCSOspu38cZbb+Dp UZyH+kOMevoJPP2TH+Opp36EEaN+glf++jfs238C7W29iHHOm63yqk0vAE/L RgnSLxroPlcWrMSZEyfVfs+Yv+Hy4XJhTeWNumk9gxX9SUqPgbz5C4VWMB+V eEBb9cRKoweO0qlUrS+Vt3f3biVhbZ1gLagbsA5k+f78jNpb2rfU292LzRu3 SB8NrreZGVctequuHyW17UgfYJp27UoZli9dLn42FZOmbPWS52tqTOWQ+4fj m6b2nsqXUr2aGNtlpTewetV6oWmqPgPbMei4pLI5sa/RSyj9nuPUokTn2jq6 MGfeXMLa03jyyX/GyBH/gqeeZrr2Y4wa8zTeeucd3Lx1W+xZYqdwjY1F17l3 lB2ee8qamED2i3Mc5p271Xjt9dcwkntMPf0TwtgT9PpjjBj5Lxg9ZgTy8wvQ 1Ew6iKX5sPbJSy9cHdfGdhj234ZJZj/P8aqFBWhtqCMdOtWjKpcO5Zm+Gpm6 lq5DJnUg/TiOdLsZ86HiLduwfm0ReoiPOkY/yOTNWoZRdRRVPbrbFXexYcMm NDQ0+XkfKq/M0jq9thkkMuoNcW/lrl665jp51lgkni7P65iXVL16RdM4Xo7t cWtWryf9qVc/j47ns2w/ri5bvOWw8oWuB2dqopm6a+wXWV+0AceOnkZXZ7/Y rz2JoVF0SPXFVv5Ck5cVJ77aRXt27YYteOHnP8eTP/kBRo36AdGzH0rO5uhn JuC7KTPEXsS1niVGSWLiPcl94bxiT/dIdrTdzNY1bdnOUX7rLl77+6uEq6cI t9xj7SdE454Q7HEO0/qiTcQzIn7ujOkRyBj2HEUPuN5ylK47QHuqgfvuLM3H lXMnEO0PpepcZuDNr4MQrAtnuwGaomQrI88bf4bJCWL7/wDx7YvnLmDerNm4 c+uW9CkU27aTwadtN1VrTo/ymxW059dI3rnxhwaxxrphTOsTwRx608d7/ep1 KLl4WWPNTceatmMEsdbW0o7CFauwf98RybNXcZFJoW1cY8vUaczsrZxNVwpe y04o2hnEGvtXL5y7KL226uuaJV+BaT5jje0NYt9yVN02QztUvCfJlHSOC9fK 8dpbHxKfexKjiK5JXvCE0fjZr3+LvYdOoKenX3o9cJ5XQuIa2c9oq5ruuheu unede2CpOpAPa5sx6evv8NzPnsfYZ5/G06N/hCeJj3K+1PMv/hL7Dh4j2S6m 4mYEGzqu3FH0gnOgWV5RcVtEa/rDOHLkMIo3rEV3e0eqT66bHIo1nbdohspj TPWASuspEE+v8adyBkK4WVqGKd98g93bt6GNY8OFp2XplavrH5vB/GXF8gKh a0EebxlabHl+nTx1XUtkL+lF1dqJIpKDSkuu5cZaTPle+f/sx7p29RrpMfmo qnyo1l7HC9i6lp/JkXad7HQt/Xlc3y9paayleKglNUa4fyD37QwzriOpOrcS v6NpqegIrsplZz05aakYbrYrnD1bir+89gGeeeE3eP7nL+P1dz7Dpq370dE5 QOuh9hHXhvQSJn/HC9SWSfp5TRJnIbYnl/ZYHOfOl+H9D7/EMz99FiPGPYWR E0bhxV+9jGkzl6ClrV/i3tLre7k+HZY4UvGj07l13ce6ugYsXVZA81uqYsNs 49dM+rJZStZwJD4hpvvpBntAsY2fh8GasacqTJCMTnIT1zqYN2MmFs6di4ba WsGaWnsTQ+al1dc0uL5x/abU8uB4j+A6JnRvSo4PSEgfqoSq9yhxCkq34Nqy y5csw5WLV6Te8f9H23u3R3Vd7cPf5r1+z5Pm0EU37nbsJHZcYju245q4x72A MdV0oQ6qgOgSTfQiOqJIIAEqCCGEei8zmnLOmRnud6+19z7nzDAjZMfPH/tS nVPXXn3dt2noOcW7nG+n52AwfkiQZ+opl7pxQ6E43zp0dfbbetrUsxqc4w2q viIta87SNQzNrcO86EEH59XGruVYd5hnEXPW5KLtTitjhlL9XPZdhdn3sdTs nJwTibBvxNdvKN9bPOuBfh+OnbyIz7/+Uax5jHfc1ell7DeD/FHa++KaTZ+U WZs/xsa2VP02prQREuc5zLi+h4+cwUf/+QKPPPUkXn7jn0hdsw5Xq29jOHCX jy1j+pDr3sMKZzHC74Wer/xqYXBwGEU79mDL5o3C3nSqOijVeQBnRlTKW1Bh Evt8ATvvqjFLuXY5HJT5J8PdhyA/Qzhqbc0d2La5CKtEjHC74ZbkgeD9IJ+l rvHLfS3n/Ml/rrpSxf49yZruQ6Y1PNAHgzAuCTOWZIxyx4OSX1rioAaYMy15 5SqhN8oYY1vm/SVnAM0KGTRb7yU8Lw/7Ebdu1GDe7Nk4uHc/hoSOY46rgINX qH0F5h8wwkquQrB7+C2N36f6dQlzXfUVyNycwfgUprjGrrZWZK9Zi6OHSpmj 0+C+FmkvHO4fl/+p8zSmziFqTEPCNR3Etq0yh9kn/M1gUPfMhBXWta4PRevh aJ88BD0jL7GUwyzH1C/7ny++w5aiPTw7Q3iCxI0ha5WKQ8qKnsWz/Qa77i/9 rNraemSlJuNmdRXPGVAfmqX5AQwHU4nlTLx7f8C05wb0nIpT63LHplLWCH88 EJQ9qZVXqpG6Op3x9/wBXeNXvSLapikcf7JXlB+pvHwFmzduZj9K9u5LrKcP 3vwrCrNXoLXhutizHp4BYbzfYcVPJXREa3Mbv8/Ky1Ws67Su5P5g4jz3DMLT 2YSaC4dweMdarJj3Bb75/CPcrG2A4TF47oR69I2AxKkK8n3fm6uJtqO6X1r3 Sakes2Fh0wZ74e9rQ0/rDRRtzsPmzYUiHuiXeOzUr+uzVF9QOCqfEi83YFoO Lh/lEQmPe2/JXsZrtvGs2OaG2SZrbJ54eS33OXR9T8tHnXgWK1am4ur1OoWx FbF5T+16k0vW5O+1TVXHVj0RVN/esaWIa7u9bR3i+QbEkngOsv9BLurTJLtF +ljmB+Ry8NfDTs+u6h91czLQ/qIZzY0F+ThYspvzfBJL+66axbVgz4MovUY+ GfV+5+XkufSafA8zJv0Gzz81DRkr5otYuoH7vWkuhN6rj/HbDObRoNwOxRc0 W0p6kmrRBteph9He3Ij1mavw8VvP4/mnp+FPjyThHy/+FccPHRM60q9qfrJv jP10wh72h6X91bP1hmX3lclrk/tB9pvIuM/f043Lpw+gcM0qpC77ET8t+AYf v/+GiAuOiuvyMF9GgHpYY2Qtfj1f998o7GXxM80lbN+6DfuErBFOj372lvZL jGgeDXeuKt7xdW2E9mRjQxPS07JQVXVd9iWZzqy+nleM6scKObLm5KCkTJBe qrhUyf30Vy9XCJs0xDxo7GfYmA6qd4piPfKLvAr/Xvg4GuPFMvVz1n2I0u6E VZ2RbJdH6PqDe0qwIS8H/eL5U29CSOF80XmCKi401BwgyUTZ2TLO33d3dLM9 CnPsE8R4Eecnjf0t/vbUwzhbehjewSGF+RlmrEDvIPW+NQvfew3LGvn9lD8L Uk+C3y/sQy/27inGMw/PxNSxv8eksb9j7vJpIqb74dvvcONGveztUDN1ISFr 0u5a7GuHFA6eXvZMnOr1lr6zCU9PFy6W7sfHb/wFj08fgwenjcOM6RPwzFMP 4dxpkulBO/+teSljMbviLj2XZMkZGKrFHTpwkPWavddNZz7O3T+sfQLtk8fK mtt3bqi/icz0DOa/0ljoYVvW4nOhuzEwdK5c92t2dPSwP7y1cJ2wSTXobrmJ vs5mEYd5JN+bIe03+TlkmzjHwDwjgRhZ07npiD37ETbkNWt/vvxCOZYtmo/G 6kswhzoRGvZIH0b8b8Ala6THSRfRrF7h+kL0dveovmSfOG8fJib9EZMnjcND 06diTWqqsLEdMtfJ9sri+exb9beFXlvDPBqUo2W9FgiwT0d2/MvPPsXkseMw ddxYlrGpSeLrVBFvPfYIcnPWcJ+/SVzKlHcVe8siri6hhwyPFyHCQaB4imJS 2oeMjS579OkcJNNDnn5cKi/De+/+E+PH/U6s34prHoOZUyZhlpC3JQt/EHrj lvAngqzX/Sqmcetvt52Oyqeo3muSC6pxbSrcKGTtkJyhdXMyJswrK67tOLyQ Tr1WYvZnpIi4/Po15qDkeUH7mHfvwYK18SKt6FyGxDsP83s4tv8g/vniC3jn pafFegwLvn4HZ48WYaDrDs8Ycz01QPMLNN+uen6Ggw6ujtrfpMPuclwuc0GU P/bzLJnBfTCNN29i8dyvsXbpZyg7tA4tDRVCdnq5l9e0e9kMW9ZOHj+FdfkF Qq918r1SnwH1Yj0g9Nq4cX/AzAenISsrU8RePapeb3FMOjTgY1nLysgSslbN PScBxetAueKKikq8++47SEqahImTxmLC+D9gyuRxmCZi+2nTJuKzD97BgeJN uHB4D6qOH0TtmcNouHAEdWX70XS1FLerjqGl+iS6Gs6j/045BlorMdgm9Gdn NQY7rmOg/TraGiuQl70Kjz/+EMZPHC/WWEwS+4MwfmZMHYc3X38Z586cFc81 oPLElrrGxP1IWuZsrEDK0/X18wzsESFrPEOk8uv6f+3PKH2m/Ro5qxtSNt9l Q+1aUMjWazdqaoTOCNqzvrK3WfbNJqrTuXsidW6CegyyUlbgT48+iJlCX8yY /Ds8Omss3nnjeewu3ozBvj62l36vnF8knmvNmai5j5z+aMvGoJZY2HLGnrDa Bno6cGTfTrz+8nN45tEk/P1vD+GbL97CmdKdGCY8a8pzKuw1ibEYwJFDR7g2 2d1O/SxedLU248fZX2PsBKo5T+R4vHjnHiFrvVwP4SV80MH+YdTV1LOs1Vbf wJCIqci2SlyuMK5W1eLjT/6D8eIYD0z4A8YKfZM0PQmThV6bPmMqXv373/HF Jx/ih68+waLvPkfyj98iY8kcpCz6GhnLvkPygs+RuvhrZCX/gNz0hcjLWIT8 zCUoWLscuZnLkJmyCCuX/YB/vvkypgjdO07I2sRJExhnl3GdJ4/FK6/+HWdI 1qhHzJVH0r158WMP/R5lro1iKo+IDTauW49TpSdUz3Akqm84Sp8pjHHdR2Nz Eqo+ceYrVH4dfV9bU8v1uvq6evVutX+mZE3nTkL3zqI59xBR/loQF8+fwmv/ eA6ThZxNnPAAJgq/ZZL4Oi1pHD7/+N9oqq+Bt1/oDc8AfIP90k8blnk2w2+p PJucD+I8qpo1kvjCGts/iIqyUnz6wVtiT0/EhIkTMU7okxkzx+PTf7+KyrLT 3JcaZL0kbTPptQP79iNb2MEeodd8Q0OoLC/H3/76DMYmJWHS9Ifw0effo/rG HQwQRj1ziMl8B9WwyXYSLjPJHOGJE5a9fLYRIZuDQh/mCL34ECZOmYrx06Yh adYs8f0MvPzau9hz5AzudA+itVesngG0dg2ipXMITa39aGzuRt3NNlTXtaCy ukmsO7h8rQnlV2/jwpVbOFdej+PnrqH40EnMXZ6GR55+DmOEThsnnukk8Uwn CnkbP3kS3v/oU1y9dsPuz9W8LQ5G3Aj+mqnnKiyxh3t53rrs9Nm49TP9vcF4 CJIPR/cHan4c+j6g68qqz5u+J76bjPRMYetvq1qqzgXLmQA7n5ZAr7njUMph bhKx90OPTBfP4Y8YM+Z/MPaB/xG+8u8xbfwDeO6pR3Bw1za0Ndehu6tZrA7x 3no5zvYOeuAd8Ap75eV4lhbplcHBAMdVFBMSXrolYiNvbyey0pfgoYeEjIhn PWbseLHXJyJpmtAjwm7lrcmEh3JDileO4gKfd5hn7tblytqGV/hJpcdK8cij D+PJ597EvCVrcPFKA7p7/fAMBXluyi/iW5Y1YUOvVl5FSnIKyxrV74hbTOZn IswrVlffhM+/XYpHn34VUx96EtMefhxPP/8atuw8jK7eYZ7zD1gm80HRbJnP f1d8XnKM+P1y+fx0rAiGvBEMDkXQPyBsmucuBj0R9A4YQg5v44dFKzFxupDl aZMxfeYMTJkxDdNmPYQNW3agq29YcVda95W1qLyHKX0tWYvrZr127tRpNVMY x/6SvxQ07R7WYZ7nMHixrHmDdm6eMepUPyHVozPSs3CroVEdN2LPuDj8LLF7 Qf5dz3vquQqStaKiIjz6uNjTSb/HuPH/I3zY37D/MmG88JenTsWLf38F737w Cf798Vf44tsF+Oq7BfharO9mL8QPPyzC0iUrsWplqnivacy9SPi0G/PysDk/ D9vX5WJLXpaw0Uvwyj+excRpYzFm8hhMmDJeyNxEjBn3ANuVJYsXMLeZz75f Q8137sV6caw+ERvQnGRl1TX89fkXceBYOW40dPPskc9rMU4L1wB8claBbCj1 7qckr8aN2psy3+zTOaYI9+14hR6+WteOdZtK8OOC5XjznfeRnJqD1o5BjiUl jqcpbIOs+0mOC8ueMZU/qxqXem+0CPcv4AsLP9TAgIhRyi5cwzdzF+HVdz7A s6+8iSf+8gI+/OwLNDQ1szwz/oDfsOt+RvDefESsrGn/nWSiXzybQhHbXSw7 b+s19+f4e0NzrEk5I3413nte1b+lFj97v6G49vw8l5uaki7i8gaed5Z5Xomr wX6lG5vM0D2JEbsH1nQtkunjQve+9NqrmCRs27iJv8dYscYJP3nCNGFP/vkv ZG/Yjo1FB7Bx215sKT6Azdv3onDzTmzYuAPrNmzDxsKt2LB+M/Jy8oWcZSGN OH9Xr0Z2WirWpiUjbeUyLFm0EC+98jImz5gijv0HjCcca+GDT5lCmK+zkJ6+ RrwXj/IDFe6Rz4cj+/djS2Eh47BRv0tzexe+m7eIcc50PxHVqHgFZE8MyRXN KV66WI40EaMSNzrpXL/fcHwWrvvIHgiaoe0QsUXhxq3Ys2uv8O28XDvROUpL YThRPTmgcMyoNhMImnZPp57HkXUFy7XCrPeaOzw4d7kBm0tO4Ov5y5GWk4O+ wT7VV6XyEuqduPm94+W/TFXb49yE+FxvZ6ewC2tQfv6CzAla0b657mmQOVGp w7zC9pBPQftB13+Cav7BZMwk4vrz4eKFCp7tpP7oYcXLpvtVmDMvEHRwtV2+ oPYHNRekri/VNTbjh8XLMePRJ4UcCFmYOoV9l6dfeAW5G4uFr+IVz0XsBa+f 600UfxKXKsWjfl2v8lvyeQ/5bXvK+0TsM8Lo6he2omD9djz5xNOYLOQ4aco4 IWuTMXP6w/jLX/6Bkn0n4BlW8x5BOeNIeDcHS0qwffNmOXNO3DFCDo+fvWTv G57j9zt+Nb13uifi3aA6b1ZGBud0Na6Zk+eU/TQSD1ZiD545cx452dnobO9Q tRNZZ9F4rnYPWtB0el1UjxHntdU70P6mxI+n48s+RJohoD7pispq/DhvAa5e vSZzFEbI7mEI6PyanbNw4QOYuu9V9oUzVqh4Tr1tLSjIyhD+8Hnm7mZ9wvVT S/XeSZmjfCHNQzLfN/EwDfh5kZ7T98FfOUYzeL62rKyc6wY3bzZJfWbHlqZd 03Ln8CxXnOtwNKjeIOIcHRzGqTOX8OrrH+Lpv72DZ//+Ib6avRJHTlQIe+Lh 3k6vR3KSaT4Ve/7bFSvL/LTlqhnK2QnqnQqIayLs3KysdXjssb8IWZshZO1h /PnPr2J94W50dA9xz5Oh+vlM9i382LWzGDuKtgsZ9ipeBWH7vEE71qI+Dd1v QntumHuYglzLI95tkrWWO+0S+0fNU7qxayylu+j662rrhb0gm1ujer1DNr+S u+dJ94Hb+KDKPrnfl/xeYwRH+8u9vf3Ysnkbdu3Yzdg4pt/hFSQ9qbFsZJ1K zaGElB6ztP2WWEbUF97WdAeZyatw6ewZmFRnV3jnQUPPr8j+da2DbT/NE1R2 VF+7IXk66R5p/woZLDt7XsRXaWi63cIxlazx6Peunqm7J95yZnQNxaOt65zk hwz19TFG6KKfVmPPwfM4evo6rlS3ifcv9NOQ7IGQMhawZ6vt2DfWL7DCdi0t Sr7FOyOsiGvX6/CZiB3ffOtjzJu/Clu37eM5RX/Q6SXXdUuKQ7dt3Yzt27Zx bjxk4yK5YviA4m0KOP1ypF+HhB6+UHaR8Wuam9oUtqbDGSCv1Znnot93dXRx LunkiRNcY9DY6+4Zsdj+eBlnhZyeq6AZJY+xMSHnrMV1Xq28xrMz1ddqRHzt Y72r9Zqb7yMRxwr72zSnKe6rqf4mfpo/G2eO7Uegvw/WsIdr24bCrJBzr3dV z5AVZTNtPuWArpOr6yf7L2zTxdMnha+9Es23GmWeXff46nxqvP5QFTcYmvdF /S/Jcsttmi3PxL59h9AjfNmB4TAGhL9NvPdUX/MMDfKzl/06ATufl2i+I8pP DMp8D+kG0uHNLXewZOlSHNh/Bp0dXva7DJ5HUfuB+ymkXiCM982bClnWhgmD 0Z45jkDjVOv3zLokIG22nzGOg2xD8/Ny0Sr0Kdfeg5q3x5E1ed2Sl4/ukWqK +RT3dus5nLBrFic+z7NbBnXNUfvj+jPud0D/Q7qNcDqpXkMYc4yH7zdtv1ti UcXnEpR9jUKWPD2orTiOxd+9jxeenoKvPn4FZaU7MdjdwnVf6vOmvjXZPx5R eRWlw/Qckl5qHknm2Ez21waFL7F9/Rp8//k7qLpQCj/x0hA/NtnvsOrHNeLn PNw9glwvJgxCr/SJ1mZmoa21nfvTh8l3UDqdenWCxJHkDapePxd/sxkb68bo N0PWUSnXS/UE6ts4c/akiKHThA4ZFPcF9Twl7qDd06tkjefWi7ZhZ3Ex21BL YVNLmxZdt9OyJvsSQ2xHqeeVZK27s09xtpi2rDqypnNAYZ6dox6m9NQM3Kqv k/VaJWux3DKxMxf65yjcy6iZ/IiN0cQ4zkK2So8d5zj5Zv0N4T95VX3ZkNca VLY05Jr7csman+onZw5h9uf/xOPTH8CspN/ikakP4D0R6+/ZtkHcf6+QCa/s HQi6fdqgmgnW9XFnfpJsJMma1zuEq5fOYfXiuXjlb0/iqUeT8PV/3sKx3Zsx 2EH90cMIhk3ZV+7K5cbm1iTGg8ztUxzRLOLu3DW5OHeqjO2kzLsqG6jqzcz5 7ZP8d+yHubjDY23oPbItPmsFpP/V292F4uIi7Nm9R+gdxWNmST1M9VxT7zW/ fB4ka8T5taN4B3/PesbS/ZwhV6+F6h1XPiTJGvm/p06exPp1BcxFLvOQrh4Y l6zZ2D7i+J3tncjOykbZ6VPsL1LtL+zqr71fjjVaDt2y7MLxMOWeam/rYMzM I4cOYqCX5tX97JdLe6xsaYysSf1K/VKNWLLwezw6cywmjv9fTKa+gaSxmDlp DD58+1U0NlyHLzDM/b2y192yc2eW6WB0aK4LHWuRLBLG4JIfv8ETsyZh8qTf iVhOHHuKkOPXnsfxA7sYD15yYauaQCh2vlv6sYbh8KTSTNORQ0exPn8zOtv6 7NyOqeId2cdLPZYSGyngsxQXeMiufbrtZ9z+F7oe1s9BNNy8gYL8dbh+tQaB oJ8xIux585C+vpDdK011WupfIH4g8t3csmbPhim9xv6amhkiG0l67fjx48jL z+XZGoczxJE1jTlj47GxnvdjZ9EubFy3juewNL9sFI9Zgpp2rKy5+c3d+XNH twVw8eJFrF61iuvEAXHuUMCy84R6VlbWNxUvpCGf5YULZXjxpWcxfvzvOP8+ ZtxveaZu0tjf4mEhIwcO7GPMNdZVqibhxvSUnF4ynmQ7rWrRQ30e7Ni4AX99 8iFMnTSWZxgmCRkmvrEZUybj4/ffQ3tzC9w8cu55W1vvWCEbU4N0GvU6MI97 +TWuEUqMLYvnYSSHc9iOAaLmp7Tva0VjeMfaUdalPA9AMc8wjhw5jLzcAnS0 94Dna0Mh2y+x977yIWlRHxDt+30l+ySPhmE6ek3x3st5DMvuFdb+KOXSjh49 gty8bDlPbOp3Hy1rDv54WD0XE2dOnUNmWrqIX1uVj+/g7MbmvRLlWuUzCEfL Wkw9h3R4m9Bt6eJcRw4eQn93L2PMG3reQs2kaf9a5zjMAGGDl+LZZ57GhDFj MI76EMb8DmPH/g7jJ/wW06ZNRsmeA4z/L+fMgnLuICh9rHD4rt17Zutg8pPF e+rp7MVPCxdihjgG5fLHjZfckZMnEadfEl5/9R9iX9yy667BWJ/ClPOUbjmj uG7Prt2Mo9cu3r1huGMzhblkmXbfLONxhsgfCtpxsbahiWRNyqXEKKHYPj9v vfC/dnHuTe9Tt17R8+/STw5isN/D2C2E6cg8GmrOz7AxEcK2bQjaswHy+VFM d+jQIazfkM9zeDL/o3uHdS+Mvmb1nIxQFL4fxYp0HSE1a2Cabp6Ze+XN7dPp +Db6/1znsmT/McVexHG1Vtjt2zcbZF+66h32+00Hr0/xNYSoJ8TnQcWZUrz2 /HOYPG48zwmP/eNvhaz9L8ZM+B2eevpJnD1zQbzjIPuFfl9AYhpZkbj82NL+ WLy/+8S+XJmchhkPPYKJQpeNF8ebMP43SBL6c/qUSfjnq6+joe4m985K7soY u8b7QvX4+AOsY4iTOj01HeXll2Vex1C1chfelqXtuZY1y4iexzWi47FY3nDp A0mbeOf2HWSkZaP8UqWqSTpY2tKPUbOe/JxlLrSvZ4D7iQ7sO8C+kz1TakZU nt1Sc6SGS9bkMSnvUVpaih07t3MPsPy9I2uOzxaG7rUKWxJDnXDut24ukvrU O2zn6d2z+vF8Bj2naGPcKN/ejXfi5tmlr6SLbzXcQVpKBo4dOszxiaVmJO3c sZ5TEDFg0DOE3rZmFK/PwUt/eRozZszExKTJGDthLMYnEXfrRLz48nOouVYF /8Aw57Up5+iOj2OxbKQvIjFfqc69vWgPHnniTxiXNAl/HPeAsNO/x4RxhN2Q hC8+/QKdze3c086Yui497449LeUL0YwuYZIRb0Bf34DkZwlHbLm3Z6h0n7G9 9505JFmbNaJ44eLqOPHcKF9x9PBR5GWvE3apk2s33IPPvftO76ih5lpkjsdk WSvIy+ceQIoNGJ9B4c9qWXNmrixbp+l+hiNHjojntpWx10zbH9a1YyUjlsaa 0XmtEL/vUyfOCt2WI66hT8mOxENxy1qU/jb03Jslaw26T9eKyf3bOKZOXpn2 xZ7d+5G+OpXxkcygad8X2w+eFxUy09+P8ydOYsXin7BqeQb2HRJx9vZ9+Pvb n+Op5/6JF1//GF/OX4HPvv0Bq1euxM2rlfAK2SG9xnwbNrej9h0lHg5fc4Bq VkNoFDFx8tKf8Ne/voCpjzyDSTNnYdqsmXj4scfxwktv44P3P8eerdvQS333 Q4OwXLkv/X1I2Qd6Z+UXL3PtvqGhUc4/MXcz4eiZEn/MVO/DljVHziQ/gpr3 V/lT9/OPnsegZx9AZ0sbMlMyRRxSyj2MfubYDql6lJqB5L0g47OAsqGEn7Zl 02Znbl3zcRkyb67z89F61rJl7ZDwgbZv387Ya/Z8oLZt1r12X/YkyOuhen16 WgZuNzbZXDryOu/lH7XrNmpuSMfpeo+GlK9sx6Ua30H1BVHcX1tdj9TkFJSf L2Mdzvw/5BMRF0B/DxqvV+Hg3gNITV2LvIJNqK1vR5/nLtoHDJRfbcKh0ss4 deEGbjQP4mLlTSSvThfxdAaulV+Af4j2yzDXcg2FDcU1OEPjzQmfqr8DVy6V CZ9qI1JXpWDL1l3I2bADC1ekYL7w6bNy1mH/oTLs2nEIKxctxba8HFRdusSz v4wDZ+iaRhgRtvcBjum3bNqGHcV7RZziU/ud7KOUNcaU5Xk9SB+ca4bKZ1Ny pjHH5Yxe4pkizpGLZ1V99TpWLl0l7PZNrr3JupKe5bC431PPwhp6VilgSoyE gvU4UXqS66xBxY2pMYpi58jdOT/y70p2l6BoWxHXUqMwWV32Pt610/ednd28 H6nOJXs3Dbbtbn7pe2TVJXdc32DZVpjZtp8m+wwl9vBdOSNH+aCeQezYLt5v Zga6O7q4RhQW9nu4txtnSg9jxYK5SF6ZjvMVN9A9EICPnp/Gm+XYKMx9T2KL Mvdedd0tpKRmYtHc2airugifp0fVcqnecFfObtI5qBbs6RdycwLLlyxCXt5W NDR28jGGaC5Z6Nx+8SwJj5d7qbwhXL1SjXTh0835djYunj2Hga5uhHxB1mdy Vlo8L+FTXi4vF9ecgisVteIdRRR2jwk9z6n9DIeDQOGMWKaq/d61cw3uWmii HBvlikuPlrLv29PV79RG7GWquFP3TclYgnowKS9GvDOnRVzopTwnYc4YMsfp U3kRy2VL3ZgkJF+Ey0G+AuMyaz3vygUljJ3F58nHo89S7NTb3Sd9c2XbYuVM +2q2v6bxAQzVdx+SS76HiPI7NaaF7GGkvFZTYwsWzl+AYwf2s426fOoAls/7 EUuXpuDU+Wvo7ffx3Af14gaVDg/RDCrPoUocXe65J85q4l4T9r/06BnMnz0X +7duxFBXH8slxxjESzTsQUv9dRRmpWLu7EU4d75O+FQBxmMgnG7mu7UU14qy c4YhcwtUw79adR1LFy3C3O++wuWzpQgM9sMYlhyona3CB01egX0iHvb2eSWO iKHlTPaE67w09xEoHFldf7yHlyRunB/9HqlnYsO6DVyblP0ElppfcZZtA+38 tvT1uzp6kZOTh7NnL8iZJtVHEGJcf8POJ2tbamONGBbL155dJdgv7I7kglT3 FiNr8RbXq4SCuCB0GmEgyNyHYeeY4+k07qPQcYHKC4UMFcswj6Gc5SPcgbv8 vAIyv6R8X/JdSbetF7HQ/O++R9qKlVi8eDFys9ejquom+rwW8xlynsmy7Heh c8Yka+GAxEg2FC4HyVVPjw/7959A+qp0HC8RtqylGaHhQSEXXbhVWynOl43V qRk4fqpKyJnEJNe+M8sFx4YhmytB1jGkv+sR+7+8vErog0KkCLu7t2g72hpu oL+7HWWnjiN52QrUXq/nXoAQx606dy7rtDL/IGVN41y6fx+LrevOK+n5Kan3 Qlx/rLlew/OdhF0h6/ZOnxbjCRhO3KLzZBoTpre7X9xHPi4wZ4vKpSpf0nRh 2Tj4P07fCfmlJGuaC9KWi1HIGi2SndaWdpY1whShWqnWv5Z1b02cbbrGA1P5 ZdknEu378qwbP0uFHRskXhNhn71e3pdbCjfh2aeexXvvfIKdB86gtX1IxdhG VAxry5rGxOBZVBNhv0/InNT/JBPEddc3ZOJ0WSVWLliAA1sL0VxdiSsXTyFl 9RKkrVmDK8Q35gnL2VeaGVM4UpK3w5B+QCRs8687fryQN18IHb1B7Cw5gR/n zMea5CXMI5i+ajl2CZ9goNerrsWUMagrhrjHpuj8QBxZc/snjCHkmpcMqVr2 idITjI9Mc04S6yoad8Y9FxNU/Eoan4xycnl5eZyX0TglIZWz0LrD6eGxbNnV NnRH0U6ui3DNgT7v8tfcKx6HGp2L8JUIy4tsqZcx84O2DY3Kg8bYUVNjhlAe T2GoREjuCDdU6De/sp2SpzmAwEAfai6eQ9rSRXjvvY/w6mvvYtnyFHR29Kk+ I4N9WsblY1wW2LE0n4MxCyW+h8U4MQbjEREvAOuksOzzrL9xi+3pc0/9Ce+9 9S72HTiIAcKYUPlXia0pcwem7iF0LUvJtmNTZd8Q2XPi92zt9CBv/Ra88Oxf 8fbrr+La5QrZw0L9k6qvzZ5VZ93sYNk7fBAu++nCnHfrNAe/SHM5mIxZSr79 mTPnOGfJXMjBEJz5eBc+ZEByKmkdRbJGs+5rxL67dKlc8q6pmk90fs2M8gEN NZ9B+VvK6Rzcf0jx80XHBoniGffv6Fro86TbCPtV4/M53NExvQZBhR2n/E7m SzSVzTPUzEnYsaeG8GUJp33bxk3CL1+FvOxCnDl1GXv3l2LZytW4drUKHnpu ATlfqfmgqGfYNHWdTvLQBZUdpn0cUnzrltYPlP8VvlnttctY8OMivPziO/j4 g69x/Ohx5u6UmE+658Oyc+q6ZmhoX0DHNkrmdO2FuNZI3oifl7AYPvz4E7z8 6htCt63GzcpLGBZ+HNcX7Hcf5pqAZQVUHCDjJTd3FK+wlDcr5n3pnLu0ZZK/ 7VrVVWRn53KfncQajc5xuuVV9t64ew4J27cTmZmZqKi4zLktt6xJ3AnzHlkL Kj5AkrWtm7dxXx7JmjsO1dfuxlBz6yk7lhTXQ/32hIlJ90K9Jk7vnttX03lo R1+zng2oGMoyVSwaljwYAS/6uzpw9XI5Nm9Yj4WLlmHXvhNoahkSMSFxYA2h YP16bNq0Hh1iv/rtvjGpnzh+NpS9Ub5KgGasycabkltT1vEi7JN7u7tRW1GO HBEDpKRkYnvRMazJ2ISM5ExUlp2HR/zd4BycO88ocbfcmBlOjUXnccIs0xFT 6kM/cYWfLsVPy1Yhe30Rli9PQ2byMuG7HROxQpOw0V4X7p4p8S6Cmv8j4uSl dJ6ObE7k7j36QfdDaywOmsWmGlhx0W7u/ZfYK/fybkfVEVWuWeYygmhtbkdW VhYqK6tY1nS/mSNrDt64bZeVrFFujjjTDh88IvVajKzZtfs4sqavj+6duIFI rxVvL+ZcEnPP2FhS8nMa89DG1NF+QkD2yslrlviehmcIbfV12Jq/BovnLxR+ Tila2nsxSP2oPkPFRwb3Ni38cS7KL1xy4QuYjs/KCzyDE1Q9LtJ+W2qWLsx5 s4Guduzfvg2Lf5iLg0dOo2tgmHkT+nsCOFl6CUsWLMGBoi3M+en3+bg3zY3N YhrSvml8EJ2LDivcQYp/IoxjFxb+bRNystNQdu4yevoNxp/fL+LgJT8tQ15G Mm7XVIjYo4+xJy2VT+UZV67dGWppuVMcRfFiN0PXi+TsA80Tpq5OFee9qGpS 0bIW+47t/sqA44N1tncjNzcX169Xqzye4ktRfcVOHBu2ZU1ixAXY11uftw7H RGwga5qu2EB9H44zbxaVjzZkjEGxbEFegThmD1+X+3Myh+jM9Lp9UZ6XDSpM 9GE/vF0tKN27A8sXLcH6dZtQU9fI+PLEneOlWZKA5AOm99rT1ovCgq3C59yD QeIINDS/X4j7FmQORuI/8fGDMj/LPWXkR/mG0XG7Fvk5WUKXpXGPf+9AEMPU CxGS+KID4ueycxVISU5GYU46Olvqhbx7pG+mcBSjfSxVe7HctUKpgzxej/CV TqGwsBAdws+kmU26r94hP66L+8zP34DFCxfhxPFDIl7o4n5IKyAxoaWuI3vq t22qlDXF3RijCyxT4kAzD5TwxYk7IyMtEw03m7j2aXN22e/VwU1y6iZ31cyN nHMmnUKyVl1do+oThooP7qoavaX6F5x3TJgYhJ/S1dGNgpwClB4ujbKh7rqd 5o9O2Cuk/AKaaSb+0KbGJr42t6xxD5TiYIni/CHcLcJ18wygu7MTFWUXUbRp I2NjlJQcRme3V8ihrL/onBzzvameXOLOKzt7BRkZWWhsbOD+o4DuYzc1z7Ly N4LKv2JckSB8Qv9eu3QB29av489XVdfD6w+p3hiZMwuasieGeIjPX6oS8rYS 2zflob62SjyvQdbBpsIo1Hj1do08FFJ79q7ys0zcaapnjK+y8+Xw0bwOxT1B OfMwLM7d2NSJbUX7uDZyoGQ344P4h2Svuu1fKq5mjfUUDul+hfA9sqZjA7Jf RduKsW3LdsZnNILaR3P73vF7uwzF50iyRrjF2dnZLGvaPuicR1DhlDLWip51 U/ipFIMQ/xXJ2pkTZ6TsxmKPuWd/4siZ7tMgeaMYhbC1yi+Ws9zq+RLNK6Xn yPTsJPuR5AcIn7j9dj327tyGr7/6Bmnp+Vxbor5nmjEPGY6sS4wl1cdMvOxi f7ezXl+LQwf3Cl0wwMeknqMwYzUa7O8EFX4/6TpT+IHD3R0oP3kMyxf+hB3F B9DT7ZHzQlaI88iMtUJ5PtUnRn8bFjqovrGN/ZW1aavQUHtN8rME/dJu67jK VLVcK2RjRkve4yBOHd0nfJZ8dHX3QXMS636ckIrRPcT5dK0e2cInWTR/Liou nYF3sJs5iEL8DqXNtnQPSEhjsin/2HR0BGM2+IKMsZe8YjXOn73A/UPavkTH evfiwZmqJ17KrJS1tWvX2jbULeO6zmBzetp1eNnvSfJRWLABFRcuMmajEz/G YCCa2n9z7sFSOSTG6CQuc3EP27cUo2RHCYb7h20dKef9IvAF5HwX9Yybfpq5 9KCjrZX5YubO/oH1e2VlDdo7BsXzDvGcYzDgquGqPgaKp3geUHG1UG7+xPHT 3EvZUFfD/FJcV6JnxPckeTZY5vxDaL1Vgy152chKThcxbD36B4M8K+jEQlK+ tL8p952MKUn3NN1px84du/Hj7Dk4ceQQPANd4l4DUqcxdojFeKQSI86Z0aC5 l7y1a3DlcqXwBYL2DJWp8On0vDLVIfzCr+vsHkTp8VOYM2cOcrNS0HzjqrCp HukX6Dojx+1B7i0ylL6j/RU2pQ9MeUOaGyXe7dQVKbjT0CL3qxGCm0s4Vie6 ZTAY1FhCBu7cbuI+j1s3b91b83b1fttzjUr+KPYnG7pxnZC180LWhpVON5yY 2z5/KFrWQrqH3sbSi/D82MmjJ7Ftw2bhR3XKGjv14Pg1/m1I4nYPe+Htacfl sjPYsmkLVqekY8vWHai70ch4l8wHq3oOgkEHX52vX83lcJ9ZSObs6f9a7nQw JsneXduFn9+K4FCvkLkB5kImPWgJOSOeqGtXzqMgNwf52QUivq3hmTyqNZka B8GVr4rlyCK/iP6P9G1Laze2btqF1SuTsX/fTvTSnAzXI2RtTT5HlccU19vR 0ordxTtQLOxYJ+VQOd+muEkUH5S0hZIPlDCmqYZG+CulR48zBnpmWgbKTp9A f2er2KvDnIOwc+Gm5pcIMb4O1dK5jimeXa/iB9i6eTvzA9i1pTg+eLyccNCW HeIOrUdeTi73vlmu3ivCsrZ70F39UrqHmI5Fei13bQ7jqdD8tuHXe0bFFSqv Z9o567Cdy9B5RNOS2Ik021177TrWi+Pdqq4W90zPwyNi/EGEhS6KUPw46MFg VxtO7N+B+bO/xcoVaaiukbzWhK1KPistxjjRs+12vUTWf7knIeiy88Ew9xwU bd2KOd9+hrPHS1BdeRwdzVfh6etFgLBL+ntRea4UyxbOR17eRjQ190p5NQyF gaB4Z2PkzC1rjI/FtpTmxsU77Pbj4KFS/Cjs3O6iTegVOpp6mjgmEHouLO4/ HPDBEvr70ulTSF66FHXVtdK3M2X9VM9+cKxqx/93eT6abDD3bYjndrOxA+nZ mzD/x3k4tGcnhvu6ODdCuRCeiQrK98v+uSGx8/l7ETPX37jJfJ/lFVfRP+C1 eX3i5UtjZS2o/FAta8QpRPNzhLFs51uUrLnjV/cx9KJ6D+EbXSo7z/zfjL8a MO24SttSqveFwjKn78bdl36/5M00hN/S1FCP2d9+idde+iuWzP43juzKQW9L HQIiRvQI3//oriJ8/dlnWLh0Jarrm9g/Dqp5YFNhf5gKv9s9t6vxqKnPivAO qPdF7h3Sl0LXDBg4sv8gnv/Lk5hKHAbj/gePTP89vnj/RWzLW4FVi77D7O9+ QFXlDZ7nYS546pcIS34Wxri1ovPvjs/j9N9Jvg0pc8SnQPHwneZ2rFiWiqXz 56OBcrJd7ei8WYUTxTnYljYfW9IWYPHXH2Pn1k3Cn+xxfGK7RuD0aNjv2gzZ mNwG93UQ/k5Y+LFtWJmcjS8//wJnjuzFIMWq/PzC3CNCvpzEDqA5DB9jcx/e V4KcNdnCJx2Q+DecIzTvkYtY2TB1jjoYVtgTflQLXULYa7asWVCyFj/P7z42 cTytychkf830S4xcqUtcMbzhnicKq14u3b8nfWHaX709HdiycT1eeOFZTJ02 XrzrB/Da848hc8UC7C/ahrzMLO6xKd5eguv1d5jTUPc9cY7aDNnndfJUWp9K biWaPSes8qDPsHtKCD+iQ9g06v+fRdhwhKk15veYMv73eHjqb/Hysw9j2eL5 uHShkrGh2H6RfFkaU1vqlUgoHJU7iJU1Wf+VGH+G3huW9IeqqxuZp33FT8ux ZvUKLPjuP3jjhSfx3GNT8exj0/DWK89j53bC6OuVNTyN6xGQORO3byjzcpYz b0tyHpK5Z3pmxGWZX7CJOUCLRcze2ngDARGjBBlDJMR61zcs7MlQJ3pbb2Jz QQ52FBWLe/fZeVVdL9W9bvasboy8aRwAyXMY4Nkb6gFva2mLkjW9R919mbEx ZEdbO3IJA7y8gmVN9wM5s/jK9lpq1t5w952od8E9l8M4X3YWr732MqbOTMJE IWuTJo/DlElj8fis6fjny3/D3DlzUX65DgNDFuP+m2bMTKDl7HN7PtC17ygm ZX4Gn9OTzH2tHsKJOI+/v/QckgiLkHh6JtCM3gSe0XvmmSewd+8BOUdpSn0U 1Jhoqr4TsXQt1uWfWZorNWLPrWtfWV6XgztB19ZwqxsLF6fgiUcfwozpEzGV sAqnjGc8lscffQQ/fP8NWppu23MozCuuatMhW9bkvqY6bSQkfWLCOTGZ78/p qe7sHsLOPccw7/sfUJCRgtorIr4U+pRw/wZ6OoX81aD+6lkc378NS+bPwZkT x9nP0HkZjc3i1m/35OesMDTOjZY1wgMmG6p5iWX/ptOnEU/W5FwAYYDfYb1G HB6hoOKxV/lwmd9XvePKbgcUvtGwN+jC7DEZp5di4ZkPTmfeuTGTfotxSX/E BJ5nm4jPvvwMN2/WM9ZRgPLrKidEfRE8Yx2ORPVkOvshbMuhxNmQOEtO3s7C gLDPu3fvxEOPTMUfhe0cM/7/iWt4ABMnTcSECRPx1JNPYb+wr7JeelfV+6m+ b8pZYUvXLxNwvyq8W93Xwv0NjMmkauGm1EXDXh927dyNxx57BElJYzCBeK+S /oBJ4x/AVHEtTz/1JE6dOMnvTMuavUwnh8Fza/Z8QcSOv+gaI+rdWTz3EERL c4/QM5vwxScfi5gsAzXlh7BnUwr+/fpf8KeHp2Lm1CQ89+cnULx5g4jHKF6S 59b34Z4bd9tAfe+6NqJljWwozVERzoacN4N9nYl6gaT8UvzWLGKDbNRdr4bm rtLYmzK34swpaI4MjXnnrq9STXZ1Shqmz5jBOHEkZ39MGo8JU2h/T8GcHxeg WcSmfkP6RtoHC6sZAy1r0depOTikrDGGG+dBnF5B0rNein9PnsFTf3oSD4z7 HcZM/D3+KOQ9acYkTJohbNhLL+HYmTMIhCXGF+1H5uTT84muvhx3T8vIshZW dfW7do8YYSxuEj7EjBmExToGk6eOxZTJQs6SxgnZm4BZs2Zh39793Bej8042 x7jiodF98HYtnN+Fns+VOW2KdcM8T0x1FAu3RZxz+MhZzJ2/CO+++xr+/PQM Idu/w2Rx3klTkoReTcI7b72KyooLqg/H4bFy8znElROFSy570gLMTUyyRrUh y3DJWoyOuGd2Sxz/9i3hZ6Rn8DH0DLOuTeg6r+7PNFQ+lvGVVD1f5//7+jzY uKUYjz75Z0ycMpnn2MYlJYlnTniYMzl31tndJ30PPb+m3pHDBSB1i9Zn0Vwv cgaRsC5pGbZdJ3zZiNCZbXj/oy8xedpDQs4m4gEh5xMfnIGZTz6Db+ctRl3j HXFu1fcbkhzid2nx906PQKK9qZ+b7U+z727ydZqq92lYxFa7du0WMvUExgp9 OmnKWEydMo6xGidOnYo/PfMcjh8/zTZf961qDB/G+NJ2VOXGOKdHPGzUR2CG 7RxKSHO40Jw21Z+Ej9bbb2DfodN45rkXMH4C6dQHmPdvzCSaGUvCgw/PQH5+ DnqEbrNzUAoTU+u22Lya9pu4B0vJGvVWEJa6I2vR8hRP1mjROWz86to6qdcs nUsDJGdHSGFAafy4WJ4+qWOJ16nq+k2888FnmPLgoxg/Zaq436nimU/DI48+ hfXiPvsIH4F8TY2DRHaIzuPGfVf7RPICuOeqtKyF1RxjUL4TqqmLONTjCePQ kfN49Y2PMGH6LIyZOh1Js/6E9z+dh8tVt3iG/K4pZw05Pg+H7ThH5xoSyVls TdpQ8zsR5nwMs57m3hJxfddFjPCv97/FlKkPybnRqULmZj6IB5/4M76dsxgN ja2MVSx5cYJRuLw2tr2pdLjSPZw/oxhT4SnwHhf/41OyYjC/jrBvVVV4983X lR79I/MNjBO+64SJxBEwA4sXLOH6QdDVq60xo9zzMFHxo107kDOixA9E3Dc2 1oF+NqF79VrssyNZoxomyxpjOYSicDFs38Cn8Qw0/4z2zxXGhXiPAx4T5ypq 8c2CVXj0+TfxxAvv4d1PF2Du4ix8O3sBtm7eiN72Zli+Ya4bmIbGHNBydjdK 1nTsK+VN9RuquIRy5bLmKes1NMPS3e/Dpco6cb7leOvDL7F+60HcEPqO/mYq PWCqfkcHF9CpM/N5dUyVAGPLPQvm7q1mrgBx3IEhAyfPVOHTL+Zh+qPPYOKs R/DYX17E6qz1qKppwpDXkj6n37KfJ+V9eJ5a4Z1qXkPpKzuzl4biPtdzQ3qm zgzIXoyGGzfx5VdfYsqMKZgwlTgmx7CcTRg3QdjymVi5IpV9naDi2nCwhKJz u1G6zdTcoNJfK794iTm048laoudlqXWj9oaI1TO55qDnIqP/P2TnSw2/aV8b Yx0FtF6LqJ7Su+gbCuJKbTOKD53D/hNVuN7Qi6YOH46duixihxzs3roBdVcu wdffg4hhyHqOng20ZM+CtKMhxt8N232PCh/Tr+ttQbU35N+Ya1r8vqffg207 9iB3/Ta0dw3bcRdztqv+W/YRVW+ZjgnsPHUo4tRIYvw2bUPtZ0S/535fOQtA 56B8v0f4UJerGrBoeRpeffNfyMotxJ3WHgwTxwqvkOwf0PhkCifCPVdCOEKW rl8bEcWlIGdryZ6GzZDqV1Ic2cN+oTfq8OOCeZgy6yGMmTINYydNEr7zFBGb zcKzz/0DJSVHMdjvtfeJaddiLGicQd1vFwlrXzGics1h7mG7eP4Ctm3disGB QdlHop9NnNjO7W/QnqyrEbKWuYa5u2NrYVE+irtHROFwy97WiG2zDUPiFBLG OfkQnMdSOYZhXxh3mjs5Xl65ZBEqyk4iOEi4HGpO39Q9Lvo9k4zJuD+s9J0j a5aqdd/LUTY45EVR0U4Rl+7DkIjxY/lSYntXE+l799/cy50fcHx32Y/tHFve x6Xyy1ixfBVqquvs/KHu3w2o+XTtozu9/rpPWb/nMEKhmPjckBxQ1E9KfJiU g+9ua8G2zevwr3+9h7+9+BqmPyL85umPYOpDj+PxP7+IVWn53DMTNGJytS5+ Po1Hq/mY9dK/o74k4nAljPLBwUGW/ZGenf1sVW9GrXgO2ULfEEfqSHGE3j+y jurM8ceeR/ZHax5KyZ9pcqwuj9HbO4yTp68wLvrG9bnoaKqB5feIZ0a9czKf TzEpY7qG3Hl8hbHk03M/9+Jv6fzHhg0bcfLEKdlDF8e/j1cHHMlHcy+7Zpco bnPl36uEH03+CfkppupJdHKk0fXp6Dkmmd+Qc4CmzOvqGMmQvcumsv/Dfd24 dKoUyxf9hPy8Lbh+vRF3Wrpw7mIlCrfvx5Ydx1B+9YaIHTyK/y8aB87tk0k+ PWcWysaqVF+pd+f4sRNC1nYIWfPA5g+M83zviQ/E5wkblGSN+JTd/+POL+m4 Tff82XzjrjyM/j/py2ieern3LbUvQ2q+aGAwiDNny5Gbk491uTmovnIR/qFe 8fcA7PlHklGyp2E1623JHg+J96j2vxFyyZqsw/f39fP9lJ07z+8xlgM8nvwk ynXEPrcoHyTB593f1wofmLgyiauKsfzsuNtlv+wZ8Yid29XYPiRrcl7WVH2X sr5B+9Hn86ClsQH7d+1ExuoUodOKcaepT9gPqk+F4RU6oV/4zwNe4gywZA+I 6vMNx8qB5fQPaRy3qFliJWuk144dKRU2o4TxOOLt0yiZ0Zxvlsz5E8ZQ9tpc NDe3xv2M+3PxeDrd78Kt13j/KTvNs5JCZphnOGQxjzo957obd5C1diNWLF2K y+fPYEjsUcmRHLJnzBwse4nfpWXN0u/DzkPKRTgf6alpqLhUYc8NxpOHRLPh 8WRtpHphXH9a/Uw1b+KUq6+7oeatHH1h++Uuvab5NLhup2yutMdqP3HMQHgi g6i9VomcjNVYviwZZ89VoJ+wGdRepppIMKRqI3bvLc2LSUwtjW0cjWegeSgs +/rcvNsad4RmOw8cOMQz6CPt1dj6Ih2L9NrGwk2Mb5Ywlxmn78G9v90yasdp lszThlVtL6zznmGd45B6y+sP43zFNSxcuBh5a9LQ3VSP0LCX5+lChqF0nNxz NjeUnjt0yZqsjco6CPFu1qscTrx9F2+vxNuX9/v9SHqNros4XKj/hnKXGj/Z LbPx8F7tnlBD43/KPk3yG3yeIdyur0ZBVha++ex7HDl8Ft09XvaHDcrhhC3J wRyRNS1LcbqGdE+llrMEMqF9BL/fHafqHKph9/mXlOxLKGuxz4efXUj6a9S3 TbLW3t4JnU+NJ1+xNjWRftP1Ws5lhGXPKO2liKl65qkeQTqO403iagL6RZxR UVmLTYVbkE/ckkLHBQe7JR4CHZf6UAOSE9nmPfNHY41xnisQZB1C2LpNtxpl vjCOPLmfayxOXDw5G8n3jd1nth8nbrJJ+MDUE0E1RNJriey5uxZpY+255wED It7q68HFs6eQmpyOrPQclF+4znMQ1IfFfYRc1w0rvm+nPzdsOf5LWMcyCWTN bZvkPHLIzuGTzBHHFc2t79mz9x5ZG3HPWmF71q4gfz3rNX3P8Xq3Yn0Wt6/s Po+b/0bParLdpHqy7tGynHyWvH/JXXWnpRdr1q4TcepSXDhdit6OFpg+H/fW Brwm9xH5FVePEYjuTZc5QD+/V7KhrXea5TxnAhuXSC+77zne9/H8tdhjGwrr i7hJSNauVlZxbsz+P9ey8X3tz8r5XuZfpHx1wIM7jTdQengfkleuwobCXahv 6OT+Ip3vidg1NO1bh7l/PeTqIwjz/IvyY8z49+fkHcIOb6od+4dY1qgfmWSN /LVEeEjx5Id8qUsXypGTncuyNho7cl9Z0/GUIXWYLW/kK4SCsn/BkL19XA8l nWnKPBX5GL1Cps5W1GHevKXIWb0KDdcvS85C7zACnqDNARzLEcR91sJO0f1I /J1eG88zkS5JFEvGW4lkLZG+oxiZeryodkj1apPjx3tlzVK5EomrEJJ2zxL6 POiHf7ATVRdOYOlPi5CSthbV9S3wUE6dZIHOwzGYzlXctXtY6b1G1MxL2FVr ZrwUdb57+gui7FXEzoXoXBet/t4hxnak2IDi/XjzfnHtoup3pDmu3Jw8dHR0 jWhHRvJX7Dhd+RXSX3NjAtyFrm9y7UnnUk2ZVw2rvUnPICD+d3A4JGxqPXLz NmHJwgW4fO4kBjvbhG7zyTqZ4m6y+8PVdVCfxcmTpznW6e3ph+bSS9QTGJu7 iBef3m8l+hz5OoQdT/7aZcIjoHlIux8yAptjT59f44HRXIRvCK2N17G1MF/E Tck4XnoOTc1d8JI9E7G6GZI1TJ6jZfwzGbtHaC5HyRrLGPHRkU1h2yrtixU7 KxV77abDz6tnkTS3IOFnFa7fzD0zlPOI5iqProXG9snQ8yDubso9EI6a5YpP RuPD8DnUTKCWN64fBSWuGue2XDUBzQ9sufwKzYnOc2iGkwf3ekO41dyLTVt2 InnFchwo2YnGhlrmK9H4THLe1OG56O8fxLFjx7Fu3Qb00TyV7oVy5eFs31th 2NDSvQ56xfPVY2XU/b/uHJCdPwuYXHuk3PWFs+cQJH55F86Usz9DCofEYH+h v7tL+GJlwvZmYXVqJs4Jv8zjDXOtQXIN+CXXiR0rWaqP2mIMCXueyNRzi/ra XXPDCWydljWd29XH134L8V8U5G3A4cNHGQskNjaPlTW96Gd6HsSjsa5gA8ta LO7l/fw2zUfiljWeQw1Qz44ztyh9VjmzIWfNVU9/BDJXGwmruTOd2wkzZwTJ bXfvMPYdPoHvf5iLtNQVuFFzFQO9/SLu99sxguSPDLM/cVDE41u3FjOnWzBw rz5zx4A6J61lbiRZc+dgGVdF1eoM/l7VeVS+T2MbUD9hQV4Byk6LWEe8G1PX yW1ePZlTIP/AJ/ZQZ2srNm/YgB9mz8X2nUeZc3DYp2arSSapTs/973K2mnoQ fD7L5i2Ss0C6LqT9OTkvaCnsQo0FEqubHb/XkTXuFxQ+zTDzXwVY1tblb2BM SeojTyRr99hE0iVif5w9dYbxkdi/CTlxqlvmEttTmYO2703pOT6vu3fDpbPd GP+yjiZraQ7WuVMT55jbCKO7P4Cr1Y1IXp2F2d99h4N7d6K/q4s5x0I0E878 PhGhE/pRvI2wQHfxHJ97rlBjuGg/nOVGLY0FLHu+I/f2/rvlVGP9ihUmO6bm gAzTyWVprh/qJyRMIOqP9BNGs9LdhsKXChOupIgxB4Quu3T6GDJETJNXsBkV V2rR1edn/1/P1QVVX4jTD6J7HiK2bGs9bhqWK46Uz9GurSq5tPdPTM5Wx53c N0azHTbfaxDdNLeel49zZ85yX5J8JpqPN0FMwDY0zH24xBG8ddMWnot2y1hC P+8++bZEeatE/raMs7Xf4J5rkEvOGhF/cgjVda3Izt2IFStW4PCBfei40whz aABh3zCMwR7crr2M9FULsH1TrognxN4JmuwLSlut7bk6D/vI7qXObWnemnDU snmC9Byaqn/bOAoh2T8r+/OkDaW88oZ161B65Cj3rHEPR1D6GCHCghHX2FRX ix3bikQ8kyt87gNobesTNtNSODiOP+T2A2J1tKlz5kr/uXOwsbLkzvHp3Io9 M26G7RkImxOaeeYkxkJXeyfyRFztyJrjHzl8EHHyZfRshKydKj0uYouttqwl igNGkjMta27bk+gzcWXN1f/s5uSR85+yb430BvVJdPb6cfJsBc+u5WSsQmP1 JQx13kLlub1IXvwpXnluJr7/4k3UVZ5FcHBQ6B7ZFyE5jGQ+wOEkCsHNBenM qofsv+slOUDVLIjpyiMztlJA1nIJA92UMSXjRzU3MebR/j07MSjsPtnPCL0j oeP8A324fPa0uOZFWLxoOc5dvslzGCGuIcvafTz/PV5sRvuIYitabnmL4qjS +8OK/uw97yMk8SW0nWeuNYVh2iP8rHVCr1VQrBOInyeP+55pT/gDOC723A7C FiJcZtc+ifXbEslcrKzF7r3R5BPcOHO2HTXdMqd6t7VvLvZdy50+EW9uxj/+ 8Qb+/rcn8fisMZiZ9D+YMvb/w7SkP+DPTz2EjRtyRGw+KH0Yw7UHQ3ft7+1e BnW9VNcx3HZX4zeaTq2fZYm4n2meXmFKm3ZtXMjc8BBablzBih8/xz+efQyv vfgnLJ/3OS4dLUJ/ax0ar5chY9VCfD9vIUrPXMQQ8Wup/cS6MXzXzkvcLwdz z4qDKeXmChyNzSF9pWs0PsVrrPVazpq1uFxeESVr+lpGkjXD50fp4SPYvWO3 xGWO4zOOJLuxx3XL2mhkLHrPOs8pbOkcgOrL5VhdLv6ZY98IGm52YPnyVMyc NQ2TJj+AiRN/g/Hj/hcTJ/yRZ6k++eRd3L51i+fAyXaF3HiwpuurqXqu6Zlw f4V83uy70Twd44JI+ydnfKRPFFQ1ND27SFjhIZ8XzTeuI/mnOfjLo1PxYNID mDVtDP708ES8//qzWLVkPlYsXYSctWtRduka82ib6nya61di943g/4xgK+Lp h9jc9f30gFMbdbClSEcS7vrajEyZm+acs/t8I/hbISlrh/cfwM6iHSJuG4w6 /0j3EM9XY7/fDCWUtXj35ty38wzcuT8Hv82xcfzMlD9K/YYle/bjoUcew/hJ 4/HA2N/hD2N/g7Hjf4/xE36PZ/78CI7s24euplb0t3dhqKsHQ929GOwRX3t7 MdTXA+9AL7yDfYyTRItw5YPiqyniQvIFrcF+hMTfaVnCJzSHxPL0Cjso/EFf P/dD0YoEfIj4PPB3t2LX5nw89/RjmD41ieepaNH83rSpk/H0039B+poCnkex AhGu24Xs2EX6f2HdJxPnuceze6PxceLl4RO9n+j4VGGZiP1NNpTmO2nmgPRa tLyM4K8RJoKQtX2792CHkDWt10a67vvtL7cdjd1f8fq+nOOpHK99bRC+h153 o/od5YyCiPki1DtjoKRkPx598GFMmzwd48ePx9ixD2DMhN9ggtAnUydPxN// +jze+8eb+OjNd/Gf997DNx9/hEXff4Ufv/oE87/5BCsWfINVC79G+pLvkbLw W6TN/w65S+ahcMVibE7+CTvSlmBv9grszVmCHZnzcGTzSpzdk4myfWtwfn8O Lh1bj8rTRbh+4RCunz+Egzvy8MFbL2HW9AlCz47BJJptmToO44WsjZk6BW+8 /SYqhF4IsB9pybiY7zuk8q8h3FV22X4erjzVaP3oRDov/l4PR7372P/hfkKl 10jWaB7Z5pi1PxtOeA3U40u8Svv3lGAv9SMNehPavpHuwf0MEsma/lu8/L08 jp4Rdek1Vb8LKxw7p09E4j1YEXGekIlLl67gpZf+iZkzH8OkSZNZ3iZMHofJ MyfjH2+8yTiXh/cdEvpbyMHevTgk9NyxwwdxaH8JDu7bg/0lu4QPsV3o9q1i bcPWjZuxIW8DNuVvQGHuOhRkZiMvPQvZKanIXLUSWckrGbt79fJFWLWMsJWW IGtNCtLWZmBFago+/eobPPGnpzEpaSLGjfujkLdxmDhJrClJQuam4d///jeu Xau2e+4IF9jiZyTvn2rovFzPL5Gs3U/ORpK1WLsa75hR/0+YZ20dWKPmoIyg GecdJrahAe8wy9ph6ke6j6wluuaR9Npo9pLUve6lrw/RK+w860gkwnqA6i7t nb1YnVmAZ198E9MfegqTpj+CKQ8+judfeRPrtuwQ/hBhBZqqH0zhsag5u4Ah +wqHqU7hD8MjvvaJ+L7XF8KA+No/bKHPY6F3yERnv4mOPhFb9hpo7Q6ipcuH 2+29uN3Ri8b2ftzsHMT1lgGUlt/AnJ9S8cgTfxa2MwlTJk/ir9OmzRT74VEs XZ6M9o4ezuXwc1VchhF1b6Tj3LFBPFn7tf24kRb/n4phO1rbWdbq6+q5dhFt h+8va3t37WZZYx6NONfzc3232Bxy1DUnirPd+tZV24j3jLV9pTw49SQFhC/R 0tWPopITePeTuXj6xXfw1gezse/IJc4BBxXujZ3LCFlOHUPP0igcd8nlEWKs FlP8D+OQU7+d0j2MzUC1EZprYq4M2DliYVLEuQCvuJ5rN5rx1Xfz8OhjT/Fs 7OQp00X88gReef09nL5wFX4jZPtmdy3ZfHxX7SfqtbLUfM/9dJZ+NveTqdHo vdh8nf0edT+2uDnSa/nZOYy7a+k+VpU/GKkfTctayc5dOH60VPbmhxP7mfHv 516dm0jW4vmkznEdn0wfl3SX1F/hqGXXIFStixbpp34Rz9U3tOFadSPqb7Zj 0GPasw4ad8PG5SB9aoVsmx3NJxlxarghZ1kKx1nzRocVd5HzOacuQXWl63VN SM4qxNsfz8GbH/2A1LWbcfb8FXFdAZvXQ+eVdV1YYkCFo3zUkfZ9or/fT9YS 6ZB4sqZr8RSztxN+acYa3LrZqOqCEWg+tnB4hHOJ43oHPdi+ZZvkbPEFbBwB N6bASDoo3v3Gk7XR5NtiZc1Z4XuWzdMcvmu/N35nnJu7G10bUBwabIfpq5I3 zu3ax4yoXgD1jk1Hh+p9bfOOqboC+/GW7NdxuGYido+i37iLzgEhc419qLzZ g+5Bi+caNXaHxK1T71v1IkTEi6O4IDKC3zQafXU/++P250fydeR7i6g+thBa 77RgbWYmbt9qUhiYEWis3BHlWhyDOFvWF2xgvHma/aP3cDcMJwc9Srs5Gl0c G+uM5pnEsxc/e9k6AvfYnBE/o2SN5W2UfkSUHqd9p5cVsXNoel/F6nL2F/jc sfvu1110Hn3tiWxw1P1aEVUjtdDUeBvpaau5B1Tzgmo7G8+O2b8Te4/qUiRr hJEpeUdDzoxbHNkYaenzuHts3FgM8bhT/6+eZzz5TOT/3e/z7vfh1tH32yuj 2af/9T76Bc8j9lz3ze2q2U7q3blZX4+U1SvRQthrVhg2p3Eoep+5bRv/zgwx B2N+bgFOHD/F3I+mEd/PSqRnY3VubJ3K3Yfza8naz9GFv8Z7SSRrv8Z1JIx/ fiXZG42tvW+diL6asseL8EuXL/uJZ4mDChtbyuO9x4qKB8Uzoz6inLW5OHHi FHMdxPPp3fISLz8WuxL1wI7UG/drydqvqR/iyYH7ufxasj4aWRvNfcX7zK+i c8PSxyV8EcrhalljDj8laxqXcSR57unpQ25uPnOuBWJqqe7/S9QrFG8vuOXS PZOWKF8Y+6zdeiT2nSfyt+J9PvYYv1TO4um2eM8p1s+Jdz8jXc9I9n2k/08k l/fTZ/F80ITXYcl+6+rr1UhJXcUzdxo/SOqte48RK0O9vf3Mp3zxoubni/8M Y/dxohy2W4fF4hYm0gUj5ShH82zjvc/7yTP9fbTyNxq9Fu+53U+XxNMt98vX /hq6NN6+GElOdL8S5Txqa2qQmZlqzws4dezEe8kta8SnTLyjsTWDn7vf4+nA ePpwtLL2c/Z2ouf4a/s9v4YNHUnWRisfv3TFs6vuYyfMDVuyz79G2ND8ghz0 9eleRyfXOdIzp7+RrBGXpOa4jbdH48nXSLKW0Me8j/zc7zz302cjHf+/eaex 9zEaObufjP83cvPfxBOJfJVYOYm6Z9XvSzm2yspKZK1JZ99LfsbJhY8oaxbx b/YjT8ShVZVXo2zoz5EN9/OLrnP++s/5frLkPkciWflvZe3XvP7/9t7vtxdH K3cjyivLG/Xhh3HlyhWszc5kHSX1oHoOI+QDQ+rzxA9Ec7vXr1ZHcQv90mdK /5/IXv5a7+x+fs//tTz8Xx3/l+T+fs71/rfPmd7rxYsXkZefzbOR8h2HRi1r HW2dyEzPQs31WhuPMl7N8udcXyJ/JvYdObPJ9z9HPBmK1aOxubv7nT/R+xjp Hf4SWf5vfMZ4MXoiHzX+Mx6dzU/0Dt2L5gLPnz/PskYz7/I86v3p/kK7/9zp b9U468SjQdgXxAUZyxuqZ2vsGo97xbk++hpb+7z3HYXt2l9IzWLz15hnped9 E/UmxT7H0chgomOMRifq38XmxBPJ7S+xaSPJ12j2Ybz38XP0vfseo56d6kcn vtmzZ88iJzuLYwOt1+Tn7qq6m9PL5sialEnCV0lLTUFdba3dd2PZ8iA/4+Ys sfse9DVqf0l9r2cvbR2h6olRvY56Ds4tczHPhvdR0EyIFxHvubl/lyiv/0vt bzxZS6S77vcuf64e/CV53F+y3HIW9ayofzMk9VpZWRkK8nMYXyGs/iZxP+X7 JVwq+1j2HMZdnpdtud2ItNWrcYNkjfDLFP6/FSML5AO68U6isLL1ucIKo17l 9aSMOb1hsT227hVvH8bTSSPpqZH010jxaLyY+n7vIvZ/7hcnJzp3or+N9H+j lbWfo9MS/b/8vcyj0YwL6bX163K5rzZkY1A5PVtWKFbWwhLTJhhC2+1mZKVm 4FZdg5qxvStxrbUMuPg4HE7pe+d0ZW+Cyu2Zeu5SXbNrPso9K6f7UfnrL9A7 iXR+PHkczXtNpP9G87vRyMNoZc29b0b6n3jXkOi+4t1zvONGIvHOJd8r4a+d PnkKGwvXSVkL3Strts9lOb28PKsmdGJL4x2sSc9EU0OTxNBnzkndr+qeR5d6 1NTz4WpWnGVNY6iFNJa9vDZH3lwyST+zLxjfzxrtcv9/vFrvSDOQo5GB+/1u NO/9l9i3kWQtkbzd7/kkOs9I9xW9X+W7o1nkkydOYuuWjXYPd5SshSLO/LvK yYX0TG1ActymJq9mrE2J8SDxMk3Ncccr5ODRhe66erGULJoR23byPK2h33XI 3hPumERjJ+jfayzpWH00mh6TeDHo/WRtpPc0GrmKF6fH00mJ3vNo7NxIxx/t Gkm/J3rO7r87Sz5LLWtF2zYzlmnItnWOrPFMJfthllrC57ZMnqMlLPQVy5bz XExAceXafIo2d2ZIcfe5rtty/qaxNt0YPdJ/1njWLnvuwsF243a479ktL+5e sZHsTbx3k6hmeb8Ve67YXEpsb9b95OR++iTRnnL3VI/2umP3X7wZqXh2YKR9 Kf9GGOB+HD1yBEXbNzP2vPx7yPbX6WfmLFZzRKbC5CEsc5otovoWyRphohPX rOSgMRSHqOlgV2uOS40JoWbBCZPUDOjPGKwriYebOa2DLsx84679vcatNw1d p79XB41WN8XTbfE+/0t1QzxZiX1P8eRxNH7az72O0eqveH5rbHwZzxYk8nUt 5fN4h3w4fOAgdhVvkzY0jl6zsZFsblniBY0I2QzgauVVLFn8E8sa8TUHCO8n EJDywvhKCpMueFdxpUgskghjDljMKWgFJQ84fSYgPuv3+/l7G9NXcb0wPl/A UnhOjhzKny2bs8iZqQjZOvDeeQvNbRCydaj2LU3lI8TrP4/XD+DuS0k8vxqd 70gUH48UO49m38Q7lv5cvF76RHrpfvF7vL2cMMair8TZQrK2/wAO7t0je7g1 1o9L1sIBwsYxEPYHEB4eRtgnYgghU0GPBzVXqrB6xQo0N95EwDsIw+cRx/UL OfErLlFL4dGFFCailC3ipmFeWyFThNlq+AnrMCCuX8ioGRDvTejYoJB98buQ Ia5LfKX/tRTnssRm0jissfhf9+LrRPMCaEyxsJJhU/FYK/xUhQOlP+vu9YyH 5Rfv9/HkKra/OJ7uGOnvo5WvRD0y99sL8eQ6kfy4/YB4tjfq/mmJc3v6PNhT vBMlO4tZr8XKGn2m4dxRtFScRHvlSbRVHEVr+WF0VB5BW9VJHNqagwVfvI3q cyXwtldhuPMavGL5em7A33cL/v4m+Ada4OtrQ7CvA9ZAN0K8uhAa7EbE04Ow R/w81AXL0wWTVycsXzdMfy9C/n6EAoR5MQDTNyjWEMuzoXj2DNKHNp+ExNJ3 uJYdXGDN1aR/p/lN3L93VgxGqHkv7qh+zvF0WiJZS4RV6n73sccaSV8m0imx cxqxchfvWmNlfSSdPVLPl/u+nHuV2IVDvR7s2l6MXUVb7bl1xh9wyVrawjlI W/AdUuZ9g5WzP8Xybz9CytzPserHr/Dp2y/j708/hAXffoz05XORsWoeUlbM RWbaImRkLEFmxnLk5KQiOycNWWuykJOXh4L167GxcAu2b92FncV7Ubx9F/bs 3Iv9ew7iQAlhFxzG0cNHceLYcZw6eUKsUpw5dRKnjp8QvzuBk8fF9ydOM3bq 2dPnUXb2Ai6eu4Tysku4crECV86Xo/LiZVRfuYaaymu4LnRvTVUlaq9ewY3r VWiouYZbddfFqsFtse7U16LtVj26m26ir7kBgy0N8LTcgq9N7JX2Wwh0NcLf fQvBbhFr94s1cBvGUBMMT7PQ7S3wD7UInd4u5L9b7Ik+oX8HxFfaFwNirwwK ezAkvool9gr/HBhCODjE+8cQPxviZyMg9k9wmJcVDDKuHfmxJvsYYYUfGmGf RGNCsp+q4yQbK0nhIGk8VIWJFDUvFLSifq/9D/6s5lgJSvxc9tMVFrCNr6R9 DDd/jMKjtPT5lY7nfalsUF9XP4q3bsfu4h0Y6hf37LdsDm153SbudPTjVmsP bjR2ou5WB67VteLq9WZcKL+BNTmb8Mnnc5hP99ylapy+eA2nL13H0bIrOHDq EvadvoiSUxew8/h5rNt7Evm09p3GmuKTSN14DD+tLcFPWSVYsHoHFqzYhh+X bMLshfn47odMzJmbgh8XrsbX3y/E198txKefzcEHH36Ljz7+Fh+8/wXeffdj vP3Wh3jn7Q/x0b8+xqfvf4yvPvkPPnzrXfz79bfwydvv4ZN33sX7b7whfve6 WC/jo7dfwaf/fh3/+eCf+PLjd/Htf/6NOZ9/gPlff4Tlcz5D2rwvkDXvM6xb 8i2KVv+I3RnzsStjHorT56AkbwGObl6Gw1uX4kjRShzbk4rTh/Nw/HABjh5c J/bCdlw8ux8V54/iyoXjqLpwEreuV6C1vhrNddfEuoq2m9XoaqpDd8sNdLXe QE97A/q672Cgpxn9vW3o62nDYH83vIP9jOk71O+B3xMUi7hkJZ72sEfy05K/ HCA+ZOH7BIn/nXxcn5BT4kkRfydedot4PsXfQ4QP6PPzCgm/OuT3iu+9Qu69 ch/QHgh6xM9iBcXvTZJ5Ly8zIL4PiM8GpB8TojkBPx1brpA4B2P5it+FeI8I /8lPPlSA/XfC8vWLGLSrvQNbCjcIGypkrVfss2GxjwJhhU8m8dn8xKcoYj+v 2FfDwsf3iUVzsh5vCOfKKrAqOZN52YiDMWDIv3uIN0GsAbG/+sS994h77xbP q9tjMtZFj9dCt1gd/Qa6COOiJ4i27gDauvxobfeJNYz2Dg96OgfRIY7d2daH lpY+3GnuFasbt5vbcLulHY23xVexB5oa29F0S65btbfQQKumAbdqbuJm9Q2h z2qFXqtGzdUqXK26gitilV++jEsVV1AmdOGps+dReuIsTpw4h8MHS4X/egR7 dx3Avl37hc7fjU0bNqF4WxFKdu/Bpk2FWJuXjay8HGStK0Bq3jr8lJ6NBSlr sCA1D3NX5GL2kmx8OTcN38xNx5z52fjimxR8+OliXp9+sQyffLEE//nyJ3w3 exm+/nYBPvn0e7z/4Zf44KMv8cln3+DLr2fjq2/n4MtvZuO7OXMxd/5CLJi/ CD/NW4xlC5dg9dLlSFu+AhkrVyBr9UrkpK/G+uwMbMjOwsbcLGwSqzg/G/s3 FYi9UYjSokIcKyrAqV3rUFVajNrTO1Bzchtuni3GrbIi3Lq0A41XS9Bccwit N46hreEUum9fELr+MnqarqK3qUbq+7Ym8fU2BlubMNTeLPwl4R91tWG4qxUB sVd83eJrfzuCAx1itQs/qhW+fvG7oQ60NVeL55gpnusmsbc6EBD+PuFcEfeR nzh3GcdX6FDKexghmw+V8g20x86ePoOU5DR0tHbaeHhWMKS4aRSePOFLM667 xJumr/6APqb8WWJQE6+K8Le85H9JTl/GWKQ9FZSfDzCvtNTRpK/5eoRsB4MR 5vAO+sOMcc0xM9mRgIxfA8wjHObjEn+wn3hpGfPlrlwGxP6A2E8Qe0R8L74O +sXyAQM+4iASa5i+j6DHY6Fz0EDbQBDN/WINWLjda6K+04+aDrFahnG9yYPy 2l5cqu7C5eoelFW04sS5RrFu4WRZI46fa8DxszdwpqwGpScrsP/QWZTsO45d JUfFOoI9+2gdwvYde7ClaCc2Cz+ncOM2bMjfhHW561GQU4DcNdnIzshCZspq ZCSvQlZqilwpyUL+ViEnZRXy05KRl5qMtauWIX3pQqQvmS9+Xi5+vww5yYvF 98Q3shjZqYuwJm0BMlMXID97JQpyV2NdXjo2FGSJc2ajIHst1ufmoTB/gzj/ OhQWbsImsfc2Cpu4YfN2cY27UCT8oK1FYi9u3S2ut0R8vw9btu8V97APRcW7 sTY3B//5/DPM/n42tm8rxu6d+3BQ3OfRw6U4dvgYjh89Kd4j8e8GWM/5WQ6l P064u6eELli9Kg3trV3S/pIv4bN4Posx3/0h/r0ZkLJDMkdy5hPH8wudHCA9 S3k5jkUN5vIxxHH5a1DljEPie0v+bKg8COE7hkmmFW+5PKaP8yWav1XGwCbn EJlbj30I2YtMnMGhQNjm7xCHB3EnUO+ovfQ+UYvOQzhFxAHoV9ynlGckufUR trr4Okz/S/uH8KD5XJq/JMx88X6xDwjjnbgGmIc3KP0uyemh4g9D4YsHQ/z3 oPLR5HVJTuToZXG/jsamJRz9YXG/nmE/hrx+DIj77x/yM794Z5+wF71eYUM8 aGofxM2WAdQ29aH+Tg/qb3ehruH/r+paWpuIovCfdOXGhSsXLgR3RmmRYgtd iJu4sMW4sCLoQhBaXxRTpT5ri0iU0qitpNi0iclk5j5mcjyve+d2cZhAMjOZ mXPvOec7d77vD3R2e/D1Rw92vh/ATucAvnzbhw/bXXi3tQebn3ehjbnTy08d WPvYgScb23B/dRNWVt/Dw+dbuN2CpUdvofmgDTfvvoD55lOYu/UYZudbcPHy DThz9gKcO38JGtcWodFYgOuzizA3uwAzV2bQriac6sIRWKimOGmMv26/gdvN O3DYO9J5qMZZg0axTfRniJ+YOd6II4iM67x6HnTM/2Y0Ly01F9b81YTjBy1G K8cLZgJ+nHJWl4Kz8Dmm8ZmJ35TJOZSD9BRuYgSbUXwoaq4WLnJxB11F0eYQ LeyYX9PYmdjIeyq1bZ2Ts1+prkMYQ2md7LkekPHqcr0PLjEvPMBSP1r1ace+ x3rieM25xy3ppvqSuY0yPMYYv8/I8PcZjQHm2aU6WTS98smUYwXnQznlRBV/ Jpvg/xrjPpQjEf/XCPelXGlEOgkUJ3A7zEoYjEr0cfwNfv43Rht66HYPodVa gWdrr+Do7whrUQuDkxyGGDgGWJf2+4N6TRrV19q3JL+gntQG+try0jLu21cc RddpRExJ6yO6H9xbr33Gk1YGafswriv9p4I5i42ebxrrKx91AyrhuWaT3i1p L0VuUhN+N2VjbiDyQeaeV61kmjOsvHPNz0w51WLflfFHr/WZFZ5dF7SePHOC eyvcMeJ/ek02rCkQDo7II2RDr8Pr3GzjfTqNQ2gvJIy7QnIV7rco9iLHqzGr OAatzOM0rhgfjBoEoUco2ltcU7L+R8FGmDnN06x3m1d1LFIdEsaFVM9djifG +6iZkAtFjWbJWziWZKI3l2EO8/vXPtxrtdBn2hwTKdeh3IYxqlws1YAqdV0G XTfVPhvr6xjbl+GkfyzabITthWdlRdeE4iM9y1y1BlhnnDTasQ5yw2NwxCWb Dbk2YjzX6Lxmy6h/HrlFnI/P1mLstYQbm0x9oYpr65jPnWoi1uQuuIcrnEOV +JRLdKmtahKE3j6d0yc4lmowhR6yYFrTZO1mJesB0UyF96XCMVNWrFPgEpw0 +lSCM4umG8Xi+r3ciG2Zem2x1ViPl1GPI9UHEl9zrOHug++x/gHdaxrLU956 zR14/iySd3AL0fIRnRvVxJv4qAlj8oBTa+yI3PlGY4tLsBbRkqE4npMmDuUL aGP8vPezizlni9dLUq7P341FE13yMgv/Aa4hFxM= "], {{0, 190.}, {155., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{155., 190.}, PlotRange->{{0, 155.}, {0, 190.}}]], "Input",ExpressionUUID->"6a55b2ac-cfff-\ 4a65-a5f9-b8486e87b5c9"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"UnitCirclePoints", "[", "5", "]"}], ",", RowBox[{"c", "=", RowBox[{"CirclePoints", "[", RowBox[{ RowBox[{"1", "/", "2"}], ",", "5"}], "]"}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"v", "=", RowBox[{"Join", "[", RowBox[{"v", ",", RowBox[{"Mean", "/@", RowBox[{"Partition", "[", RowBox[{"c", ",", "2", ",", "1", ",", "1"}], "]"}]}], ",", RowBox[{"CirclePoints", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"1", "/", "4"}], ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "5"}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "@", RowBox[{"Length", "@", "v"}]}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", RowBox[{ RowBox[{"e", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", "1", ",", "6", ",", "11", ",", "7", ",", "12", ",", "8", ",", "13", ",", "9", ",", "14", ",", "10", ",", "15", ",", "6"}], "]"}], ",", RowBox[{"e", "[", RowBox[{ "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "16"}], "]"}], ",", RowBox[{"{", RowBox[{"11", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "10"}], "}"}]}], "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input", CellLabel->"In[3]:=",ExpressionUUID->"d0e406fd-bdee-4a34-8397-f730a6da77b7"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 6}, {6, 11}, { 11, 7}, {7, 12}, {12, 8}, {8, 13}, {13, 9}, {9, 14}, {14, 10}, {10, 15}, {15, 6}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 16}, {11, 17}, {12, 18}, {13, 19}, {14, 20}, {2, 7}, {3, 8}, {4, 9}, { 5, 10}}}, {VertexLabels -> {Automatic}, VertexCoordinates -> {{ Rational[1, 2], Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { Rational[ 1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2] (-1 + 5^Rational[1, 2])}, { 0, Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, { Rational[-1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {0, Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] ( Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2] + Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 2] (Rational[1, 8] (-1 - 5^Rational[1, 2]) + Rational[1, 8] (-1 + 5^Rational[1, 2]))}, { Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (Rational[1, 2] + Rational[1, 8] (-1 + 5^Rational[1, 2]))}, { Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (Rational[1, 2] + Rational[1, 8] (-1 + 5^Rational[1, 2]))}, { Rational[1, 2] ( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2] + Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 2] (Rational[1, 8] (-1 - 5^Rational[1, 2]) + Rational[1, 8] (-1 + 5^Rational[1, 2]))}, { 0, Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0, Rational[-1, 4]}, { Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAB/aVq4t5VrI+27/iy/TZ5Y9f2vMGL+Q9demC Pbo8lL8fjQ+Xj4sqZVE+f8keYs5NHOYxMDxhduPusHhtjy7/P8RFmC//nn3A S33z98cO41K/H5d5DCjgAQ71CPejy0Pt349qP0I91H/7Yf5D9++663e6Jebf gOo7gCEPcxmMj+5fdP3o8hD+OfuQX6fP7v54BcO/RMrvh8mj+5eQPNR9+9H8 tx/N/zjl0f2P3b/noP7dvB/dPxDzDkHD8ySGe6Hy+2Hy6O6BqYeZj+4e1PC6 gMFHdx8O+f3o7ofx0d2Pg78fFx/dfAARLaTW "], 0.019434941751084317`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0.5, -0.6881909602355868}, 0.019434941751084317], InsetBox["1", Offset[{2, 2}, {0.5194349417510843, -0.6687560184845025}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 0.2628655560595668}, 0.019434941751084317], InsetBox["2", Offset[{2, 2}, {0.8284519361260317, 0.28230049781065114}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.8506508083520399}, 0.019434941751084317], InsetBox["3", Offset[{2, 2}, {0.019434941751084317, 0.8700857501031242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 0.2628655560595668}, 0.019434941751084317], InsetBox["4", Offset[{2, 2}, {-0.7895820526238632, 0.28230049781065114}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -0.6881909602355868}, 0.019434941751084317], InsetBox["5", Offset[{2, 2}, {-0.4805650582489157, -0.6687560184845025}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.29389262614623657`, -0.4045084971874737}, 0.019434941751084317], InsetBox["6", Offset[{2, 2}, {0.31332756789732086, -0.38507355543638944}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.47552825814757677`, 0.15450849718747373`}, 0.019434941751084317], InsetBox["7", Offset[{2, 2}, {0.4949631998986611, 0.17394343893855804}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.019434941751084317], InsetBox["8", Offset[{2, 2}, {0.019434941751084317, 0.5194349417510843}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.47552825814757677`, 0.15450849718747373`}, 0.019434941751084317], InsetBox["9", Offset[{2, 2}, {-0.4560933163964924, 0.17394343893855804}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.29389262614623657`, -0.4045084971874737}, 0.019434941751084317], InsetBox["10", Offset[{2, 2}, {-0.2744576843951523, -0.38507355543638944}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.38471044214690664`, -0.125}, 0.019434941751084317], InsetBox["11", Offset[{2, 2}, {0.40414538389799093, -0.10556505824891568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.23776412907378838`, 0.32725424859373686`}, 0.019434941751084317], InsetBox["12", Offset[{2, 2}, {0.2571990708248727, 0.34668919034482115}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.23776412907378838`, 0.32725424859373686`}, 0.019434941751084317], InsetBox["13", Offset[{2, 2}, {-0.21832918732270407, 0.34668919034482115}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.38471044214690664`, -0.125}, 0.019434941751084317], InsetBox["14", Offset[{2, 2}, {-0.36527550039582235, -0.10556505824891568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.4045084971874737}, 0.019434941751084317], InsetBox["15", Offset[{2, 2}, {0.019434941751084317, -0.38507355543638944}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.25}, 0.019434941751084317], InsetBox["16", Offset[{2, 2}, {0.019434941751084317, -0.23056505824891568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.23776412907378838`, -0.07725424859373686}, 0.019434941751084317], InsetBox["17", Offset[{2, 2}, {0.2571990708248727, -0.057819306842652546}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.14694631307311828`, 0.20225424859373686`}, 0.019434941751084317], InsetBox["18", Offset[{2, 2}, {0.1663812548242026, 0.22168919034482118}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.14694631307311828`, 0.20225424859373686`}, 0.019434941751084317], InsetBox["19", Offset[{2, 2}, {-0.12751137132203397, 0.22168919034482118}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.23776412907378838`, -0.07725424859373686}, 0.019434941751084317], InsetBox["20", Offset[{2, 2}, {-0.21832918732270407, -0.057819306842652546}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"512a5081-3e74-433a-9dc1-d0df3860c10a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "@", "g"}]], "Input", CellLabel->"In[22]:=",ExpressionUUID->"77ca0b0f-6250-48b9-9b0a-b1b50158c6a0"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[22]:=",ExpressionUUID->"bc120d34-edbc-4c3b-b951-73b91c97a3ea"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[22]:=",ExpressionUUID->"737d2373-8ab9-450b-ba84-d5f8032574e8"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "12433", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 12433, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[22]:=",ExpressionUUID->"8b2f3ba9-f045-4cf4-a6ec-f1c52ca2f47d"] }, Open ]], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel->"Out[22]=",ExpressionUUID->"67b71a61-faf3-41b5-9e89-afb5cb80c1e4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["All", "Subsubsection",ExpressionUUID->"99dc9a1f-6677-443b-a40f-4dc3008776eb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[13]:=",ExpressionUUID->"4fb6db46-aa12-4631-9e90-aa8297ef9833"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483], DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483], DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483], DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483], DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483], DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483], DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483], DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483], DiskBox[19, 0.09709139882090483], DiskBox[20, 0.09709139882090483]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 8] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 8] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8]}, { Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (3 + 5^Rational[1, 2])}, { Rational[1, 8] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 16] (1 + 5^Rational[1, 2])}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { Root[5 - 80 #^2 + 256 #^4& , 2, 0], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0, Rational[1, 2]}, { Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (3 + 5^Rational[1, 2])}, { Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 8] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8]}, {0, Rational[-1, 4]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7CtXF/OsZH22Pz6qlEX5/KH9K75Mn13++KQ9 hH65nzd4Ie+pSxfs11+/0y0x/4Y9RN+B/f9DXIT58s/tD/l1+uzuj1fsofrt YfphNjxlduPusHhtD1F/zz7gpb75+2OH7ePA6i9B7bu5H6YenQ9zJ9Q+e5h9 MPsh5m2Gqn+wH9U/l+xh5kH9Y4/mn/0w/6DadwHqv3v7Ye6F2Q+zDwALcY1w "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.033494257641235356`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.033494257641235356], DiskBox[2, 0.033494257641235356], DiskBox[3, 0.033494257641235356], DiskBox[4, 0.033494257641235356], DiskBox[5, 0.033494257641235356], DiskBox[6, 0.033494257641235356], DiskBox[7, 0.033494257641235356], DiskBox[8, 0.033494257641235356], DiskBox[9, 0.033494257641235356], DiskBox[10, 0.033494257641235356], DiskBox[11, 0.033494257641235356], DiskBox[12, 0.033494257641235356], DiskBox[13, 0.033494257641235356], DiskBox[14, 0.033494257641235356], DiskBox[15, 0.033494257641235356], DiskBox[16, 0.033494257641235356], DiskBox[17, 0.033494257641235356], DiskBox[18, 0.033494257641235356], DiskBox[19, 0.033494257641235356], DiskBox[20, 0.033494257641235356]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 8] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 8] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Root[5 - 80 #^2 + 256 #^4& , 2, 0], Rational[1, 8] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {0, Rational[-1, 2]}, { Root[5 - 80 #^2 + 256 #^4& , 2, 0], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 8] (1 + 5^Rational[1, 2])}, {0, Rational[1, 2]}, { Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, { Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Rational[-1, 4]}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, { Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, { Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7CtXF/OsZH22Pz6qlEX5/KH9K75Mn13++KT9 /xAXYb78e/YBL/XN3x87DBV/uZ83eCHvqUsX7KHq7WHq48D8S1B1N9H128Ns fMrsxt1h8RrOh7pjP5p+qHsu2cPMQ1MPNf/cfoj5m9HV74eZC/Mf1P32MPej mndhP9S9+2H+hZpvDzMfTd4eAN+njEY= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.033494257641235356`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.033494257641235356], DiskBox[2, 0.033494257641235356], DiskBox[3, 0.033494257641235356], DiskBox[4, 0.033494257641235356], DiskBox[5, 0.033494257641235356], DiskBox[6, 0.033494257641235356], DiskBox[7, 0.033494257641235356], DiskBox[8, 0.033494257641235356], DiskBox[9, 0.033494257641235356], DiskBox[10, 0.033494257641235356], DiskBox[11, 0.033494257641235356], DiskBox[12, 0.033494257641235356], DiskBox[13, 0.033494257641235356], DiskBox[14, 0.033494257641235356], DiskBox[15, 0.033494257641235356], DiskBox[16, 0.033494257641235356], DiskBox[17, 0.033494257641235356], DiskBox[18, 0.033494257641235356], DiskBox[19, 0.033494257641235356], DiskBox[20, 0.033494257641235356]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 8] (-1 + 5^Rational[1, 2]), Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (1 - 5^Rational[1, 2]), Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2]), Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0]}, { Rational[-1, 2], 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 + 5^Rational[1, 2]), Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 - 5^Rational[1, 2]), Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2]), Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, { Rational[1, 8] (1 - 5^Rational[1, 2]), Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], 0}, {Rational[1, 8] (-1 - 5^Rational[1, 2]), Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scP2/0NchPny7+2H8vdD+fYMYPABSjMw rPgyfXb545f746JKWZTPP9oP4d+0jwfzL0HVPdiPpt4eph5i/mWo+e/2o9lv DzVvP8w8mPkQ/ZfQ3YduHsx+NPfe3I+q/7I9qv1wvj2a/+zR3A8LD7j/AIYY kNA= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.041401179300458654`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041401179300458654], DiskBox[2, 0.041401179300458654], DiskBox[3, 0.041401179300458654], DiskBox[4, 0.041401179300458654], DiskBox[5, 0.041401179300458654], DiskBox[6, 0.041401179300458654], DiskBox[7, 0.041401179300458654], DiskBox[8, 0.041401179300458654], DiskBox[9, 0.041401179300458654], DiskBox[10, 0.041401179300458654], DiskBox[11, 0.041401179300458654], DiskBox[12, 0.041401179300458654], DiskBox[13, 0.041401179300458654], DiskBox[14, 0.041401179300458654], DiskBox[15, 0.041401179300458654], DiskBox[16, 0.041401179300458654], DiskBox[17, 0.041401179300458654], DiskBox[18, 0.041401179300458654], DiskBox[19, 0.041401179300458654], DiskBox[20, 0.041401179300458654]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { 0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/ /HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/ /3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ lwg= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247], DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247], DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247], DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247], DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247], DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247], DiskBox[13, 0.05374005336484247], DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247], DiskBox[16, 0.05374005336484247], DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247], DiskBox[19, 0.05374005336484247], DiskBox[20, 0.05374005336484247]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 44] ( 11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 8] 11^Rational[-1, 2] ( 6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), ( Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] + 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] ( Rational[1, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] + 6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 44] (22^Rational[1, 2] - 110^ Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 88] (-110^Rational[1, 2] - 10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[-1, 4] 11^Rational[-1, 2] ( 2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] + 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] ( Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (403 + 125 5^Rational[1, 2] - 12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 88] ( 2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 88] (-22^Rational[1, 2] - 2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 8] 11^Rational[-1, 2] (-4 + 2 5^Rational[1, 2] + 3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] 11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 176] (3 22^Rational[1, 2] (-3 + 5^Rational[1, 2]) + 4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] ( Rational[1, 11] (157 + 58 5^Rational[1, 2] - 4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] 11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 8] 11^Rational[-1, 2] ((63 - 11 5^Rational[1, 2])^Rational[1, 2] + 6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] + 12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 + 121 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6 v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7 ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72 0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF 8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/ 7aH+3Y8eXgCx06o/ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487], DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487], DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487], DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487], DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487], DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487], DiskBox[13, 0.05496546668806487], DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487], DiskBox[16, 0.05496546668806487], DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487], DiskBox[19, 0.05496546668806487], DiskBox[20, 0.05496546668806487]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3 7Edzz3409eju24/mPnT/70fz/34AINyj3g== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856], DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856], DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856], DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856], DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856], DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856], DiskBox[13, 0.05155676257133856], DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856], DiskBox[16, 0.05155676257133856], DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856], DiskBox[19, 0.05155676257133856], DiskBox[20, 0.05155676257133856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 10] (125 + 47 5^Rational[1, 2] + 4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] + 13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] + 4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - 4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] 5^Rational[-1, 2] ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] 5^Rational[-1, 2] ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 20] ((30 (5 + 5^Rational[1, 2]))^ Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4 3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] + 4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 40] ( 2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/ 3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/ 6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH V2ePzof61x7qXww+AB9DsJQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215], DiskBox[3, 0.055830735019350215], DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215], DiskBox[6, 0.055830735019350215], DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215], DiskBox[9, 0.055830735019350215], DiskBox[10, 0.055830735019350215], DiskBox[11, 0.055830735019350215], DiskBox[12, 0.055830735019350215], DiskBox[13, 0.055830735019350215], DiskBox[14, 0.055830735019350215], DiskBox[15, 0.055830735019350215], DiskBox[16, 0.055830735019350215], DiskBox[17, 0.055830735019350215], DiskBox[18, 0.055830735019350215], DiskBox[19, 0.055830735019350215], DiskBox[20, 0.055830735019350215]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u /vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh 8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA fV6fmg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524], DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524], DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524], DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524], DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524], DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524], DiskBox[13, 0.05725601845709524], DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524], DiskBox[16, 0.05725601845709524], DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524], DiskBox[19, 0.05725601845709524], DiskBox[20, 0.05725601845709524]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7 P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv QvxrD/M/Gn8/AODtoHo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127], DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127], DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127], DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127], DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127], DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127], DiskBox[13, 0.05479908867915127], DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127], DiskBox[16, 0.05479908867915127], DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127], DiskBox[19, 0.05479908867915127], DiskBox[20, 0.05479908867915127]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224], DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224], DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224], DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224], DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224], DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224], DiskBox[13, 0.05526026899519224], DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224], DiskBox[16, 0.05526026899519224], DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224], DiskBox[19, 0.05526026899519224], DiskBox[20, 0.05526026899519224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 5^Rational[-1, 2] (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] 5^Rational[-1, 2] (2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv 3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/ uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758], DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758], DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758], DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758], DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758], DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758], DiskBox[13, 0.08280002173912758], DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758], DiskBox[16, 0.08280002173912758], DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758], DiskBox[19, 0.08280002173912758], DiskBox[20, 0.08280002173912758]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {- Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {- Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {- Cos[Rational[3, 20] Pi], Sin[ Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3 xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz 0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.041904067400022615`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615], DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615], DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615], DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615], DiskBox[11, 0.041904067400022615], DiskBox[12, 0.041904067400022615], DiskBox[13, 0.041904067400022615], DiskBox[14, 0.041904067400022615], DiskBox[15, 0.041904067400022615], DiskBox[16, 0.041904067400022615], DiskBox[17, 0.041904067400022615], DiskBox[18, 0.041904067400022615], DiskBox[19, 0.041904067400022615], DiskBox[20, 0.041904067400022615]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+ /QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/ 7GH+QbPPAU1+P7q9AMNXjqA= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+ /QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/ 7GH+QbPPAU1+P7q9AMNXjqA= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.1297526801341691]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.1297526801341691], DiskBox[2, 0.1297526801341691], DiskBox[3, 0.1297526801341691], DiskBox[4, 0.1297526801341691], DiskBox[5, 0.1297526801341691], DiskBox[6, 0.1297526801341691], DiskBox[7, 0.1297526801341691], DiskBox[8, 0.1297526801341691], DiskBox[9, 0.1297526801341691], DiskBox[10, 0.1297526801341691], DiskBox[11, 0.1297526801341691], DiskBox[12, 0.1297526801341691], DiskBox[13, 0.1297526801341691], DiskBox[14, 0.1297526801341691], DiskBox[15, 0.1297526801341691], DiskBox[16, 0.1297526801341691], DiskBox[17, 0.1297526801341691], DiskBox[18, 0.1297526801341691], DiskBox[19, 0.1297526801341691], DiskBox[20, 0.1297526801341691]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 3}, {4, 2}, {1, 3}, {5, 0}, {2, 2}, {4, 1}, {1, 1}, {3, 0}, {3, 4}, {5, 4}, {2, 1}, {3, 1}, {4, 3}, {1, 4}, {6, 1}, {1, 0}, {3, 3}, {5, 3}, {2, 3}, {5, 1}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo4HCC0AJRmgNIf7FHlRWDyDKjqYDRMP0wfOg0z B5e9Imh8XO6A8WHqcIlL4HAPuv3o/oO7E4f8B3sAn3kVMA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.10816653826391967`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.10816653826391967], DiskBox[2, 0.10816653826391967], DiskBox[3, 0.10816653826391967], DiskBox[4, 0.10816653826391967], DiskBox[5, 0.10816653826391967], DiskBox[6, 0.10816653826391967], DiskBox[7, 0.10816653826391967], DiskBox[8, 0.10816653826391967], DiskBox[9, 0.10816653826391967], DiskBox[10, 0.10816653826391967], DiskBox[11, 0.10816653826391967], DiskBox[12, 0.10816653826391967], DiskBox[13, 0.10816653826391967], DiskBox[14, 0.10816653826391967], DiskBox[15, 0.10816653826391967], DiskBox[16, 0.10816653826391967], DiskBox[17, 0.10816653826391967], DiskBox[18, 0.10816653826391967], DiskBox[19, 0.10816653826391967], DiskBox[20, 0.10816653826391967]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7 FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHbvm7L/hoO37f7bZcr sJ3v+bo/lfWzwbuWH/YVbqpqyUsf2vvqhexqmfXe/tyMc3I34y/t1+KeoHOU 9ed+r8i5E1ZK3LVfc+4//+nv7/YXWfWHV3te2896wlD5489X9kvPXetkld+7 H+ofe5h/wt5oLF76/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX 9m+Clj9Trj9sf2PNC8sXx1/tT5/x89QnvlX7756r3rGB+5d9v8H8zUe+Pd// p3L6ojmXbu4HAJB/qlE= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {2, 0}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2, 0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 4] 5^Rational[-1, 2] (-2 - (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (-2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/ f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69 7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044], DiskBox[3, 0.025587335982012044], DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044], DiskBox[6, 0.025587335982012044], DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044], DiskBox[9, 0.025587335982012044], DiskBox[10, 0.025587335982012044], DiskBox[11, 0.025587335982012044], DiskBox[12, 0.025587335982012044], DiskBox[13, 0.025587335982012044], DiskBox[14, 0.025587335982012044], DiskBox[15, 0.025587335982012044], DiskBox[16, 0.025587335982012044], DiskBox[17, 0.025587335982012044], DiskBox[18, 0.025587335982012044], DiskBox[19, 0.025587335982012044], DiskBox[20, 0.025587335982012044]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164], DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164], DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164], DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164], DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164], DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164], DiskBox[13, 0.06701916846996164], DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164], DiskBox[16, 0.06701916846996164], DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164], DiskBox[19, 0.06701916846996164], DiskBox[20, 0.06701916846996164]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575], DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575], DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575], DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575], DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575], DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575], DiskBox[13, 0.06522520940839575], DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575], DiskBox[16, 0.06522520940839575], DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575], DiskBox[19, 0.06522520940839575], DiskBox[20, 0.06522520940839575]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809], DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809], DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809], DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809], DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809], DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809], DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809], DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809], DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809], DiskBox[19, 0.0476951806600809], DiskBox[20, 0.0476951806600809]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795], DiskBox[3, 0.054218794707743795], DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795], DiskBox[6, 0.054218794707743795], DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795], DiskBox[9, 0.054218794707743795], DiskBox[10, 0.054218794707743795], DiskBox[11, 0.054218794707743795], DiskBox[12, 0.054218794707743795], DiskBox[13, 0.054218794707743795], DiskBox[14, 0.054218794707743795], DiskBox[15, 0.054218794707743795], DiskBox[16, 0.054218794707743795], DiskBox[17, 0.054218794707743795], DiskBox[18, 0.054218794707743795], DiskBox[19, 0.054218794707743795], DiskBox[20, 0.054218794707743795]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998], DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998], DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998], DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998], DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998], DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998], DiskBox[13, 0.06025728525421998], DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998], DiskBox[16, 0.06025728525421998], DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998], DiskBox[19, 0.06025728525421998], DiskBox[20, 0.06025728525421998]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[13]=",ExpressionUUID->"b3a3fdf7-f777-4739-82c5-4aa7aa531c4d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Inexact", "Subsubsection",ExpressionUUID->"42ca6f6b-8aa2-4475-9f15-30dc033ae241"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Select", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"(", RowBox[{ RowBox[{"!", RowBox[{"FreeQ", "[", RowBox[{ RowBox[{"GraphEmbedding", "[", "#", "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}], ")"}]}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[12]:=",ExpressionUUID->"1fe60508-c88b-4a93-bcde-32f1df616dfa"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483], DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483], DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483], DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483], DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483], DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483], DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483], DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483], DiskBox[19, 0.09709139882090483], DiskBox[20, 0.09709139882090483]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224], DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224], DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224], DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224], DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224], DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224], DiskBox[13, 0.05526026899519224], DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224], DiskBox[16, 0.05526026899519224], DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224], DiskBox[19, 0.05526026899519224], DiskBox[20, 0.05526026899519224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758], DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758], DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758], DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758], DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758], DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758], DiskBox[13, 0.08280002173912758], DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758], DiskBox[16, 0.08280002173912758], DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758], DiskBox[19, 0.08280002173912758], DiskBox[20, 0.08280002173912758]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+ /QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/ 7GH+QbPPAU1+P7q9AMNXjqA= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+ /QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/ 7GH+QbPPAU1+P7q9AMNXjqA= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.1297526801341691]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.1297526801341691], DiskBox[2, 0.1297526801341691], DiskBox[3, 0.1297526801341691], DiskBox[4, 0.1297526801341691], DiskBox[5, 0.1297526801341691], DiskBox[6, 0.1297526801341691], DiskBox[7, 0.1297526801341691], DiskBox[8, 0.1297526801341691], DiskBox[9, 0.1297526801341691], DiskBox[10, 0.1297526801341691], DiskBox[11, 0.1297526801341691], DiskBox[12, 0.1297526801341691], DiskBox[13, 0.1297526801341691], DiskBox[14, 0.1297526801341691], DiskBox[15, 0.1297526801341691], DiskBox[16, 0.1297526801341691], DiskBox[17, 0.1297526801341691], DiskBox[18, 0.1297526801341691], DiskBox[19, 0.1297526801341691], DiskBox[20, 0.1297526801341691]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7 FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHbvm7L/hoO37f7bZcr sJ3v+bo/lfWzwbuWH/YVbqpqyUsf2vvqhexqmfXe/tyMc3I34y/t1+KeoHOU 9ed+r8i5E1ZK3LVfc+4//+nv7/YXWfWHV3te2896wlD5489X9kvPXetkld+7 H+ofe5h/wt5oLF76/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX 9m+Clj9Trj9sf2PNC8sXx1/tT5/x89QnvlX7756r3rGB+5d9v8H8zUe+Pd// p3L6ojmXbu4HAJB/qlE= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164], DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164], DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164], DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164], DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164], DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164], DiskBox[13, 0.06701916846996164], DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164], DiskBox[16, 0.06701916846996164], DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164], DiskBox[19, 0.06701916846996164], DiskBox[20, 0.06701916846996164]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575], DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575], DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575], DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575], DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575], DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575], DiskBox[13, 0.06522520940839575], DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575], DiskBox[16, 0.06522520940839575], DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575], DiskBox[19, 0.06522520940839575], DiskBox[20, 0.06522520940839575]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809], DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809], DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809], DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809], DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809], DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809], DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809], DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809], DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809], DiskBox[19, 0.0476951806600809], DiskBox[20, 0.0476951806600809]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795], DiskBox[3, 0.054218794707743795], DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795], DiskBox[6, 0.054218794707743795], DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795], DiskBox[9, 0.054218794707743795], DiskBox[10, 0.054218794707743795], DiskBox[11, 0.054218794707743795], DiskBox[12, 0.054218794707743795], DiskBox[13, 0.054218794707743795], DiskBox[14, 0.054218794707743795], DiskBox[15, 0.054218794707743795], DiskBox[16, 0.054218794707743795], DiskBox[17, 0.054218794707743795], DiskBox[18, 0.054218794707743795], DiskBox[19, 0.054218794707743795], DiskBox[20, 0.054218794707743795]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998], DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998], DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998], DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998], DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998], DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998], DiskBox[13, 0.06025728525421998], DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998], DiskBox[16, 0.06025728525421998], DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998], DiskBox[19, 0.06025728525421998], DiskBox[20, 0.06025728525421998]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[12]=",ExpressionUUID->"d180ff1a-2ad4-4f38-a6e5-4eb8184f5f2d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Embedding types", "Subsubsection",ExpressionUUID->"10029b6f-dd88-4dbb-88d1-a23d7f426fe6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphDataEmbeddings", "[", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[129]:=",ExpressionUUID->"9845f8e1-6b8c-4095-b4bc-3455ea219da2"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "SpringElectricalEmbedding", PlotLabel -> "SpringElectricalEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Sv8aEYr/y/7xBeNTgeefbA39ry9pMeCxWHvAtMj 0xJ/21s8Uk7vMHlu38jMJy9t89v+kOXKC3M1f9kzQMG91YeWJjP8ss/ovB78 IOef/TuBcPc31iwObJZ5ycfFvti/nHbbWcHzuf36s2z5Nz59tn/7ueRo6cuf 9mxCP5++WMbu4CR10/gkJ5fD8bM3b0lu+WD/7P6W3B/HWB0WdB1rPfllu/2B bbZmS/9zOly5/u3/1dv/7Bkc5Pearimzf7Q5fpt70Qf7FUuyGiZUPrQX+N6q c1VzK9xdB/ZeMHk1+5/9po0MFjIhjA4NKpFq6gaX7e1C/wUsmfPRPsHqWtTk 25fsXauvHtpvw+jApqLBlOHH6rBL/MCH7Rkf7ZeUR+7OcWZ1EIn11ju9mtWB ee5U95C/bA5+wUEfrNgf2m/T9Hmy/DmbAwB5u5Xq "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.032039153491364866`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.032039153491364866], DiskBox[2, 0.032039153491364866], DiskBox[3, 0.032039153491364866], DiskBox[4, 0.032039153491364866], DiskBox[5, 0.032039153491364866], DiskBox[6, 0.032039153491364866], DiskBox[7, 0.032039153491364866], DiskBox[8, 0.032039153491364866], DiskBox[9, 0.032039153491364866], DiskBox[10, 0.032039153491364866], DiskBox[11, 0.032039153491364866], DiskBox[12, 0.032039153491364866], DiskBox[13, 0.032039153491364866], DiskBox[14, 0.032039153491364866], DiskBox[15, 0.032039153491364866], DiskBox[16, 0.032039153491364866], DiskBox[17, 0.032039153491364866], DiskBox[18, 0.032039153491364866], DiskBox[19, 0.032039153491364866], DiskBox[20, 0.032039153491364866]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpringElectricalEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -222.525}, {Center, Center}, {360.00000000000006, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "SpringEmbedding", PlotLabel -> "SpringEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbVOpvL9pyR/7qO5zaZXz/tmLrEvXrAh/YP85cItm ket3+7d3Zb+xLWZwaLPbwvxFit3h7Z2N+tuKmB1e/cs0XJz4zr5J1UWzRuWX feVu50e7fD/YX2PTfbD+7Gf7A7nLtQ6eXmhf/zKm5lQYm8O3e/aCS959tw/9 +yW/xfytffXm413RPAwOG06l/mKLe2GfM03nbuTUW/YX9HU2p3z8a39Ass5p T/Mme4/9zy9/WXXevkpTXDwi54F9XU/QoQ4nToe8Two8GzcxOXB9LRK/uZLD YVJ2jr3lyS/24VUc0z1sWRxqpJ8/XyjJ4pAe92TxzCpGBwYoWLVR53DHbg6H 0BJ3fRuvR/YwcZuwmieVfMwOv5kO3O9s+2j/wkf4vWoOqwOD793fpbNu2Qcl z2tfK/3Tnrms7mTW7+/2Ds++TTt8l80BAMYak7c= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.03135835718639103]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03135835718639103], DiskBox[2, 0.03135835718639103], DiskBox[3, 0.03135835718639103], DiskBox[4, 0.03135835718639103], DiskBox[5, 0.03135835718639103], DiskBox[6, 0.03135835718639103], DiskBox[7, 0.03135835718639103], DiskBox[8, 0.03135835718639103], DiskBox[9, 0.03135835718639103], DiskBox[10, 0.03135835718639103], DiskBox[11, 0.03135835718639103], DiskBox[12, 0.03135835718639103], DiskBox[13, 0.03135835718639103], DiskBox[14, 0.03135835718639103], DiskBox[15, 0.03135835718639103], DiskBox[16, 0.03135835718639103], DiskBox[17, 0.03135835718639103], DiskBox[18, 0.03135835718639103], DiskBox[19, 0.03135835718639103], DiskBox[20, 0.03135835718639103]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpringEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -222.525}, {Center, Center}, {360.00000000000006, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "LayeredEmbedding", PlotLabel -> "LayeredEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLVh8SnLiwkv2EJrJ4Sq/bcJXz+/2EJrdgQEKZq5Z vyzy02+oukf2MD6MFkATh6j7ZM+ABmDmwuRh9sHsh4mjmw+jYebA1MHcg26f AJo4unqYfPFBZtvDX1kcUO1ncoDZB3Mvqr8Q7gQAJmiK3w== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.029598672627332637`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029598672627332637], DiskBox[2, 0.029598672627332637], DiskBox[3, 0.029598672627332637], DiskBox[4, 0.029598672627332637], DiskBox[5, 0.029598672627332637], DiskBox[6, 0.029598672627332637], DiskBox[7, 0.029598672627332637], DiskBox[8, 0.029598672627332637], DiskBox[9, 0.029598672627332637], DiskBox[10, 0.029598672627332637], DiskBox[11, 0.029598672627332637], DiskBox[12, 0.029598672627332637], DiskBox[13, 0.029598672627332637], DiskBox[14, 0.029598672627332637], DiskBox[15, 0.029598672627332637], DiskBox[16, 0.029598672627332637], DiskBox[17, 0.029598672627332637], DiskBox[18, 0.029598672627332637], DiskBox[19, 0.029598672627332637], DiskBox[20, 0.029598672627332637]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LayeredEmbedding\"", TraditionalForm]], TraditionalForm], {972., -222.525}, {Center, Center}, {360., 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "LayeredDigraphEmbedding", PlotLabel -> "LayeredDigraphEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxtlgtQVFUYgM/C8n6tLComYWK6icSARYRj/GdEMB0CpkTRitTQFPFR9kBF IwMVNEcFJ2AVEwkfUeFS5AM9KoFCorGVoSihEIrLY1kexjvu69zh6D/L3Pn4 77n7n/Pt+e+ZuGzdm8vNEEI1w3/cdWS4YOFqJMJVJbI1HslSSP9HTN4ITx/H 3k+vF5n8RSaPRrJU5xN1iVdXhqX5SHWx85Dy0vOeqFO6j5mXxFKw82Sf88Q4 kV3w05mtV2KpXrm+Ex803++6oaYclWs/826WzPZFS+yKlshccvBhROJEmbfy A5wpQ1NaYFOazMrwXxp3BMt8LcXRwtU0inJWJhcyP+KGB8ocsKf+1T318rqn 7uRC5uptLw5/ZI7ozQ3vzXWibGzlwpEy/7hXZfbmH+BAufIaF/aU+eUZL3Pv 0n3TjR/bUU7ivr7alpmvzJvLvKOHim2Y+cnM315BfaN8H80MlyXWeIgPK/zW jepSw2FpPtb41Ovj4s/6OWGFyK5xl8bEXXKk+eSAqiMoSOb+Am6AA+Wtes0W vUZmy+y1lU677ClnqJ+19Wmwo/wSH3a0nipu+BZbmv/I7cqHbldsaD3qUVzY 0HyBxdvDH/l3LfixotzG+7GkLPiRWfBjQZnXc01J61nB+1HSvODHnNYj+DGj ecGPzJt4PwrKgh+ZBT/yPhT8yH1opB/E+EGMH8T4QYwfxPhBjB/E+EHUj8Qj /SDGD2L8IMYPYvwgxg9i/CDGD6J+JB7pBzF+EOMHMX4Q4wcxfhDjBzF+jDCf 92NFWcf7sRK/3whjeT+WNL+d9yPzAO/HgrLgR2Zr3o+Scibvx5zyy7wfc+zV +KtNVU0b7H0mzIpsM8OFGWrN7HVtEPPANnjjXQXeP7Z54aKzrfBT5qrmpUEK fGVZ2EHV+RZI8I0diP8J4YWbZnSu+qwZzv9gH3/BB2EcXfDe8qZH0O6Rczpm /RBscyyoNVM3weLCtfNPHBgE910BH87qbIQix89L5lUNgOrP0LHPf9UASr8/ LOZOGoDQMz1H9OOqYao/zJ9h3gfW5n1VU+9cBN+CCYcuO/RAc//q9pKjv5Bx 33xcd2/WY+i86uQIBj25bxnonpHTBTk1z4X+lVFLdjdsXvCvVyccHT+n5lZ8 A3EN8E4pv2cCU8t3U1p6H5IkZWTR7EvtcK4hcGeuvpnoQ4x3F/xmhPFrY0OS fVW4fNK0DV0HrXCxLmyV02oV3pm17MV7U61wQ2X+yux8FQ6IyfMuybPE+0jS 7OndKlyb2P2pVm2JS3fc7K+YMwp/anzTMna9Bd46JWffyiOjsLLw3B3v80p8 QfvAzM7cGSdd9elt6jHHSQ/yInRxzrjHRxetnWKOf7ep2xRd64yXNoNtUJAZ jtWdvK8Zr8bTg501aUSBswpSUyoi1LgtJCW720+B31Umrgv5XI0z2nPXr8lD WPd9aro2T409g5cfeqxCOCv/5H/lZWoc8WX6XE/DILgq6rRV/6ixx/VjDruP D4DmO8+tunY1vhqr3OGyuB8qTqYejutX4zmLTv5cMtQrvp9d8Ao+uqFczJ/O i5w3E3XBFHG8/4G+eMO3HfT5db5Rpg0LTaAVv78gYXXRXy7tINUXZYhNnVjc Bu+I9ecExL02b0ULSPOb1XA7efILBogT5+9nKHq/UNEE0vpsDkN/d5gaQVo/ t5n+yfuX1wMR17ft7syxUa51kCiuf+MHHs+kjLkNZaKf0ISVlT8m/An7RX8a 09d7Xy+7DpLfzcWZoyvTSuG86N/9x/y3bpecBTfx95Ht4O939PJxep45ln1q 198wRHkZ105WD4JCZKEfDdC8/YacIMX2fspC/+mTmWt34b3y/cOnnwljeij7 cu3k6mPKkh+Jj/LDOynz7XFPB61nkgcXJppfascdqOTzmXBeaqVcfI4LA2Xh /POQMn8cs2ukLPT/esr88qyro3zdaVf6F8dqaD1Cv7tJ81w3BC895eP8gec3 yulcu20qoVzXdHP4lXWG8qAnd6I7Ts+XTL8lTL8lTL8lTL8lTL8lTL8lTL8l TL8lUr99Y0Fkf0x9G4n+w3Oye6IZfmVRZHvaV21EW7GluEuvwGet0T+7B1uJ 0dWr58w0Bb4ZE1ka/koribrgVxObOvyeWxOZe+flFpL/iV+pqnYI7nughJd6 DUTvVuQ+uXAQbiRFhs7f/oh4fNRy2Tl9AKLSIkfDrYdE+0nNqVuJ/SDuGxKo STRs3NgH4r4hjtnaWeW6HhD3DelZm23nZf8fiPuG9GXuDMlJ7gZx3xD1hMUd 0yZ0gbhvSPCgs3N5dQeI+4bs9S/M2agzgbhviKlixrev5beDuG/ImtMnxo0u M8L/uQEdtA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{1, 2}, 0.05783410138248847], ArrowBox[{1, 3}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{1, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 4}], 0.05783410138248847], ArrowBox[{2, 9}, 0.05783410138248847], ArrowBox[{2, 17}, 0.05783410138248847], ArrowBox[{3, 12}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{3, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 18}], 0.05783410138248847], ArrowBox[{4, 10}, 0.05783410138248847], ArrowBox[{4, 13}, 0.05783410138248847], ArrowBox[{5, 6}, 0.05783410138248847], ArrowBox[{5, 7}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{5, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 8}], 0.05783410138248847], ArrowBox[{6, 11}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{6, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 15}], 0.05783410138248847], ArrowBox[{7, 14}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{7, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 16}], 0.05783410138248847], ArrowBox[{8, 19}, 0.05783410138248847], ArrowBox[{8, 20}, 0.05783410138248847], ArrowBox[{9, 10}, 0.05783410138248847], ArrowBox[{9, 11}, 0.05783410138248847], ArrowBox[{10, 15}, 0.05783410138248847], ArrowBox[{11, 19}, 0.05783410138248847], ArrowBox[{12, 13}, 0.05783410138248847], ArrowBox[{12, 14}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{13, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 16}], 0.05783410138248847], ArrowBox[{14, 20}, 0.05783410138248847], ArrowBox[{15, 16}, 0.05783410138248847], ArrowBox[{17, 18}, 0.05783410138248847], ArrowBox[ BezierCurveBox[{17, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 19}], 0.05783410138248847], ArrowBox[{18, 20}, 0.05783410138248847]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05783410138248847], DiskBox[2, 0.05783410138248847], DiskBox[3, 0.05783410138248847], DiskBox[4, 0.05783410138248847], DiskBox[5, 0.05783410138248847], DiskBox[6, 0.05783410138248847], DiskBox[7, 0.05783410138248847], DiskBox[8, 0.05783410138248847], DiskBox[9, 0.05783410138248847], DiskBox[10, 0.05783410138248847], DiskBox[11, 0.05783410138248847], DiskBox[12, 0.05783410138248847], DiskBox[13, 0.05783410138248847], DiskBox[14, 0.05783410138248847], DiskBox[15, 0.05783410138248847], DiskBox[16, 0.05783410138248847], DiskBox[17, 0.05783410138248847], DiskBox[18, 0.05783410138248847], DiskBox[19, 0.05783410138248847], DiskBox[20, 0.05783410138248847]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LayeredDigraphEmbedding\"", TraditionalForm]], TraditionalForm], {1360.8000000000002, -222.525}, {Center, Center}, {359.9999999999998, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, { InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "RadialEmbedding", PlotLabel -> "RadialEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQnfBuXpTV1Q/2JzbyfVju9dV+9ZFfJiw1X+2NIvMz 1Wd/sm8U3qPOLPvB/hSrutzuF7+h8k/tTaDydWB5BgcGKMg4d+NEa9dfqPwl +2aw/AP7cJe5YT3vWBzyoPJceY41h9wZHGD28QUk7vCpeGVfD7XPDKz/kf2V Uksn1tu/oO55ZH8dzH9lzw3Vvwas/6q9KdQ9a6HuMwTzmRwuQdXbQd0DcydM /Y9ZYfznlH7ZH4P6vwHqH0Oo/A2o/Seh/hfLiV7XfIYJLg8Ajv+IpQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.027424532118482878`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027424532118482878], DiskBox[2, 0.027424532118482878], DiskBox[3, 0.027424532118482878], DiskBox[4, 0.027424532118482878], DiskBox[5, 0.027424532118482878], DiskBox[6, 0.027424532118482878], DiskBox[7, 0.027424532118482878], DiskBox[8, 0.027424532118482878], DiskBox[9, 0.027424532118482878], DiskBox[10, 0.027424532118482878], DiskBox[11, 0.027424532118482878], DiskBox[12, 0.027424532118482878], DiskBox[13, 0.027424532118482878], DiskBox[14, 0.027424532118482878], DiskBox[15, 0.027424532118482878], DiskBox[16, 0.027424532118482878], DiskBox[17, 0.027424532118482878], DiskBox[18, 0.027424532118482878], DiskBox[19, 0.027424532118482878], DiskBox[20, 0.027424532118482878]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"RadialEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -667.575}, {Center, Center}, {360.00000000000006, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "HighDimensionalEmbedding", PlotLabel -> "HighDimensionalEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLeCm6vdz/Wl7aXXGt50TftunnFp+9NvxD/ZzKudd PDTzk73Xpcn3edqf2XcdLeabosvmwAAFHb4zMxs1P9iX6rLN336Tw4Fz73/L DpNP9i69zH8+f2Jx+DBh6sIF87bZL5kjcnG3AZNDR1ZSqL/2b/trjS+Mt0/h cpgzLX3vhNl/7WM2bYgv7P1qH/AvzmxR+y572XgWpxMxz+wb7gtp2oc222sI xiSvc2FxWJGg6cDddNh++yFDJ2WHl/Ycd2rjM1axOjhYTtQ5v/yavbn57JP8 L37aBwQqcPyd/d9eoeosow8fm8PbcAHGtIPf7WHu1soIm1EW8cU+PXfmgkdX 39sf9N37vDqDwaFAd8s1hVt/7fevPpDGkfHXXqioQbjzEZvDuqgwv7372R3e rkmNZbr72Z4/K1259S+Lg1F8+BXj82wOACPUjfg= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.03250923883572904]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03250923883572904], DiskBox[2, 0.03250923883572904], DiskBox[3, 0.03250923883572904], DiskBox[4, 0.03250923883572904], DiskBox[5, 0.03250923883572904], DiskBox[6, 0.03250923883572904], DiskBox[7, 0.03250923883572904], DiskBox[8, 0.03250923883572904], DiskBox[9, 0.03250923883572904], DiskBox[10, 0.03250923883572904], DiskBox[11, 0.03250923883572904], DiskBox[12, 0.03250923883572904], DiskBox[13, 0.03250923883572904], DiskBox[14, 0.03250923883572904], DiskBox[15, 0.03250923883572904], DiskBox[16, 0.03250923883572904], DiskBox[17, 0.03250923883572904], DiskBox[18, 0.03250923883572904], DiskBox[19, 0.03250923883572904], DiskBox[20, 0.03250923883572904]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"HighDimensionalEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -667.575}, {Center, Center}, {360.00000000000006, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "CircularEmbedding", PlotLabel -> "CircularEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfNS3/z9scv7GUNdhPny39nXxt5YszHx5B4GMPhg 7wyRt/8TApFPjiplUT7/aP/aL9Nnlz9+aQ9TxyR+tKcz88qefxB1++2g5v6F 6rOBmrMGqi8Nag4T1N5kqPpIiLj9Iqi6JRB6fxhUPZRvD+Xbr4bKp0L5KVB6 HVQc6r79jd1Jx46YXLKB+nN/ItQ9rlB7of7bX18y19L69FEbmD6oe/ZD3bM/ CqoP6u79AIDMntg= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.02261146496815286]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02261146496815286], DiskBox[2, 0.02261146496815286], DiskBox[3, 0.02261146496815286], DiskBox[4, 0.02261146496815286], DiskBox[5, 0.02261146496815286], DiskBox[6, 0.02261146496815286], DiskBox[7, 0.02261146496815286], DiskBox[8, 0.02261146496815286], DiskBox[9, 0.02261146496815286], DiskBox[10, 0.02261146496815286], DiskBox[11, 0.02261146496815286], DiskBox[12, 0.02261146496815286], DiskBox[13, 0.02261146496815286], DiskBox[14, 0.02261146496815286], DiskBox[15, 0.02261146496815286], DiskBox[16, 0.02261146496815286], DiskBox[17, 0.02261146496815286], DiskBox[18, 0.02261146496815286], DiskBox[19, 0.02261146496815286], DiskBox[20, 0.02261146496815286]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"CircularEmbedding\"", TraditionalForm]], TraditionalForm], {972., -667.575}, {Center, Center}, {360., 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "SpiralEmbedding", PlotLabel -> "SpiralEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLV5plpJv8MaeAQpgfK89+Ytc5/yxj9y44fWSGW/s Xyy5uuWE1G/7rqfW9/77f7FXKFt485z4Dvt3vOd6GBN/2se55/67IvLV/sUh Fa3LQi/s11zmnHBI9p6979UpjE90f9gfjGN/Ezjtm33ayl/aFZLX7GdJWCrf Fvxk73+TrYxz/Qf7v/qXBSImf7Y/dWG798EvV+3beq2Pe8/8ab9v+Qxes3Xf oOof2evcby8S+fzKXhls/w/7CZKul3LWvLFXAfNPwP1hwTjfNG7CB/uKvdl+ nN3noPI37IU2H7gutOwy1LxL9vceXszJVfwBNe+FvY3aYouXu1/bPwf797W9 30UGbc3Hv+3jwf57ai8hsWlfPtdZqP/e2QMAEoqaYA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.02086903877872509]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02086903877872509], DiskBox[2, 0.02086903877872509], DiskBox[3, 0.02086903877872509], DiskBox[4, 0.02086903877872509], DiskBox[5, 0.02086903877872509], DiskBox[6, 0.02086903877872509], DiskBox[7, 0.02086903877872509], DiskBox[8, 0.02086903877872509], DiskBox[9, 0.02086903877872509], DiskBox[10, 0.02086903877872509], DiskBox[11, 0.02086903877872509], DiskBox[12, 0.02086903877872509], DiskBox[13, 0.02086903877872509], DiskBox[14, 0.02086903877872509], DiskBox[15, 0.02086903877872509], DiskBox[16, 0.02086903877872509], DiskBox[17, 0.02086903877872509], DiskBox[18, 0.02086903877872509], DiskBox[19, 0.02086903877872509], DiskBox[20, 0.02086903877872509]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"SpiralEmbedding\"", TraditionalForm]], TraditionalForm], {1360.8000000000002, -667.575}, {Center, Center}, {359.9999999999998, 414.00000000000006}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, { InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "LinearEmbedding", PlotLabel -> "LinearEmbedding"}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], {Arrowheads[0.], ArrowBox[BezierCurveBox[{{19., 0.}, {18., 1.}, {17., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{19., 0.}, {15., 4.}, {11., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{19., 0.}, {13.5, 5.5}, {8., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{17., 0.}, {11.5, 5.5}, {6., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{17., 0.}, {10.5, 6.5}, {4., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{11., 0.}, {7., 4.}, {3., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{11., 0.}, {11.5, 0.5}, {12., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{8., 0.}, {6.5, 1.5}, {5., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{8., 0.}, {9., 1.}, {10., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{2., 0.}, {10., 8.}, {18., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{2., 0.}, {5.5, 3.5}, {9., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{2., 0.}, {11., 9.}, {20., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{18., 0.}, {9.5, 8.5}, {1., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{18., 0.}, {16.5, 1.5}, {15., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{9., 0.}, {11.5, 2.5}, {14., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{9., 0.}, {8., 1.}, {7., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{20., 0.}, {18., 2.}, {16., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{20., 0.}, {16.5, 3.5}, {13., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{6., 0.}, {5.5, 0.5}, {5., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{6., 0.}, {3.5, 2.5}, {1., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{5., 0.}, {10., 5.}, {15., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{1., 0.}, {8.5, 7.5}, {16., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{3., 0.}, {6.5, 3.5}, {10., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{3., 0.}, {8.5, 5.5}, {14., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{10., 0.}, {8.5, 1.5}, {7., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{14., 0.}, {13.5, 0.5}, {13., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{15., 0.}, {11., 4.}, {7., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{4., 0.}, {8., 4.}, {12., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{4., 0.}, {10., 6.}, {16., 0.}}], 0.08883792048929665]}, {Arrowheads[0.], ArrowBox[BezierCurveBox[{{12., 0.}, {12.5, 0.5}, {13., 0.}}], 0.08883792048929665]}}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{19., 0.}, 0.08883792048929665], DiskBox[{17., 0.}, 0.08883792048929665], DiskBox[{11., 0.}, 0.08883792048929665], DiskBox[{8., 0.}, 0.08883792048929665], DiskBox[{2., 0.}, 0.08883792048929665], DiskBox[{18., 0.}, 0.08883792048929665], DiskBox[{9., 0.}, 0.08883792048929665], DiskBox[{20., 0.}, 0.08883792048929665], DiskBox[{6., 0.}, 0.08883792048929665], DiskBox[{5., 0.}, 0.08883792048929665], DiskBox[{1., 0.}, 0.08883792048929665], DiskBox[{3., 0.}, 0.08883792048929665], DiskBox[{10., 0.}, 0.08883792048929665], DiskBox[{14., 0.}, 0.08883792048929665], DiskBox[{15., 0.}, 0.08883792048929665], DiskBox[{7., 0.}, 0.08883792048929665], DiskBox[{4., 0.}, 0.08883792048929665], DiskBox[{12., 0.}, 0.08883792048929665], DiskBox[{16., 0.}, 0.08883792048929665], DiskBox[{13., 0.}, 0.08883792048929665]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"LinearEmbedding\"", TraditionalForm]], TraditionalForm], {194.4, -1112.625}, {Center, Center}, {360.00000000000006, 414.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], InsetBox[ FormBox[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, { Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, { 7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, { GraphLayout -> "RandomEmbedding", PlotLabel -> "RandomEmbedding"}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAgKCSCmJchz9cD3epN1HdPwBLMWHl o+o/Tr/tXTKe6D9Ul7a1MzniP/LjHmjE0u8/9KnhZN8W5z+Wa2Zh+2PnPzRS clKiONs/oAfKnT2t6D9QYLx8kBnmP5AI4xNCocI/XDRozXkQ0T/YIh9WFRjT P8xvlP4gO9s/skk8vRLj7j+QUqIVXWK4PwD+XdmLQ20/iJtQ4+xK6T+M6m6R 0h3gPwCPYApYSdk/QD7hSzRRzz8sWKHLxS3vPyggx9oSieg/Er3JM1Ia6j/E Rs/YVd3fP24hVY1wZ+I/INVLPkg22j/2K1Ip8DnjP1CRXiimU7w/sncBGJHQ 6T+Yf1eDjg7uPyYHiYglcug/3NWJKfFl2D+grkEMCvPnP8D8P3aQNN0/nCo+ aSE76z8kLxSooDHYPyhWenmaLss/oPCLrF6h6z+/WZi9 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, { 10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, { 15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.012614235569643141`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.012614235569643141], DiskBox[2, 0.012614235569643141], DiskBox[3, 0.012614235569643141], DiskBox[4, 0.012614235569643141], DiskBox[5, 0.012614235569643141], DiskBox[6, 0.012614235569643141], DiskBox[7, 0.012614235569643141], DiskBox[8, 0.012614235569643141], DiskBox[9, 0.012614235569643141], DiskBox[10, 0.012614235569643141], DiskBox[11, 0.012614235569643141], DiskBox[12, 0.012614235569643141], DiskBox[13, 0.012614235569643141], DiskBox[14, 0.012614235569643141], DiskBox[15, 0.012614235569643141], DiskBox[16, 0.012614235569643141], DiskBox[17, 0.012614235569643141], DiskBox[18, 0.012614235569643141], DiskBox[19, 0.012614235569643141], DiskBox[20, 0.012614235569643141]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotLabel->FormBox["\"RandomEmbedding\"", TraditionalForm]], TraditionalForm], {583.2, -1112.625}, {Center, Center}, {360.00000000000006, 414.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], TagBox[InsetBox["", {972., -1112.625}, {Center, Center}, {360., 414.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"], TagBox[ InsetBox["", {1360.8000000000002, -1112.625}, {Center, Center}, {359.9999999999998, 414.}, BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}], "InsetString"]}}, {}}, ImageSize->800, PlotRangePadding->{6, 5}]], "Output", CellLabel-> "Out[129]=",ExpressionUUID->"73e77f01-9592-4c45-a3d0-5df8f2006dcb"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Default embedding", "Subsubsection",ExpressionUUID->"ce415c54-1933-47fa-bd4d-310fe8d96dae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphPlot", "@", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[130]:=",ExpressionUUID->"faf94607-dcf0-4929-8292-8493117db0a9"], Cell[BoxData[ GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Sv8aEYr/y/7xBeNTgeefbA39ry9pMeCxWHvAtMj 0xJ/21s8Uk7vMHlu38jMJy9t89v+kOXKC3M1f9kzQMG91YeWJjP8ss/ovB78 IOef/TuBcPc31iwObJZ5ycfFvti/nHbbWcHzuf36s2z5Nz59tn/7ueRo6cuf 9mxCP5++WMbu4CR10/gkJ5fD8bM3b0lu+WD/7P6W3B/HWB0WdB1rPfllu/2B bbZmS/9zOly5/u3/1dv/7Bkc5Pearimzf7Q5fpt70Qf7FUuyGiZUPrQX+N6q c1VzK9xdB/ZeMHk1+5/9po0MFjIhjA4NKpFq6gaX7e1C/wUsmfPRPsHqWtTk 25fsXauvHtpvw+jApqLBlOHH6rBL/MCH7Rkf7ZeUR+7OcWZ1EIn11ju9mtWB ee5U95C/bA5+wUEfrNgf2m/T9Hmy/DmbAwB5u5Xq "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {10, 15}, {11, 19}, {12, 13}, { 12, 14}, {13, 16}, {14, 20}, {15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.032039153491364866`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.032039153491364866], DiskBox[2, 0.032039153491364866], DiskBox[3, 0.032039153491364866], DiskBox[4, 0.032039153491364866], DiskBox[5, 0.032039153491364866], DiskBox[6, 0.032039153491364866], DiskBox[7, 0.032039153491364866], DiskBox[8, 0.032039153491364866], DiskBox[9, 0.032039153491364866], DiskBox[10, 0.032039153491364866], DiskBox[11, 0.032039153491364866], DiskBox[12, 0.032039153491364866], DiskBox[13, 0.032039153491364866], DiskBox[14, 0.032039153491364866], DiskBox[15, 0.032039153491364866], DiskBox[16, 0.032039153491364866], DiskBox[17, 0.032039153491364866], DiskBox[18, 0.032039153491364866], DiskBox[19, 0.032039153491364866], DiskBox[20, 0.032039153491364866]}}], FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[130]=",ExpressionUUID->"b03b9712-39b8-4b3b-9e83-91b23617dd06"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"Length", "[", "v", "]"}], "]"}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input",Exp\ ressionUUID->"549ab679-60f0-4eaa-be2d-b62e39876ae2"], Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel-> "In[175]:=",ExpressionUUID->"622071e2-8b9f-4aed-82c1-dde3957bf88a"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, { 16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, { 12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, { 17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.039375630966373094`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094], DiskBox[3, 0.039375630966373094], DiskBox[4, 0.039375630966373094], DiskBox[5, 0.039375630966373094], DiskBox[6, 0.039375630966373094], DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094], DiskBox[9, 0.039375630966373094], DiskBox[10, 0.039375630966373094], DiskBox[11, 0.039375630966373094], DiskBox[12, 0.039375630966373094], DiskBox[13, 0.039375630966373094], DiskBox[14, 0.039375630966373094], DiskBox[15, 0.039375630966373094], DiskBox[16, 0.039375630966373094], DiskBox[17, 0.039375630966373094], DiskBox[18, 0.039375630966373094], DiskBox[19, 0.039375630966373094], DiskBox[20, 0.039375630966373094]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Input",ExpressionUUID->"15d45042-c1bf-4a9e-a80e-\ 002135bb4d19"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"Join", "[", RowBox[{ RowBox[{"UnitCirclePoints", "[", "5", "]"}], ",", RowBox[{"CirclePoints", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"1", "/", "2"}], ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "10"}], "]"}], ",", RowBox[{"CirclePoints", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"1", "/", "4"}], ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "5"}], "]"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"Length", "[", "v", "]"}], "]"}], ",", RowBox[{"UndirectedEdge", "@@@", RowBox[{"{", RowBox[{ RowBox[{"e", "[", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", "1", ",", RowBox[{"{", RowBox[{"7", ",", "15"}], "}"}], ",", "6", ",", "7"}], "]"}], ",", RowBox[{"e", "[", RowBox[{"6", ",", RowBox[{"{", RowBox[{"16", ",", "20"}], "}"}], ",", "16"}], "]"}], ",", RowBox[{"{", RowBox[{"8", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "15"}], "}"}]}], "}"}]}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input", CellLabel->"In[20]:=",ExpressionUUID->"9612ae56-7004-42c1-855f-894dc93883c5"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 7}, {7, 8}, { 8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14, 15}, {15, 6}, {6, 7}, {6, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 16}, {8, 17}, {2, 9}, {10, 18}, {3, 11}, {12, 19}, {4, 13}, {14, 20}, { 5, 15}}}, {VertexLabels -> {Automatic}, VertexCoordinates -> {{ Rational[1, 2], Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { Rational[ 1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2] (-1 + 5^Rational[1, 2])}, { 0, Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, { Rational[-1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 8] (-1 - 5^ Rational[1, 2]) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {0, Rational[-1, 2]}, { Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 5^Rational[1, 2])}, {0, Rational[1, 2]}, { Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0, Rational[-1, 4]}, { Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAB/aVq4t5VrI+27/iy/TZ5Y9f2vMGL+Q9demC Pbo8lL8fjQ+Xj4sqZVE+f8keYs5NHOYxMDxhduPusHhtjy7/P8RFmC//nn3A S33z98cO41K/H5d5DCjgAQ71CPejy0Pt349qP0I91H/7Yf5Dsw/D/zjkcepH 5V/AMA8tfAjx0cMTKn8Oyt+MoR7NPgw+evhiV38Iyj+JS/1+NPPhfPTwx67+ 0H6Y+ejq0fj70fno4Y9d/bn9sPBBjw/08MMhvx81fBHq0cMHB38/Lj66+QBA k6Fb "], 0.019434941751084317`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0.5, -0.6881909602355868}, 0.019434941751084317], InsetBox["1", Offset[{2, 2}, {0.5194349417510843, -0.6687560184845025}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 0.2628655560595668}, 0.019434941751084317], InsetBox["2", Offset[{2, 2}, {0.8284519361260317, 0.28230049781065114}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.8506508083520399}, 0.019434941751084317], InsetBox["3", Offset[{2, 2}, {0.019434941751084317, 0.8700857501031242}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 0.2628655560595668}, 0.019434941751084317], InsetBox["4", Offset[{2, 2}, {-0.7895820526238632, 0.28230049781065114}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -0.6881909602355868}, 0.019434941751084317], InsetBox["5", Offset[{2, 2}, {-0.4805650582489157, -0.6687560184845025}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -0.5}, 0.019434941751084317], InsetBox["6", Offset[{2, 2}, {0.019434941751084317, -0.4805650582489157}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.29389262614623657`, -0.4045084971874737}, 0.019434941751084317], InsetBox["7", Offset[{2, 2}, {0.31332756789732086, -0.38507355543638944}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.47552825814757677`, -0.15450849718747373`}, 0.019434941751084317], InsetBox["8", Offset[{2, 2}, {0.4949631998986611, -0.1350735554363894}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.47552825814757677`, 0.15450849718747373`}, 0.019434941751084317], InsetBox["9", Offset[{2, 2}, {0.4949631998986611, 0.17394343893855804}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.29389262614623657`, 0.4045084971874737}, 0.019434941751084317], InsetBox["10", Offset[{2, 2}, {0.31332756789732086, 0.423943438938558}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.019434941751084317], InsetBox["11", Offset[{2, 2}, {0.019434941751084317, 0.5194349417510843}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.29389262614623657`, 0.4045084971874737}, 0.019434941751084317], InsetBox["12", Offset[{2, 2}, {-0.2744576843951523, 0.423943438938558}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.47552825814757677`, 0.15450849718747373`}, 0.019434941751084317], InsetBox["13", Offset[{2, 2}, {-0.4560933163964924, 0.17394343893855804}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.47552825814757677`, -0.15450849718747373`}, 0.019434941751084317], InsetBox["14", Offset[{2, 2}, {-0.4560933163964924, -0.1350735554363894}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.29389262614623657`, -0.4045084971874737}, 0.019434941751084317], InsetBox["15", Offset[{2, 2}, {-0.2744576843951523, -0.38507355543638944}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.25}, 0.019434941751084317], InsetBox["16", Offset[{2, 2}, {0.019434941751084317, -0.23056505824891568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.23776412907378838`, -0.07725424859373686}, 0.019434941751084317], InsetBox["17", Offset[{2, 2}, {0.2571990708248727, -0.057819306842652546}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.14694631307311828`, 0.20225424859373686`}, 0.019434941751084317], InsetBox["18", Offset[{2, 2}, {0.1663812548242026, 0.22168919034482118}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.14694631307311828`, 0.20225424859373686`}, 0.019434941751084317], InsetBox["19", Offset[{2, 2}, {-0.12751137132203397, 0.22168919034482118}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.23776412907378838`, -0.07725424859373686}, 0.019434941751084317], InsetBox["20", Offset[{2, 2}, {-0.21832918732270407, -0.057819306842652546}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[21]=",ExpressionUUID->"dcaecd19-f03f-4f5b-b8df-2da51347baa3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel->"In[23]:=",ExpressionUUID->"853ee9d2-2e8f-4295-a778-451de8f984e7"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel->"Out[23]=",ExpressionUUID->"db918082-ec36-4ef1-885b-34a30adb2c3f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Degenerate", "Subsubsection",ExpressionUUID->"05a4b6fc-bbcc-4f97-9c21-efa80de85f9f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[17]:=",ExpressionUUID->"69a228bf-34f5-4594-b28e-d855859d6967"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { 0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/ /HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/ /3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ lwg= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247], DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247], DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247], DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247], DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247], DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247], DiskBox[13, 0.05374005336484247], DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247], DiskBox[16, 0.05374005336484247], DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247], DiskBox[19, 0.05374005336484247], DiskBox[20, 0.05374005336484247]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 44] ( 11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[-1, 8] 11^Rational[-1, 2] ( 6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), ( Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] + 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] ( Rational[1, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] + 6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] 11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 44] (22^Rational[1, 2] - 110^ Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 88] (-110^Rational[1, 2] - 10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[-1, 4] 11^Rational[-1, 2] ( 2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] + 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] ( Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] 11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (403 + 125 5^Rational[1, 2] - 12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 88] ( 2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 88] (-22^Rational[1, 2] - 2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 8] 11^Rational[-1, 2] (-4 + 2 5^Rational[1, 2] + 3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 8] 11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 176] (3 22^Rational[1, 2] (-3 + 5^Rational[1, 2]) + 4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] 11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] ( Rational[1, 11] (157 + 58 5^Rational[1, 2] - 4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 8] 11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), Rational[-1, 8] 11^Rational[-1, 2] ((63 - 11 5^Rational[1, 2])^Rational[1, 2] + 6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] + 12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 + 121 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6 v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7 ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72 0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF 8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/ 7aH+3Y8eXgCx06o/ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487], DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487], DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487], DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487], DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487], DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487], DiskBox[13, 0.05496546668806487], DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487], DiskBox[16, 0.05496546668806487], DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487], DiskBox[19, 0.05496546668806487], DiskBox[20, 0.05496546668806487]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3 7Edzz3409eju24/mPnT/70fz/34AINyj3g== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856], DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856], DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856], DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856], DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856], DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856], DiskBox[13, 0.05155676257133856], DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856], DiskBox[16, 0.05155676257133856], DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856], DiskBox[19, 0.05155676257133856], DiskBox[20, 0.05155676257133856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 10] (125 + 47 5^Rational[1, 2] + 4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] + 13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] + 4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - 4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] 5^Rational[-1, 2] ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 8] 5^Rational[-1, 2] ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 20] ((30 (5 + 5^Rational[1, 2]))^ Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4 3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] + 4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 40] ( 2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/ 3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/ 6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH V2ePzof61x7qXww+AB9DsJQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215], DiskBox[3, 0.055830735019350215], DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215], DiskBox[6, 0.055830735019350215], DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215], DiskBox[9, 0.055830735019350215], DiskBox[10, 0.055830735019350215], DiskBox[11, 0.055830735019350215], DiskBox[12, 0.055830735019350215], DiskBox[13, 0.055830735019350215], DiskBox[14, 0.055830735019350215], DiskBox[15, 0.055830735019350215], DiskBox[16, 0.055830735019350215], DiskBox[17, 0.055830735019350215], DiskBox[18, 0.055830735019350215], DiskBox[19, 0.055830735019350215], DiskBox[20, 0.055830735019350215]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7 P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv QvxrD/M/Gn8/AODtoHo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127], DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127], DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127], DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127], DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127], DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127], DiskBox[13, 0.05479908867915127], DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127], DiskBox[16, 0.05479908867915127], DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127], DiskBox[19, 0.05479908867915127], DiskBox[20, 0.05479908867915127]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[17]=",ExpressionUUID->"273334b7-a07d-4ae8-8a90-d144f6774965"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Bilateral", "Subsubsection",ExpressionUUID->"11f68b86-6819-4502-ac72-73629a85d1e5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"2b2cc173-03d3-4a4a-9ea7-f28632aabea8"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 8] (-1 + 5^Rational[1, 2]), Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (1 - 5^Rational[1, 2]), Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2]), Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0]}, { Rational[-1, 2], 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 + 5^Rational[1, 2]), Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 8] (-1 - 5^Rational[1, 2]), Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0]}, { Rational[1, 8] (1 + 5^Rational[1, 2]), Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, { Rational[1, 8] (1 - 5^Rational[1, 2]), Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], 0}, {Rational[1, 8] (-1 - 5^Rational[1, 2]), Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scP2/0NchPny7+2H8vdD+fYMYPABSjMw rPgyfXb545f746JKWZTPP9oP4d+0jwfzL0HVPdiPpt4eph5i/mWo+e/2o9lv DzVvP8w8mPkQ/ZfQ3YduHsx+NPfe3I+q/7I9qv1wvj2a/+zR3A8LD7j/AIYY kNA= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.041401179300458654`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041401179300458654], DiskBox[2, 0.041401179300458654], DiskBox[3, 0.041401179300458654], DiskBox[4, 0.041401179300458654], DiskBox[5, 0.041401179300458654], DiskBox[6, 0.041401179300458654], DiskBox[7, 0.041401179300458654], DiskBox[8, 0.041401179300458654], DiskBox[9, 0.041401179300458654], DiskBox[10, 0.041401179300458654], DiskBox[11, 0.041401179300458654], DiskBox[12, 0.041401179300458654], DiskBox[13, 0.041401179300458654], DiskBox[14, 0.041401179300458654], DiskBox[15, 0.041401179300458654], DiskBox[16, 0.041401179300458654], DiskBox[17, 0.041401179300458654], DiskBox[18, 0.041401179300458654], DiskBox[19, 0.041401179300458654], DiskBox[20, 0.041401179300458654]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { 0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/ /HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/ /3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ lwg= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247], DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247], DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247], DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247], DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247], DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247], DiskBox[13, 0.05374005336484247], DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247], DiskBox[16, 0.05374005336484247], DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247], DiskBox[19, 0.05374005336484247], DiskBox[20, 0.05374005336484247]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3 7Edzz3409eju24/mPnT/70fz/34AINyj3g== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856], DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856], DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856], DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856], DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856], DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856], DiskBox[13, 0.05155676257133856], DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856], DiskBox[16, 0.05155676257133856], DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856], DiskBox[19, 0.05155676257133856], DiskBox[20, 0.05155676257133856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u /vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh 8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA fV6fmg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524], DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524], DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524], DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524], DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524], DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524], DiskBox[13, 0.05725601845709524], DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524], DiskBox[16, 0.05725601845709524], DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524], DiskBox[19, 0.05725601845709524], DiskBox[20, 0.05725601845709524]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7 P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv QvxrD/M/Gn8/AODtoHo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127], DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127], DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127], DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127], DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127], DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127], DiskBox[13, 0.05479908867915127], DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127], DiskBox[16, 0.05479908867915127], DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127], DiskBox[19, 0.05479908867915127], DiskBox[20, 0.05479908867915127]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA 1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx BwB4bZGA "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758], DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758], DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758], DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758], DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758], DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758], DiskBox[13, 0.08280002173912758], DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758], DiskBox[16, 0.08280002173912758], DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758], DiskBox[19, 0.08280002173912758], DiskBox[20, 0.08280002173912758]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {- Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {- Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {- Cos[Rational[3, 20] Pi], Sin[ Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3 xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz 0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.041904067400022615`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615], DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615], DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615], DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615], DiskBox[11, 0.041904067400022615], DiskBox[12, 0.041904067400022615], DiskBox[13, 0.041904067400022615], DiskBox[14, 0.041904067400022615], DiskBox[15, 0.041904067400022615], DiskBox[16, 0.041904067400022615], DiskBox[17, 0.041904067400022615], DiskBox[18, 0.041904067400022615], DiskBox[19, 0.041904067400022615], DiskBox[20, 0.041904067400022615]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, {Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {2, 0}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2, 0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"2bac46a8-e2ff-4f28-b046-42ed914e146b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["GeneralizedPetersen", "Subsubsection",ExpressionUUID->"5ba8f7d4-b117-478b-b597-31ecbe308535"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[131]:=",ExpressionUUID->"88054afc-1d53-4388-8d6e-5214c8f6255b"], Cell[BoxData[ RowBox[{"{", RowBox[{"10", ",", "2"}], "}"}]], "Output", CellLabel-> "Out[131]=",ExpressionUUID->"bee96356-f190-47e9-b8bf-bf43d0b60856"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"fd954b66-6b6f-480a-b4b1-0dffd74e9b41"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"84bc0978-5a6b-465c-8149-eecaa03d3202"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["IntegerCoordinates", "Subsubsection",ExpressionUUID->"2994d932-2236-42a5-bd96-339becf954fa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[90]:=",ExpressionUUID->"eed3e15e-9f4f-40c6-9be3-8778de8b3d9a"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 3}, {4, 2}, {1, 3}, {5, 0}, {2, 2}, {4, 1}, {1, 1}, {3, 0}, {3, 4}, {5, 4}, {2, 1}, {3, 1}, {4, 3}, {1, 4}, { 6, 1}, {1, 0}, {3, 3}, {5, 3}, {2, 3}, {5, 1}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo4HCC0AJRmgNIf7FHlRWDyDKjqYDRMP0wfOg0z B5e9Imh8XO6A8WHqcIlL4HAPuv3o/oO7E4f8B3sAn3kVMA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, { 17, 19}, {18, 20}}, 0.10816653826391967`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.10816653826391967], DiskBox[2, 0.10816653826391967], DiskBox[3, 0.10816653826391967], DiskBox[4, 0.10816653826391967], DiskBox[5, 0.10816653826391967], DiskBox[6, 0.10816653826391967], DiskBox[7, 0.10816653826391967], DiskBox[8, 0.10816653826391967], DiskBox[9, 0.10816653826391967], DiskBox[10, 0.10816653826391967], DiskBox[11, 0.10816653826391967], DiskBox[12, 0.10816653826391967], DiskBox[13, 0.10816653826391967], DiskBox[14, 0.10816653826391967], DiskBox[15, 0.10816653826391967], DiskBox[16, 0.10816653826391967], DiskBox[17, 0.10816653826391967], DiskBox[18, 0.10816653826391967], DiskBox[19, 0.10816653826391967], DiskBox[20, 0.10816653826391967]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[90]=",ExpressionUUID->"0491aaa8-2131-40b5-9970-081a8d1eda59"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Integral", "Subsubsection",ExpressionUUID->"5829c57d-da56-4119-8132-31b11beec275"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[91]:=",ExpressionUUID->"be3f2e8b-86c0-486a-a8c1-27fbf42699c5"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv 3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/ uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7 FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co 68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93 P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX 9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd// p3L6ojmXbu4HAIRjq20= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^ Rational[-1, 2]}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/ f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69 7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044], DiskBox[3, 0.025587335982012044], DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044], DiskBox[6, 0.025587335982012044], DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044], DiskBox[9, 0.025587335982012044], DiskBox[10, 0.025587335982012044], DiskBox[11, 0.025587335982012044], DiskBox[12, 0.025587335982012044], DiskBox[13, 0.025587335982012044], DiskBox[14, 0.025587335982012044], DiskBox[15, 0.025587335982012044], DiskBox[16, 0.025587335982012044], DiskBox[17, 0.025587335982012044], DiskBox[18, 0.025587335982012044], DiskBox[19, 0.025587335982012044], DiskBox[20, 0.025587335982012044]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[91]=",ExpressionUUID->"ba70ecbc-2c32-46dd-b3f8-06ed3db46184"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[94]:=",ExpressionUUID->"98f8815a-8964-42ae-a81a-1cf37783b792"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "4363589d-591a-4fb0-bc6c-95ed03b31576"], Text[1, Background -> GrayLevel[1]]], {0.260944095661969, 0.6368005784302776}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9eabd59d-b49d-4c3e-b716-ac118de7d0eb"], Text[1, Background -> GrayLevel[1]]], {0.686269499837989, -0.051390381805309165}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b9f244b6-1b47-447a-969f-4364d1f3ea20"], Text[1, Background -> GrayLevel[1]]], {1.170820393249937, 0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \ {-0.648932201925999, 0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "536f5b35-b23c-4cec-aaee-c9b48f3517bf"], Text[1, Background -> GrayLevel[1]]], {-0.686269499837989, 0.051390381805309165}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, { 0.20171860642604098`, -0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d77885a2-24b1-419c-9d57-c9739b603826"], Text[1, Background -> GrayLevel[1]]], {-0.260944095661969, -0.6368005784302776}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \ {-1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "934491f1-7352-460f-a2d9-6b0bc6a90107"], Text[1, Background -> GrayLevel[1]]], {-1.170820393249937, -0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "f7b95980-551e-4708-8275-e98594f2d097"], Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, 1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "98e3d722-7493-448a-9c5d-a98be589fa68"], Text[1, Background -> GrayLevel[1]]], {0.1491406967869795, 1.182614664974112}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "18ff70f1-5787-4b19-987a-1ee6197b89c6"], Text[1, Background -> GrayLevel[1]]], {0., 1.5388417685876268}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, -1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6d78b5c2-6f89-4a83-b5a6-46d5f21d2e76"], Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, -1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, -1.5388417685876268`}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "44058e8a-4fb1-4fb7-88b4-7c7fb4bafbc7"], Text[1, Background -> GrayLevel[1]]], {0.5744661009629994, -1.0444180638491014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.5, -1.5388417685876268`}, {-0.5, -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ef4c2662-1a8c-4ce1-97a8-8c0b34999cf5"], Text[1, Background -> GrayLevel[1]]], {0., -1.5388417685876268}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.648932201925999, 0.5499943591105763}, { 0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3f063ff7-5baa-44ed-bca9-d4f20640588b"], Text[1, Background -> GrayLevel[1]]], {-0.16319378068029863, 0.6685615810807929}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "083e08c7-a9ce-498b-a97a-a782930e1c3e"], Text[1, Background -> GrayLevel[1]]], {-0.5744661009629994, 1.0444180638491014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.20171860642604098`, -0.8263875613605973}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "de0d7059-9828-4bfe-99ad-74b9c219a81f"], Text[1, Background -> GrayLevel[1]]], {0.5249971795552881, -0.4449547833308139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.20171860642604098`, -0.8263875613605973}, {-0.5, \ -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ade291c2-f2a2-48e4-82ee-ecfd042b8d21"], Text[1, Background -> GrayLevel[1]]], {-0.1491406967869795, -1.182614664974112}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, { 0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8d4f80cf-6429-45e0-9c61-a00e46db8ed4"], Text[1, Background -> GrayLevel[1]]], {0.8157808174701746, 0.8690926596730815}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9fa373fb-758b-4ffb-9f86-73d91443d947"], Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, 0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b2d794eb-4d57-4832-b23f-672b03731fe7"], Text[1, Background -> GrayLevel[1]]], {1.0786463735297414, -0.507289260798092}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "f8286fff-a2fb-42c3-9c39-3dd7d9c02e52"], Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, -0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-0.3225446405654017, -0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "82d3bb8b-5840-432c-a311-8b3cfb579e9f"], Text[1, Background -> GrayLevel[1]]], {-0.5854101966249685, -0.3618033988749895}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "38cd8609-3211-4de3-a8de-ab29b07d50a9"], Text[1, Background -> GrayLevel[1]]], {-0.5249971795552881, 0.4449547833308139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "788c7722-7c90-4036-bb1c-a55f15612eb8"], Text[1, Background -> GrayLevel[1]]], {-1.0786463735297414, 0.507289260798092}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "228bc062-c3b6-4e0a-809b-7fdf0dcd99ec"], Text[1, Background -> GrayLevel[1]]], {0.16319378068029863, -0.6685615810807929}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, \ {-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8fbdef48-5354-4185-ae51-f48c71c6c21d"], Text[1, Background -> GrayLevel[1]]], {-0.8157808174701746, -0.8690926596730815}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.3225446405654017, 0.7871288030510095}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "068fdd9f-372f-4bc7-8d88-a4d2be05342e"], Text[1, Background -> GrayLevel[1]]], {0.5854101966249685, 0.3618033988749895}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a2bb495c-3145-48cc-9960-5e18a67eef28"], Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, 0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6ebf98a2-eee4-4082-a659-23882d764402"], Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, -0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.3090169943749475`, 0.9510565162951535}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1645d0f8-15d0-4667-b1ef-3216ee674a5c"], Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, 1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.3090169943749475`, -0.9510565162951535}, {-0.5, \ -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "fdffb86d-122f-4de8-a9b1-d3450553c894"], Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, -1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0.723606797749979, 0.4472135954999579}, 0.06698851528247071], DiskBox[{-0.723606797749979, -0.4472135954999579}, 0.06698851528247071], DiskBox[{0.5, 1.5388417685876268}, 0.06698851528247071], DiskBox[{0.5, -1.5388417685876268}, 0.06698851528247071], DiskBox[{-0.648932201925999, 0.5499943591105763}, 0.06698851528247071], DiskBox[{0.20171860642604098, -0.8263875613605973}, 0.06698851528247071], DiskBox[{1.3090169943749475, 0.9510565162951535}, 0.06698851528247071], DiskBox[{1.3090169943749475, -0.9510565162951535}, 0.06698851528247071], DiskBox[{-0.8482757526845353, 0.0635220053010305}, 0.06698851528247071], DiskBox[{-0.3225446405654017, -0.7871288030510095}, 0.06698851528247071], DiskBox[{0.3225446405654017, 0.7871288030510095}, 0.06698851528247071], DiskBox[{0.8482757526845353, -0.0635220053010305}, 0.06698851528247071], DiskBox[{-1.618033988749895, 0.}, 0.06698851528247071], DiskBox[{-0.20171860642604098, 0.8263875613605973}, 0.06698851528247071], DiskBox[{0.648932201925999, -0.5499943591105763}, 0.06698851528247071], DiskBox[{1.618033988749895, 0.}, 0.06698851528247071], DiskBox[{-1.3090169943749475, 0.9510565162951535}, 0.06698851528247071], DiskBox[{-1.3090169943749475, -0.9510565162951535}, 0.06698851528247071], DiskBox[{-0.5, 1.5388417685876268}, 0.06698851528247071], DiskBox[{-0.5, -1.5388417685876268}, 0.06698851528247071]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[0.9999999999989376, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[0.9999999999999998, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1.0000000000000147`, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[0.9999999999998549, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[1.0000000000134244`, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1.0000000000000089`, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[0.9999999999998546, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[0.9999999999998551, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[2, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, { 1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "eafb276b-5e0b-461f-b6cb-20e7a1d85bc0"], Text[2, Background -> GrayLevel[1]]], {0., -1.3763819204711736}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2f796738-0310-47f8-99f6-e7f75ddda94f"], Text[2, Background -> GrayLevel[1]]], {-0.0009981089772145846, -1.3317140155180782}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d0c9ba4f-106e-4103-a350-41e25dc4d9f7"], Text[2, Background -> GrayLevel[1]]], {-1.3090169943749475, -0.42532540417602}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {-0.6302417791992277, 0.8127727020945811}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a1e464d0-108d-49e1-b04e-87ca20985b09"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.1307750774831501, 0.7896856087984845}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {-0.6151465359790604, 0.5875385408830143}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2ac96cc0-df8e-410b-a592-0be1bcfc6434"], Text[1., Background -> GrayLevel[1]]], {-0.12322745587306644, 0.677068528192701}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, { 0.843010491122414, -0.11375460257732557`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "bbc5c2c9-431b-4e00-b22c-851acc75bd05"], Text[1., Background -> GrayLevel[1]]], {0.6058510576776708, 0.3264219564625311}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, {0., 1.7013016167040798`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "53ad573c-2bcb-4c65-974a-c24aea258363"], Text[2, Background -> GrayLevel[1]]], {0.8090169943749475, 1.1135163644116066}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, { 1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "20c98978-eceb-46e8-947d-224154157127"], Text[2, Background -> GrayLevel[1]]], {1.3090169943749475, -0.42532540417602}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "23944975-b831-478c-94f9-001325ae63cb"], Text[2, Background -> GrayLevel[1]]], {0.7835693457175209, 1.0767925964644403}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.032140502180179956`, -1.0279937517504376`}, \ {-0.9156534611226071, -1.3468771209104056`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000147`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b40339e7-fb6e-4801-9d61-10f4368b3b54"], Text[1.0000000000000147`, Background -> GrayLevel[1]]], {-0.4417564794712136, -1.1874354363304216}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.032140502180179956`, -1.0279937517504376`}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998551`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d39a97d0-f066-4749-8832-1d47053af035"], Text[0.9999999999998551, Background -> GrayLevel[1]]], {0.5150721421128754, -1.1575199311577102}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.032140502180179956`, -1.0279937517504376`}, \ {-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999998`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "dadcedb6-452b-4702-ac59-ce9aae3a511f"], Text[0.9999999999999998, Background -> GrayLevel[1]]], {-0.3583662946747835, -0.7157367396433014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6302417791992277, 0.8127727020945811}, {-1.5639087429358225`, 0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000134244`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6fbc22e6-ed2c-4eca-bd71-fb98a6d6072a"], Text[1.0000000000134244`, Background -> GrayLevel[1]]], {-1.0970752610675252, 0.6337014866336658}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6302417791992277, 0.8127727020945811}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "aca27724-fff4-46c8-9b09-68d7680c059e"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.3405685382570405, 1.220313391452164}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6151465359790604, 0.5875385408830143}, {-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "74e6580b-3c0a-47db-b74a-a2cfbe02b271"], Text[1., Background -> GrayLevel[1]]], {-0.791447365455298, 0.11965178372270463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6151465359790604, 0.5875385408830143}, {-0.7488730915297469, \ -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "61908b59-f16b-499b-a298-e4ad58a30ac5"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.6820098137544037, 0.09202940667342452}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.7013016167040798`}, {-1.5639087429358225`, 0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "0fb0ab7b-f791-46d3-a890-58ebd0cccbbc"], Text[2, Background -> GrayLevel[1]]], {-0.7819543714679112, 1.077965943938415}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.7013016167040798`}, {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "cdde3170-0bae-421a-a53a-f0c80b2c43dc"], Text[2, Background -> GrayLevel[1]]], {-0.8090169943749475, 1.1135163644116066}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \ {-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998546`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "97bfcbb3-b2f0-4347-904b-f4f933cd1ce1"], Text[0.9999999999998546, Background -> GrayLevel[1]]], {-0.9417008280270713, -0.8475560471740053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \ {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "61f50326-56e7-4ab8-a7fb-98f18f208d34"], Text[2, Background -> GrayLevel[1]]], {-1.266843724936251, -0.410573004395636}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 0.987612117694377, -0.2871001053666874}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999989376`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9e211e1e-2364-4531-bcad-5b6914047a8a"], Text[0.9999999999989376, Background -> GrayLevel[1]]], {1.2600329185110446, 0.13216938706310183}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6de94cf5-28a1-42f0-a921-d6b9bad86040"], Text[2, Background -> GrayLevel[1]]], {1.2662268596638562, -0.41247152048914126}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000089`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3272f7b9-c177-4bfa-88d8-7393b658f6bc"], Text[1.0000000000000089`, Background -> GrayLevel[1]]], {1.0553455367919593, 0.7009975039765199}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.987612117694377, -0.2871001053666874}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "315aeaa3-80f4-42d3-b78c-031bc10fc12c"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {0.9928079498699739, -0.7870731079658351}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.987612117694377, -0.2871001053666874}, { 0.15231751215346578`, -0.8369027262719113}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "699cb885-63d2-47e7-bb7e-6a34311e65d4"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.5699648149239214, -0.5620014158192994}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.5639087429358225`, 0.45463027117275046`}, {-0.9677481949315356, \ -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d38eb9fb-8bb1-4ee9-9f03-9b3a591e85f5"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-1.265828468933679, 0.05319764886757272}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.843010491122414, -0.11375460257732557`}, { 0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2cd4787e-a155-4128-ac10-30957f8609b6"], Text[1., Background -> GrayLevel[1]]], {0.7106239226893101, 0.3684007629414116}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.843010491122414, -0.11375460257732557`}, { 0.15231751215346578`, -0.8369027262719113}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ee66883a-59e4-4f1b-bcbc-40f7998a2336"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.4976640016379399, -0.47532866442461846}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5782373542562063, 0.8505561284601488}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998549`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "049a4237-0d51-4fc3-87aa-ccc0e39f0fc5"], Text[0.9999999999998549, Background -> GrayLevel[1]]], {0.2636710284706766, 1.239205104634948}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.15231751215346578`, -0.8369027262719113}, \ {-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "7c8143be-175e-4be4-b21a-c1bddaf35b61"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.29827778968814056, -0.6201912269040383}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{-1., -1.3763819204711736}, 0.06698851528247071], DiskBox[{0.36869162423292756, 0.7665985155023878}, 0.06698851528247071], DiskBox[{1.618033988749895, 0.5257311121191336}, 0.06698851528247071], DiskBox[{0.032140502180179956, -1.0279937517504376}, 0.06698851528247071], DiskBox[{-0.6302417791992277, 0.8127727020945811}, 0.06698851528247071], DiskBox[{-0.6151465359790604, 0.5875385408830143}, 0.06698851528247071], DiskBox[{0., 1.7013016167040798}, 0.06698851528247071], DiskBox[{-0.9156534611226071, -1.3468771209104056}, 0.06698851528247071], DiskBox[{1.5324537193277121, 0.551438879492891}, 0.06698851528247071], DiskBox[{0.987612117694377, -0.2871001053666874}, 0.06698851528247071], DiskBox[{-1.5639087429358225, 0.45463027117275046}, 0.06698851528247071], DiskBox[{-0.9677481949315356, -0.348234973437605}, 0.06698851528247071], DiskBox[{0.843010491122414, -0.11375460257732557}, 0.06698851528247071], DiskBox[{1., -1.3763819204711736}, 0.06698851528247071], DiskBox[{0.9980037820455708, -1.2870461105649829}, 0.06698851528247071], DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.06698851528247071], DiskBox[{0.5782373542562063, 0.8505561284601488}, 0.06698851528247071], DiskBox[{0.15231751215346578, -0.8369027262719113}, 0.06698851528247071], DiskBox[{-0.05089529731485315, 1.6278540808097468}, 0.06698851528247071], DiskBox[{-0.7488730915297469, -0.40347972753616523}, 0.06698851528247071]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^ Rational[-1, 2]}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`, -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5a012231-890e-4c77-a3d4-1644a7656ab1"], Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, -0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "702a1848-6ec8-402e-98ef-075fc0d2bab3"], Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, 0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e957ed27-c5c5-4a58-a405-9f08645576b0"], Text[1, Background -> GrayLevel[1]]], {0.1708203932499369, 0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, { 0.19098300562505255`, -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a19b72b2-12d2-4ea8-b9c9-c04f880c2512"], Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, -0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, {0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6c16b9c5-8faa-412b-82d4-aa90564b8614"], Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, 0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, { 0.276393202250021, -0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5d3c699f-4faf-4dd2-b864-c728c497a542"], Text[1, Background -> GrayLevel[1]]], {-0.1708203932499369, -0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {-0.03925875830958783, \ -0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b7707ac0-bbfc-489e-b689-a83d55148a39"], Text[1, Background -> GrayLevel[1]]], {-0.2696293791547939, -0.08049599149438114}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {-0.19098300562505255`, \ -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3631cde8-ee5b-4c41-972d-4942c4044a4b"], Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, -0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ae12aae9-9367-43fe-b105-d378edd92658"], Text[1, Background -> GrayLevel[1]]], {0., 0.3632712640026804}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, { 0.4864723538095458, -0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "cdbcd51e-e60c-41f6-9952-43dc1394e84b"], Text[1, Background -> GrayLevel[1]]], {-0.006763823095227106, -0.28130740738060833}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "299a3c40-cdc7-4c26-bad0-8c9b5f6e337f"], Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, 0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c41e9fcb-ffd1-4a72-a6d7-81422fb150e8"], Text[1, Background -> GrayLevel[1]]], {0., -0.3632712640026804}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, { 0.33991520755105153`, 0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "88249f5f-419c-438c-b546-162a342c8d93"], Text[1, Background -> GrayLevel[1]]], {0.26544910658805204, -0.0933615475539479}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8a464862-a3e4-4734-8b37-e23cad8b074c"], Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, -0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8d5ae44d-8312-499c-b95e-92d2aedb9ca4"], Text[1, Background -> GrayLevel[1]]], {-0.15987629758796795, 0.23155814867895844}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "39c1a85c-593c-40b9-acf2-4eba100ea783"], Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, 0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, { 0.33991520755105153`, 0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "05834379-18d5-46f4-9d81-f45254154e1d"], Text[1, Background -> GrayLevel[1]]], {0.15032822462073187, -0.06160054490343267}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, \ {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2d5fcc04-c4ba-4ef0-a980-3be0a4dbba69"], Text[1, Background -> GrayLevel[1]]], {-0.15782598027980443, -0.03852482574574237}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.4864723538095458, -0.1993435507585363}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "7d85b3fa-66e3-4900-9ff1-003575d76d52"], Text[1, Background -> GrayLevel[1]]], {-0.012131623495721333, -0.1620062528465463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.4864723538095458, -0.1993435507585363}, {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c453a2f5-0d6a-400c-866e-bf5b4d0ebd07"], Text[1, Background -> GrayLevel[1]]], {0.10503957577976239, 0.12393502237071082}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.33991520755105153`, \ -0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "61cbe442-92be-4ac6-8740-cd08197628a7"], Text[1, Background -> GrayLevel[1]]], {0.08541019662496846, -0.13819660112501053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.19098300562505255`, \ -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3f12f567-0b88-4c27-9d6c-0c1655b4f79b"], Text[1, Background -> GrayLevel[1]]], {0.15987629758796795, -0.23155814867895844}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.4864723538095458, 0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "890a03b2-9154-4861-9246-7df46d6ba015"], Text[1, Background -> GrayLevel[1]]], {0.012131623495721333, 0.1620062528465463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, \ {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b80827b0-3df1-4eff-b824-27b9772adedc"], Text[1, Background -> GrayLevel[1]]], {-0.26544910658805204, 0.0933615475539479}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, { 0.03925875830958784, 0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "0a6ae6d1-68e8-465f-86e0-6baf69267355"], Text[1, Background -> GrayLevel[1]]], {-0.15032822462073184, 0.06160054490343267}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.33991520755105153`, 0.40106215718457733`}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a437fb99-97cc-46dc-81a8-52a953909fdd"], Text[1, Background -> GrayLevel[1]]], {-0.08541019662496846, 0.13819660112501053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.276393202250021, -0.4472135954999579}, {-0.4864723538095458, 0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6efbc0db-a1a4-493e-b978-0ccfbfffe7b9"], Text[1, Background -> GrayLevel[1]]], {-0.10503957577976239, -0.12393502237071082}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.276393202250021, -0.4472135954999579}, { 0.03925875830958784, 0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "fec3f6b7-03f5-483d-8633-8b80da5f65c6"], Text[1, Background -> GrayLevel[1]]], {0.15782598027980443, 0.03852482574574237}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.4864723538095458, 0.1993435507585363}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6cd3ab5c-26a3-4979-9ebc-d2f23a1ac379"], Text[1, Background -> GrayLevel[1]]], {0.006763823095227106, 0.28130740738060833}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.03925875830958784, 0.5242632469914427}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e2fc9cb1-4796-43df-a310-5db3c25f41b9"], Text[1, Background -> GrayLevel[1]]], {0.2696293791547939, 0.08049599149438114}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0.6180339887498948, 0.}, 0.025587335982012044], DiskBox[{-0.6180339887498948, 0.}, 0.025587335982012044], DiskBox[{-0.5, 0.3632712640026804}, 0.025587335982012044], DiskBox[{-0.5, -0.3632712640026804}, 0.025587335982012044], DiskBox[{0.19098300562505255, -0.5877852522924731}, 0.025587335982012044], DiskBox[{0.19098300562505255, 0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.03925875830958783, -0.5242632469914427}, 0.025587335982012044], DiskBox[{0.4864723538095458, -0.1993435507585363}, 0.025587335982012044], DiskBox[{0.5107356008009885, 0.12466895493455628}, 0.025587335982012044], DiskBox[{-0.33991520755105153, -0.40106215718457733}, 0.025587335982012044], DiskBox[{0.33991520755105153, 0.40106215718457733}, 0.025587335982012044], DiskBox[{-0.5107356008009885, -0.12466895493455628}, 0.025587335982012044], DiskBox[{0.276393202250021, -0.4472135954999579}, 0.025587335982012044], DiskBox[{-0.19098300562505255, -0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.19098300562505255, 0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.276393202250021, 0.4472135954999579}, 0.025587335982012044], DiskBox[{-0.4864723538095458, 0.1993435507585363}, 0.025587335982012044], DiskBox[{0.03925875830958784, 0.5242632469914427}, 0.025587335982012044], DiskBox[{0.5, 0.3632712640026804}, 0.025587335982012044], DiskBox[{0.5, -0.3632712640026804}, 0.025587335982012044]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[94]=",ExpressionUUID->"b0c537ec-50c0-4f49-8ce2-aa7e25d11e9a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["IGraph", "Subsubsection",ExpressionUUID->"1e04846a-ca31-4c7f-aedb-c57ba4f8c70b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[103]:=",ExpressionUUID->"3803e134-dd2d-47a4-8431-b7d92a7a5f7a"], Cell[BoxData[ RowBox[{"{", RowBox[{"10", ",", "1", ",", "2"}], "}"}]], "Output", CellLabel-> "Out[103]=",ExpressionUUID->"66a3c90f-7ac6-4a4e-b216-44b24a949017"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[73]:=",ExpressionUUID->"3a3b45b0-a78a-4504-ba33-04c5cc86e6f2"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8 VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9 /nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY OSBXuG5jhvqPyQEAhBuTKA== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8 VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9 /nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY OSBXuG5jhvqPyQEAhBuTKA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.07228422026971032]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.07228422026971032], DiskBox[2, 0.07228422026971032], DiskBox[3, 0.07228422026971032], DiskBox[4, 0.07228422026971032], DiskBox[5, 0.07228422026971032], DiskBox[6, 0.07228422026971032], DiskBox[7, 0.07228422026971032], DiskBox[8, 0.07228422026971032], DiskBox[9, 0.07228422026971032], DiskBox[10, 0.07228422026971032], DiskBox[11, 0.07228422026971032], DiskBox[12, 0.07228422026971032], DiskBox[13, 0.07228422026971032], DiskBox[14, 0.07228422026971032], DiskBox[15, 0.07228422026971032], DiskBox[16, 0.07228422026971032], DiskBox[17, 0.07228422026971032], DiskBox[18, 0.07228422026971032], DiskBox[19, 0.07228422026971032], DiskBox[20, 0.07228422026971032]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {1, 0}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2, 0}, {Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {2, 0}, { Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1, 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2, 0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), ( Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 + 5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 5^ Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1, 0}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731], DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731], DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731], DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731], DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731], DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731], DiskBox[13, 0.08280235860091731], DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731], DiskBox[16, 0.08280235860091731], DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731], DiskBox[19, 0.08280235860091731], DiskBox[20, 0.08280235860091731]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[102]=",ExpressionUUID->"e41a355d-19f5-4e8f-a877-608715087e43"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circular", "Subsubsection",ExpressionUUID->"6a198bb2-a69f-4490-8f66-a524a74f29bc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[81]:=",ExpressionUUID->"d5794f9b-5a18-4c50-887c-b90030af168e"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {2^Rational[-1, 2], -2^Rational[-1, 2]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {- Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {- Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {- Cos[Rational[3, 20] Pi], Sin[ Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3 xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz 0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, { 17, 19}, {18, 20}}, 0.041904067400022615`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615], DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615], DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615], DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615], DiskBox[11, 0.041904067400022615], DiskBox[12, 0.041904067400022615], DiskBox[13, 0.041904067400022615], DiskBox[14, 0.041904067400022615], DiskBox[15, 0.041904067400022615], DiskBox[16, 0.041904067400022615], DiskBox[17, 0.041904067400022615], DiskBox[18, 0.041904067400022615], DiskBox[19, 0.041904067400022615], DiskBox[20, 0.041904067400022615]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[81]=",ExpressionUUID->"a1bbe989-425c-4b1e-855d-93cd58129174"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Planar", "Subsubsection",ExpressionUUID->"787cdfd2-064b-48d3-b032-1eb5d86bb9e4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[128]:=",ExpressionUUID->"737a7248-2894-47c0-ae6c-d728eca79c2a"], Cell[BoxData["True"], "Output", CellLabel-> "Out[128]=",ExpressionUUID->"4c4a204b-a2c0-477d-9ac7-744793136e19"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[129]:=",ExpressionUUID->"79e9a92e-e973-406c-b2f7-43c8ab65322f"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483], DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483], DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483], DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483], DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483], DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483], DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483], DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483], DiskBox[19, 0.09709139882090483], DiskBox[20, 0.09709139882090483]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.039375630966373094`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094], DiskBox[3, 0.039375630966373094], DiskBox[4, 0.039375630966373094], DiskBox[5, 0.039375630966373094], DiskBox[6, 0.039375630966373094], DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094], DiskBox[9, 0.039375630966373094], DiskBox[10, 0.039375630966373094], DiskBox[11, 0.039375630966373094], DiskBox[12, 0.039375630966373094], DiskBox[13, 0.039375630966373094], DiskBox[14, 0.039375630966373094], DiskBox[15, 0.039375630966373094], DiskBox[16, 0.039375630966373094], DiskBox[17, 0.039375630966373094], DiskBox[18, 0.039375630966373094], DiskBox[19, 0.039375630966373094], DiskBox[20, 0.039375630966373094]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7 FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co 68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93 P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX 9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd// p3L6ojmXbu4HAIRjq20= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[129]=",ExpressionUUID->"fa7f5635-527b-42e1-9715-b285f1729971"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Tutte embeddings", "Subsubsection",ExpressionUUID->"a1dc7eff-6a41-46b8-843e-0877d9ace473"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"faces", "=", RowBox[{"ReverseSort", "@", RowBox[{"SymmetricallyDistinctFaces", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}]}]}]], "Input", CellLabel-> "In[130]:=",ExpressionUUID->"8c20b6ec-46ee-4fcc-bee9-ade6f3d5877a"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "14", ",", "9", ",", "10", ",", "15"}], "}"}], "}"}]], "Output", CellLabel-> "Out[130]=",ExpressionUUID->"2d43832e-2d15-48da-bd3b-8be9f75519ec"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{"ReverseSort", "[", RowBox[{"Length", "/@", "faces"}], "]"}], "]"}]], "Input", CellLabel-> "In[131]:=",ExpressionUUID->"3d3faf88-f6b4-45e9-aaf6-d417c9211c25"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"5", ",", "1"}], "}"}], "}"}]], "Output", CellLabel-> "Out[131]=",ExpressionUUID->"b1a91e56-0e3f-4a0d-aed5-54b0c4d908bd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"IGLayoutTutte", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"\"\\"", "->", "#"}]}], "]"}], "&"}], "/@", "faces"}]], "Input", CellLabel-> "In[133]:=",ExpressionUUID->"11912f5a-bfa6-4dcb-8a39-82ffafe003a8"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { PlotRange -> All, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHRdVyqJ8/pH9ii/TZ5c/frlfVMxBw/TL5v0NU95a 3SjbbX/5gXLdwhX37L/F2lREvjlsH7+uvGrHp0v7t2W0bSkUuQVTb18PVf/+ +abSBSoH9teI88eJ/V6yPzmsJu2x5WV7CzWLDff/7NjPAAENLu6hv3TNr8D4 UPDB/n+IizBf/rv9AS/1zd8fu2z/AWKefS3UPIi6AptDHM+4fX8e2G/tcvbW ycPH9xustXh5LuoCTL89TD/Uf/th/oO63x7mfph7dllm/HCRewDz7/7vUP9a Qcy314eaD/XPfnOofwAp/5wx "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHRdVyqJ8/pH9ii/TZ5c/frlfVMxBw/TL5v0NU95a 3SjbbX/5gXLdwhX37L/F2lREvjlsH7+uvGrHp0v7t2W0bSkUuQVTb18PVf/+ +abSBSoH9teI88eJ/V6yPzmsJu2x5WV7CzWLDff/7NjPAAENLu6hv3TNr8D4 UPDB/n+IizBf/rv9AS/1zd8fu2z/AWKefS3UPIi6AptDHM+4fX8e2G/tcvbW ycPH9xustXh5LuoCTL89TD/Uf/th/oO63x7mfph7dllm/HCRewDz7/7vUP9a Qcy314eaD/XPfnOofwAp/5wx "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, { 17, 19}, {18, 20}}, 0.021812234931106983`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.021812234931106983], DiskBox[2, 0.021812234931106983], DiskBox[3, 0.021812234931106983], DiskBox[4, 0.021812234931106983], DiskBox[5, 0.021812234931106983], DiskBox[6, 0.021812234931106983], DiskBox[7, 0.021812234931106983], DiskBox[8, 0.021812234931106983], DiskBox[9, 0.021812234931106983], DiskBox[10, 0.021812234931106983], DiskBox[11, 0.021812234931106983], DiskBox[12, 0.021812234931106983], DiskBox[13, 0.021812234931106983], DiskBox[14, 0.021812234931106983], DiskBox[15, 0.021812234931106983], DiskBox[16, 0.021812234931106983], DiskBox[17, 0.021812234931106983], DiskBox[18, 0.021812234931106983], DiskBox[19, 0.021812234931106983], DiskBox[20, 0.021812234931106983]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None, PlotRange->All], "}"}]], "Output", CellLabel-> "Out[133]=",ExpressionUUID->"31b4492e-2d7d-46b6-8e89-4a98b485a65d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gs", "=", RowBox[{ RowBox[{ RowBox[{"Annotate", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{ RowBox[{"VertexLabels", "->", "None"}], ",", RowBox[{"ImageSize", "->", "Tiny"}]}], "}"}]}], "]"}], "&"}], "/@", RowBox[{"{", "}"}]}]}]], "Input", CellLabel-> "In[134]:=",ExpressionUUID->"920e6827-848d-4e71-b342-73d65792670e"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[134]=",ExpressionUUID->"e76b0052-c200-4377-af06-0be33ab05bf9"] }, Open ]], Cell[BoxData[ RowBox[{"RecognizeGraph", "/@", "gs"}]], "Input",ExpressionUUID->"84346213-9d36-416e-b47f-386e63e1d99c"] }, Closed]], Cell[CellGroupData[{ Cell["MinimalCrossing", "Subsubsection",ExpressionUUID->"74fd435e-2046-4023-b2ec-04d2d3a4954c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel->"In[74]:=",ExpressionUUID->"9699808a-8b75-4e9b-bc81-05f95871883e"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]], "Output", CellLabel->"Out[74]=",ExpressionUUID->"a898329d-0681-4cd1-b17f-f831454d083c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[75]:=",ExpressionUUID->"bd7f5768-1b6c-49ca-9c0b-d5b859a7099b"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483], DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483], DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483], DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483], DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483], DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483], DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483], DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483], DiskBox[19, 0.09709139882090483], DiskBox[20, 0.09709139882090483]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6 0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H 6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.039375630966373094`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094], DiskBox[3, 0.039375630966373094], DiskBox[4, 0.039375630966373094], DiskBox[5, 0.039375630966373094], DiskBox[6, 0.039375630966373094], DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094], DiskBox[9, 0.039375630966373094], DiskBox[10, 0.039375630966373094], DiskBox[11, 0.039375630966373094], DiskBox[12, 0.039375630966373094], DiskBox[13, 0.039375630966373094], DiskBox[14, 0.039375630966373094], DiskBox[15, 0.039375630966373094], DiskBox[16, 0.039375630966373094], DiskBox[17, 0.039375630966373094], DiskBox[18, 0.039375630966373094], DiskBox[19, 0.039375630966373094], DiskBox[20, 0.039375630966373094]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[ 1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7 FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co 68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93 P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX 9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd// p3L6ojmXbu4HAIRjq20= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[75]=",ExpressionUUID->"bf43147e-773f-44c1-a979-333fcf9c925a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MinimalIntegral", "Subsubsection",ExpressionUUID->"5525967c-2e88-47dc-8007-b1a2db96a83e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[95]:=",ExpressionUUID->"d821c3f0-dd8b-4f1e-a5b7-ecedf6e9ad8c"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv 3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/ uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^ Rational[-1, 2]}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/ f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69 7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044], DiskBox[3, 0.025587335982012044], DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044], DiskBox[6, 0.025587335982012044], DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044], DiskBox[9, 0.025587335982012044], DiskBox[10, 0.025587335982012044], DiskBox[11, 0.025587335982012044], DiskBox[12, 0.025587335982012044], DiskBox[13, 0.025587335982012044], DiskBox[14, 0.025587335982012044], DiskBox[15, 0.025587335982012044], DiskBox[16, 0.025587335982012044], DiskBox[17, 0.025587335982012044], DiskBox[18, 0.025587335982012044], DiskBox[19, 0.025587335982012044], DiskBox[20, 0.025587335982012044]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[95]=",ExpressionUUID->"8f950747-9dce-4eb4-901d-e15eba5188ff"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[96]:=",ExpressionUUID->"81c30224-37e7-4a46-9382-efd774429692"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] 5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "82506a6d-c511-4506-aac4-a78a3b37f394"], Text[1, Background -> GrayLevel[1]]], {0.260944095661969, 0.6368005784302776}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b4a31e15-4429-420d-8bca-3be1e643feec"], Text[1, Background -> GrayLevel[1]]], {0.686269499837989, -0.051390381805309165}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.723606797749979, 0.4472135954999579}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "be94d9f8-cdba-483c-b1a2-c2851883f700"], Text[1, Background -> GrayLevel[1]]], {1.170820393249937, 0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \ {-0.648932201925999, 0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3fc4e6bf-5ec5-42d0-8f1c-e3dcbf22b3ed"], Text[1, Background -> GrayLevel[1]]], {-0.686269499837989, 0.051390381805309165}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, { 0.20171860642604098`, -0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8e2bb0c1-682d-40ae-8a62-4812af3b2205"], Text[1, Background -> GrayLevel[1]]], {-0.260944095661969, -0.6368005784302776}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \ {-1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2f57d620-f5cf-4f50-a7e6-f1b32bcf7d80"], Text[1, Background -> GrayLevel[1]]], {-1.170820393249937, -0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9259e6cd-3ab2-4e5d-8f29-08ade0f415e5"], Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, 1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "52e84938-abae-4bef-b848-5cd0a69076b1"], Text[1, Background -> GrayLevel[1]]], {0.1491406967869795, 1.182614664974112}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, 1.5388417685876268`}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "08b2faa7-146c-4be8-b68d-4aaefe3946d4"], Text[1, Background -> GrayLevel[1]]], {0., 1.5388417685876268}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, -1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c273dc77-7aba-4b50-9c54-eb150a7e76e0"], Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, -1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5, -1.5388417685876268`}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "0e3b3331-0076-4e1b-bc61-dc7908f5c35e"], Text[1, Background -> GrayLevel[1]]], {0.5744661009629994, -1.0444180638491014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.5, -1.5388417685876268`}, {-0.5, -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3aab6498-1dee-40de-ac77-e4e6f356c922"], Text[1, Background -> GrayLevel[1]]], {0., -1.5388417685876268}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.648932201925999, 0.5499943591105763}, { 0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e360eb62-182c-450a-b7be-7afb6f652b9e"], Text[1, Background -> GrayLevel[1]]], {-0.16319378068029863, 0.6685615810807929}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2be547ad-9be9-45fe-8ba9-7fafd2e0718a"], Text[1, Background -> GrayLevel[1]]], {-0.5744661009629994, 1.0444180638491014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.20171860642604098`, -0.8263875613605973}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "fa7e0682-a8e4-42e4-b3fe-cd2494b74d2b"], Text[1, Background -> GrayLevel[1]]], {0.5249971795552881, -0.4449547833308139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.20171860642604098`, -0.8263875613605973}, {-0.5, \ -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3dc3fd69-e2ce-4f30-8ffb-5e58e0e85d36"], Text[1, Background -> GrayLevel[1]]], {-0.1491406967869795, -1.182614664974112}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, { 0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6c956975-97af-46ad-b244-454449cbdac1"], Text[1, Background -> GrayLevel[1]]], {0.8157808174701746, 0.8690926596730815}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1de37199-eebb-4436-b272-bc5a3e6aedb5"], Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, 0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "777e2d0c-be86-429f-841c-26a439210196"], Text[1, Background -> GrayLevel[1]]], {1.0786463735297414, -0.507289260798092}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, { 1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "99bde08a-8d20-4745-993a-fc3e4a34bd14"], Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, -0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-0.3225446405654017, -0.7871288030510095}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "f1f077c7-3364-44d6-b493-b7d1f60f986f"], Text[1, Background -> GrayLevel[1]]], {-0.5854101966249685, -0.3618033988749895}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-0.20171860642604098`, 0.8263875613605973}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5076ea9f-fa62-4d93-911e-837e4e49bb11"], Text[1, Background -> GrayLevel[1]]], {-0.5249971795552881, 0.4449547833308139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.8482757526845353, 0.0635220053010305}, {-1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9235b3fd-9860-43e1-be11-1b4a1eff35df"], Text[1, Background -> GrayLevel[1]]], {-1.0786463735297414, 0.507289260798092}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, { 0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "564644b1-c893-4d55-864d-6ec05bf9723f"], Text[1, Background -> GrayLevel[1]]], {0.16319378068029863, -0.6685615810807929}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, \ {-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "4cbc7ce6-5908-4880-affe-5a650e2d38c9"], Text[1, Background -> GrayLevel[1]]], {-0.8157808174701746, -0.8690926596730815}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.3225446405654017, 0.7871288030510095}, { 0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "723c5dba-498c-4a56-bef9-0852627f1471"], Text[1, Background -> GrayLevel[1]]], {0.5854101966249685, 0.3618033988749895}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`, 0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "cbcddf8b-0469-4a03-89d6-2683818c1cc7"], Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, 0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "770d2629-851b-4966-9ba4-44d508b30f26"], Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, -0.47552825814757677}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.3090169943749475`, 0.9510565162951535}, {-0.5, 1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "97a867c6-b263-4ed8-9207-d0aae8de7b2d"], Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, 1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.3090169943749475`, -0.9510565162951535}, {-0.5, \ -1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "480d52b2-2c72-4c68-afad-f83cfcb675a8"], Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, -1.24494914244139}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0.723606797749979, 0.4472135954999579}, 0.06698851528247071], DiskBox[{-0.723606797749979, -0.4472135954999579}, 0.06698851528247071], DiskBox[{0.5, 1.5388417685876268}, 0.06698851528247071], DiskBox[{0.5, -1.5388417685876268}, 0.06698851528247071], DiskBox[{-0.648932201925999, 0.5499943591105763}, 0.06698851528247071], DiskBox[{0.20171860642604098, -0.8263875613605973}, 0.06698851528247071], DiskBox[{1.3090169943749475, 0.9510565162951535}, 0.06698851528247071], DiskBox[{1.3090169943749475, -0.9510565162951535}, 0.06698851528247071], DiskBox[{-0.8482757526845353, 0.0635220053010305}, 0.06698851528247071], DiskBox[{-0.3225446405654017, -0.7871288030510095}, 0.06698851528247071], DiskBox[{0.3225446405654017, 0.7871288030510095}, 0.06698851528247071], DiskBox[{0.8482757526845353, -0.0635220053010305}, 0.06698851528247071], DiskBox[{-1.618033988749895, 0.}, 0.06698851528247071], DiskBox[{-0.20171860642604098, 0.8263875613605973}, 0.06698851528247071], DiskBox[{0.648932201925999, -0.5499943591105763}, 0.06698851528247071], DiskBox[{1.618033988749895, 0.}, 0.06698851528247071], DiskBox[{-1.3090169943749475, 0.9510565162951535}, 0.06698851528247071], DiskBox[{-1.3090169943749475, -0.9510565162951535}, 0.06698851528247071], DiskBox[{-0.5, 1.5388417685876268}, 0.06698851528247071], DiskBox[{-0.5, -1.5388417685876268}, 0.06698851528247071]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) ( 2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^ Rational[-1, 2]}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4] 5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`, -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9463b8b0-8d00-49e9-904b-45a50fec4361"], Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, -0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "383cb622-2081-4ae3-88a8-72260fae419e"], Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, 0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.6180339887498948, 0.}, {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "789dba99-7c69-4b52-a800-09c358e56536"], Text[1, Background -> GrayLevel[1]]], {0.1708203932499369, 0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, { 0.19098300562505255`, -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "a54e2a1b-0d64-4fb3-b86f-3f09ce2e0126"], Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, -0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, {0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "56e3d8c0-2e54-48fe-b6ac-bc4776718b91"], Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, 0.29389262614623657}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6180339887498948, 0.}, { 0.276393202250021, -0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "0dc92056-15c7-40ab-962c-eb0957e5ff56"], Text[1, Background -> GrayLevel[1]]], {-0.1708203932499369, -0.22360679774997896}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {-0.03925875830958783, \ -0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c337310a-e3f1-4d65-931c-aec8689f2b67"], Text[1, Background -> GrayLevel[1]]], {-0.2696293791547939, -0.08049599149438114}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {-0.19098300562505255`, \ -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "366fad08-2853-49c2-bfb8-c9a543fb48ec"], Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, -0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, 0.3632712640026804}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5a76c234-3993-4954-a839-2bb86395af01"], Text[1, Background -> GrayLevel[1]]], {0., 0.3632712640026804}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, { 0.4864723538095458, -0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c6eae345-efb9-4e0c-9419-12e99dc5672f"], Text[1, Background -> GrayLevel[1]]], {-0.006763823095227106, -0.28130740738060833}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2709f9a5-40cd-42d5-8677-a556f2c1b610"], Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, 0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.5, -0.3632712640026804}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "edb81e42-f2bb-4c5f-a72a-c7c50a8fe223"], Text[1, Background -> GrayLevel[1]]], {0., -0.3632712640026804}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, { 0.33991520755105153`, 0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "76b701fb-9ac6-4abd-b233-b69600679a4a"], Text[1, Background -> GrayLevel[1]]], {0.26544910658805204, -0.0933615475539479}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "7072f0e8-50ef-4fd0-adf8-17894dcc8ca9"], Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, -0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "92cfe237-bb10-4621-998f-97affa09ac47"], Text[1, Background -> GrayLevel[1]]], {-0.15987629758796795, 0.23155814867895844}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "af4a22c9-b79b-4e4c-a0f5-40f9fdcb4e97"], Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, 0.11225699414489637}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, { 0.33991520755105153`, 0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "091b2dad-54ac-4ca4-b2cc-9f12ab4bf434"], Text[1, Background -> GrayLevel[1]]], {0.15032822462073187, -0.06160054490343267}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, \ {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c6eaab41-e38f-45e1-ab71-fd7337fe5a08"], Text[1, Background -> GrayLevel[1]]], {-0.15782598027980443, -0.03852482574574237}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.4864723538095458, -0.1993435507585363}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b208d446-f3b5-4920-a9e7-6131cea092ef"], Text[1, Background -> GrayLevel[1]]], {-0.012131623495721333, -0.1620062528465463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.4864723538095458, -0.1993435507585363}, {-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "7a272775-ae70-4889-8774-59217715bdb9"], Text[1, Background -> GrayLevel[1]]], {0.10503957577976239, 0.12393502237071082}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.33991520755105153`, \ -0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e7ed95d9-ed81-4b4f-a442-a3b259f00cd7"], Text[1, Background -> GrayLevel[1]]], {0.08541019662496846, -0.13819660112501053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.19098300562505255`, \ -0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1a0a2901-1ad0-4ecc-9d87-88e93de0e8ed"], Text[1, Background -> GrayLevel[1]]], {0.15987629758796795, -0.23155814867895844}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5107356008009885, 0.12466895493455628`}, {-0.4864723538095458, 0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6e77d3ba-67d9-4fe0-b279-ca2abee1e59e"], Text[1, Background -> GrayLevel[1]]], {0.012131623495721333, 0.1620062528465463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, \ {-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "42b31f56-8648-4bfa-b9b6-6c77024b2749"], Text[1, Background -> GrayLevel[1]]], {-0.26544910658805204, 0.0933615475539479}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, { 0.03925875830958784, 0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "de6030b5-3ab1-4653-83cf-0015e9f150e5"], Text[1, Background -> GrayLevel[1]]], {-0.15032822462073184, 0.06160054490343267}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.33991520755105153`, 0.40106215718457733`}, {-0.5107356008009885, \ -0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "56cc19f1-90fd-4d11-ba18-e4e8738db544"], Text[1, Background -> GrayLevel[1]]], {-0.08541019662496846, 0.13819660112501053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.276393202250021, -0.4472135954999579}, {-0.4864723538095458, 0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "6194b61e-9ab9-49c1-b3d1-f4806f35f80c"], Text[1, Background -> GrayLevel[1]]], {-0.10503957577976239, -0.12393502237071082}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.276393202250021, -0.4472135954999579}, { 0.03925875830958784, 0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e1b2bb83-646c-46f8-a017-1e5914cfdb02"], Text[1, Background -> GrayLevel[1]]], {0.15782598027980443, 0.03852482574574237}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.4864723538095458, 0.1993435507585363}, {0.5, 0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ffa6fb4f-2842-4b1c-b608-375b16e016b3"], Text[1, Background -> GrayLevel[1]]], {0.006763823095227106, 0.28130740738060833}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.03925875830958784, 0.5242632469914427}, { 0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "92568256-4759-4f27-9109-f13e82c2cefa"], Text[1, Background -> GrayLevel[1]]], {0.2696293791547939, 0.08049599149438114}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{0.6180339887498948, 0.}, 0.025587335982012044], DiskBox[{-0.6180339887498948, 0.}, 0.025587335982012044], DiskBox[{-0.5, 0.3632712640026804}, 0.025587335982012044], DiskBox[{-0.5, -0.3632712640026804}, 0.025587335982012044], DiskBox[{0.19098300562505255, -0.5877852522924731}, 0.025587335982012044], DiskBox[{0.19098300562505255, 0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.03925875830958783, -0.5242632469914427}, 0.025587335982012044], DiskBox[{0.4864723538095458, -0.1993435507585363}, 0.025587335982012044], DiskBox[{0.5107356008009885, 0.12466895493455628}, 0.025587335982012044], DiskBox[{-0.33991520755105153, -0.40106215718457733}, 0.025587335982012044], DiskBox[{0.33991520755105153, 0.40106215718457733}, 0.025587335982012044], DiskBox[{-0.5107356008009885, -0.12466895493455628}, 0.025587335982012044], DiskBox[{0.276393202250021, -0.4472135954999579}, 0.025587335982012044], DiskBox[{-0.19098300562505255, -0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.19098300562505255, 0.5877852522924731}, 0.025587335982012044], DiskBox[{-0.276393202250021, 0.4472135954999579}, 0.025587335982012044], DiskBox[{-0.4864723538095458, 0.1993435507585363}, 0.025587335982012044], DiskBox[{0.03925875830958784, 0.5242632469914427}, 0.025587335982012044], DiskBox[{0.5, 0.3632712640026804}, 0.025587335982012044], DiskBox[{0.5, -0.3632712640026804}, 0.025587335982012044]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[96]=",ExpressionUUID->"b7cf392b-5178-4191-a0fe-7b5d8960eaee"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MinimalPlanarIntegral", "Subsubsection",ExpressionUUID->"ac93d627-0451-4c27-908a-785f50630a27"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegralDrawing", "/@", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[98]:=",ExpressionUUID->"a0c5ff72-2f86-4402-82d2-566215e717e6"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { EdgeLabels -> { UndirectedEdge[7, 11] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[1, 14] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[8, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[3, 7] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[13, 17] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[18, 20] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[9, 10] -> Text[0.9999999999998551, Background -> GrayLevel[1]], UndirectedEdge[4, 20] -> Text[0.9999999999999998, Background -> GrayLevel[1]], UndirectedEdge[3, 14] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[10, 15] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[1, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 8] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[6, 12] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[6, 20] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[1, 15] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[2, 13] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[17, 19] -> Text[0.9999999999998549, Background -> GrayLevel[1]], UndirectedEdge[11, 12] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[5, 11] -> Text[0.9999999999998549, Background -> GrayLevel[1]], UndirectedEdge[5, 19] -> Text[1.0000000000000087`, Background -> GrayLevel[1]], UndirectedEdge[2, 5] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[9, 17] -> Text[1.0000000000000089`, Background -> GrayLevel[1]], UndirectedEdge[8, 12] -> Text[0.9999999999998549, Background -> GrayLevel[1]], UndirectedEdge[10, 18] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[13, 18] -> Text[0.9999999999999999, Background -> GrayLevel[1]], UndirectedEdge[2, 6] -> Text[1., Background -> GrayLevel[1]], UndirectedEdge[7, 16] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[3, 19] -> Text[2, Background -> GrayLevel[1]], UndirectedEdge[4, 15] -> Text[0.9999999999998551, Background -> GrayLevel[1]], UndirectedEdge[9, 14] -> Text[2, Background -> GrayLevel[1]]}, EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { 0.987612117694377, -0.2871001053666874}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.843010491122414, -0.11375460257732557`}, { 1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063, 0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^ Rational[1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]}, TagBox[GraphicsGroupBox[{ {GrayLevel[0], Opacity[0.7], { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, {1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "8ef8bfd1-54bf-4ff2-9f45-722309cfddf5"], Text[2, Background -> GrayLevel[1]]], {0., -1.3763819204711736}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ed40b097-9d8f-43d9-ad08-f5e6e425ac59"], Text[2, Background -> GrayLevel[1]]], {-0.0009981089772145846, -1.3317140155180782}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1., -1.3763819204711736`}, {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "ea5d14b3-4125-45b6-beff-8b584fe1f895"], Text[2, Background -> GrayLevel[1]]], {-1.3090169943749475, -0.42532540417602}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {-0.6302417791992277, 0.8127727020945811}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "673e14e8-77b5-4fb1-87b7-2ca7381dbfc4"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.1307750774831501, 0.7896856087984845}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {-0.6151465359790604, 0.5875385408830143}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "c2f2a74f-9e7d-4ea7-81a2-e339a3e8de65"], Text[1., Background -> GrayLevel[1]]], {-0.12322745587306644, 0.677068528192701}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, { 0.843010491122414, -0.11375460257732557`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5116c3ac-976c-4975-9012-853788c3b1fd"], Text[1., Background -> GrayLevel[1]]], {0.6058510576776708, 0.3264219564625311}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, {0., 1.7013016167040798`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "115d2745-72e0-41e2-8134-e38e7372f763"], Text[2, Background -> GrayLevel[1]]], {0.8090169943749475, 1.1135163644116066}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, { 1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "58c7628e-ae80-4a84-8ba3-734007cb145f"], Text[2, Background -> GrayLevel[1]]], {1.3090169943749475, -0.42532540417602}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.618033988749895, 0.5257311121191336}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d68b67bc-596e-43b2-9695-700ba7f1ea21"], Text[2, Background -> GrayLevel[1]]], {0.7835693457175209, 1.0767925964644403}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.032140502180179956`, -1.0279937517504376`}, \ {-0.9156534611226071, -1.3468771209104056`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "d179434d-81f0-46f6-8db1-9cd88c185f83"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.4417564794712136, -1.1874354363304216}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.032140502180179956`, -1.0279937517504376`}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998551`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "876e8924-615c-48a7-a542-ea6b21ddef6e"], Text[0.9999999999998551, Background -> GrayLevel[1]]], {0.5150721421128754, -1.1575199311577102}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.032140502180179956`, -1.0279937517504376`}, \ {-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999998`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "95a4768d-105c-4f47-b72b-d32b6a1abae8"], Text[0.9999999999999998, Background -> GrayLevel[1]]], {-0.3583662946747835, -0.7157367396433014}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6302417791992277, 0.8127727020945811}, {-1.5639087429358225`, 0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998549`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "9d15b9cc-4057-4dcd-8be2-48f9c5b95d5f"], Text[0.9999999999998549, Background -> GrayLevel[1]]], {-1.0970752610675252, 0.6337014866336658}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6302417791992277, 0.8127727020945811}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "59e2a5d9-48a8-4edb-9c1a-95684821db41"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.3405685382570405, 1.220313391452164}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6151465359790604, 0.5875385408830143}, {-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "81458279-6ceb-41db-821f-9d9accf4ec4e"], Text[1., Background -> GrayLevel[1]]], {-0.791447365455298, 0.11965178372270463}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.6151465359790604, 0.5875385408830143}, {-0.7488730915297469, \ -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "996933b7-3bf3-4871-86fd-57a33e3ad2eb"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.6820098137544037, 0.09202940667342452}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.7013016167040798`}, {-1.5639087429358225`, 0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "5aaa01b7-5a04-43f3-8143-184f38f7a20d"], Text[2, Background -> GrayLevel[1]]], {-0.7819543714679112, 1.077965943938415}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0., 1.7013016167040798`}, {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "25420fb0-26cb-4396-aa5f-2456a543ee97"], Text[2, Background -> GrayLevel[1]]], {-0.8090169943749475, 1.1135163644116066}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \ {-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998549`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "339a4b60-ea22-4f1d-8931-e164b73eff15"], Text[0.9999999999998549, Background -> GrayLevel[1]]], {-0.9417008280270713, -0.8475560471740053}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \ {-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3461ca37-fb11-470c-8799-cc53b83095a5"], Text[2, Background -> GrayLevel[1]]], {-1.266843724936251, -0.410573004395636}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 0.987612117694377, -0.2871001053666874}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998551`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b3a632f2-f7d6-4ddd-9c27-84bb211ff065"], Text[0.9999999999998551, Background -> GrayLevel[1]]], {1.2600329185110446, 0.13216938706310183}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["2", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "3bc2659f-90c8-4427-bb99-21f60c498083"], Text[2, Background -> GrayLevel[1]]], {1.2662268596638562, -0.41247152048914126}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{1.5324537193277121`, 0.551438879492891}, { 0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000089`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "1574e1ca-876c-4b13-80aa-b4b82154b84b"], Text[1.0000000000000089`, Background -> GrayLevel[1]]], {1.0553455367919593, 0.7009975039765199}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.987612117694377, -0.2871001053666874}, { 0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "2d475d93-919e-4ac8-8977-1ca9327ca66b"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {0.9928079498699739, -0.7870731079658351}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.987612117694377, -0.2871001053666874}, { 0.15231751215346578`, -0.8369027262719113}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "e3a558d3-c47f-4363-8556-7075b9b63d2f"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.5699648149239214, -0.5620014158192994}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{-1.5639087429358225`, 0.45463027117275046`}, {-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.0000000000000087`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "b37b5fe7-f025-4f5c-908e-dfe45dab444b"], Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-1.265828468933679, 0.05319764886757272}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.843010491122414, -0.11375460257732557`}, { 0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["1.`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "21fb70e9-f1fd-458a-85b8-e1ef736d1064"], Text[1., Background -> GrayLevel[1]]], {0.7106239226893101, 0.3684007629414116}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.843010491122414, -0.11375460257732557`}, { 0.15231751215346578`, -0.8369027262719113}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "bd6db22c-0fa5-4430-aa59-0f75194e6de5"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.4976640016379399, -0.47532866442461846}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{0.5782373542562063, 0.8505561284601488}, {-0.05089529731485315, 1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999998549`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "34582d1d-1427-4c17-84d7-b98a4c136fe5"], Text[0.9999999999998549, Background -> GrayLevel[1]]], {0.2636710284706766, 1.239205104634948}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}, { {Arrowheads[0.], ArrowBox[{{ 0.15231751215346578`, -0.8369027262719113}, {-0.7488730915297469, \ -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[ InterpretationBox[Cell[BoxData[ FormBox["0.9999999999999999`", TextForm]], "InlineText", Background->GrayLevel[1],ExpressionUUID-> "22512f72-6dc1-449e-b9a4-0ba260487769"], Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.29827778968814056, -0.6201912269040383}, ImageScaled[{0.5, 0.5}], BaseStyle->"Graphics"]}}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[{-1., -1.3763819204711736}, 0.06698851528247071], DiskBox[{0.36869162423292756, 0.7665985155023878}, 0.06698851528247071], DiskBox[{1.618033988749895, 0.5257311121191336}, 0.06698851528247071], DiskBox[{0.032140502180179956, -1.0279937517504376}, 0.06698851528247071], DiskBox[{-0.6302417791992277, 0.8127727020945811}, 0.06698851528247071], DiskBox[{-0.6151465359790604, 0.5875385408830143}, 0.06698851528247071], DiskBox[{0., 1.7013016167040798}, 0.06698851528247071], DiskBox[{-0.9156534611226071, -1.3468771209104056}, 0.06698851528247071], DiskBox[{1.5324537193277121, 0.551438879492891}, 0.06698851528247071], DiskBox[{0.987612117694377, -0.2871001053666874}, 0.06698851528247071], DiskBox[{-1.5639087429358225, 0.45463027117275046}, 0.06698851528247071], DiskBox[{-0.9677481949315356, -0.348234973437605}, 0.06698851528247071], DiskBox[{0.843010491122414, -0.11375460257732557}, 0.06698851528247071], DiskBox[{1., -1.3763819204711736}, 0.06698851528247071], DiskBox[{0.9980037820455708, -1.2870461105649829}, 0.06698851528247071], DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.06698851528247071], DiskBox[{0.5782373542562063, 0.8505561284601488}, 0.06698851528247071], DiskBox[{0.15231751215346578, -0.8369027262719113}, 0.06698851528247071], DiskBox[{-0.05089529731485315, 1.6278540808097468}, 0.06698851528247071], DiskBox[{-0.7488730915297469, -0.40347972753616523}, 0.06698851528247071]}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[98]=",ExpressionUUID->"8dabffce-229c-4f7c-a6fb-a9584d50f537"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Circulant", "Subsubsection",ExpressionUUID->"451f4e4b-88c7-4117-a304-c05606209c00"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"9a4c91e2-ba13-449b-974f-cfdad45bdcfb"], Cell[BoxData["False"], "Output", CellLabel->"Out[7]=",ExpressionUUID->"7e05193a-49eb-4ee4-8966-966edc62fd88"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"0217e9bd-dbd8-4f12-9ab3-68e2b7f13305"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"62665c00-aa61-4bfa-bf31-7b0100c22594"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Halin", "Subsubsection",ExpressionUUID->"c61aca9c-f6a0-481d-801a-24b5c30742c0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",\ CellLabel->"In[9]:=",ExpressionUUID->"a3f731b7-fea3-43d3-9f47-dc037a7eca9a"], Cell[BoxData["False"], "Output", CellLabel->"Out[9]=",ExpressionUUID->"3ff1636f-5f81-4c4f-957d-5d486bd11728"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"79143728-c29b-4ca6-b1f1-e7a9c60e5a23"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel->"Out[10]=",ExpressionUUID->"75af72d6-4da8-4e9b-8637-b5f2014c08b9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["LCF", "Subsubsection",ExpressionUUID->"94a8e40c-195c-4d28-bd2c-d7b8bce59cd1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[76]:=",ExpressionUUID->"46089590-a5dd-45a0-9497-bcf21c76c02a"], Cell[BoxData["True"], "Output", CellLabel->"Out[76]=",ExpressionUUID->"6b7e4cdf-1964-492a-89d5-9fa7fa8da618"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[77]:=",ExpressionUUID->"e9ade6fb-032d-4c22-a9ef-5f9a1aa0ca29"], Cell[BoxData["30"], "Output", CellLabel->"Out[77]=",ExpressionUUID->"333da5e2-1c10-4a0c-ae5d-107941880283"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[78]:=",ExpressionUUID->"867bf96c-1bee-4e28-96cc-92e3abdf7540"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "}"}]], "Output", CellLabel->"Out[78]=",ExpressionUUID->"13e8d7aa-371c-4aeb-a1bf-536ab3b2cd0e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[79]:=",ExpressionUUID->"31a6ad5b-7397-4db0-b337-b9f8b1d8ff56"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {2^Rational[-1, 2], -2^Rational[-1, 2]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {- Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {- Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {- Cos[Rational[3, 20] Pi], Sin[ Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {- Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3 xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz 0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, { 17, 19}, {18, 20}}, 0.041904067400022615`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615], DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615], DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615], DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615], DiskBox[11, 0.041904067400022615], DiskBox[12, 0.041904067400022615], DiskBox[13, 0.041904067400022615], DiskBox[14, 0.041904067400022615], DiskBox[15, 0.041904067400022615], DiskBox[16, 0.041904067400022615], DiskBox[17, 0.041904067400022615], DiskBox[18, 0.041904067400022615], DiskBox[19, 0.041904067400022615], DiskBox[20, 0.041904067400022615]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[79]=",ExpressionUUID->"749f138f-7c3d-434b-8800-e6fed358da32"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Tally", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"LCFFromEmbedding", "[", "#", "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], "&"}], "/@", "%"}], "]"}]], "Input", CellLabel->"In[80]:=",ExpressionUUID->"bd0a5c4d-13bd-4b9a-a767-b95e06878eb0"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "}"}]], "Output", CellLabel->"Out[80]=",ExpressionUUID->"64f48760-4974-46a4-8714-aefd8fa45ee3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["LCF compute", "Subsubsection",ExpressionUUID->"0f59d380-1dc6-4198-b941-a401158b595e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Length", "[", RowBox[{ RowBox[{"FindHamiltonianCycle", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", "All"}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}], "]"}], "//", "Timing"}]], "Input", CellLabel->"In[3]:=",ExpressionUUID->"de92e3d0-310a-4c4f-9e71-017d45b50089"], Cell[BoxData[ RowBox[{"{", RowBox[{"10.041154`", ",", "30"}], "}"}]], "Output", CellLabel->"Out[3]=",ExpressionUUID->"3916dbc6-b2b6-4019-ab83-7a429adf9e1b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Tally", "[", RowBox[{ RowBox[{"(", RowBox[{"lcf", "=", RowBox[{"LCF", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", "All"}], "]"}]}], ")"}], "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}], "//", "Timing"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"c1f97f9a-1f88-4d92-b3c0-6898d0cce313"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.006485`", ",", RowBox[{"{", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "}"}]}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"ccdd64ee-f450-4168-8188-59760475a9cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"LCFGraph", "@@@", "lcf"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[5]:=",ExpressionUUID->"63905200-494a-4826-880b-92cffa70b78c"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {18, 19}, {19, 20}}}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, {2^Rational[-1, 2], 2^Rational[-1, 2]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, {-Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Cos[Rational[1, 20] Pi], - Sin[Rational[1, 20] Pi]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^ Rational[-1, 2]}, {-Sin[Rational[3, 20] Pi], - Cos[Rational[3, 20] Pi]}, {-Sin[Rational[1, 20] Pi], - Cos[Rational[1, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXRq8Ip2b7Yh9zBP9KSqz3+9nvOeircd31z5Xx1ZW ofnN/jPW9WnzFjyzh9L7oeL2UHX7ofrsoeag8+3R1NujmWePZp89mnswzIXZ C1MPcxfMPJi7YebC/IXuT5i5aOr3o5m3H82+/Wju2Q8A7XeQSg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, { 18, 19}, {19, 20}}, 0.041904067400022615`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615], DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615], DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615], DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615], DiskBox[11, 0.041904067400022615], DiskBox[12, 0.041904067400022615], DiskBox[13, 0.041904067400022615], DiskBox[14, 0.041904067400022615], DiskBox[15, 0.041904067400022615], DiskBox[16, 0.041904067400022615], DiskBox[17, 0.041904067400022615], DiskBox[18, 0.041904067400022615], DiskBox[19, 0.041904067400022615], DiskBox[20, 0.041904067400022615]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[5]=",ExpressionUUID->"485cc936-f57f-418b-bf4b-56995d91f40a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gs", "=", RowBox[{"Flatten", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"all", " ", RowBox[{"LCF", "'"}], "s", " ", "with", " ", "order"}], " ", ">", "1"}], ",", " ", RowBox[{ "sorted", " ", "by", " ", "order", " ", "and", " ", "with", " ", "bilateral", " ", "graphs", " ", "first"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{ RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"Cases", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "]"}], "&"}], "/@", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"BilateralLCFEmbedding", "[", "#", "]"}], ",", "#"}], "}"}], "&"}], ",", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"LCFGraph", "@@", "#"}], "&"}], ",", RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{"lcf", ",", RowBox[{"{", RowBox[{"_", ",", "1"}], "}"}]}], "]"}], ",", "Last"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"order", "-", RowBox[{"1", " ", "bilateral", " ", "only"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"DeleteMissing", "[", RowBox[{"BilateralLCFEmbedding", "/@", RowBox[{"LCFGraph", "@@@", RowBox[{"Cases", "[", RowBox[{"lcf", ",", RowBox[{"{", RowBox[{"_", ",", "1"}], "}"}]}], "]"}]}]}], "]"}]}], "}"}], "]"}]}]], "Input", CellLabel->"In[6]:=",ExpressionUUID->"4ced435d-99b4-485e-ad67-f57134cd1885"], Cell[BoxData[ RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {18, 19}, {19, 20}}}, {VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, { Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, { Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, {-Sin[Rational[1, 20] Pi], Cos[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi], Cos[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], 2^ Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, {-Cos[Rational[1, 20] Pi], - Sin[Rational[1, 20] Pi]}, {-Cos[Rational[3, 20] Pi], - Sin[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^ Rational[-1, 2]}, {-Sin[Rational[3, 20] Pi], - Cos[Rational[3, 20] Pi]}, {-Sin[Rational[1, 20] Pi], - Cos[Rational[1, 20] Pi]}, { Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, { Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, { 2^Rational[-1, 2], -2^Rational[-1, 2]}, { Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, { Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, { Cos[Rational[1, 20] Pi], Sin[Rational[1, 20] Pi]}, { Cos[Rational[3, 20] Pi], Sin[Rational[3, 20] Pi]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2MJrxnou2Ht9d+1wdW1mF5jf2pcEr 0rnZjtjHPNGfojL7PYy/H8aHqt8PUw81Zz/MPKj4fpi5UH370cyF8fejqd+P Zt5+NPv2o7kHw1w0/+xH8y/c3TBzcfkTZi6aensAbCSQSg== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, { 18, 19}, {19, 20}}, 0.02241135950500589]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02241135950500589], DiskBox[2, 0.02241135950500589], DiskBox[3, 0.02241135950500589], DiskBox[4, 0.02241135950500589], DiskBox[5, 0.02241135950500589], DiskBox[6, 0.02241135950500589], DiskBox[7, 0.02241135950500589], DiskBox[8, 0.02241135950500589], DiskBox[9, 0.02241135950500589], DiskBox[10, 0.02241135950500589], DiskBox[11, 0.02241135950500589], DiskBox[12, 0.02241135950500589], DiskBox[13, 0.02241135950500589], DiskBox[14, 0.02241135950500589], DiskBox[15, 0.02241135950500589], DiskBox[16, 0.02241135950500589], DiskBox[17, 0.02241135950500589], DiskBox[18, 0.02241135950500589], DiskBox[19, 0.02241135950500589], DiskBox[20, 0.02241135950500589]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], "}"}]], "Output", CellLabel->"Out[6]=",ExpressionUUID->"3716d496-ad91-4c66-8fa2-d850251cac25"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Perspective", "Subsubsection",ExpressionUUID->"d44c7d2f-a5f3-4262-9181-b7d3e1d9096b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"a8a9f883-78ca-4cef-927a-3f6394caebc3"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8 VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9 /nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY OSBXuG5jhvqPyQEAhBuTKA== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8 VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9 /nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY OSBXuG5jhvqPyQEAhBuTKA== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.07228422026971032]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.07228422026971032], DiskBox[2, 0.07228422026971032], DiskBox[3, 0.07228422026971032], DiskBox[4, 0.07228422026971032], DiskBox[5, 0.07228422026971032], DiskBox[6, 0.07228422026971032], DiskBox[7, 0.07228422026971032], DiskBox[8, 0.07228422026971032], DiskBox[9, 0.07228422026971032], DiskBox[10, 0.07228422026971032], DiskBox[11, 0.07228422026971032], DiskBox[12, 0.07228422026971032], DiskBox[13, 0.07228422026971032], DiskBox[14, 0.07228422026971032], DiskBox[15, 0.07228422026971032], DiskBox[16, 0.07228422026971032], DiskBox[17, 0.07228422026971032], DiskBox[18, 0.07228422026971032], DiskBox[19, 0.07228422026971032], DiskBox[20, 0.07228422026971032]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, 0}, {0, 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[ 1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 + 5^Rational[1, 2])}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, { 0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/ /HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/ /3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ lwg= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247], DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247], DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247], DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247], DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247], DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247], DiskBox[13, 0.05374005336484247], DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247], DiskBox[16, 0.05374005336484247], DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247], DiskBox[19, 0.05374005336484247], DiskBox[20, 0.05374005336484247]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[1, 44] ( 11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}, {(Rational[-1, 8] 11^Rational[-1, 2]) ( 6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), ( Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] + 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 4] ( Rational[1, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] 11^Rational[-1, 2]) (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] + 6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4] 11^Rational[-1, 2]) (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 44] (22^Rational[1, 2] - 110^ Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^ Rational[1, 2])}, { Rational[ 1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[1, 88] (-110^Rational[1, 2] - 10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], (Rational[-1, 4] 11^Rational[-1, 2]) ( 2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 + 22 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] - 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] + 4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 4] ( Rational[5, 22] (15 + 2 5^Rational[1, 2] - 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 8] 11^Rational[-1, 2]) (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (403 + 125 5^Rational[1, 2] - 12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 88] ( 2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 88] (-22^Rational[1, 2] - 2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[-1, 8] 11^Rational[-1, 2]) (-4 + 2 5^Rational[1, 2] + 3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 8] ( Rational[1, 11] (83 + 19 5^Rational[1, 2] - 12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {( Rational[-1, 8] 11^Rational[-1, 2]) (4 + 2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 176] ((3 22^Rational[1, 2]) (-3 + 5^Rational[1, 2]) + 4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, {( Rational[1, 4] 11^Rational[-1, 2]) (1 + 2 5^Rational[1, 2] + 2 (5 + 5^Rational[1, 2])^Rational[1, 2]), Rational[-1, 4] ( Rational[1, 11] (157 + 58 5^Rational[1, 2] - 4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[-1, 8] 11^Rational[-1, 2]) (-6 + (205 + 71 5^Rational[1, 2])^ Rational[1, 2]), (Rational[-1, 8] 11^Rational[-1, 2]) ((63 - 11 5^Rational[1, 2])^Rational[1, 2] + 6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] + 12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^ Rational[1, 2], Rational[ 1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 + 121 5^Rational[1, 2])^Rational[1, 2])}, { Rational[-1, 4] ( Rational[1, 11] (51 + 20 5^Rational[1, 2] + 2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6 v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7 ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72 0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF 8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/ 7aH+3Y8eXgCx06o/ "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487], DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487], DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487], DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487], DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487], DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487], DiskBox[13, 0.05496546668806487], DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487], DiskBox[16, 0.05496546668806487], DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487], DiskBox[19, 0.05496546668806487], DiskBox[20, 0.05496546668806487]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3 7Edzz3409eju24/mPnT/70fz/34AINyj3g== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856], DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856], DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856], DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856], DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856], DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856], DiskBox[13, 0.05155676257133856], DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856], DiskBox[16, 0.05155676257133856], DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856], DiskBox[19, 0.05155676257133856], DiskBox[20, 0.05155676257133856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] ( Rational[1, 10] (125 + 47 5^Rational[1, 2] + 4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2], Rational[ 1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] + 13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] + 4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - 4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 4] ( 2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] + Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 40] ( 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], ( Rational[-1, 8] 5^Rational[-1, 2]) ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] + Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], ( Rational[-1, 8] 5^Rational[-1, 2]) ( 2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 + 66 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 20] ((30 (5 + 5^Rational[1, 2]))^ Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^ Rational[1, 2]), Rational[ 1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4 3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] + 4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 40] ( 2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 + 330 5^Rational[1, 2])^Rational[1, 2])}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (4 + 3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] + 8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 4] (8 + 16 5^Rational[-1, 2] - ( Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[ 1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - ( 10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/ 3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/ 6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH V2ePzof61x7qXww+AB9DsJQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215], DiskBox[3, 0.055830735019350215], DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215], DiskBox[6, 0.055830735019350215], DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215], DiskBox[9, 0.055830735019350215], DiskBox[10, 0.055830735019350215], DiskBox[11, 0.055830735019350215], DiskBox[12, 0.055830735019350215], DiskBox[13, 0.055830735019350215], DiskBox[14, 0.055830735019350215], DiskBox[15, 0.055830735019350215], DiskBox[16, 0.055830735019350215], DiskBox[17, 0.055830735019350215], DiskBox[18, 0.055830735019350215], DiskBox[19, 0.055830735019350215], DiskBox[20, 0.055830735019350215]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u /vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh 8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA fV6fmg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524], DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524], DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524], DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524], DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524], DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524], DiskBox[13, 0.05725601845709524], DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524], DiskBox[16, 0.05725601845709524], DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524], DiskBox[19, 0.05725601845709524], DiskBox[20, 0.05725601845709524]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Root[1 - 80 #^2 + 320 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, { Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7 P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv QvxrD/M/Gn8/AODtoHo= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127], DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127], DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127], DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127], DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127], DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127], DiskBox[13, 0.05479908867915127], DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127], DiskBox[16, 0.05479908867915127], DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127], DiskBox[19, 0.05479908867915127], DiskBox[20, 0.05479908867915127]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224], DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224], DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224], DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224], DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224], DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224], DiskBox[13, 0.05526026899519224], DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224], DiskBox[16, 0.05526026899519224], DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224], DiskBox[19, 0.05526026899519224], DiskBox[20, 0.05526026899519224]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"6e09960d-9813-43a5-9b97-eaacf9b7f1cb"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance", "Subsubsection",ExpressionUUID->"76e1f70f-a12a-4637-88f7-190cd792c722"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[160]:=",ExpressionUUID->"5de9c8f4-df04-4a60-9dcd-188c7f456afd"], Cell[BoxData["True"], "Output", CellLabel-> "Out[160]=",ExpressionUUID->"1fd2bd9c-d999-47ef-ae17-bd8b52bdeedc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"UnitDistanceGraphQ", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"Debug", "->", "True"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[161]:=",ExpressionUUID->"92c48c81-9270-430e-8f93-835df9d7a393"], Cell[CellGroupData[{ Cell[BoxData["\<\"Skipping computation and checking of blocks\"\>"], "Print", CellLabel-> "During evaluation of \ In[161]:=",ExpressionUUID->"2e008220-2f9b-4263-a6aa-0e6ec15fae46"], Cell[BoxData["\<\"Checking presence of unit-distance forbidden \ graphs...\"\>"], "Print", CellLabel-> "During evaluation of \ In[161]:=",ExpressionUUID->"74da8381-df03-4c13-bab8-0ccaf4fd7b0c"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Original graph contains no forbidden subgraph but not all \ forbidden subgraphs are known for size \"\>", "\[InvisibleSpace]", "20", "\[InvisibleSpace]", "\<\", so graph UD status is unknown\"\>"}], SequenceForm[ "Original graph contains no forbidden subgraph but not all forbidden \ subgraphs are known for size ", 20, ", so graph UD status is unknown"], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[161]:=",ExpressionUUID->"2b51dfd8-e175-4893-9a37-37954461bc99"], Cell[BoxData["\<\"Checking presence of special unit-distance forbidden graph \ classes...\"\>"], "Print", CellLabel-> "During evaluation of \ In[161]:=",ExpressionUUID->"390420dc-cd09-4eb1-94d1-3ba6c9401acf"], Cell[BoxData["\<\"Original graph contains no member of a special forbidden \ subgraph class, so UD status is unknown\"\>"], "Print", CellLabel-> "During evaluation of \ In[161]:=",ExpressionUUID->"fe3313c0-5bb0-4f9e-a328-cd8c78cb302c"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"0.112119`", ",", "$Failed"}], "}"}]], "Output", CellLabel-> "Out[161]=",ExpressionUUID->"6da59cd2-99a2-4c20-ab67-5c2bc01b97dd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[162]:=",ExpressionUUID->"e019868d-d4e0-4fb0-b388-b5b72a62503d"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 5^Rational[-1, 2] (-2 - (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (-2 + (2 (5 + 5^Rational[1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 + 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (-5 - 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (-5 - 5^ Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 20] (5 + 3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 20] (5 + 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 4] 5^Rational[-1, 2] (2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] + 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 4] (1 - 5^Rational[-1, 2] - 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv 3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/ uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071], DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071], DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071], DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071], DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071], DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071], DiskBox[13, 0.06698851528247071], DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071], DiskBox[16, 0.06698851528247071], DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071], DiskBox[19, 0.06698851528247071], DiskBox[20, 0.06698851528247071]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> {{ 2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] ( 5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^ Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (-5 + 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (-5 + 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 20] (5 - 3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]), Rational[1, 20] (5 - 5^ Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, { Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] (-3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, { Rational[1, 4] 5^Rational[-1, 2] (-2 - (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] - 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 4] 5^Rational[-1, 2] (-2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[-1, 2] + 2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/ f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69 7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044], DiskBox[3, 0.025587335982012044], DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044], DiskBox[6, 0.025587335982012044], DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044], DiskBox[9, 0.025587335982012044], DiskBox[10, 0.025587335982012044], DiskBox[11, 0.025587335982012044], DiskBox[12, 0.025587335982012044], DiskBox[13, 0.025587335982012044], DiskBox[14, 0.025587335982012044], DiskBox[15, 0.025587335982012044], DiskBox[16, 0.025587335982012044], DiskBox[17, 0.025587335982012044], DiskBox[18, 0.025587335982012044], DiskBox[19, 0.025587335982012044], DiskBox[20, 0.025587335982012044]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164], DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164], DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164], DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164], DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164], DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164], DiskBox[13, 0.06701916846996164], DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164], DiskBox[16, 0.06701916846996164], DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164], DiskBox[19, 0.06701916846996164], DiskBox[20, 0.06701916846996164]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575], DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575], DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575], DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575], DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575], DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575], DiskBox[13, 0.06522520940839575], DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575], DiskBox[16, 0.06522520940839575], DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575], DiskBox[19, 0.06522520940839575], DiskBox[20, 0.06522520940839575]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809], DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809], DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809], DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809], DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809], DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809], DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809], DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809], DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809], DiskBox[19, 0.0476951806600809], DiskBox[20, 0.0476951806600809]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795], DiskBox[3, 0.054218794707743795], DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795], DiskBox[6, 0.054218794707743795], DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795], DiskBox[9, 0.054218794707743795], DiskBox[10, 0.054218794707743795], DiskBox[11, 0.054218794707743795], DiskBox[12, 0.054218794707743795], DiskBox[13, 0.054218794707743795], DiskBox[14, 0.054218794707743795], DiskBox[15, 0.054218794707743795], DiskBox[16, 0.054218794707743795], DiskBox[17, 0.054218794707743795], DiskBox[18, 0.054218794707743795], DiskBox[19, 0.054218794707743795], DiskBox[20, 0.054218794707743795]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998], DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998], DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998], DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998], DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998], DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998], DiskBox[13, 0.06025728525421998], DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998], DiskBox[16, 0.06025728525421998], DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998], DiskBox[19, 0.06025728525421998], DiskBox[20, 0.06025728525421998]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[162]=",ExpressionUUID->"076b5209-b4bc-4974-b540-74de99e80bfe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{"%", ",", RowBox[{ RowBox[{"!", RowBox[{"FreeQ", "[", RowBox[{ RowBox[{"GraphEmbedding", "[", "#", "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}]}], "]"}]], "Input", CellLabel-> "In[163]:=",ExpressionUUID->"104b91d1-3f3b-4862-b3a5-8cb0392c7ce6"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5 n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+ 4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8 KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164], DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164], DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164], DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164], DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164], DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164], DiskBox[13, 0.06701916846996164], DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164], DiskBox[16, 0.06701916846996164], DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164], DiskBox[19, 0.06701916846996164], DiskBox[20, 0.06701916846996164]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L 657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9 7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318 Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ= "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575], DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575], DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575], DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575], DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575], DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575], DiskBox[13, 0.06522520940839575], DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575], DiskBox[16, 0.06522520940839575], DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575], DiskBox[19, 0.06522520940839575], DiskBox[20, 0.06522520940839575]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI 8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/ gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC 9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809], DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809], DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809], DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809], DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809], DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809], DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809], DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809], DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809], DiskBox[19, 0.0476951806600809], DiskBox[20, 0.0476951806600809]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3 P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q 8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795], DiskBox[3, 0.054218794707743795], DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795], DiskBox[6, 0.054218794707743795], DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795], DiskBox[9, 0.054218794707743795], DiskBox[10, 0.054218794707743795], DiskBox[11, 0.054218794707743795], DiskBox[12, 0.054218794707743795], DiskBox[13, 0.054218794707743795], DiskBox[14, 0.054218794707743795], DiskBox[15, 0.054218794707743795], DiskBox[16, 0.054218794707743795], DiskBox[17, 0.054218794707743795], DiskBox[18, 0.054218794707743795], DiskBox[19, 0.054218794707743795], DiskBox[20, 0.054218794707743795]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> { GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> { RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to 7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2 tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s 8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3 0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw== "], { {GrayLevel[0], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]}, {RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998], DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998], DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998], DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998], DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998], DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998], DiskBox[13, 0.06025728525421998], DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998], DiskBox[16, 0.06025728525421998], DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998], DiskBox[19, 0.06025728525421998], DiskBox[20, 0.06025728525421998]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[163]=",ExpressionUUID->"c170660f-0740-4391-9ab6-4d4c8740a56e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance by refinement", "Subsubsection",ExpressionUUID->"b6649de6-e28f-41cb-ab19-46f3c4aa6322"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UnitDistanceEmbeddingRefine", "[", RowBox[{"Graph", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], "]"}], "]"}]], "Input", CellLabel-> "In[153]:=",ExpressionUUID->"59465ab2-7193-42ec-a7b1-f20950059c2f"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAXeZBQtsI8j8RvT2AnB8JQG5v4lcT cQNAU0OAemgX2j9X+BRk80gDQJLEoT2xTARAJZTe4su+6z9tlIOdgWMAQB7R nrZVSfs/NnAlx8qL8T/IG1XN43b3P8AI0BGdAMI/eBRLOCeZ9j+2PwRRgcYE QOIuMYlPIJg/cUKNP80u+D9EvfOd0ogGQOOJXEYrggZA2KZjQ0r9BEC7t0Ul dFH9P+pTg9zyoe0/rTiLTR+S+z/BEZS4p6vlP09TSvLfJeg/MonqRzU3CUDJ eYEg8JjxP1x9qTDOjABAMn8I3UvRC0BYQUd8/9X8P9bFF4S3OANA1pjhzIlU 2z9Ai6F4TWkDQF6ZKVj2swtAcFjXIvdmAEBpqgngJ1ABQI3L/wAeN+4/hXzn imTBBECpuOFALN/4P7Y3+ia10PI/YL836liP8T94YJa3 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAXeZBQtsI8j8RvT2AnB8JQG5v4lcT cQNAU0OAemgX2j9X+BRk80gDQJLEoT2xTARAJZTe4su+6z9tlIOdgWMAQB7R nrZVSfs/NnAlx8qL8T/IG1XN43b3P8AI0BGdAMI/eBRLOCeZ9j+2PwRRgcYE QOIuMYlPIJg/cUKNP80u+D9EvfOd0ogGQOOJXEYrggZA2KZjQ0r9BEC7t0Ul dFH9P+pTg9zyoe0/rTiLTR+S+z/BEZS4p6vlP09TSvLfJeg/MonqRzU3CUDJ eYEg8JjxP1x9qTDOjABAMn8I3UvRC0BYQUd8/9X8P9bFF4S3OANA1pjhzIlU 2z9Ai6F4TWkDQF6ZKVj2swtAcFjXIvdmAEBpqgngJ1ABQI3L/wAeN+4/hXzn imTBBECpuOFALN/4P7Y3+ia10PI/YL836liP8T94YJa3 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, { 6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.03330919795128186]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03330919795128186], DiskBox[2, 0.03330919795128186], DiskBox[3, 0.03330919795128186], DiskBox[4, 0.03330919795128186], DiskBox[5, 0.03330919795128186], DiskBox[6, 0.03330919795128186], DiskBox[7, 0.03330919795128186], DiskBox[8, 0.03330919795128186], DiskBox[9, 0.03330919795128186], DiskBox[10, 0.03330919795128186], DiskBox[11, 0.03330919795128186], DiskBox[12, 0.03330919795128186], DiskBox[13, 0.03330919795128186], DiskBox[14, 0.03330919795128186], DiskBox[15, 0.03330919795128186], DiskBox[16, 0.03330919795128186], DiskBox[17, 0.03330919795128186], DiskBox[18, 0.03330919795128186], DiskBox[19, 0.03330919795128186], DiskBox[20, 0.03330919795128186]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[153]=",ExpressionUUID->"585ed9a2-2683-4631-8518-ee4051eae404"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"UnitDistanceGraphEmbeddingQ", "[", "%", "]"}]], "Input", CellLabel-> "In[154]:=",ExpressionUUID->"a2ff7ddc-05a1-4b98-b90e-507ac06feb6e"], Cell[BoxData["True"], "Output", CellLabel-> "Out[154]=",ExpressionUUID->"c10d05b3-8cfe-465c-906c-bcc38990573f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"UnitDistanceEmbeddingRefine", "[", RowBox[{"Annotate", "[", RowBox[{"#", ",", RowBox[{"VertexCoordinates", "\[Rule]", RowBox[{"N", "[", RowBox[{"GraphEmbedding", "[", "#", "]"}], "]"}]}]}], "]"}], "]"}], "&"}], "/@", RowBox[{"Complement", "@@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", "#"}], "]"}], "&"}], "/@", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ")"}]}]}]], "Input", CellLabel-> "In[155]:=",ExpressionUUID->"dad7bc69-939d-4305-97d3-7e8af13a5b32"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo 6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT 97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5 XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo 6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT 97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5 XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03256507176826082]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03256507176826082], DiskBox[2, 0.03256507176826082], DiskBox[3, 0.03256507176826082], DiskBox[4, 0.03256507176826082], DiskBox[5, 0.03256507176826082], DiskBox[6, 0.03256507176826082], DiskBox[7, 0.03256507176826082], DiskBox[8, 0.03256507176826082], DiskBox[9, 0.03256507176826082], DiskBox[10, 0.03256507176826082], DiskBox[11, 0.03256507176826082], DiskBox[12, 0.03256507176826082], DiskBox[13, 0.03256507176826082], DiskBox[14, 0.03256507176826082], DiskBox[15, 0.03256507176826082], DiskBox[16, 0.03256507176826082], DiskBox[17, 0.03256507176826082], DiskBox[18, 0.03256507176826082], DiskBox[19, 0.03256507176826082], DiskBox[20, 0.03256507176826082]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+ rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS 67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+ rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS 67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.030419773839202163`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030419773839202163], DiskBox[2, 0.030419773839202163], DiskBox[3, 0.030419773839202163], DiskBox[4, 0.030419773839202163], DiskBox[5, 0.030419773839202163], DiskBox[6, 0.030419773839202163], DiskBox[7, 0.030419773839202163], DiskBox[8, 0.030419773839202163], DiskBox[9, 0.030419773839202163], DiskBox[10, 0.030419773839202163], DiskBox[11, 0.030419773839202163], DiskBox[12, 0.030419773839202163], DiskBox[13, 0.030419773839202163], DiskBox[14, 0.030419773839202163], DiskBox[15, 0.030419773839202163], DiskBox[16, 0.030419773839202163], DiskBox[17, 0.030419773839202163], DiskBox[18, 0.030419773839202163], DiskBox[19, 0.030419773839202163], DiskBox[20, 0.030419773839202163]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+ /pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2 v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+ /pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2 v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.029950563020255824`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029950563020255824], DiskBox[2, 0.029950563020255824], DiskBox[3, 0.029950563020255824], DiskBox[4, 0.029950563020255824], DiskBox[5, 0.029950563020255824], DiskBox[6, 0.029950563020255824], DiskBox[7, 0.029950563020255824], DiskBox[8, 0.029950563020255824], DiskBox[9, 0.029950563020255824], DiskBox[10, 0.029950563020255824], DiskBox[11, 0.029950563020255824], DiskBox[12, 0.029950563020255824], DiskBox[13, 0.029950563020255824], DiskBox[14, 0.029950563020255824], DiskBox[15, 0.029950563020255824], DiskBox[16, 0.029950563020255824], DiskBox[17, 0.029950563020255824], DiskBox[18, 0.029950563020255824], DiskBox[19, 0.029950563020255824], DiskBox[20, 0.029950563020255824]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7 nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7 QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7 nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7 QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03400041734095223]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03400041734095223], DiskBox[2, 0.03400041734095223], DiskBox[3, 0.03400041734095223], DiskBox[4, 0.03400041734095223], DiskBox[5, 0.03400041734095223], DiskBox[6, 0.03400041734095223], DiskBox[7, 0.03400041734095223], DiskBox[8, 0.03400041734095223], DiskBox[9, 0.03400041734095223], DiskBox[10, 0.03400041734095223], DiskBox[11, 0.03400041734095223], DiskBox[12, 0.03400041734095223], DiskBox[13, 0.03400041734095223], DiskBox[14, 0.03400041734095223], DiskBox[15, 0.03400041734095223], DiskBox[16, 0.03400041734095223], DiskBox[17, 0.03400041734095223], DiskBox[18, 0.03400041734095223], DiskBox[19, 0.03400041734095223], DiskBox[20, 0.03400041734095223]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03264723421002344]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03264723421002344], DiskBox[2, 0.03264723421002344], DiskBox[3, 0.03264723421002344], DiskBox[4, 0.03264723421002344], DiskBox[5, 0.03264723421002344], DiskBox[6, 0.03264723421002344], DiskBox[7, 0.03264723421002344], DiskBox[8, 0.03264723421002344], DiskBox[9, 0.03264723421002344], DiskBox[10, 0.03264723421002344], DiskBox[11, 0.03264723421002344], DiskBox[12, 0.03264723421002344], DiskBox[13, 0.03264723421002344], DiskBox[14, 0.03264723421002344], DiskBox[15, 0.03264723421002344], DiskBox[16, 0.03264723421002344], DiskBox[17, 0.03264723421002344], DiskBox[18, 0.03264723421002344], DiskBox[19, 0.03264723421002344], DiskBox[20, 0.03264723421002344]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+ jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/ 9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA /P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg ++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/ bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+ jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/ 9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA /P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg ++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/ bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0346622522350771]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0346622522350771], DiskBox[2, 0.0346622522350771], DiskBox[3, 0.0346622522350771], DiskBox[4, 0.0346622522350771], DiskBox[5, 0.0346622522350771], DiskBox[6, 0.0346622522350771], DiskBox[7, 0.0346622522350771], DiskBox[8, 0.0346622522350771], DiskBox[9, 0.0346622522350771], DiskBox[10, 0.0346622522350771], DiskBox[11, 0.0346622522350771], DiskBox[12, 0.0346622522350771], DiskBox[13, 0.0346622522350771], DiskBox[14, 0.0346622522350771], DiskBox[15, 0.0346622522350771], DiskBox[16, 0.0346622522350771], DiskBox[17, 0.0346622522350771], DiskBox[18, 0.0346622522350771], DiskBox[19, 0.0346622522350771], DiskBox[20, 0.0346622522350771]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8 YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/ P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S 7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8 YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/ P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S 7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.024514873793595265`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024514873793595265], DiskBox[2, 0.024514873793595265], DiskBox[3, 0.024514873793595265], DiskBox[4, 0.024514873793595265], DiskBox[5, 0.024514873793595265], DiskBox[6, 0.024514873793595265], DiskBox[7, 0.024514873793595265], DiskBox[8, 0.024514873793595265], DiskBox[9, 0.024514873793595265], DiskBox[10, 0.024514873793595265], DiskBox[11, 0.024514873793595265], DiskBox[12, 0.024514873793595265], DiskBox[13, 0.024514873793595265], DiskBox[14, 0.024514873793595265], DiskBox[15, 0.024514873793595265], DiskBox[16, 0.024514873793595265], DiskBox[17, 0.024514873793595265], DiskBox[18, 0.024514873793595265], DiskBox[19, 0.024514873793595265], DiskBox[20, 0.024514873793595265]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC 7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9 P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49 t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT 9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo 5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC 7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9 P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49 t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT 9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo 5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.033118014664531875`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.033118014664531875], DiskBox[2, 0.033118014664531875], DiskBox[3, 0.033118014664531875], DiskBox[4, 0.033118014664531875], DiskBox[5, 0.033118014664531875], DiskBox[6, 0.033118014664531875], DiskBox[7, 0.033118014664531875], DiskBox[8, 0.033118014664531875], DiskBox[9, 0.033118014664531875], DiskBox[10, 0.033118014664531875], DiskBox[11, 0.033118014664531875], DiskBox[12, 0.033118014664531875], DiskBox[13, 0.033118014664531875], DiskBox[14, 0.033118014664531875], DiskBox[15, 0.033118014664531875], DiskBox[16, 0.033118014664531875], DiskBox[17, 0.033118014664531875], DiskBox[18, 0.033118014664531875], DiskBox[19, 0.033118014664531875], DiskBox[20, 0.033118014664531875]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d 4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0 wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD 1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t gQ== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d 4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0 wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD 1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t gQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03483956815247931]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03483956815247931], DiskBox[2, 0.03483956815247931], DiskBox[3, 0.03483956815247931], DiskBox[4, 0.03483956815247931], DiskBox[5, 0.03483956815247931], DiskBox[6, 0.03483956815247931], DiskBox[7, 0.03483956815247931], DiskBox[8, 0.03483956815247931], DiskBox[9, 0.03483956815247931], DiskBox[10, 0.03483956815247931], DiskBox[11, 0.03483956815247931], DiskBox[12, 0.03483956815247931], DiskBox[13, 0.03483956815247931], DiskBox[14, 0.03483956815247931], DiskBox[15, 0.03483956815247931], DiskBox[16, 0.03483956815247931], DiskBox[17, 0.03483956815247931], DiskBox[18, 0.03483956815247931], DiskBox[19, 0.03483956815247931], DiskBox[20, 0.03483956815247931]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT 5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT 5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03179806210229294]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03179806210229294], DiskBox[2, 0.03179806210229294], DiskBox[3, 0.03179806210229294], DiskBox[4, 0.03179806210229294], DiskBox[5, 0.03179806210229294], DiskBox[6, 0.03179806210229294], DiskBox[7, 0.03179806210229294], DiskBox[8, 0.03179806210229294], DiskBox[9, 0.03179806210229294], DiskBox[10, 0.03179806210229294], DiskBox[11, 0.03179806210229294], DiskBox[12, 0.03179806210229294], DiskBox[13, 0.03179806210229294], DiskBox[14, 0.03179806210229294], DiskBox[15, 0.03179806210229294], DiskBox[16, 0.03179806210229294], DiskBox[17, 0.03179806210229294], DiskBox[18, 0.03179806210229294], DiskBox[19, 0.03179806210229294], DiskBox[20, 0.03179806210229294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0 Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU 3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/ I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l 4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0 Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU 3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/ I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l 4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03000277645089902]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03000277645089902], DiskBox[2, 0.03000277645089902], DiskBox[3, 0.03000277645089902], DiskBox[4, 0.03000277645089902], DiskBox[5, 0.03000277645089902], DiskBox[6, 0.03000277645089902], DiskBox[7, 0.03000277645089902], DiskBox[8, 0.03000277645089902], DiskBox[9, 0.03000277645089902], DiskBox[10, 0.03000277645089902], DiskBox[11, 0.03000277645089902], DiskBox[12, 0.03000277645089902], DiskBox[13, 0.03000277645089902], DiskBox[14, 0.03000277645089902], DiskBox[15, 0.03000277645089902], DiskBox[16, 0.03000277645089902], DiskBox[17, 0.03000277645089902], DiskBox[18, 0.03000277645089902], DiskBox[19, 0.03000277645089902], DiskBox[20, 0.03000277645089902]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK 6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU 7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH gqnQ "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK 6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU 7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH gqnQ "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.035669724190910856`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.035669724190910856], DiskBox[2, 0.035669724190910856], DiskBox[3, 0.035669724190910856], DiskBox[4, 0.035669724190910856], DiskBox[5, 0.035669724190910856], DiskBox[6, 0.035669724190910856], DiskBox[7, 0.035669724190910856], DiskBox[8, 0.035669724190910856], DiskBox[9, 0.035669724190910856], DiskBox[10, 0.035669724190910856], DiskBox[11, 0.035669724190910856], DiskBox[12, 0.035669724190910856], DiskBox[13, 0.035669724190910856], DiskBox[14, 0.035669724190910856], DiskBox[15, 0.035669724190910856], DiskBox[16, 0.035669724190910856], DiskBox[17, 0.035669724190910856], DiskBox[18, 0.035669724190910856], DiskBox[19, 0.035669724190910856], DiskBox[20, 0.035669724190910856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+ 5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78 a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37 9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW 2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+ 5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78 a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37 9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW 2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.034862409283267545`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.034862409283267545], DiskBox[2, 0.034862409283267545], DiskBox[3, 0.034862409283267545], DiskBox[4, 0.034862409283267545], DiskBox[5, 0.034862409283267545], DiskBox[6, 0.034862409283267545], DiskBox[7, 0.034862409283267545], DiskBox[8, 0.034862409283267545], DiskBox[9, 0.034862409283267545], DiskBox[10, 0.034862409283267545], DiskBox[11, 0.034862409283267545], DiskBox[12, 0.034862409283267545], DiskBox[13, 0.034862409283267545], DiskBox[14, 0.034862409283267545], DiskBox[15, 0.034862409283267545], DiskBox[16, 0.034862409283267545], DiskBox[17, 0.034862409283267545], DiskBox[18, 0.034862409283267545], DiskBox[19, 0.034862409283267545], DiskBox[20, 0.034862409283267545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v /nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC 8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v /nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC 8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.026982758224417175`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026982758224417175], DiskBox[2, 0.026982758224417175], DiskBox[3, 0.026982758224417175], DiskBox[4, 0.026982758224417175], DiskBox[5, 0.026982758224417175], DiskBox[6, 0.026982758224417175], DiskBox[7, 0.026982758224417175], DiskBox[8, 0.026982758224417175], DiskBox[9, 0.026982758224417175], DiskBox[10, 0.026982758224417175], DiskBox[11, 0.026982758224417175], DiskBox[12, 0.026982758224417175], DiskBox[13, 0.026982758224417175], DiskBox[14, 0.026982758224417175], DiskBox[15, 0.026982758224417175], DiskBox[16, 0.026982758224417175], DiskBox[17, 0.026982758224417175], DiskBox[18, 0.026982758224417175], DiskBox[19, 0.026982758224417175], DiskBox[20, 0.026982758224417175]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/ kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/ gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a 1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/ kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/ gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a 1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.034872889013465455`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.034872889013465455], DiskBox[2, 0.034872889013465455], DiskBox[3, 0.034872889013465455], DiskBox[4, 0.034872889013465455], DiskBox[5, 0.034872889013465455], DiskBox[6, 0.034872889013465455], DiskBox[7, 0.034872889013465455], DiskBox[8, 0.034872889013465455], DiskBox[9, 0.034872889013465455], DiskBox[10, 0.034872889013465455], DiskBox[11, 0.034872889013465455], DiskBox[12, 0.034872889013465455], DiskBox[13, 0.034872889013465455], DiskBox[14, 0.034872889013465455], DiskBox[15, 0.034872889013465455], DiskBox[16, 0.034872889013465455], DiskBox[17, 0.034872889013465455], DiskBox[18, 0.034872889013465455], DiskBox[19, 0.034872889013465455], DiskBox[20, 0.034872889013465455]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4 uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26 p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3 4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC CwD11bPG "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4 uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26 p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3 4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC CwD11bPG "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.027713568895903762`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027713568895903762], DiskBox[2, 0.027713568895903762], DiskBox[3, 0.027713568895903762], DiskBox[4, 0.027713568895903762], DiskBox[5, 0.027713568895903762], DiskBox[6, 0.027713568895903762], DiskBox[7, 0.027713568895903762], DiskBox[8, 0.027713568895903762], DiskBox[9, 0.027713568895903762], DiskBox[10, 0.027713568895903762], DiskBox[11, 0.027713568895903762], DiskBox[12, 0.027713568895903762], DiskBox[13, 0.027713568895903762], DiskBox[14, 0.027713568895903762], DiskBox[15, 0.027713568895903762], DiskBox[16, 0.027713568895903762], DiskBox[17, 0.027713568895903762], DiskBox[18, 0.027713568895903762], DiskBox[19, 0.027713568895903762], DiskBox[20, 0.027713568895903762]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB 1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1 HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92 jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b 77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB 1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1 HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92 jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b 77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03629224785635807]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03629224785635807], DiskBox[2, 0.03629224785635807], DiskBox[3, 0.03629224785635807], DiskBox[4, 0.03629224785635807], DiskBox[5, 0.03629224785635807], DiskBox[6, 0.03629224785635807], DiskBox[7, 0.03629224785635807], DiskBox[8, 0.03629224785635807], DiskBox[9, 0.03629224785635807], DiskBox[10, 0.03629224785635807], DiskBox[11, 0.03629224785635807], DiskBox[12, 0.03629224785635807], DiskBox[13, 0.03629224785635807], DiskBox[14, 0.03629224785635807], DiskBox[15, 0.03629224785635807], DiskBox[16, 0.03629224785635807], DiskBox[17, 0.03629224785635807], DiskBox[18, 0.03629224785635807], DiskBox[19, 0.03629224785635807], DiskBox[20, 0.03629224785635807]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3 m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/ Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf +1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3 m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/ Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf +1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03200989897193118]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03200989897193118], DiskBox[2, 0.03200989897193118], DiskBox[3, 0.03200989897193118], DiskBox[4, 0.03200989897193118], DiskBox[5, 0.03200989897193118], DiskBox[6, 0.03200989897193118], DiskBox[7, 0.03200989897193118], DiskBox[8, 0.03200989897193118], DiskBox[9, 0.03200989897193118], DiskBox[10, 0.03200989897193118], DiskBox[11, 0.03200989897193118], DiskBox[12, 0.03200989897193118], DiskBox[13, 0.03200989897193118], DiskBox[14, 0.03200989897193118], DiskBox[15, 0.03200989897193118], DiskBox[16, 0.03200989897193118], DiskBox[17, 0.03200989897193118], DiskBox[18, 0.03200989897193118], DiskBox[19, 0.03200989897193118], DiskBox[20, 0.03200989897193118]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[155]=",ExpressionUUID->"5cc8663b-e7b6-43c9-9cc2-4cdb8db5d864"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{"%", ",", "UnitDistanceGraphEmbeddingQ"}], "]"}]], "Input", CellLabel-> "In[156]:=",ExpressionUUID->"5cc40b95-385f-4b9b-a4e6-69543c88a179"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo 6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT 97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5 XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo 6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT 97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5 XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03256507176826082]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03256507176826082], DiskBox[2, 0.03256507176826082], DiskBox[3, 0.03256507176826082], DiskBox[4, 0.03256507176826082], DiskBox[5, 0.03256507176826082], DiskBox[6, 0.03256507176826082], DiskBox[7, 0.03256507176826082], DiskBox[8, 0.03256507176826082], DiskBox[9, 0.03256507176826082], DiskBox[10, 0.03256507176826082], DiskBox[11, 0.03256507176826082], DiskBox[12, 0.03256507176826082], DiskBox[13, 0.03256507176826082], DiskBox[14, 0.03256507176826082], DiskBox[15, 0.03256507176826082], DiskBox[16, 0.03256507176826082], DiskBox[17, 0.03256507176826082], DiskBox[18, 0.03256507176826082], DiskBox[19, 0.03256507176826082], DiskBox[20, 0.03256507176826082]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+ rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS 67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+ rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS 67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.030419773839202163`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030419773839202163], DiskBox[2, 0.030419773839202163], DiskBox[3, 0.030419773839202163], DiskBox[4, 0.030419773839202163], DiskBox[5, 0.030419773839202163], DiskBox[6, 0.030419773839202163], DiskBox[7, 0.030419773839202163], DiskBox[8, 0.030419773839202163], DiskBox[9, 0.030419773839202163], DiskBox[10, 0.030419773839202163], DiskBox[11, 0.030419773839202163], DiskBox[12, 0.030419773839202163], DiskBox[13, 0.030419773839202163], DiskBox[14, 0.030419773839202163], DiskBox[15, 0.030419773839202163], DiskBox[16, 0.030419773839202163], DiskBox[17, 0.030419773839202163], DiskBox[18, 0.030419773839202163], DiskBox[19, 0.030419773839202163], DiskBox[20, 0.030419773839202163]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+ /pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2 v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+ /pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2 v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.029950563020255824`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029950563020255824], DiskBox[2, 0.029950563020255824], DiskBox[3, 0.029950563020255824], DiskBox[4, 0.029950563020255824], DiskBox[5, 0.029950563020255824], DiskBox[6, 0.029950563020255824], DiskBox[7, 0.029950563020255824], DiskBox[8, 0.029950563020255824], DiskBox[9, 0.029950563020255824], DiskBox[10, 0.029950563020255824], DiskBox[11, 0.029950563020255824], DiskBox[12, 0.029950563020255824], DiskBox[13, 0.029950563020255824], DiskBox[14, 0.029950563020255824], DiskBox[15, 0.029950563020255824], DiskBox[16, 0.029950563020255824], DiskBox[17, 0.029950563020255824], DiskBox[18, 0.029950563020255824], DiskBox[19, 0.029950563020255824], DiskBox[20, 0.029950563020255824]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7 nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7 QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7 nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7 QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03400041734095223]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03400041734095223], DiskBox[2, 0.03400041734095223], DiskBox[3, 0.03400041734095223], DiskBox[4, 0.03400041734095223], DiskBox[5, 0.03400041734095223], DiskBox[6, 0.03400041734095223], DiskBox[7, 0.03400041734095223], DiskBox[8, 0.03400041734095223], DiskBox[9, 0.03400041734095223], DiskBox[10, 0.03400041734095223], DiskBox[11, 0.03400041734095223], DiskBox[12, 0.03400041734095223], DiskBox[13, 0.03400041734095223], DiskBox[14, 0.03400041734095223], DiskBox[15, 0.03400041734095223], DiskBox[16, 0.03400041734095223], DiskBox[17, 0.03400041734095223], DiskBox[18, 0.03400041734095223], DiskBox[19, 0.03400041734095223], DiskBox[20, 0.03400041734095223]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03264723421002344]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03264723421002344], DiskBox[2, 0.03264723421002344], DiskBox[3, 0.03264723421002344], DiskBox[4, 0.03264723421002344], DiskBox[5, 0.03264723421002344], DiskBox[6, 0.03264723421002344], DiskBox[7, 0.03264723421002344], DiskBox[8, 0.03264723421002344], DiskBox[9, 0.03264723421002344], DiskBox[10, 0.03264723421002344], DiskBox[11, 0.03264723421002344], DiskBox[12, 0.03264723421002344], DiskBox[13, 0.03264723421002344], DiskBox[14, 0.03264723421002344], DiskBox[15, 0.03264723421002344], DiskBox[16, 0.03264723421002344], DiskBox[17, 0.03264723421002344], DiskBox[18, 0.03264723421002344], DiskBox[19, 0.03264723421002344], DiskBox[20, 0.03264723421002344]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+ jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/ 9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA /P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg ++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/ bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+ jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/ 9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA /P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg ++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/ bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0346622522350771]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0346622522350771], DiskBox[2, 0.0346622522350771], DiskBox[3, 0.0346622522350771], DiskBox[4, 0.0346622522350771], DiskBox[5, 0.0346622522350771], DiskBox[6, 0.0346622522350771], DiskBox[7, 0.0346622522350771], DiskBox[8, 0.0346622522350771], DiskBox[9, 0.0346622522350771], DiskBox[10, 0.0346622522350771], DiskBox[11, 0.0346622522350771], DiskBox[12, 0.0346622522350771], DiskBox[13, 0.0346622522350771], DiskBox[14, 0.0346622522350771], DiskBox[15, 0.0346622522350771], DiskBox[16, 0.0346622522350771], DiskBox[17, 0.0346622522350771], DiskBox[18, 0.0346622522350771], DiskBox[19, 0.0346622522350771], DiskBox[20, 0.0346622522350771]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8 YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/ P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S 7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8 YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/ P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S 7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.024514873793595265`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024514873793595265], DiskBox[2, 0.024514873793595265], DiskBox[3, 0.024514873793595265], DiskBox[4, 0.024514873793595265], DiskBox[5, 0.024514873793595265], DiskBox[6, 0.024514873793595265], DiskBox[7, 0.024514873793595265], DiskBox[8, 0.024514873793595265], DiskBox[9, 0.024514873793595265], DiskBox[10, 0.024514873793595265], DiskBox[11, 0.024514873793595265], DiskBox[12, 0.024514873793595265], DiskBox[13, 0.024514873793595265], DiskBox[14, 0.024514873793595265], DiskBox[15, 0.024514873793595265], DiskBox[16, 0.024514873793595265], DiskBox[17, 0.024514873793595265], DiskBox[18, 0.024514873793595265], DiskBox[19, 0.024514873793595265], DiskBox[20, 0.024514873793595265]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC 7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9 P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49 t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT 9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo 5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2 "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC 7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9 P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49 t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT 9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo 5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.033118014664531875`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.033118014664531875], DiskBox[2, 0.033118014664531875], DiskBox[3, 0.033118014664531875], DiskBox[4, 0.033118014664531875], DiskBox[5, 0.033118014664531875], DiskBox[6, 0.033118014664531875], DiskBox[7, 0.033118014664531875], DiskBox[8, 0.033118014664531875], DiskBox[9, 0.033118014664531875], DiskBox[10, 0.033118014664531875], DiskBox[11, 0.033118014664531875], DiskBox[12, 0.033118014664531875], DiskBox[13, 0.033118014664531875], DiskBox[14, 0.033118014664531875], DiskBox[15, 0.033118014664531875], DiskBox[16, 0.033118014664531875], DiskBox[17, 0.033118014664531875], DiskBox[18, 0.033118014664531875], DiskBox[19, 0.033118014664531875], DiskBox[20, 0.033118014664531875]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d 4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0 wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD 1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t gQ== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d 4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0 wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD 1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t gQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03483956815247931]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03483956815247931], DiskBox[2, 0.03483956815247931], DiskBox[3, 0.03483956815247931], DiskBox[4, 0.03483956815247931], DiskBox[5, 0.03483956815247931], DiskBox[6, 0.03483956815247931], DiskBox[7, 0.03483956815247931], DiskBox[8, 0.03483956815247931], DiskBox[9, 0.03483956815247931], DiskBox[10, 0.03483956815247931], DiskBox[11, 0.03483956815247931], DiskBox[12, 0.03483956815247931], DiskBox[13, 0.03483956815247931], DiskBox[14, 0.03483956815247931], DiskBox[15, 0.03483956815247931], DiskBox[16, 0.03483956815247931], DiskBox[17, 0.03483956815247931], DiskBox[18, 0.03483956815247931], DiskBox[19, 0.03483956815247931], DiskBox[20, 0.03483956815247931]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT 5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT 5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03179806210229294]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03179806210229294], DiskBox[2, 0.03179806210229294], DiskBox[3, 0.03179806210229294], DiskBox[4, 0.03179806210229294], DiskBox[5, 0.03179806210229294], DiskBox[6, 0.03179806210229294], DiskBox[7, 0.03179806210229294], DiskBox[8, 0.03179806210229294], DiskBox[9, 0.03179806210229294], DiskBox[10, 0.03179806210229294], DiskBox[11, 0.03179806210229294], DiskBox[12, 0.03179806210229294], DiskBox[13, 0.03179806210229294], DiskBox[14, 0.03179806210229294], DiskBox[15, 0.03179806210229294], DiskBox[16, 0.03179806210229294], DiskBox[17, 0.03179806210229294], DiskBox[18, 0.03179806210229294], DiskBox[19, 0.03179806210229294], DiskBox[20, 0.03179806210229294]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0 Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU 3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/ I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l 4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0 Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU 3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/ I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l 4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03000277645089902]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03000277645089902], DiskBox[2, 0.03000277645089902], DiskBox[3, 0.03000277645089902], DiskBox[4, 0.03000277645089902], DiskBox[5, 0.03000277645089902], DiskBox[6, 0.03000277645089902], DiskBox[7, 0.03000277645089902], DiskBox[8, 0.03000277645089902], DiskBox[9, 0.03000277645089902], DiskBox[10, 0.03000277645089902], DiskBox[11, 0.03000277645089902], DiskBox[12, 0.03000277645089902], DiskBox[13, 0.03000277645089902], DiskBox[14, 0.03000277645089902], DiskBox[15, 0.03000277645089902], DiskBox[16, 0.03000277645089902], DiskBox[17, 0.03000277645089902], DiskBox[18, 0.03000277645089902], DiskBox[19, 0.03000277645089902], DiskBox[20, 0.03000277645089902]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK 6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU 7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH gqnQ "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK 6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU 7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH gqnQ "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.035669724190910856`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.035669724190910856], DiskBox[2, 0.035669724190910856], DiskBox[3, 0.035669724190910856], DiskBox[4, 0.035669724190910856], DiskBox[5, 0.035669724190910856], DiskBox[6, 0.035669724190910856], DiskBox[7, 0.035669724190910856], DiskBox[8, 0.035669724190910856], DiskBox[9, 0.035669724190910856], DiskBox[10, 0.035669724190910856], DiskBox[11, 0.035669724190910856], DiskBox[12, 0.035669724190910856], DiskBox[13, 0.035669724190910856], DiskBox[14, 0.035669724190910856], DiskBox[15, 0.035669724190910856], DiskBox[16, 0.035669724190910856], DiskBox[17, 0.035669724190910856], DiskBox[18, 0.035669724190910856], DiskBox[19, 0.035669724190910856], DiskBox[20, 0.035669724190910856]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+ 5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78 a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37 9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW 2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag== "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+ 5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78 a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37 9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW 2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.034862409283267545`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.034862409283267545], DiskBox[2, 0.034862409283267545], DiskBox[3, 0.034862409283267545], DiskBox[4, 0.034862409283267545], DiskBox[5, 0.034862409283267545], DiskBox[6, 0.034862409283267545], DiskBox[7, 0.034862409283267545], DiskBox[8, 0.034862409283267545], DiskBox[9, 0.034862409283267545], DiskBox[10, 0.034862409283267545], DiskBox[11, 0.034862409283267545], DiskBox[12, 0.034862409283267545], DiskBox[13, 0.034862409283267545], DiskBox[14, 0.034862409283267545], DiskBox[15, 0.034862409283267545], DiskBox[16, 0.034862409283267545], DiskBox[17, 0.034862409283267545], DiskBox[18, 0.034862409283267545], DiskBox[19, 0.034862409283267545], DiskBox[20, 0.034862409283267545]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v /nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC 8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v /nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC 8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.026982758224417175`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.026982758224417175], DiskBox[2, 0.026982758224417175], DiskBox[3, 0.026982758224417175], DiskBox[4, 0.026982758224417175], DiskBox[5, 0.026982758224417175], DiskBox[6, 0.026982758224417175], DiskBox[7, 0.026982758224417175], DiskBox[8, 0.026982758224417175], DiskBox[9, 0.026982758224417175], DiskBox[10, 0.026982758224417175], DiskBox[11, 0.026982758224417175], DiskBox[12, 0.026982758224417175], DiskBox[13, 0.026982758224417175], DiskBox[14, 0.026982758224417175], DiskBox[15, 0.026982758224417175], DiskBox[16, 0.026982758224417175], DiskBox[17, 0.026982758224417175], DiskBox[18, 0.026982758224417175], DiskBox[19, 0.026982758224417175], DiskBox[20, 0.026982758224417175]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/ kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/ gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a 1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/ kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/ gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a 1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.034872889013465455`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.034872889013465455], DiskBox[2, 0.034872889013465455], DiskBox[3, 0.034872889013465455], DiskBox[4, 0.034872889013465455], DiskBox[5, 0.034872889013465455], DiskBox[6, 0.034872889013465455], DiskBox[7, 0.034872889013465455], DiskBox[8, 0.034872889013465455], DiskBox[9, 0.034872889013465455], DiskBox[10, 0.034872889013465455], DiskBox[11, 0.034872889013465455], DiskBox[12, 0.034872889013465455], DiskBox[13, 0.034872889013465455], DiskBox[14, 0.034872889013465455], DiskBox[15, 0.034872889013465455], DiskBox[16, 0.034872889013465455], DiskBox[17, 0.034872889013465455], DiskBox[18, 0.034872889013465455], DiskBox[19, 0.034872889013465455], DiskBox[20, 0.034872889013465455]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4 uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26 p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3 4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC CwD11bPG "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4 uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26 p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3 4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC CwD11bPG "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.027713568895903762`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.027713568895903762], DiskBox[2, 0.027713568895903762], DiskBox[3, 0.027713568895903762], DiskBox[4, 0.027713568895903762], DiskBox[5, 0.027713568895903762], DiskBox[6, 0.027713568895903762], DiskBox[7, 0.027713568895903762], DiskBox[8, 0.027713568895903762], DiskBox[9, 0.027713568895903762], DiskBox[10, 0.027713568895903762], DiskBox[11, 0.027713568895903762], DiskBox[12, 0.027713568895903762], DiskBox[13, 0.027713568895903762], DiskBox[14, 0.027713568895903762], DiskBox[15, 0.027713568895903762], DiskBox[16, 0.027713568895903762], DiskBox[17, 0.027713568895903762], DiskBox[18, 0.027713568895903762], DiskBox[19, 0.027713568895903762], DiskBox[20, 0.027713568895903762]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB 1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1 HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92 jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b 77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB 1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1 HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92 jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b 77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03629224785635807]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03629224785635807], DiskBox[2, 0.03629224785635807], DiskBox[3, 0.03629224785635807], DiskBox[4, 0.03629224785635807], DiskBox[5, 0.03629224785635807], DiskBox[6, 0.03629224785635807], DiskBox[7, 0.03629224785635807], DiskBox[8, 0.03629224785635807], DiskBox[9, 0.03629224785635807], DiskBox[10, 0.03629224785635807], DiskBox[11, 0.03629224785635807], DiskBox[12, 0.03629224785635807], DiskBox[13, 0.03629224785635807], DiskBox[14, 0.03629224785635807], DiskBox[15, 0.03629224785635807], DiskBox[16, 0.03629224785635807], DiskBox[17, 0.03629224785635807], DiskBox[18, 0.03629224785635807], DiskBox[19, 0.03629224785635807], DiskBox[20, 0.03629224785635807]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3 m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/ Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf +1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo= "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3 m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/ Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf +1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03200989897193118]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03200989897193118], DiskBox[2, 0.03200989897193118], DiskBox[3, 0.03200989897193118], DiskBox[4, 0.03200989897193118], DiskBox[5, 0.03200989897193118], DiskBox[6, 0.03200989897193118], DiskBox[7, 0.03200989897193118], DiskBox[8, 0.03200989897193118], DiskBox[9, 0.03200989897193118], DiskBox[10, 0.03200989897193118], DiskBox[11, 0.03200989897193118], DiskBox[12, 0.03200989897193118], DiskBox[13, 0.03200989897193118], DiskBox[14, 0.03200989897193118], DiskBox[15, 0.03200989897193118], DiskBox[16, 0.03200989897193118], DiskBox[17, 0.03200989897193118], DiskBox[18, 0.03200989897193118], DiskBox[19, 0.03200989897193118], DiskBox[20, 0.03200989897193118]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[156]=",ExpressionUUID->"18805099-ebc7-40ec-9b5a-690973fc6ab9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance by FindUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"4849a62c-2d86-457d-9c8d-ac5a3d7164b1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"FindUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"MaxIterations", "->", "5000"}], ",", RowBox[{"\"\\"", "->", "True"}]}], "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[157]:=",ExpressionUUID->"ebbf0780-56ad-487b-a8b3-14db11c991aa"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.011013`", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAADxKPgDBH8j+un4SXmayQP/ccHoG/ cPk/IEsMgBAG6T+RU1LhXJDmP7Xp7JnNJ9Q/kp7GtYPioz+I2SW9dHHZP53K 5Nf0t+Y/z5lJ/U6o0z8ne3Bq09foP84syn0W0PU/ZrmEiBsXt78tvOdp0nnt P9xFB8oTn/A/FLKFeoVk2T88Wsf9iSvqP9k+ZC4o1ck/spxoLFmVtb+0Kz54 7kPkP4onYVb0vOo/1EfKsaLJ9D8MY3y6WICyP/XNtqbT5uQ/ruDBNDqA6T/N N1C3jiLGP0QdkPNle/c/qBRVRP3H7j9mdWyrPWLrP0npZCqmLe8/wYbHxJSD wj9rsajBZBGqv0y8OtO82GS/Vq4rRt7B6D8JqwImHULoP7HiJvI6wfI/gKHf UO0qwr+FyjBPobjLv55q2IavoMy/PaZsM7zM9T8TMqzI "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAADxKPgDBH8j+un4SXmayQP/ccHoG/ cPk/IEsMgBAG6T+RU1LhXJDmP7Xp7JnNJ9Q/kp7GtYPioz+I2SW9dHHZP53K 5Nf0t+Y/z5lJ/U6o0z8ne3Bq09foP84syn0W0PU/ZrmEiBsXt78tvOdp0nnt P9xFB8oTn/A/FLKFeoVk2T88Wsf9iSvqP9k+ZC4o1ck/spxoLFmVtb+0Kz54 7kPkP4onYVb0vOo/1EfKsaLJ9D8MY3y6WICyP/XNtqbT5uQ/ruDBNDqA6T/N N1C3jiLGP0QdkPNle/c/qBRVRP3H7j9mdWyrPWLrP0npZCqmLe8/wYbHxJSD wj9rsajBZBGqv0y8OtO82GS/Vq4rRt7B6D8JqwImHULoP7HiJvI6wfI/gKHf UO0qwr+FyjBPobjLv55q2IavoMy/PaZsM7zM9T8TMqzI "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.02108152388300011]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02108152388300011], DiskBox[2, 0.02108152388300011], DiskBox[3, 0.02108152388300011], DiskBox[4, 0.02108152388300011], DiskBox[5, 0.02108152388300011], DiskBox[6, 0.02108152388300011], DiskBox[7, 0.02108152388300011], DiskBox[8, 0.02108152388300011], DiskBox[9, 0.02108152388300011], DiskBox[10, 0.02108152388300011], DiskBox[11, 0.02108152388300011], DiskBox[12, 0.02108152388300011], DiskBox[13, 0.02108152388300011], DiskBox[14, 0.02108152388300011], DiskBox[15, 0.02108152388300011], DiskBox[16, 0.02108152388300011], DiskBox[17, 0.02108152388300011], DiskBox[18, 0.02108152388300011], DiskBox[19, 0.02108152388300011], DiskBox[20, 0.02108152388300011]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[157]=",ExpressionUUID->"eb3092d6-f261-493d-8046-d6c1ff847a4b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"FindUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"MaxIterations", "->", "5000"}], ",", RowBox[{"\"\\"", "\[Rule]", "False"}]}], "]"}], "//", "Quiet"}], "//", "Timing"}]], "Input", CellLabel-> "In[158]:=",ExpressionUUID->"06d84af0-d50d-449b-8345-6fb843b8b308"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.013184`", ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, { Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, { 6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexCoordinates -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA3qmA3CDz8z+lcX9eYGHPPwz6f9J/ xLo/i0MOlt4J9j8HmTgtfUvwP/X2xOT0quc/2CfCLg9u4b9gvV/Ve1nxP+SK hDKYMoK/H4hUR0CR2D9gefiDYyG2P8tom4AqKtg/4VBVHdKxlD/brjVNeZPp P1JK20b8nc8/THMVI6dM3j8WFaXN9ZTwP500jTaR+uY/9D3oHNVY4z+6jjBt 4YnHv5b5GnJHZ+8/FjpL/zK+4D9cmGNiparlP6k0Od67etu/yDRQvVzg7j8L 1NgN7sPrPxkMz8HildA/LFgCeE2/tj8nVvaXE3TaP1IYL11Nhuk/h463N0AE 7j/Eh0/X7yPzP/Cnh+E/+bk/NMBpOJo+1z/y1vqnqeZbv7Dc6p8fkOM/Uq4W gEh0zT+tRDG5nK31P9X6dCgAWuy/hoi03HV7wj9i0ajy "]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA3qmA3CDz8z+lcX9eYGHPPwz6f9J/ xLo/i0MOlt4J9j8HmTgtfUvwP/X2xOT0quc/2CfCLg9u4b9gvV/Ve1nxP+SK hDKYMoK/H4hUR0CR2D9gefiDYyG2P8tom4AqKtg/4VBVHdKxlD/brjVNeZPp P1JK20b8nc8/THMVI6dM3j8WFaXN9ZTwP500jTaR+uY/9D3oHNVY4z+6jjBt 4YnHv5b5GnJHZ+8/FjpL/zK+4D9cmGNiparlP6k0Od67etu/yDRQvVzg7j8L 1NgN7sPrPxkMz8HildA/LFgCeE2/tj8nVvaXE3TaP1IYL11Nhuk/h463N0AE 7j/Eh0/X7yPzP/Cnh+E/+bk/NMBpOJo+1z/y1vqnqeZbv7Dc6p8fkOM/Uq4W gEh0zT+tRDG5nK31P9X6dCgAWuy/hoi03HV7wj9i0ajy "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.023680305899773962`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.023680305899773962], DiskBox[2, 0.023680305899773962], DiskBox[3, 0.023680305899773962], DiskBox[4, 0.023680305899773962], DiskBox[5, 0.023680305899773962], DiskBox[6, 0.023680305899773962], DiskBox[7, 0.023680305899773962], DiskBox[8, 0.023680305899773962], DiskBox[9, 0.023680305899773962], DiskBox[10, 0.023680305899773962], DiskBox[11, 0.023680305899773962], DiskBox[12, 0.023680305899773962], DiskBox[13, 0.023680305899773962], DiskBox[14, 0.023680305899773962], DiskBox[15, 0.023680305899773962], DiskBox[16, 0.023680305899773962], DiskBox[17, 0.023680305899773962], DiskBox[18, 0.023680305899773962], DiskBox[19, 0.023680305899773962], DiskBox[20, 0.023680305899773962]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, FrameTicks->None]}], "}"}]], "Output", CellLabel-> "Out[158]=",ExpressionUUID->"246c8a06-f822-481b-8633-9af6f47bf599"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["UnitDistance by FindSubgraphUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"7dd8109a-647f-426d-a3a5-d68ecf6d8363"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"l", "=", RowBox[{ RowBox[{"FindSubgraphUnitDistanceEmbedding", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"TimeConstraint", "->", "300"}], ",", RowBox[{"\"\\"", "->", "All"}]}], "]"}], "//", "Timing"}]}]}], "}"}]], "Input",ExpressionUUID->"5ef270fe-df9a-4c09-984c-\ 149aa5af5ab5"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"DodecahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"19589.109375`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"DeGreyGraph\"\>", ",", RowBox[{"{", RowBox[{"157.796875`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 275, 3, 216, 327, 273, 7, 329, 4, 41, 218, 331, 205, 2, 6, 5, 212, 96, 386, 209}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2], Rational[1, 4]}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 57 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (19 + 15 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[-3, 16] (-1 + 21^Rational[1, 2])}, { 2 + Rational[1, 48] (3 3^Rational[1, 2] - 30 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (10 + 9 21^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 75 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (25 - 3 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (29 + 15 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 15 7^Rational[1, 2]), Rational[1, 16] (5 - 3 21^Rational[1, 2])}, { 2 + Rational[1, 48] ((-39) 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (13 + 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[3, 16] (1 + 21^Rational[1, 2])}, { 2 + Rational[1, 8] (3^Rational[1, 2] - 6 7^Rational[1, 2]), Rational[1, 8] (2 + 3 21^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 105 7^Rational[1, 2] - 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (35 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 69 7^Rational[1, 2] - 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (23 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (7 3^Rational[1, 2] - 57 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (19 + 21 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[-3, 8] 7^Rational[1, 2], Rational[1, 8]}, { 2 + Rational[1, 16] (3^Rational[1, 2] - 15 7^Rational[1, 2]), Rational[1, 16] (5 + 3 21^Rational[1, 2])}, { 2 + Rational[-9, 8] 7^Rational[1, 2], Rational[3, 8]}, { 2 + Rational[1, 96] (3^Rational[1, 2] - 39 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (13 + 3 21^Rational[1, 2] - 33^ Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (7 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (29 + 21 21^Rational[1, 2] - 33^ Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 39 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (13 - 3 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 48] (3 3^Rational[1, 2] - 48 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (16 + 9 21^Rational[1, 2] + 3 77^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7bDiUYCCwAR7BjC4YH9g08evVw232B/YYHjj/PfP 9jt6tpxUunzT/sTa+aLX6p7uf7HzwoGZhx7Ya00TKFS5/dP+De/q2JILD/YX pbebTn54xz5l/r3Edyqv9n959PCxzo6X9gz6jyT1rj3aD9H/cP+DoCN3Vi3Y sr+3rvFMkfkr+47ID3IG1x/bP7l2nit7/wf7DQtLPtXtOAu177/9jY/K+8/t /bafYZqUYvrqGvsJd8T+7y6/vX9B2LteT9N9+7vzGicc5/xo77tn3eL9i77Z Bxxd6KCg8AHqnwP2G8xn7Je7eH0/xPxP9jIJpjV29u/3Q+Rv2Euwrz7ob/fd fsXU6uSg3vv2CbIzGGcsPGrP9+t2FQ/fe/sH55Scpt27aw/x3xX7D2XXq71/ 3d0P8f9vewCLw6q1 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.029329452065384246`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.029329452065384246], DiskBox[2, 0.029329452065384246], DiskBox[3, 0.029329452065384246], DiskBox[4, 0.029329452065384246], DiskBox[5, 0.029329452065384246], DiskBox[6, 0.029329452065384246], DiskBox[7, 0.029329452065384246], DiskBox[8, 0.029329452065384246], DiskBox[9, 0.029329452065384246], DiskBox[10, 0.029329452065384246], DiskBox[11, 0.029329452065384246], DiskBox[12, 0.029329452065384246], DiskBox[13, 0.029329452065384246], DiskBox[14, 0.029329452065384246], DiskBox[15, 0.029329452065384246], DiskBox[16, 0.029329452065384246], DiskBox[17, 0.029329452065384246], DiskBox[18, 0.029329452065384246], DiskBox[19, 0.029329452065384246], DiskBox[20, 0.029329452065384246]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ExooIsmailescuGraph49\"\>", ",", RowBox[{"{", RowBox[{"0.078125`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 37, 2, 32, 15, 24, 4, 28, 7, 6, 14, 36, 29, 3, 20, 12, 25, 19, 17, 22}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, { 0, Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (9 - 3 33^Rational[1, 2])}, { Rational[1, 36] (9 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (6 3^Rational[1, 2] + 18 11^Rational[1, 2]), 0}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 9 33^Rational[1, 2])}, { 0, Rational[1, 36] (18 + 6 33^Rational[1, 2])}, { 3^Rational[-1, 2], 0}, { Rational[1, 36] (9 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, { Rational[1, 36] (6 3^Rational[1, 2] - 18 11^Rational[1, 2]), 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, { Rational[-1, 2] 11^Rational[1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 9 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5ykmYe4nj1dP+CB45i8wOf74eJOxxs1rFb/M/+ V3Vi6h219/YNTeyRNW5n9++duMg+K+rmfijfXtZ4guvyykv2EF0P9sP4EP3v oPr/28PMhZq3/8OFpIV5v37BxSH2f4ea9wgufuSUCMsNwy/2MPdB3PsV7k6o ffth9kH9A1OP7n57k/y/k4s6fqGrh/kfzoe47xO6/+wBTJ+FIQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.03442846938951541]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.03442846938951541], DiskBox[2, 0.03442846938951541], DiskBox[3, 0.03442846938951541], DiskBox[4, 0.03442846938951541], DiskBox[5, 0.03442846938951541], DiskBox[6, 0.03442846938951541], DiskBox[7, 0.03442846938951541], DiskBox[8, 0.03442846938951541], DiskBox[9, 0.03442846938951541], DiskBox[10, 0.03442846938951541], DiskBox[11, 0.03442846938951541], DiskBox[12, 0.03442846938951541], DiskBox[13, 0.03442846938951541], DiskBox[14, 0.03442846938951541], DiskBox[15, 0.03442846938951541], DiskBox[16, 0.03442846938951541], DiskBox[17, 0.03442846938951541], DiskBox[18, 0.03442846938951541], DiskBox[19, 0.03442846938951541], DiskBox[20, 0.03442846938951541]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ExooIsmailescuGraph51\"\>", ",", RowBox[{"{", RowBox[{"1.546875`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 30, 7, 20, 25, 5, 10, 41, 29, 39, 48, 42, 2, 4, 38, 21, 24, 6, 11, 3}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, Rational[1, 3]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 - 3 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 6]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[5, 6]}, { Rational[1, 36] ((-9) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 + 3 33^Rational[1, 2])}, { 0, Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-15) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 6]}, {0, Rational[-2, 3]}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (21 + 3 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 - 6 33^Rational[1, 2])}, { Rational[1, 36] ((-9) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, { 0, Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 6]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQOhYHDVPidp5iGOV0/tX2XrXX/he3P/Kp+IF1Xb Xu+HyB/dL2s8wXV55SX71atA4JX93omL7LOibtp7db854PnnoT3MPAj/I1T9 o/0w/q/qxNQ7au/tQwPcFsec2GUP5e//ajo9+8uyN/uh9u9fteUE35wj6+3b qzxfcDfvhrsHph+mHuoeuPtQ/fMUbt5S17IHKv8+2MPcP1XsZuPkH4/3Hzkl wnLD8AvcPph+iH0v7WHuR+VfsofZBwDgV59d "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.024495335266347784`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024495335266347784], DiskBox[2, 0.024495335266347784], DiskBox[3, 0.024495335266347784], DiskBox[4, 0.024495335266347784], DiskBox[5, 0.024495335266347784], DiskBox[6, 0.024495335266347784], DiskBox[7, 0.024495335266347784], DiskBox[8, 0.024495335266347784], DiskBox[9, 0.024495335266347784], DiskBox[10, 0.024495335266347784], DiskBox[11, 0.024495335266347784], DiskBox[12, 0.024495335266347784], DiskBox[13, 0.024495335266347784], DiskBox[14, 0.024495335266347784], DiskBox[15, 0.024495335266347784], DiskBox[16, 0.024495335266347784], DiskBox[17, 0.024495335266347784], DiskBox[18, 0.024495335266347784], DiskBox[19, 0.024495335266347784], DiskBox[20, 0.024495335266347784]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Hamming\"\>", ",", RowBox[{"{", RowBox[{"3", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.0625`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 18, 3, 25, 27, 17, 6, 7, 11, 10, 9, 8, 15, 2, 19, 4, 12, 13, 21, 16}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ Root[3 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[1 - 6 # + 8 #^3& , 2, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, { Root[1 - 6 # + 8 #^3& , 1, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 1, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 3, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 5, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Root[-1 - 6 # + 8 #^3& , 1, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 4, 0]}, { Root[-3 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, { Root[-1 - 6 # + 8 #^3& , 3, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 6, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-1 - 6 # + 8 #^3& , 2, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, { Root[3 - 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbRG1pOWN8p39bDNn/NS3v2DfWcxdJ2V1zF6J7aLq 9o579jK6QU7fBN/tn+YzqYjz9Ud7BjB4YH+j6EfB1V9f9zNAAUT/g/3Wbr8O fHp0Zb/J5Pur7J7cgMsbgvkv7IsWzHO9z3Zx/5TzW/o/Jz+Hyj/YXxckaJ4j +BhuPoxvGXB+UX7zi/2RX3qTZL0O2suuSL+43fELXD/UffYw9/WJaSr+5vgO 9w/UPfao7nlgv+f00dcPJ26Duw9i3neYfnuY/i5IeOyHhcfjO03z2/qews0D AG+ClCc= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.029368265417639275`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.029368265417639275], DiskBox[2, 0.029368265417639275], DiskBox[3, 0.029368265417639275], DiskBox[4, 0.029368265417639275], DiskBox[5, 0.029368265417639275], DiskBox[6, 0.029368265417639275], DiskBox[7, 0.029368265417639275], DiskBox[8, 0.029368265417639275], DiskBox[9, 0.029368265417639275], DiskBox[10, 0.029368265417639275], DiskBox[11, 0.029368265417639275], DiskBox[12, 0.029368265417639275], DiskBox[13, 0.029368265417639275], DiskBox[14, 0.029368265417639275], DiskBox[15, 0.029368265417639275], DiskBox[16, 0.029368265417639275], DiskBox[17, 0.029368265417639275], DiskBox[18, 0.029368265417639275], DiskBox[19, 0.029368265417639275], DiskBox[20, 0.029368265417639275]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph510\"\>", ",", RowBox[{"{", RowBox[{"72.75`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 301, 6, 305, 133, 275, 4, 354, 7, 55, 102, 247, 241, 2, 35, 5, 271, 223, 77, 99}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[2, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 - 33^Rational[1, 2])}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (9 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-7 - 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCp/Z4FDUuTN3/bDxF9YL/KJ+JF1bbX+wM+ KHSfX/F5/5/qxNQ7au/3r9pygm/OkfX7ue6nd+yreb4fov/qfjT9+2H6Fzxw FJsf+H+/rPEE1+WVl9DNtz9gV3P5YMxF+7Yqzxfczbv3e3W/OeD55+H+um0H 6z8+O2C/1LXsgcq/D3D7Vq8CgU/2Z7+sSPLZ8BBq3gd7mH8amtgja9zO7v8F dS9Ufj9M/tes06ZVwd/so/gKWRXe3rKHuh9q3sf9WS/V6nLY79jD7H+VrXf9 he/N/VD1+wH1OpaI "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.03271725813257968]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.03271725813257968], DiskBox[2, 0.03271725813257968], DiskBox[3, 0.03271725813257968], DiskBox[4, 0.03271725813257968], DiskBox[5, 0.03271725813257968], DiskBox[6, 0.03271725813257968], DiskBox[7, 0.03271725813257968], DiskBox[8, 0.03271725813257968], DiskBox[9, 0.03271725813257968], DiskBox[10, 0.03271725813257968], DiskBox[11, 0.03271725813257968], DiskBox[12, 0.03271725813257968], DiskBox[13, 0.03271725813257968], DiskBox[14, 0.03271725813257968], DiskBox[15, 0.03271725813257968], DiskBox[16, 0.03271725813257968], DiskBox[17, 0.03271725813257968], DiskBox[18, 0.03271725813257968], DiskBox[19, 0.03271725813257968], DiskBox[20, 0.03271725813257968]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph529\"\>", ",", RowBox[{"{", RowBox[{"149.75`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 312, 6, 384, 142, 200, 4, 3, 7, 78, 209, 177, 124, 2, 30, 5, 212, 87, 183, 346}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (7 - 33^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WrwKBT/Znv6xI8tnwcD9E9IH9Kp+IF1XbXu9v aGKPrHE7a/99xe9pJwyP22e9VKvLYb9jX7ftYP3HZwfsQ8HgKLr+/TD9aHx7 NPPtAz4odJ9f8dn+K9R8r+43Bzz/PNwPM/9Vtt71F7437aP4ClkV3t6C2ncV at9HqPkf7GH+WfDAUWx+4HP73KSZhzhePYXJ74fJQ82HuX//AbuaywdjLtp3 VXm+4G7evR9q336offuh5u1vg8oDAA4sk5I= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.024440582208030248`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.024440582208030248], DiskBox[2, 0.024440582208030248], DiskBox[3, 0.024440582208030248], DiskBox[4, 0.024440582208030248], DiskBox[5, 0.024440582208030248], DiskBox[6, 0.024440582208030248], DiskBox[7, 0.024440582208030248], DiskBox[8, 0.024440582208030248], DiskBox[9, 0.024440582208030248], DiskBox[10, 0.024440582208030248], DiskBox[11, 0.024440582208030248], DiskBox[12, 0.024440582208030248], DiskBox[13, 0.024440582208030248], DiskBox[14, 0.024440582208030248], DiskBox[15, 0.024440582208030248], DiskBox[16, 0.024440582208030248], DiskBox[17, 0.024440582208030248], DiskBox[18, 0.024440582208030248], DiskBox[19, 0.024440582208030248], DiskBox[20, 0.024440582208030248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph553\"\>", ",", RowBox[{"{", RowBox[{"180.359375`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 16, 6, 179, 419, 15, 4, 110, 7, 55, 111, 382, 117, 2, 10, 5, 90, 166, 535, 89}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-2, 3], Rational[1, 6] (3 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[5, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { 1, 0}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, { Rational[1, 12] (11 - 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^ Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (11 + 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^ Rational[1, 2])}, { Rational[1, 3], Rational[1, 6] (3 3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fI+v2euzw8zD+83w8RfWC/yifiRdW2 1/tDweDp/l3r47hjea7YfzWdnv1l2Rv7N5kdpa3TvuxfvQoEXtmf/bIiyWfD Q5j+/aj6j+5Hk4eZb9/QxB5Z43Z2/9cVv6edMDxu/ypb7/oL35v2UXyFrApv b0H1X7Xfs6BhafLmb/u9ut8c8PzzcH/dtoP1H58dgJr3wR7mnwUPHMXmBz7f n5s08xDHq6cw+f0w+ayXanU57Hfs66H6D9jVXD4Yc9Eepv7XrNOmVcHf7GPQ 7If5HwDoHZPX "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.0257407422132772]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.0257407422132772], DiskBox[2, 0.0257407422132772], DiskBox[3, 0.0257407422132772], DiskBox[4, 0.0257407422132772], DiskBox[5, 0.0257407422132772], DiskBox[6, 0.0257407422132772], DiskBox[7, 0.0257407422132772], DiskBox[8, 0.0257407422132772], DiskBox[9, 0.0257407422132772], DiskBox[10, 0.0257407422132772], DiskBox[11, 0.0257407422132772], DiskBox[12, 0.0257407422132772], DiskBox[13, 0.0257407422132772], DiskBox[14, 0.0257407422132772], DiskBox[15, 0.0257407422132772], DiskBox[16, 0.0257407422132772], DiskBox[17, 0.0257407422132772], DiskBox[18, 0.0257407422132772], DiskBox[19, 0.0257407422132772], DiskBox[20, 0.0257407422132772]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph610\"\>", ",", RowBox[{"{", RowBox[{"215.921875`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 55, 6, 125, 8, 270, 4, 3, 7, 60, 53, 108, 110, 2, 11, 5, 330, 106, 121, 412}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (21 - 33^ Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 12] (-11 + 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^ Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (3 - 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), -3^ Rational[-1, 2]}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { 1, 0}, { Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, { Rational[1, 12] (11 + 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 6] (3 + 33^Rational[1, 2]), -3^ Rational[-1, 2]}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), ( Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fIenvu++kd+2qe20NEH9iv8ol4UbXt 9f4FDxzF5gd+3y9rPMF1eeUje4eDzTp2i9/ZQ/iX7LNeqtXlsN/ZX7/tYP3H Zwf2Q/Xvh+lH46Obb9/QxB5Z43YXbj6UDzX/0f5X2XrXX/jetI/iK2RVeHvL 3qv7zQHPPw/t61Ds+2AP8w/UfVDzLsHk98Pkf806bVoV/M0+Bmoe1Pz9UPNh /oXbD1W/H6p+PwBOrYhf "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075], DiskBox[9, 0.02962578701818075], DiskBox[10, 0.02962578701818075], DiskBox[11, 0.02962578701818075], DiskBox[12, 0.02962578701818075], DiskBox[13, 0.02962578701818075], DiskBox[14, 0.02962578701818075], DiskBox[15, 0.02962578701818075], DiskBox[16, 0.02962578701818075], DiskBox[17, 0.02962578701818075], DiskBox[18, 0.02962578701818075], DiskBox[19, 0.02962578701818075], DiskBox[20, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph803\"\>", ",", RowBox[{"{", RowBox[{"241.828125`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 259, 4, 82, 273, 136, 3, 5, 6, 83, 144, 295, 211, 2, 11, 7, 128, 43, 103, 42}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[-2, 3], Rational[1, 3] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), -3^ Rational[-1, 2]}, { Rational[1, 3], Rational[1, 3] 11^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^ Rational[1, 2])}, {-1, 0}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[7, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 6], Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweDp/rNfViT5bPhoDxF9YL/KJ+JF1bbX9q+y 9a6/8L1pH8VXyKrw9tb+X7NOm1YFf9sP5dsveOAoNj/w+f6uKs8X3M27Yfr3 w/Sj8fejmQ8zD26+V/ebA55/Hu6v23aw/uOzA/sh5n/fL2s8wXV55aP9EPde tUd17wd7mH++mk7P/rLsjf2PLvvTV+vvwOT3w+Sh5ttDzbdfvQoEPkHNewjz L9x/EPuOwuUBXS+QXw== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.0291745738150109]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.0291745738150109], DiskBox[2, 0.0291745738150109], DiskBox[3, 0.0291745738150109], DiskBox[4, 0.0291745738150109], DiskBox[5, 0.0291745738150109], DiskBox[6, 0.0291745738150109], DiskBox[7, 0.0291745738150109], DiskBox[8, 0.0291745738150109], DiskBox[9, 0.0291745738150109], DiskBox[10, 0.0291745738150109], DiskBox[11, 0.0291745738150109], DiskBox[12, 0.0291745738150109], DiskBox[13, 0.0291745738150109], DiskBox[14, 0.0291745738150109], DiskBox[15, 0.0291745738150109], DiskBox[16, 0.0291745738150109], DiskBox[17, 0.0291745738150109], DiskBox[18, 0.0291745738150109], DiskBox[19, 0.0291745738150109], DiskBox[20, 0.0291745738150109]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph826\"\>", ",", RowBox[{"{", RowBox[{"120.046875`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 322, 4, 82, 25, 154, 5, 240, 6, 23, 170, 241, 321, 2, 166, 3, 298, 79, 13, 152}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 6], 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 12] (7 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (13 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (13 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, { Rational[7, 6], 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, {-1, 0}, {2, 3^Rational[1, 2]}, { Rational[2, 3], Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, {1, 3^Rational[1, 2]}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 11^ Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCofUfytZ4AdyYHiOgD+1U+ES+qtr22dzjY rGO3+N1+WeMJrssrL9mHBrgtjjmxy/5NZkdp67Qv9l7dbw54/nm4/5Zowo45 M3/aQ/Xvh+lf8MBRbH7gf7h+iPwPuPlcpzKmcEc+to/iK2RVeHsLqv75/qAn d5atzvsL5X+H6v9kv3oVCHxCc+8He5h/GprYI2vczu7/VZ2YekftPVT8w340 bztA7P9tD/H/U/s9CxqWJm/+BlNvD5NfteUE35wj6/dz3U/v2Ffz3B4ApZSC Dg== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.03673321499249091]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.03673321499249091], DiskBox[2, 0.03673321499249091], DiskBox[3, 0.03673321499249091], DiskBox[4, 0.03673321499249091], DiskBox[5, 0.03673321499249091], DiskBox[6, 0.03673321499249091], DiskBox[7, 0.03673321499249091], DiskBox[8, 0.03673321499249091], DiskBox[9, 0.03673321499249091], DiskBox[10, 0.03673321499249091], DiskBox[11, 0.03673321499249091], DiskBox[12, 0.03673321499249091], DiskBox[13, 0.03673321499249091], DiskBox[14, 0.03673321499249091], DiskBox[15, 0.03673321499249091], DiskBox[16, 0.03673321499249091], DiskBox[17, 0.03673321499249091], DiskBox[18, 0.03673321499249091], DiskBox[19, 0.03673321499249091], DiskBox[20, 0.03673321499249091]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"HeuleGraph874\"\>", ",", RowBox[{"{", RowBox[{"206.015625`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 30, 6, 135, 87, 26, 4, 355, 7, 69, 349, 122, 149, 2, 114, 5, 189, 73, 90, 108}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (7 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (3 - 33^Rational[1, 2]), 3^ Rational[-1, 2]}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^ Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, {Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCo/dkvK5J8NjzcDxF9YL/KJ+JF1bbX+xua 2CNr3M7u/1WdmHpH7f1+r+43Bzz/PNxft+1g/cdnB+xDA9wWx5zYZf+jy/70 1fo79lD9+2H6Az4odJ9f8RmuH818e4j5d/fLGk9wXV75yP7XrNOmVcHf9kfx FbIqvL21/1W23vUXvjfh/NWrQOATmns/2MP843CwWcdu8TuoeZdg8vth8lDz 7aHm2R+wq7l8MOaifVeV5wvu5t37s16q1eWw37GH+W/BA0ex+YHP98PkAZE/ kmQ= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035], DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035], DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035], DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035], DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035], DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035], DiskBox[13, 0.02871996521054035], DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035], DiskBox[16, 0.02871996521054035], DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035], DiskBox[19, 0.02871996521054035], DiskBox[20, 0.02871996521054035]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"MixonGraph1577\"\>", ",", RowBox[{"{", RowBox[{"155.796875`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 1082, 27, 850, 1290, 1074, 35, 1298, 31, 154, 866, 1282, 830, 23, 39, 43, 842, 370, 1534, 822}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2, 0}, { Rational[1, 12] (29 - 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[ 7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}, { Rational[1, 12] (23 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (19 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 2, -3^Rational[1, 2]}, { Rational[1, 12] (13 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (25 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (29 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^ Rational[1, 2])}, {3, 0}, { Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (35 + 33^Rational[1, 2]), ( Rational[-1, 12] 3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (35 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[ 4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF 1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX 6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035], DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035], DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035], DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035], DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035], DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035], DiskBox[13, 0.02871996521054035], DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035], DiskBox[16, 0.02871996521054035], DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035], DiskBox[19, 0.02871996521054035], DiskBox[20, 0.02871996521054035]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"MixonGraph1585\"\>", ",", RowBox[{"{", RowBox[{"155.265625`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 1090, 31, 854, 1298, 1082, 39, 1306, 35, 158, 870, 1290, 834, 27, 43, 47, 846, 374, 1542, 826}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{2, 0}, { Rational[1, 12] (29 - 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^ Rational[1, 2]}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[ 7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}, { Rational[1, 12] (23 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (19 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 2, -3^Rational[1, 2]}, { Rational[1, 12] (13 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (25 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (29 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^ Rational[1, 2])}, {3, 0}, { Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (35 + 33^Rational[1, 2]), ( Rational[-1, 12] 3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (35 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[ 4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF 1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX 6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035], DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035], DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035], DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035], DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035], DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035], DiskBox[13, 0.02871996521054035], DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035], DiskBox[16, 0.02871996521054035], DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035], DiskBox[19, 0.02871996521054035], DiskBox[20, 0.02871996521054035]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"220.734375`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 72, 18, 22, 63, 82, 27, 32, 26, 31, 41, 48, 52, 10, 12, 13, 40, 60, 34, 47}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{ 0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[1, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[1, 2] 21^Rational[1, 2]}, { Rational[-5, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[3, 7]^ Rational[1, 2]}, {Rational[-5, 2] 7^Rational[-1, 2], 0}, { Rational[5, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, {(-2) 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[3, 7]^ Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {(-3) 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNSlZtvspzjcYDxtbbaOL75dMUexm+VE93ZF8Lk 8OBrYMI2m3f79/PfTkzK+W8P5dtD1D+B8ffD9MHkYeph4iWPugOX6/+yf/Pz b06uyiO4/LPvy59NNLixHyYP4Z+Amv8Fyn8Btf89jG+Pzj/vnXLScyK7A1T/ foh+FgdU81jQ5GHmw/hP4OahuvcT3H4Az6iiGA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.0343970407859782]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.0343970407859782], DiskBox[2, 0.0343970407859782], DiskBox[3, 0.0343970407859782], DiskBox[4, 0.0343970407859782], DiskBox[5, 0.0343970407859782], DiskBox[6, 0.0343970407859782], DiskBox[7, 0.0343970407859782], DiskBox[8, 0.0343970407859782], DiskBox[9, 0.0343970407859782], DiskBox[10, 0.0343970407859782], DiskBox[11, 0.0343970407859782], DiskBox[12, 0.0343970407859782], DiskBox[13, 0.0343970407859782], DiskBox[14, 0.0343970407859782], DiskBox[15, 0.0343970407859782], DiskBox[16, 0.0343970407859782], DiskBox[17, 0.0343970407859782], DiskBox[18, 0.0343970407859782], DiskBox[19, 0.0343970407859782], DiskBox[20, 0.0343970407859782]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"UnitDistance\"\>", ",", RowBox[{"{", RowBox[{"118", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"12.3125`", ",", RowBox[{"{", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 117, 3, 4, 8, 45, 118, 114, 7, 6, 9, 78, 26, 2, 5, 113, 62, 22, 38, 59}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, { 6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, { 19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, { 10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, { 8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (13 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1, 0}, {Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (7 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (-15 - 33^Rational[1, 2])}, { Rational[4, 3], Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[11, 6], Rational[1, 6] 11^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (17 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (1 - 33^Rational[1, 2])}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Root[1 - 87 #^2 + 36 #^4& , 1, 0]}, { Rational[-1, 3], (Rational[1, 6] 3^Rational[-1, 2]) (9 - 33^Rational[1, 2])}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ6WupY9UPn3w75u28H6j88O7IeIPrBf5RPxomrb a3sI/4M9TL1X95sDnn8ewtVD9H+w99rl4WH+4f3+UDD4ar9nQcPS5M3f7CH8 v/Znv6xI8tnwEGbeflRXPNgPtW//r1mnTauCv9lH8RWyKry9ZQ/h/7P/0WV/ +mr9nf0LHjiKzQ98bp+bNPMQx6un+9H026O5f//qVSDwCm7/AbuaywdjLu7P g+pvaGKPrHE7a999veKq44UfUPdf3b9rfRx3LM8VqPuPwvTvBwCLgpGg "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, { 5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}, 0.030021405881908034`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], DiskBox[1, 0.030021405881908034], DiskBox[2, 0.030021405881908034], DiskBox[3, 0.030021405881908034], DiskBox[4, 0.030021405881908034], DiskBox[5, 0.030021405881908034], DiskBox[6, 0.030021405881908034], DiskBox[7, 0.030021405881908034], DiskBox[8, 0.030021405881908034], DiskBox[9, 0.030021405881908034], DiskBox[10, 0.030021405881908034], DiskBox[11, 0.030021405881908034], DiskBox[12, 0.030021405881908034], DiskBox[13, 0.030021405881908034], DiskBox[14, 0.030021405881908034], DiskBox[15, 0.030021405881908034], DiskBox[16, 0.030021405881908034], DiskBox[17, 0.030021405881908034], DiskBox[18, 0.030021405881908034], DiskBox[19, 0.030021405881908034], DiskBox[20, 0.030021405881908034]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", CellTags->"ewwwin (4)", CellLabel-> "(ewwwin (4)) \ Out[22]=",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"gs", "=", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"UniqueEmbeddings", "[", "l", "]"}], ",", RowBox[{ RowBox[{"Replace", "[", RowBox[{ RowBox[{"RectilinearCrossingCount", "[", "#", "]"}], ",", RowBox[{"Infinity", "->", "0"}]}], "]"}], "&"}]}], "]"}]}]], "Input",Ex\ pressionUUID->"1400e62e-a2ef-4a51-8822-369a7deb2916"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 275, 3, 216, 327, 273, 7, 329, 4, 41, 218, 331, 205, 2, 6, 5, 212, 96, 386, 209}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2], Rational[1, 4]}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 57 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (19 + 15 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[-3, 16] (-1 + 21^Rational[1, 2])}, { 2 + Rational[1, 48] (3 3^Rational[1, 2] - 30 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (10 + 9 21^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 75 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (25 - 3 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (5 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^ Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (29 + 15 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (-3^Rational[1, 2] - 15 7^Rational[1, 2]), Rational[1, 16] (5 - 3 21^Rational[1, 2])}, { 2 + Rational[1, 48] ((-39) 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (13 + 3 77^Rational[1, 2])}, { 2 + Rational[1, 16] (3^Rational[1, 2] - 9 7^Rational[1, 2]), Rational[3, 16] (1 + 21^Rational[1, 2])}, { 2 + Rational[1, 8] (3^Rational[1, 2] - 6 7^Rational[1, 2]), Rational[1, 8] (2 + 3 21^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 105 7^Rational[1, 2] - 11^ Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (35 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 69 7^Rational[1, 2] - 11^ Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (23 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (7 3^Rational[1, 2] - 57 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (19 + 21 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}, {2 + Rational[-3, 8] 7^Rational[1, 2], Rational[1, 8]}, { 2 + Rational[1, 16] (3^Rational[1, 2] - 15 7^Rational[1, 2]), Rational[1, 16] (5 + 3 21^Rational[1, 2])}, { 2 + Rational[-9, 8] 7^Rational[1, 2], Rational[3, 8]}, { 2 + Rational[1, 96] (3^Rational[1, 2] - 39 7^Rational[1, 2] + 11^Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (13 + 3 21^Rational[1, 2] - 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (7 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^ Rational[1, 2] + 3 231^Rational[1, 2]), Rational[1, 96] (29 + 21 21^Rational[1, 2] - 33^Rational[1, 2] - 3 77^Rational[1, 2])}, { 2 + Rational[1, 96] (-3^Rational[1, 2] - 39 7^Rational[1, 2] + 11^Rational[1, 2] - 3 231^Rational[1, 2]), Rational[1, 96] (13 - 3 21^Rational[1, 2] + 33^Rational[1, 2] + 3 77^Rational[1, 2])}, { 2 + Rational[1, 48] (3 3^Rational[1, 2] - 48 7^Rational[1, 2] + 11^Rational[1, 2]), Rational[1, 48] (16 + 9 21^Rational[1, 2] + 3 77^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7bDiUYCCwAR7BjC4YH9g08evVw232B/YYHjj/PfP 9jt6tpxUunzT/sTa+aLX6p7uf7HzwoGZhx7Ya00TKFS5/dP+De/q2JILD/YX pbebTn54xz5l/r3Edyqv9n959PCxzo6X9gz6jyT1rj3aD9H/cP+DoCN3Vi3Y sr+3rvFMkfkr+47ID3IG1x/bP7l2nit7/wf7DQtLPtXtOAu177/9jY/K+8/t /bafYZqUYvrqGvsJd8T+7y6/vX9B2LteT9N9+7vzGicc5/xo77tn3eL9i77Z Bxxd6KCg8AHqnwP2G8xn7Je7eH0/xPxP9jIJpjV29u/3Q+Rv2Euwrz7ob/fd fsXU6uSg3vv2CbIzGGcsPGrP9+t2FQ/fe/sH55Scpt27aw/x3xX7D2XXq71/ 3d0P8f9vewCLw6q1 "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.029329452065384246`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029329452065384246], DiskBox[2, 0.029329452065384246], DiskBox[3, 0.029329452065384246], DiskBox[4, 0.029329452065384246], DiskBox[5, 0.029329452065384246], DiskBox[6, 0.029329452065384246], DiskBox[7, 0.029329452065384246], DiskBox[8, 0.029329452065384246], DiskBox[9, 0.029329452065384246], DiskBox[10, 0.029329452065384246], DiskBox[11, 0.029329452065384246], DiskBox[12, 0.029329452065384246], DiskBox[13, 0.029329452065384246], DiskBox[14, 0.029329452065384246], DiskBox[15, 0.029329452065384246], DiskBox[16, 0.029329452065384246], DiskBox[17, 0.029329452065384246], DiskBox[18, 0.029329452065384246], DiskBox[19, 0.029329452065384246], DiskBox[20, 0.029329452065384246]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 37, 2, 32, 15, 24, 4, 28, 7, 6, 14, 36, 29, 3, 20, 12, 25, 19, 17, 22}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, { 0, Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (9 - 3 33^Rational[1, 2])}, { Rational[1, 36] (9 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (6 3^Rational[1, 2] + 18 11^Rational[1, 2]), 0}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 9 33^Rational[1, 2])}, { 0, Rational[1, 36] (18 + 6 33^Rational[1, 2])}, { 3^Rational[-1, 2], 0}, { Rational[1, 36] (9 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, { Rational[1, 36] (6 3^Rational[1, 2] - 18 11^Rational[1, 2]), 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, { Rational[-1, 2] 11^Rational[1, 2], Rational[1, 2] Rational[11, 3]^Rational[1, 2]}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (9 + 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-9 + 9 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5ykmYe4nj1dP+CB45i8wOf74eJOxxs1rFb/M/+ V3Vi6h219/YNTeyRNW5n9++duMg+K+rmfijfXtZ4guvyykv2EF0P9sP4EP3v oPr/28PMhZq3/8OFpIV5v37BxSH2f4ea9wgufuSUCMsNwy/2MPdB3PsV7k6o ffth9kH9A1OP7n57k/y/k4s6fqGrh/kfzoe47xO6/+wBTJ+FIQ== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03442846938951541]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03442846938951541], DiskBox[2, 0.03442846938951541], DiskBox[3, 0.03442846938951541], DiskBox[4, 0.03442846938951541], DiskBox[5, 0.03442846938951541], DiskBox[6, 0.03442846938951541], DiskBox[7, 0.03442846938951541], DiskBox[8, 0.03442846938951541], DiskBox[9, 0.03442846938951541], DiskBox[10, 0.03442846938951541], DiskBox[11, 0.03442846938951541], DiskBox[12, 0.03442846938951541], DiskBox[13, 0.03442846938951541], DiskBox[14, 0.03442846938951541], DiskBox[15, 0.03442846938951541], DiskBox[16, 0.03442846938951541], DiskBox[17, 0.03442846938951541], DiskBox[18, 0.03442846938951541], DiskBox[19, 0.03442846938951541], DiskBox[20, 0.03442846938951541]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 30, 7, 20, 25, 5, 10, 41, 29, 39, 48, 42, 2, 4, 38, 21, 24, 6, 11, 3}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, Rational[1, 3]}, { Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 - 3 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 6]}, {Rational[1, 2] 3^Rational[-1, 2], Rational[5, 6]}, { Rational[1, 36] ((-9) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 + 3 33^Rational[1, 2])}, { 0, Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (21 - 3 33^Rational[1, 2])}, { Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, { Rational[1, 36] ((-15) 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (3 - 3 33^Rational[1, 2])}, { Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]), Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 6]}, {0, Rational[-2, 3]}, { Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (21 + 3 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 36] (12 - 6 33^Rational[1, 2])}, { Rational[1, 36] ((-9) 3^Rational[1, 2] - 9 11^Rational[1, 2]), Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, { 0, Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {-3^ Rational[-1, 2], Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 6]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQOhYHDVPidp5iGOV0/tX2XrXX/he3P/Kp+IF1Xb Xu+HyB/dL2s8wXV55SX71atA4JX93omL7LOibtp7db854PnnoT3MPAj/I1T9 o/0w/q/qxNQ7au/tQwPcFsec2GUP5e//ajo9+8uyN/uh9u9fteUE35wj6+3b qzxfcDfvhrsHph+mHuoeuPtQ/fMUbt5S17IHKv8+2MPcP1XsZuPkH4/3Hzkl wnLD8AvcPph+iH0v7WHuR+VfsofZBwDgV59d "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.024495335266347784`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024495335266347784], DiskBox[2, 0.024495335266347784], DiskBox[3, 0.024495335266347784], DiskBox[4, 0.024495335266347784], DiskBox[5, 0.024495335266347784], DiskBox[6, 0.024495335266347784], DiskBox[7, 0.024495335266347784], DiskBox[8, 0.024495335266347784], DiskBox[9, 0.024495335266347784], DiskBox[10, 0.024495335266347784], DiskBox[11, 0.024495335266347784], DiskBox[12, 0.024495335266347784], DiskBox[13, 0.024495335266347784], DiskBox[14, 0.024495335266347784], DiskBox[15, 0.024495335266347784], DiskBox[16, 0.024495335266347784], DiskBox[17, 0.024495335266347784], DiskBox[18, 0.024495335266347784], DiskBox[19, 0.024495335266347784], DiskBox[20, 0.024495335266347784]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 18, 3, 25, 27, 17, 6, 7, 11, 10, 9, 8, 15, 2, 19, 4, 12, 13, 21, 16}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ Root[3 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[1 - 6 # + 8 #^3& , 2, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, { Root[1 - 6 # + 8 #^3& , 1, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 1, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 3, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 5, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, { Rational[-1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, { Root[-1 - 6 # + 8 #^3& , 1, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 4, 0]}, { Root[-3 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, { Root[-1 - 6 # + 8 #^3& , 3, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, { Root[-1 + 12 #^2 + 8 #^3& , 1, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, { Rational[1, 2], Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, {0, Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 6, 0]}, { Root[1 - 12 #^2 + 8 #^3& , 3, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, { Root[-1 - 6 # + 8 #^3& , 2, 0], Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, { Root[3 - 12 #^2 + 8 #^3& , 2, 0], Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQbRG1pOWN8p39bDNn/NS3v2DfWcxdJ2V1zF6J7aLq 9o579jK6QU7fBN/tn+4zqYjz9Ud7BjB4YH+j6EfB1V9f9zNAAUT/g/3Wbr8O fHp0Zb/x5Pur7J7cgMtD+C/sixbMc73PdnH/lPNb+j8nP4fKP9hfFyRoniP4 GG4+jG8ZcH5RfvOL/ZFfepNkvQ7ay65Iv7jd8QtcP9R99jD39YlpKv7m+A73 D9Q99qjueWC/5/TR1w8nboO7D2Led5h+e5j+Lkh47IeFx+M7TfPb+p7CzQMA cXqUKA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.029368265417639275`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.029368265417639275], DiskBox[2, 0.029368265417639275], DiskBox[3, 0.029368265417639275], DiskBox[4, 0.029368265417639275], DiskBox[5, 0.029368265417639275], DiskBox[6, 0.029368265417639275], DiskBox[7, 0.029368265417639275], DiskBox[8, 0.029368265417639275], DiskBox[9, 0.029368265417639275], DiskBox[10, 0.029368265417639275], DiskBox[11, 0.029368265417639275], DiskBox[12, 0.029368265417639275], DiskBox[13, 0.029368265417639275], DiskBox[14, 0.029368265417639275], DiskBox[15, 0.029368265417639275], DiskBox[16, 0.029368265417639275], DiskBox[17, 0.029368265417639275], DiskBox[18, 0.029368265417639275], DiskBox[19, 0.029368265417639275], DiskBox[20, 0.029368265417639275]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 301, 6, 305, 133, 275, 4, 354, 7, 55, 102, 247, 241, 2, 35, 5, 271, 223, 77, 99}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[2, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (-1 - 33^Rational[1, 2])}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[-1, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (9 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-7 - 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, {Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCp/Z4FDUuTN3/bDxF9YL/KJ+JF1bbX+wM+ KHSfX/F5/5/qxNQ7au/3r9pygm/OkfX7ue6nd+yreb4fov/qfjT9+2H6Fzxw FJsf+H+/rPEE1+WVl9DNtz9gV3P5YMxF+7Yqzxfczbv3e3W/OeD55+H+um0H 6z8+O2C/1LXsgcq/D3D7Vq8CgU/2Z7+sSPLZ8BBq3gd7mH8amtgja9zO7v8F dS9Ufj9M/tes06ZVwd/so/gKWRXe3rKHuh9q3sf9WS/V6nLY79jD7H+VrXf9 he/N/VD1+wH1OpaI "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03271725813257968]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03271725813257968], DiskBox[2, 0.03271725813257968], DiskBox[3, 0.03271725813257968], DiskBox[4, 0.03271725813257968], DiskBox[5, 0.03271725813257968], DiskBox[6, 0.03271725813257968], DiskBox[7, 0.03271725813257968], DiskBox[8, 0.03271725813257968], DiskBox[9, 0.03271725813257968], DiskBox[10, 0.03271725813257968], DiskBox[11, 0.03271725813257968], DiskBox[12, 0.03271725813257968], DiskBox[13, 0.03271725813257968], DiskBox[14, 0.03271725813257968], DiskBox[15, 0.03271725813257968], DiskBox[16, 0.03271725813257968], DiskBox[17, 0.03271725813257968], DiskBox[18, 0.03271725813257968], DiskBox[19, 0.03271725813257968], DiskBox[20, 0.03271725813257968]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 312, 6, 384, 142, 200, 4, 3, 7, 78, 209, 177, 124, 2, 30, 5, 212, 87, 183, 346}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (7 - 33^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (9 + 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, {Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WrwKBT/Znv6xI8tnwcD9E9IH9Kp+IF1XbXu9v aGKPrHE7a/99xe9pJwyP22e9VKvLYb9jX7ftYP3HZwfsQ8HgKLr+/TD9aHx7 NPPtAz4odJ9f8dn+K9R8r+43Bzz/PNwPM/9Vtt71F7437aP4ClkV3t6C2ncV at9HqPkf7GH+WfDAUWx+4HP73KSZhzhePYXJ74fJQ82HuX//AbuaywdjLtp3 VXm+4G7evR9q336offuh5u1vg8oDAA4sk5I= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.024440582208030248`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.024440582208030248], DiskBox[2, 0.024440582208030248], DiskBox[3, 0.024440582208030248], DiskBox[4, 0.024440582208030248], DiskBox[5, 0.024440582208030248], DiskBox[6, 0.024440582208030248], DiskBox[7, 0.024440582208030248], DiskBox[8, 0.024440582208030248], DiskBox[9, 0.024440582208030248], DiskBox[10, 0.024440582208030248], DiskBox[11, 0.024440582208030248], DiskBox[12, 0.024440582208030248], DiskBox[13, 0.024440582208030248], DiskBox[14, 0.024440582208030248], DiskBox[15, 0.024440582208030248], DiskBox[16, 0.024440582208030248], DiskBox[17, 0.024440582208030248], DiskBox[18, 0.024440582208030248], DiskBox[19, 0.024440582208030248], DiskBox[20, 0.024440582208030248]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 16, 6, 179, 419, 15, 4, 110, 7, 55, 111, 382, 117, 2, 10, 5, 90, 166, 535, 89}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-2, 3], Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[5, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 3], Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {1, 0}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1, 0}, {Rational[1, 12] (11 - 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (11 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^Rational[1, 2])}, { Rational[1, 3], Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fI+v2euzw8zD+83w8RfWC/yifiRdW2 1/tDweDp/l3r47hjea7YfzWdnv1l2Rv7N5kdpa3TvuxfvQoEXtmf/bIiyWfD Q5j+/aj6j+5Hk4eZb9/QxB5Z43Z2/9cVv6edMDxu/ypb7/oL35v2UXyFrApv b0H1X7Xfs6BhafLmb/u9ut8c8PzzcH/dtoP1H58dgJr3wR7mnwUPHMXmBz7f n5s08xDHq6cw+f0w+ayXanU57Hfs66H6D9jVXD4Yc9Eepv7XrNOmVcHf7GPQ 7If5HwDoHZPX "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0257407422132772]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0257407422132772], DiskBox[2, 0.0257407422132772], DiskBox[3, 0.0257407422132772], DiskBox[4, 0.0257407422132772], DiskBox[5, 0.0257407422132772], DiskBox[6, 0.0257407422132772], DiskBox[7, 0.0257407422132772], DiskBox[8, 0.0257407422132772], DiskBox[9, 0.0257407422132772], DiskBox[10, 0.0257407422132772], DiskBox[11, 0.0257407422132772], DiskBox[12, 0.0257407422132772], DiskBox[13, 0.0257407422132772], DiskBox[14, 0.0257407422132772], DiskBox[15, 0.0257407422132772], DiskBox[16, 0.0257407422132772], DiskBox[17, 0.0257407422132772], DiskBox[18, 0.0257407422132772], DiskBox[19, 0.0257407422132772], DiskBox[20, 0.0257407422132772]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 55, 6, 125, 8, 270, 4, 3, 7, 60, 53, 108, 110, 2, 11, 5, 330, 106, 121, 412}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (-5 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (21 - 33^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 12] (-11 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 6] (-3 + 33^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {1, 0}, { Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, { Rational[1, 12] (11 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 6] (3 + 33^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fIenvu++kd+2qe20NEH9iv8ol4UbXt 9f4FDxzF5gd+3y9rPMF1eeUje4eDzTp2i9/ZQ/iX7LNeqtXlsN/ZX7/tYP3H Zwf2Q/Xvh+lH46Obb9/QxB5Z43YXbj6UDzX/0f5X2XrXX/jetI/iK2RVeHvL 3qv7zQHPPw/t61Ds+2AP8w/UfVDzLsHk98Pkf806bVoV/M0+Bmoe1Pz9UPNh /oXbD1W/H6p+PwBOrYhf "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.02962578701818075]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075], DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075], DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075], DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075], DiskBox[9, 0.02962578701818075], DiskBox[10, 0.02962578701818075], DiskBox[11, 0.02962578701818075], DiskBox[12, 0.02962578701818075], DiskBox[13, 0.02962578701818075], DiskBox[14, 0.02962578701818075], DiskBox[15, 0.02962578701818075], DiskBox[16, 0.02962578701818075], DiskBox[17, 0.02962578701818075], DiskBox[18, 0.02962578701818075], DiskBox[19, 0.02962578701818075], DiskBox[20, 0.02962578701818075]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 259, 4, 82, 273, 136, 3, 5, 6, 83, 144, 295, 211, 2, 11, 7, 128, 43, 103, 42}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[-2, 3], Rational[1, 3] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), -3^Rational[-1, 2]}, { Rational[1, 3], Rational[1, 3] 11^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (5 + 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^Rational[1, 2])}, {-1, 0}, {Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[7, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 6], Rational[1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweDp/rNfViT5bPhoDxF9YL/KJ+JF1bbX9q+y 9a6/8L1pH8VXyKrw9tb+X7NOm1YFf9sP5dsveOAoNj/w+f6uKs8X3M27Yfr3 w/Sj8fejmQ8zD26+V/ebA55/Hu6v23aw/uOzA/sh5n/fL2s8wXV55aP9EPde tUd17wd7mH++mk7P/rLsjf2PLvvTV+vvwOT3w+Sh5ttDzbdfvQoEPkHNewjz L9x/EPuOwuUBXS+QXw== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0291745738150109]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0291745738150109], DiskBox[2, 0.0291745738150109], DiskBox[3, 0.0291745738150109], DiskBox[4, 0.0291745738150109], DiskBox[5, 0.0291745738150109], DiskBox[6, 0.0291745738150109], DiskBox[7, 0.0291745738150109], DiskBox[8, 0.0291745738150109], DiskBox[9, 0.0291745738150109], DiskBox[10, 0.0291745738150109], DiskBox[11, 0.0291745738150109], DiskBox[12, 0.0291745738150109], DiskBox[13, 0.0291745738150109], DiskBox[14, 0.0291745738150109], DiskBox[15, 0.0291745738150109], DiskBox[16, 0.0291745738150109], DiskBox[17, 0.0291745738150109], DiskBox[18, 0.0291745738150109], DiskBox[19, 0.0291745738150109], DiskBox[20, 0.0291745738150109]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 322, 4, 82, 25, 154, 5, 240, 6, 23, 170, 241, 321, 2, 166, 3, 298, 79, 13, 152}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 6], 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 12] (7 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (13 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (13 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] + 3 11^Rational[1, 2])}, { Rational[1, 6] (-3 - 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, { Rational[7, 6], 3^Rational[1, 2] + Rational[1, 6] 11^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, {-1, 0}, {2, 3^Rational[1, 2]}, { Rational[2, 3], Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { 1, 3^Rational[1, 2]}, { Rational[1, 12] (5 - 33^Rational[1, 2]), Rational[1, 12] (7 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCofUfytZ4AdyYHiOgD+1U+ES+qtr22dzjY rGO3+N1+WeMJrssrL9mHBrgtjjmxy/5NZkdp67Qv9l7dbw54/nm4/5Zowo45 M3/aQ/Xvh+lf8MBRbH7gf7h+iPwPuPlcpzKmcEc+to/iK2RVeHsLqv75/qAn d5atzvsL5X+H6v9kv3oVCHxCc+8He5h/GprYI2vczu7/VZ2YekftPVT8w340 bztA7P9tD/H/U/s9CxqWJm/+BlNvD5NfteUE35wj6/dz3U/v2Ffz3B4ApZSC Dg== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.03673321499249091]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03673321499249091], DiskBox[2, 0.03673321499249091], DiskBox[3, 0.03673321499249091], DiskBox[4, 0.03673321499249091], DiskBox[5, 0.03673321499249091], DiskBox[6, 0.03673321499249091], DiskBox[7, 0.03673321499249091], DiskBox[8, 0.03673321499249091], DiskBox[9, 0.03673321499249091], DiskBox[10, 0.03673321499249091], DiskBox[11, 0.03673321499249091], DiskBox[12, 0.03673321499249091], DiskBox[13, 0.03673321499249091], DiskBox[14, 0.03673321499249091], DiskBox[15, 0.03673321499249091], DiskBox[16, 0.03673321499249091], DiskBox[17, 0.03673321499249091], DiskBox[18, 0.03673321499249091], DiskBox[19, 0.03673321499249091], DiskBox[20, 0.03673321499249091]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 30, 6, 135, 87, 26, 4, 355, 7, 69, 349, 122, 149, 2, 114, 5, 189, 73, 90, 108}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (3 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (-1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (7 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (-9 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 6] (3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, { Rational[1, 12] (-11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (1 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, { Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (9 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[1, 12] (11 - 33^Rational[1, 2]), Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (-3 - 33^Rational[1, 2]), Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ5CweCo/dkvK5J8NjzcDxF9YL/KJ+JF1bbX+xua 2CNr3M7u/1WdmHpH7f1+r+43Bzz/PNxft+1g/cdnB+xDA9wWx5zYZf+jy/70 1fo79lD9+2H6Az4odJ9f8RmuH818e4j5d/fLGk9wXV75yP7XrNOmVcHf9kfx FbIqvL21/1W23vUXvjfh/NWrQOATmns/2MP843CwWcdu8TuoeZdg8vth8lDz 7aHm2R+wq7l8MOaifVeV5wvu5t37s16q1eWw37GH+W/BA0ex+YHP98PkAZE/ kmQ= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035], DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035], DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035], DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035], DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035], DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035], DiskBox[13, 0.02871996521054035], DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035], DiskBox[16, 0.02871996521054035], DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035], DiskBox[19, 0.02871996521054035], DiskBox[20, 0.02871996521054035]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 1082, 27, 850, 1290, 1074, 35, 1298, 31, 154, 866, 1282, 830, 23, 39, 43, 842, 370, 1534, 822}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{2, 0}, { Rational[1, 12] (29 - 33^Rational[1, 2]), Rational[-1, 12] (86 + 10 33^Rational[1, 2])^Rational[1, 2]}, { Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[ 7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}, { Rational[1, 12] (23 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (19 - 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, { Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 2, -3^Rational[1, 2]}, { Rational[1, 12] (13 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (25 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (29 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^Rational[1, 2])}, {3, 0}, { Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (35 + 33^Rational[1, 2]), (Rational[-1, 12] 3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, { Rational[1, 12] (19 + 33^Rational[1, 2]), Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (35 - 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[ 4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 + 33^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF 1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX 6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg= "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035], DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035], DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035], DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035], DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035], DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035], DiskBox[13, 0.02871996521054035], DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035], DiskBox[16, 0.02871996521054035], DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035], DiskBox[19, 0.02871996521054035], DiskBox[20, 0.02871996521054035]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{2, 72, 18, 22, 63, 82, 27, 32, 26, 31, 41, 48, 52, 10, 12, 13, 40, 60, 34, 47}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{ 0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[1, 2] Rational[3, 7]^Rational[1, 2]}, { 0, Rational[1, 2] 21^Rational[1, 2]}, { Rational[-5, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { Rational[5, 2] 7^Rational[-1, 2], Rational[3, 7]^Rational[1, 2]}, { Rational[-5, 2] 7^Rational[-1, 2], 0}, { Rational[5, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, { 0, Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[3, 2] 7^Rational[-1, 2], 3 Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, {(-2) 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[9, 2] Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[1, 2] 7^Rational[-1, 2], 4 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], 2 Rational[3, 7]^Rational[1, 2]}, { Rational[-1, 2] 7^Rational[-1, 2], Rational[3, 7]^ Rational[1, 2]}, { 2 7^Rational[-1, 2], Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {(-3) 7^Rational[-1, 2], Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNSlZtvspzjcYDxtbbaOL75dMUexm+VE93ZF8Lk 8OBrYMI2m3f79/PfTkzK+W8P5dtD1D+B8ffD9MHkYeph4iWPugOX6/+yf/Pz b06uyiO4/LPvy59NNLixHyYP4Z+Amv8Fyn8Btf89jG+Pzj/vnXLScyK7A1T/ foh+FgdU81jQ5GHmw/hP4OahuvcT3H4Az6iiGA== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.0343970407859782]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.0343970407859782], DiskBox[2, 0.0343970407859782], DiskBox[3, 0.0343970407859782], DiskBox[4, 0.0343970407859782], DiskBox[5, 0.0343970407859782], DiskBox[6, 0.0343970407859782], DiskBox[7, 0.0343970407859782], DiskBox[8, 0.0343970407859782], DiskBox[9, 0.0343970407859782], DiskBox[10, 0.0343970407859782], DiskBox[11, 0.0343970407859782], DiskBox[12, 0.0343970407859782], DiskBox[13, 0.0343970407859782], DiskBox[14, 0.0343970407859782], DiskBox[15, 0.0343970407859782], DiskBox[16, 0.0343970407859782], DiskBox[17, 0.0343970407859782], DiskBox[18, 0.0343970407859782], DiskBox[19, 0.0343970407859782], DiskBox[20, 0.0343970407859782]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny], ",", GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 117, 3, 4, 8, 45, 118, 114, 7, 6, 9, 78, 26, 2, 5, 113, 62, 22, 38, 59}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, { Rational[1, 12] (13 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1, 0}, { Rational[1, 12] (1 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, { Rational[1, 12] (7 + 33^Rational[1, 2]), (Rational[1, 12] 3^Rational[-1, 2]) (-15 - 33^Rational[1, 2])}, { Rational[4, 3], Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[11, 6], Rational[1, 6] 11^Rational[1, 2]}, {-1, 0}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 12] (11 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (17 + 33^Rational[1, 2]), Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, { Rational[1, 12] (3 + 33^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, { Rational[1, 12] (-9 + 33^Rational[1, 2]), (Rational[1, 4] 3^Rational[-1, 2]) (1 - 33^Rational[1, 2])}, { Rational[1, 12] (-3 + 33^Rational[1, 2]), Root[1 - 87 #^2 + 36 #^4& , 1, 0]}, { Rational[-1, 3], (Rational[1, 6] 3^Rational[-1, 2]) (9 - 33^ Rational[1, 2])}, { Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}}}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQjQ6WupY9UPn3w75u28H6j88O7IeIPrBf5RPxomrb a3sI/4M9TL1X95sDnn8ewtVD9H+w99rl4WH+4f3+UDD4ar9nQcPS5M3f7CH8 v/Znv6xI8tnwEGbeflRXPNgPtW//r1mnTauCv9lH8RWyKry9ZQ/h/7P/0WV/ +mr9nf0LHjiKzQ98bp+bNPMQx6un+9H026O5f//qVSDwCm7/AbuaywdjLu7P g+pvaGKPrHE7a999veKq44UfUPdf3b9rfRx3LM8VqPuPwvTvBwCLgpGg "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, { 13, 18}, {17, 19}, {18, 20}}, 0.030021405881908034`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.030021405881908034], DiskBox[2, 0.030021405881908034], DiskBox[3, 0.030021405881908034], DiskBox[4, 0.030021405881908034], DiskBox[5, 0.030021405881908034], DiskBox[6, 0.030021405881908034], DiskBox[7, 0.030021405881908034], DiskBox[8, 0.030021405881908034], DiskBox[9, 0.030021405881908034], DiskBox[10, 0.030021405881908034], DiskBox[11, 0.030021405881908034], DiskBox[12, 0.030021405881908034], DiskBox[13, 0.030021405881908034], DiskBox[14, 0.030021405881908034], DiskBox[15, 0.030021405881908034], DiskBox[16, 0.030021405881908034], DiskBox[17, 0.030021405881908034], DiskBox[18, 0.030021405881908034], DiskBox[19, 0.030021405881908034], DiskBox[20, 0.030021405881908034]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None, ImageSize->Tiny]}], "}"}]], "Output", CellLabel-> "Out[188]=",ExpressionUUID->"5be09209-cd4a-4c69-8ecd-a22d5d5dbefc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Matchstick", "Subsubsection",ExpressionUUID->"2b5e045b-b9ac-438b-a83f-469092230192"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[134]:=",ExpressionUUID->"ec4589ff-c1a9-4c9a-8b6c-3f50068a8bde"], Cell[BoxData["False"], "Output", CellLabel-> "Out[134]=",ExpressionUUID->"b4e2c91f-33e5-48e8-ab24-da71e927c16e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input", CellLabel-> "In[135]:=",ExpressionUUID->"4cf46922-ed30-40b0-969a-60c2b6725144"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[135]=",ExpressionUUID->"f052d6c3-6323-43f0-870c-8c16b39c299f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D default", "Subsubsection",ExpressionUUID->"2fe9222b-fe63-463a-8d45-7d27ed22b1af"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graph3D", "[", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "]"}]], "Input", CellLabel-> "In[136]:=",ExpressionUUID->"75395905-d1a4-437a-9f59-78f66595df99"], Cell[BoxData[ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17, 18}, {Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, { 9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19, 11}, {20, 14}}}, {GraphLayout -> {"Dimension" -> 3}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJwB8QEO/iFib1JlAgAAABQAAAADAAAA2n83sYMJBEA9DwgsQyf0P46f9zyD 7d8/zlKUs9AR/T/0rFvs/tDiPwhbJCIo3Mw/5uZ2KBq3AECV6w51AFgBQO6n wzU3V9w/LWDYBa3vBUBezqio2GTxP98bIjW2Rvc/aFFKBY1gzj+bwYMBxtL2 P1bYERXbGQFA8c9TNN3i5D9ve9cMTZbgP+MFHJC+jgFAlilTnH+d7T9AOFL7 48gAQPDpc5OHSQNAAAAAAAAAAADYEor8ypH5P7ydfKLI6PI/sadC10AO+j8A AAAAAAAAAKobuzilMPA/gagE05OaAUCszhAbfL/TP5K6MGsHXPw/BvvdTCWC 5T94GjO6i4vAP6Vmglw7YPQ/7NFXz26RAEDYNQm+53MEQHGQ/E0I0vU/qmpP lhHLA0AacFpj9jb+P97+pWwD0/8/ee2rBZPR8T8o+/RsVHwFQFIrmkKl/fk/ g7cIJ1qP+T+bNtv/pSbkP4V4qXf2BgRAxiXfnMlD/D+ktpkx2LD5P0WOlbDA FwVAjWToQ+Q97z8460eOwknxPwAAAAAAAAAA173++tpP8j+q1IMeO3UAQPDz g5/APcE/LM58eDM00T/2ooykV4HpP59EjwmOtOQ/DQqT0e5Q4T+wmF+1jwQD QCdjZENqses/a/Hiow== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {15, 16}, { 17, 18}, {17, 19}, {18, 20}}], 0.05672102614788668]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.05672102614788668], SphereBox[2, 0.05672102614788668], SphereBox[3, 0.05672102614788668], SphereBox[4, 0.05672102614788668], SphereBox[5, 0.05672102614788668], SphereBox[6, 0.05672102614788668], SphereBox[7, 0.05672102614788668], SphereBox[8, 0.05672102614788668], SphereBox[9, 0.05672102614788668], SphereBox[10, 0.05672102614788668], SphereBox[11, 0.05672102614788668], SphereBox[12, 0.05672102614788668], SphereBox[13, 0.05672102614788668], SphereBox[14, 0.05672102614788668], SphereBox[15, 0.05672102614788668], SphereBox[16, 0.05672102614788668], SphereBox[17, 0.05672102614788668], SphereBox[18, 0.05672102614788668], SphereBox[19, 0.05672102614788668], SphereBox[20, 0.05672102614788668]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output", CellLabel-> "Out[136]=",ExpressionUUID->"fc61cbab-6965-4e6c-bc56-91ee9f5b2e54"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D All", "Subsubsection",ExpressionUUID->"62dbb921-cc4c-40c6-b11f-8c92dd50d1f2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel-> "In[137]:=",ExpressionUUID->"6a2d026d-0f8d-4e70-861b-1aba37e84c58"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+ 9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.04688229301851682]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682], SphereBox[2, 0.04688229301851682], SphereBox[3, 0.04688229301851682], SphereBox[4, 0.04688229301851682], SphereBox[5, 0.04688229301851682], SphereBox[6, 0.04688229301851682], SphereBox[7, 0.04688229301851682], SphereBox[8, 0.04688229301851682], SphereBox[9, 0.04688229301851682], SphereBox[10, 0.04688229301851682], SphereBox[11, 0.04688229301851682], SphereBox[12, 0.04688229301851682], SphereBox[13, 0.04688229301851682], SphereBox[14, 0.04688229301851682], SphereBox[15, 0.04688229301851682], SphereBox[16, 0.04688229301851682], SphereBox[17, 0.04688229301851682], SphereBox[18, 0.04688229301851682], SphereBox[19, 0.04688229301851682], SphereBox[20, 0.04688229301851682]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu 3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206], SphereBox[2, 0.05687975353745206], SphereBox[3, 0.05687975353745206], SphereBox[4, 0.05687975353745206], SphereBox[5, 0.05687975353745206], SphereBox[6, 0.05687975353745206], SphereBox[7, 0.05687975353745206], SphereBox[8, 0.05687975353745206], SphereBox[9, 0.05687975353745206], SphereBox[10, 0.05687975353745206], SphereBox[11, 0.05687975353745206], SphereBox[12, 0.05687975353745206], SphereBox[13, 0.05687975353745206], SphereBox[14, 0.05687975353745206], SphereBox[15, 0.05687975353745206], SphereBox[16, 0.05687975353745206], SphereBox[17, 0.05687975353745206], SphereBox[18, 0.05687975353745206], SphereBox[19, 0.05687975353745206], SphereBox[20, 0.05687975353745206]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`], SphereBox[2, 0.028840440412235047`], SphereBox[3, 0.028840440412235047`], SphereBox[4, 0.028840440412235047`], SphereBox[5, 0.028840440412235047`], SphereBox[6, 0.028840440412235047`], SphereBox[7, 0.028840440412235047`], SphereBox[8, 0.028840440412235047`], SphereBox[9, 0.028840440412235047`], SphereBox[10, 0.028840440412235047`], SphereBox[11, 0.028840440412235047`], SphereBox[12, 0.028840440412235047`], SphereBox[13, 0.028840440412235047`], SphereBox[14, 0.028840440412235047`], SphereBox[15, 0.028840440412235047`], SphereBox[16, 0.028840440412235047`], SphereBox[17, 0.028840440412235047`], SphereBox[18, 0.028840440412235047`], SphereBox[19, 0.028840440412235047`], SphereBox[20, 0.028840440412235047`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc +lH9i9MfGOEBANi4z38= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`], SphereBox[2, 0.038869883502168634`], SphereBox[3, 0.038869883502168634`], SphereBox[4, 0.038869883502168634`], SphereBox[5, 0.038869883502168634`], SphereBox[6, 0.038869883502168634`], SphereBox[7, 0.038869883502168634`], SphereBox[8, 0.038869883502168634`], SphereBox[9, 0.038869883502168634`], SphereBox[10, 0.038869883502168634`], SphereBox[11, 0.038869883502168634`], SphereBox[12, 0.038869883502168634`], SphereBox[13, 0.038869883502168634`], SphereBox[14, 0.038869883502168634`], SphereBox[15, 0.038869883502168634`], SphereBox[16, 0.038869883502168634`], SphereBox[17, 0.038869883502168634`], SphereBox[18, 0.038869883502168634`], SphereBox[19, 0.038869883502168634`], SphereBox[20, 0.038869883502168634`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel-> "Out[137]=",ExpressionUUID->"909e5147-b1e3-4b51-8a8c-a6a5412cdf43"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D UnitDistance", "Subsubsection",ExpressionUUID->"6dc555d2-6057-47a8-b561-239a9bf6c23d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel-> "In[138]:=",ExpressionUUID->"af5395e5-e01a-4884-acdf-f975b09dfe3a"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu 3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206], SphereBox[2, 0.05687975353745206], SphereBox[3, 0.05687975353745206], SphereBox[4, 0.05687975353745206], SphereBox[5, 0.05687975353745206], SphereBox[6, 0.05687975353745206], SphereBox[7, 0.05687975353745206], SphereBox[8, 0.05687975353745206], SphereBox[9, 0.05687975353745206], SphereBox[10, 0.05687975353745206], SphereBox[11, 0.05687975353745206], SphereBox[12, 0.05687975353745206], SphereBox[13, 0.05687975353745206], SphereBox[14, 0.05687975353745206], SphereBox[15, 0.05687975353745206], SphereBox[16, 0.05687975353745206], SphereBox[17, 0.05687975353745206], SphereBox[18, 0.05687975353745206], SphereBox[19, 0.05687975353745206], SphereBox[20, 0.05687975353745206]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`], SphereBox[2, 0.028840440412235047`], SphereBox[3, 0.028840440412235047`], SphereBox[4, 0.028840440412235047`], SphereBox[5, 0.028840440412235047`], SphereBox[6, 0.028840440412235047`], SphereBox[7, 0.028840440412235047`], SphereBox[8, 0.028840440412235047`], SphereBox[9, 0.028840440412235047`], SphereBox[10, 0.028840440412235047`], SphereBox[11, 0.028840440412235047`], SphereBox[12, 0.028840440412235047`], SphereBox[13, 0.028840440412235047`], SphereBox[14, 0.028840440412235047`], SphereBox[15, 0.028840440412235047`], SphereBox[16, 0.028840440412235047`], SphereBox[17, 0.028840440412235047`], SphereBox[18, 0.028840440412235047`], SphereBox[19, 0.028840440412235047`], SphereBox[20, 0.028840440412235047`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc +lH9i9MfGOEBANi4z38= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`], SphereBox[2, 0.038869883502168634`], SphereBox[3, 0.038869883502168634`], SphereBox[4, 0.038869883502168634`], SphereBox[5, 0.038869883502168634`], SphereBox[6, 0.038869883502168634`], SphereBox[7, 0.038869883502168634`], SphereBox[8, 0.038869883502168634`], SphereBox[9, 0.038869883502168634`], SphereBox[10, 0.038869883502168634`], SphereBox[11, 0.038869883502168634`], SphereBox[12, 0.038869883502168634`], SphereBox[13, 0.038869883502168634`], SphereBox[14, 0.038869883502168634`], SphereBox[15, 0.038869883502168634`], SphereBox[16, 0.038869883502168634`], SphereBox[17, 0.038869883502168634`], SphereBox[18, 0.038869883502168634`], SphereBox[19, 0.038869883502168634`], SphereBox[20, 0.038869883502168634`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel-> "Out[138]=",ExpressionUUID->"9d3a01df-5eed-4bc4-89f1-5894b0745160"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D Polyhedron", "Subsubsection",ExpressionUUID->"95c1d4f7-fa4d-410f-b298-c8888353e44b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[139]:=",ExpressionUUID->"76206053-d8b3-48ac-b4c6-388db81195cd"], Cell[BoxData["True"], "Output", CellLabel-> "Out[139]=",ExpressionUUID->"a0cd78d3-4ee9-46d7-88f2-916a316c3df3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input", CellLabel-> "In[140]:=",ExpressionUUID->"44f5e6c6-5c35-4a06-9cd4-7611975801eb"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+ 9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.04688229301851682]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682], SphereBox[2, 0.04688229301851682], SphereBox[3, 0.04688229301851682], SphereBox[4, 0.04688229301851682], SphereBox[5, 0.04688229301851682], SphereBox[6, 0.04688229301851682], SphereBox[7, 0.04688229301851682], SphereBox[8, 0.04688229301851682], SphereBox[9, 0.04688229301851682], SphereBox[10, 0.04688229301851682], SphereBox[11, 0.04688229301851682], SphereBox[12, 0.04688229301851682], SphereBox[13, 0.04688229301851682], SphereBox[14, 0.04688229301851682], SphereBox[15, 0.04688229301851682], SphereBox[16, 0.04688229301851682], SphereBox[17, 0.04688229301851682], SphereBox[18, 0.04688229301851682], SphereBox[19, 0.04688229301851682], SphereBox[20, 0.04688229301851682]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], 0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu 3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206], SphereBox[2, 0.05687975353745206], SphereBox[3, 0.05687975353745206], SphereBox[4, 0.05687975353745206], SphereBox[5, 0.05687975353745206], SphereBox[6, 0.05687975353745206], SphereBox[7, 0.05687975353745206], SphereBox[8, 0.05687975353745206], SphereBox[9, 0.05687975353745206], SphereBox[10, 0.05687975353745206], SphereBox[11, 0.05687975353745206], SphereBox[12, 0.05687975353745206], SphereBox[13, 0.05687975353745206], SphereBox[14, 0.05687975353745206], SphereBox[15, 0.05687975353745206], SphereBox[16, 0.05687975353745206], SphereBox[17, 0.05687975353745206], SphereBox[18, 0.05687975353745206], SphereBox[19, 0.05687975353745206], SphereBox[20, 0.05687975353745206]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 2, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 3, 0], Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (-1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`], SphereBox[2, 0.028840440412235047`], SphereBox[3, 0.028840440412235047`], SphereBox[4, 0.028840440412235047`], SphereBox[5, 0.028840440412235047`], SphereBox[6, 0.028840440412235047`], SphereBox[7, 0.028840440412235047`], SphereBox[8, 0.028840440412235047`], SphereBox[9, 0.028840440412235047`], SphereBox[10, 0.028840440412235047`], SphereBox[11, 0.028840440412235047`], SphereBox[12, 0.028840440412235047`], SphereBox[13, 0.028840440412235047`], SphereBox[14, 0.028840440412235047`], SphereBox[15, 0.028840440412235047`], SphereBox[16, 0.028840440412235047`], SphereBox[17, 0.028840440412235047`], SphereBox[18, 0.028840440412235047`], SphereBox[19, 0.028840440412235047`], SphereBox[20, 0.028840440412235047`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (-1 + 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc +lH9i9MfGOEBANi4z38= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`], SphereBox[2, 0.038869883502168634`], SphereBox[3, 0.038869883502168634`], SphereBox[4, 0.038869883502168634`], SphereBox[5, 0.038869883502168634`], SphereBox[6, 0.038869883502168634`], SphereBox[7, 0.038869883502168634`], SphereBox[8, 0.038869883502168634`], SphereBox[9, 0.038869883502168634`], SphereBox[10, 0.038869883502168634`], SphereBox[11, 0.038869883502168634`], SphereBox[12, 0.038869883502168634`], SphereBox[13, 0.038869883502168634`], SphereBox[14, 0.038869883502168634`], SphereBox[15, 0.038869883502168634`], SphereBox[16, 0.038869883502168634`], SphereBox[17, 0.038869883502168634`], SphereBox[18, 0.038869883502168634`], SphereBox[19, 0.038869883502168634`], SphereBox[20, 0.038869883502168634`]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output", CellLabel-> "Out[140]=",ExpressionUUID->"8bc08d98-4990-4354-8382-38ccbee68a95"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[141]:=",ExpressionUUID->"220e9a0a-47d3-4c75-8611-5a899d089108"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[ NCache[{{Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}}, {{-1.0514622242382672`, 0, 0.20081141588622728`}, { 1.0514622242382672`, 0, -0.2008114158862273}, {-0.32491969623290634`, -1, 0.20081141588622728`}, {-0.32491969623290634`, 1, 0.20081141588622728`}, {0.8506508083520399, -0.6180339887498949, 0.20081141588622728`}, {0.8506508083520399, 0.6180339887498949, 0.20081141588622728`}, {-0.2008114158862273, -0.6180339887498949, 0.8506508083520399}, {-0.2008114158862273, 0.6180339887498949, 0.8506508083520399}, {-0.5257311121191336, -0.3819660112501051, \ -0.85065080835204}, {-0.5257311121191336, 0.3819660112501051, -0.85065080835204}, { 0.5257311121191336, -0.3819660112501051, 0.8506508083520399}, { 0.5257311121191336, 0.3819660112501051, 0.8506508083520399}, { 0.6498393924658127, 0, -0.85065080835204}, {-0.85065080835204, -0.6180339887498949, \ -0.2008114158862273}, {-0.85065080835204, 0.6180339887498949, -0.2008114158862273}, {-0.6498393924658127, 0, 0.8506508083520399}, { 0.20081141588622728`, -0.6180339887498949, -0.85065080835204}, { 0.20081141588622728`, 0.6180339887498949, -0.85065080835204}, { 0.32491969623290634`, -1, -0.2008114158862273}, { 0.32491969623290634`, 1, -0.2008114158862273}}], {{1, 14, 3, 7, 16}, { 15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {6, 12, 11, 5, 2}, {2, 5, 19, 17, 13}, {13, 18, 20, 6, 2}, {19, 5, 11, 7, 3}, {3, 14, 9, 17, 19}, {4, 8, 12, 6, 20}, {20, 18, 10, 15, 4}, {7, 11, 12, 8, 16}, {9, 10, 18, 13, 17}}]}]], "Output", CellLabel-> "Out[141]=",ExpressionUUID->"f656b054-9f22-4f97-a235-3cbba1b0f1a0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D Canonical", "Subsubsection",ExpressionUUID->"d0b1f09b-c8ad-48d7-bfd5-e87bb21a5f99"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\"", ",", RowBox[{"{", RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input",\ CellLabel-> "In[142]:=",ExpressionUUID->"a1fa4da1-e161-40b7-83a3-09a6c6ce8f46"], Cell[BoxData[ RowBox[{"{", Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, { 11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, { 5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, { 1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, { 3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, { GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+ 9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U= "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, { 5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.04688229301851682]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682], SphereBox[2, 0.04688229301851682], SphereBox[3, 0.04688229301851682], SphereBox[4, 0.04688229301851682], SphereBox[5, 0.04688229301851682], SphereBox[6, 0.04688229301851682], SphereBox[7, 0.04688229301851682], SphereBox[8, 0.04688229301851682], SphereBox[9, 0.04688229301851682], SphereBox[10, 0.04688229301851682], SphereBox[11, 0.04688229301851682], SphereBox[12, 0.04688229301851682], SphereBox[13, 0.04688229301851682], SphereBox[14, 0.04688229301851682], SphereBox[15, 0.04688229301851682], SphereBox[16, 0.04688229301851682], SphereBox[17, 0.04688229301851682], SphereBox[18, 0.04688229301851682], SphereBox[19, 0.04688229301851682], SphereBox[20, 0.04688229301851682]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], "}"}]], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"67188992-8845-4ec2-89d3-42f11839e135"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",", RowBox[{"GraphData", "[", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "]"}], ",", "Yellow", ",", RowBox[{"Sphere", "[", "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[143]:=",ExpressionUUID->"85b970bd-4370-442b-8820-fdb87e448f98"], Cell[BoxData[ Graphics3DBox[ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[ NCache[{{Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[ 1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 1, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}, { Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[ 1 - 25 #^2 + 5 #^4& , 2, 0]}}, {{-1.0514622242382672`, 0, 0.20081141588622728`}, { 1.0514622242382672`, 0, -0.2008114158862273}, {-0.32491969623290634`, -1, 0.20081141588622728`}, {-0.32491969623290634`, 1, 0.20081141588622728`}, {0.8506508083520399, -0.6180339887498949, 0.20081141588622728`}, {0.8506508083520399, 0.6180339887498949, 0.20081141588622728`}, {-0.2008114158862273, -0.6180339887498949, 0.8506508083520399}, {-0.2008114158862273, 0.6180339887498949, 0.8506508083520399}, {-0.5257311121191336, -0.3819660112501051, \ -0.85065080835204}, {-0.5257311121191336, 0.3819660112501051, -0.85065080835204}, { 0.5257311121191336, -0.3819660112501051, 0.8506508083520399}, { 0.5257311121191336, 0.3819660112501051, 0.8506508083520399}, { 0.6498393924658127, 0, -0.85065080835204}, {-0.85065080835204, -0.6180339887498949, \ -0.2008114158862273}, {-0.85065080835204, 0.6180339887498949, -0.2008114158862273}, {-0.6498393924658127, 0, 0.8506508083520399}, { 0.20081141588622728`, -0.6180339887498949, -0.85065080835204}, { 0.20081141588622728`, 0.6180339887498949, -0.85065080835204}, { 0.32491969623290634`, -1, -0.2008114158862273}, { 0.32491969623290634`, 1, -0.2008114158862273}}], {{1, 14, 3, 7, 16}, { 15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {6, 12, 11, 5, 2}, {2, 5, 19, 17, 13}, {13, 18, 20, 6, 2}, {19, 5, 11, 7, 3}, {3, 14, 9, 17, 19}, {4, 8, 12, 6, 20}, {20, 18, 10, 15, 4}, {7, 11, 12, 8, 16}, {9, 10, 18, 13, 17}}], {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}]}}]], "Output", CellLabel-> "Out[143]=",ExpressionUUID->"bee9a666-bd4c-49d4-b9ec-7967b13505ab"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["3D Canonical construction", "Subsubsection",ExpressionUUID->"22115181-0253-4838-a9c0-1233f52ee399"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"FaceForm", "[", RowBox[{"Green", ",", "Red"}], "]"}], ",", RowBox[{"poly", "=", RowBox[{"GraphPolyhedron", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"-", "1"}]}], "]"}]}]}], "}"}], "]"}]], "Input", CellLabel-> "In[145]:=",ExpressionUUID->"1df6e35b-48a6-4bc4-acf9-45f09f834136"], Cell[BoxData[ Graphics3DBox[ {FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]], PolyhedronBox[CompressedData[" 1:eJwB8QEO/iFib1JlAgAAABQAAAADAAAAczm7QDad5T9QFr9XSkjnv8YhJdFj vL4/NmfHfzWe5b+zZGgRrUfnP5p9LbJHrb6/1Bv9yEgMuT+pjfPwUUTgvw6u RWTpYOu/Csa8G3P94D82BuPks/XFP/QBHd46juo/0EcbKiTj2b/7iM/0hNXg P/nzLK9j8Oe/ZabA+ttuwb+1CYV8YkfuP5ulZPJbyNI/OprWZFig4z/pZter hIKTvw0T+4drROm/d61OdD0v7D8ec/T2g63ZP+rWubZbGdA//1+2akX53b+S SbRKaCjsv9Uxpxx1cbQ/TwPMIAtm07+C86He6tjjv8CAr8ndJuc/4ef8C2Fg 0z8hUi5ADtjjP1SxO2bKKOe/OyJAXrD43T8N5vO+uijsP+A1d5OzYrS/IMH2 5jUL778QgW02ecrDP8jqENwq78c/MP1Mzp+BwT8dJxkNskfuv9lWmMv8wdK/ eDBUCCfb2T94L0rqP9Xgv7d3e6288uc/WDrpzaYL7z8NfMCgoMjDv4tVOUGJ 58e/Z0q82j4u7L+VgP2pQq7Zv9dAWkghH9C/taXKVF+h478Q/KYWenGTPw69 pYuiQ+k/1bxoGCf94L+KcbZa5fDFv7QB9hCrjuq/t04YvS34uL/6Hmqb/0Pg P5A4+MNjYes/BhcKXw== "], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, { 10, 18, 13, 17, 9}}]}]], "Output", CellLabel-> "Out[145]=",ExpressionUUID->"3c76a681-4ea7-4a8c-8c4b-310743c2a2de"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"can", "=", RowBox[{"FindCanonicalPolyhedron", "[", RowBox[{"poly", ",", RowBox[{"WorkingPrecision", "->", "50"}], ",", RowBox[{"MaxIterations", "->", "50000"}], ",", RowBox[{"PrecisionGoal", "->", "20"}], ",", RowBox[{"\"\\"", "->", "1000"}], ",", RowBox[{"\"\\"", "->", RowBox[{"1", "/", "10"}]}], ",", RowBox[{"\"\\"", "->", RowBox[{"1", "/", "10"}]}], ",", RowBox[{"Debug", "->", "True"}]}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[146]:=",ExpressionUUID->"e9b04051-436c-42a7-ba5a-9751d4417478"], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Starting FindCanonicalPolyhedron with maxits: \"\>", "\[InvisibleSpace]", "50000", "\[InvisibleSpace]", "\<\", prec: \"\>", "\[InvisibleSpace]", "50", "\[InvisibleSpace]", "\<\", goal: \"\>", "\[InvisibleSpace]", "20", "\[InvisibleSpace]", "\<\", tangentfactor: \"\>", "\[InvisibleSpace]", FractionBox["1", "10"], "\[InvisibleSpace]", "\<\", planarfactor: \"\>", "\[InvisibleSpace]", FractionBox["1", "10"]}], SequenceForm[ "Starting FindCanonicalPolyhedron with maxits: ", 50000, ", prec: ", 50, ", goal: ", 20, ", tangentfactor: ", Rational[1, 10], ", planarfactor: ", Rational[1, 10]], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[146]:=",ExpressionUUID->"770699f0-640d-4c6f-9146-65117752c57c"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "1000", "\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]", InterpretationBox[ StyleBox[ "1.37073173528549391104771550347999269945384299232`36.411077697457216*^-\ 11", ShowStringCharacters->True, NumberMarks->True], InputForm[ 1.37073173528549391104771550347999269945384299232`36.411077697457216*^-11], AutoDelete->True, Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>", "\[InvisibleSpace]", "4"}], SequenceForm["it: ", 1000, ", maxChange: ", InputForm[ 1.37073173528549391104771550347999269945384299232`36.411077697457216*^-11], ", dt: ", 4], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[146]:=",ExpressionUUID->"41192d31-f3c8-4059-80e3-3a2f8cc333c5"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "2000", "\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]", InterpretationBox[ StyleBox[ "5.61328128160469022587399275024260208591135`31.023342038855127*^-17", ShowStringCharacters->True, NumberMarks->True], InputForm[ 5.61328128160469022587399275024260208591135`31.023342038855127*^-17], AutoDelete->True, Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>", "\[InvisibleSpace]", "8"}], SequenceForm["it: ", 2000, ", maxChange: ", InputForm[ 5.61328128160469022587399275024260208591135`31.023342038855127*^-17], ", dt: ", 8], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[146]:=",ExpressionUUID->"63e315c8-dfa3-4939-99d4-3e05bb93c453"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "2697", "\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]", InterpretationBox[ StyleBox["9.8902336741051078439757466448131862638`27.26933178627425*^-21", ShowStringCharacters->True, NumberMarks->True], InputForm[9.8902336741051078439757466448131862638`27.26933178627425*^-21], AutoDelete->True, Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>", "\[InvisibleSpace]", "10"}], SequenceForm["it: ", 2697, ", maxChange: ", InputForm[9.8902336741051078439757466448131862638`27.26933178627425*^-21], ", dt: ", 10], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[146]:=",ExpressionUUID->"7bcadedd-ee5b-47ba-8e59-0ba43f7cb122"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{"10.386437`", ",", InterpretationBox[ RowBox[{ TagBox["Polyhedron", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready", Typeset`spolyhedron$$ = Quiet[ Polyhedron[{{ 0.7231635472939987137541790307472726624302397147252362876872836758045\ 057116906`50., \ -0.778754719970331262715376328601079875464588736689347027868947806347376899291\ `50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\ 9117512`50.}, \ {-0.72316354729399871391599296659100483465171241996069201848487831591281756377\ 992`50., 0.\ 77875471997033126265756089847860796146423630990612564913251535666583487646651`\ 50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\ 5438148`50.}, { 0.1046706078686111452734238546477794287241475234539559343078546974083\ 2136509776`50., \ -0.544227081528853538489712943670372758564885084920303341813187708637615306487\ 33`50., -0.\ 915837857554118308555336588507369576258302332940424207307784139382341287202`\ 50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\ 39511847`50., 0.183608829283647503459712866119242135147261474000612043984929536230\ 8406973339`50., 0.888425870477648720607239394532194225382531643878915128509584610295\ 27545094946`50.}, \ {-0.43251262302358421341886855415824600200764298981542658141487024603155723400\ 036`50., 0.\ 56308251958320487883281245903175992880933766688648905721748656330353932274647`\ 50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\ 5191037`50.}, \ {-0.14601717847605587567221820801799905412366923920383938245181216374094707696\ 802`50., 1.\ 01290985069806761766531458539973681132412914418132020533662637028923599413417`\ 50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\ 802181`50.}, { 0.6562633907329057524931724751182066309983894112007376028757958426298\ 1574903605`50., \ -0.020410069513121564954951714672287680448257047680534704723918886069318641356\ 1`50., -0.\ 84545835189945014414697645845322545311419760172161217292687224712814869586564`\ 50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\ 04947043`50., 0.429417261601741173660101664908025323157501071705928630523557362245\ 56080261942`50., 0.269637956692778297432602215718467405228487825042080278395216370839\ 41815020235`50.}, \ {-0.50132981820742977160769956418530383504117846687088630768742322001416061582\ 575`50., -0.\ 94195347974085720127831437734894528887488827258173135752722124542549768397809`\ 50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\ 206489`50.}, \ {-0.32426589585504652087563126243650930418068212067845550995371680864218324449\ 629`50., -0.\ 66394490004321889863801198596055598486958145395343058456534633489074315070106`\ 50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\ 805349`50.}, { 0.3242658958550465199360004774773892684307491202176590424731940471836\ 13681878`50., 0.663944900043218898802132437253682562711793731590082756337362315015\ 93278020396`50., \ -0.774549438216980210778999518879135262941306742931189157659544540861039365588\ 42`50.}, { 0.5013298182074297716105899317789314364967401448899662411206220614977\ 963418464`50., 0.941953479740857201243250952262355718417808012533122993073650816633\ 45511261426`50., \ -0.085382018777441624313712682435941193155707258523909876346205115771083384046\ 84`50.}, {-1.\ 03851304909962512899982979901333892568926278353090267121008806429195466651315`\ 50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\ 648816`50., 0.200115051221010444860994071161720832924481287479053496813535055677\ 22361277387`50.}, { 0.1460171784760558765873228389571182457591427679717838276470555075378\ 804002777`50., \ -1.012909850698067617669544952705676315376870302693452196548754960872750361331\ 77`50., -0.\ 3139914834816789541755213130558677841815258606060620709452815197370337525032`\ 50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\ 92951888`50., \ -0.563082519583204878706481832061160765008588338066988138153112209389518497993\ 86`50., 0.\ 80110482511054948777969154409410651082600489732532587212921687290347456420342`\ 50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\ 69089304`50., \ -0.165356121371201215022522440574669032938522849035235415887030208337990703527\ 83`50., -0.\ 20011505122101044455421487980807482532994627794948583777797314478479121162696`\ 50.}, {-0.\ 94275883528043408899877735675225654094256237281270970807942058193232276514149`\ 50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\ 0529229`50., \ -0.269637956692778298340688298265210737475683177086239123310069492402136999634\ 88`50.}, {-0.\ 6562633907329057530454636697333682787203518412502303393689762654431531366201`\ 50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\ 05725`50., 0.845458351899450143720039587793490261870792507606058827558266595518\ 37559191405`50.}, \ {-0.56822997476852273341670324224611194996684966026181987606913664128462602576\ 749`50., -0.\ 18360882928364750382526258950980687861177641350666666610120212527677502688164`\ 50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\ 4763468`50.}, \ {-0.10467060786861114435585351203991618135660677805799489553088918027378231257\ 847`50., 0.\ 54422708152885353862517195436042557283720772006993595795895817681069976667811`\ 50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\ 294762`50.}}, {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17, 9}}]]}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[CompressedData[" 1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR 1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia 4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34 Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p 5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH 75MLig== "], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17, 9}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["20", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["12", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], Graphics3DBox[{ Directive[ Hue[0.58, 0.4, 1], Opacity[0.5], EdgeForm[ GrayLevel[1]]], PolyhedronBox[CompressedData[" 1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR 1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia 4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34 Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p 5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH 75MLig== "], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17, 9}}]}, ImageSize -> Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])], Boxed -> False, Lighting -> {{"Ambient", RGBColor[0.4, 0.45, 0.5]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 0, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{2, 2, 2}]}, {"Directional", RGBColor[0.24, 0.27, 0.3], ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}], GridBox[{{ RowBox[{ TagBox["\"Number of points: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["20", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Number of faces: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["12", "SummaryItem"]}]}, { RowBox[{ TagBox[ "\"Embedding dimension: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Quiet[ Apply[Region`PolyhedronDump`polyhedronType, Region`PolyhedronDump`computeType[ Typeset`spolyhedron$$]]], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Bounds: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iRegionBounds[ Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Volume: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Polyhedron[{{ 0.7231635472939987137541790307472726624302397147252362876872836758045057\ 116906`50., \ -0.778754719970331262715376328601079875464588736689347027868947806347376899291\ `50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\ 9117512`50.}, \ {-0.72316354729399871391599296659100483465171241996069201848487831591281756377\ 992`50., 0.\ 77875471997033126265756089847860796146423630990612564913251535666583487646651`\ 50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\ 5438148`50.}, { 0.1046706078686111452734238546477794287241475234539559343078546974083213\ 6509776`50., \ -0.544227081528853538489712943670372758564885084920303341813187708637615306487\ 33`50., -0.\ 915837857554118308555336588507369576258302332940424207307784139382341287202`\ 50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\ 39511847`50., 0.183608829283647503459712866119242135147261474000612043984929536230840\ 6973339`50., 0.888425870477648720607239394532194225382531643878915128509584610295275\ 45094946`50.}, \ {-0.43251262302358421341886855415824600200764298981542658141487024603155723400\ 036`50., 0.\ 56308251958320487883281245903175992880933766688648905721748656330353932274647`\ 50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\ 5191037`50.}, \ {-0.14601717847605587567221820801799905412366923920383938245181216374094707696\ 802`50., 1.\ 01290985069806761766531458539973681132412914418132020533662637028923599413417`\ 50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\ 802181`50.}, { 0.6562633907329057524931724751182066309983894112007376028757958426298157\ 4903605`50., \ -0.020410069513121564954951714672287680448257047680534704723918886069318641356\ 1`50., -0.\ 84545835189945014414697645845322545311419760172161217292687224712814869586564`\ 50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\ 04947043`50., 0.429417261601741173660101664908025323157501071705928630523557362245560\ 80261942`50., 0.269637956692778297432602215718467405228487825042080278395216370839418\ 15020235`50.}, \ {-0.50132981820742977160769956418530383504117846687088630768742322001416061582\ 575`50., -0.\ 94195347974085720127831437734894528887488827258173135752722124542549768397809`\ 50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\ 206489`50.}, \ {-0.32426589585504652087563126243650930418068212067845550995371680864218324449\ 629`50., -0.\ 66394490004321889863801198596055598486958145395343058456534633489074315070106`\ 50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\ 805349`50.}, { 0.3242658958550465199360004774773892684307491202176590424731940471836136\ 81878`50., 0.663944900043218898802132437253682562711793731590082756337362315015932\ 78020396`50., \ -0.774549438216980210778999518879135262941306742931189157659544540861039365588\ 42`50.}, { 0.5013298182074297716105899317789314364967401448899662411206220614977963\ 418464`50., 0.941953479740857201243250952262355718417808012533122993073650816633455\ 11261426`50., \ -0.085382018777441624313712682435941193155707258523909876346205115771083384046\ 84`50.}, {-1.\ 03851304909962512899982979901333892568926278353090267121008806429195466651315`\ 50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\ 648816`50., 0.200115051221010444860994071161720832924481287479053496813535055677223\ 61277387`50.}, { 0.1460171784760558765873228389571182457591427679717838276470555075378804\ 002777`50., \ -1.012909850698067617669544952705676315376870302693452196548754960872750361331\ 77`50., -0.\ 3139914834816789541755213130558677841815258606060620709452815197370337525032`\ 50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\ 92951888`50., \ -0.563082519583204878706481832061160765008588338066988138153112209389518497993\ 86`50., 0.\ 80110482511054948777969154409410651082600489732532587212921687290347456420342`\ 50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\ 69089304`50., \ -0.165356121371201215022522440574669032938522849035235415887030208337990703527\ 83`50., -0.\ 20011505122101044455421487980807482532994627794948583777797314478479121162696`\ 50.}, {-0.\ 94275883528043408899877735675225654094256237281270970807942058193232276514149`\ 50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\ 0529229`50., \ -0.269637956692778298340688298265210737475683177086239123310069492402136999634\ 88`50.}, {-0.\ 6562633907329057530454636697333682787203518412502303393689762654431531366201`\ 50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\ 05725`50., 0.845458351899450143720039587793490261870792507606058827558266595518375\ 59191405`50.}, \ {-0.56822997476852273341670324224611194996684966026181987606913664128462602576\ 749`50., -0.\ 18360882928364750382526258950980687861177641350666666610120212527677502688164`\ 50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\ 4763468`50.}, \ {-0.10467060786861114435585351203991618135660677805799489553088918027378231257\ 847`50., 0.\ 54422708152885353862517195436042557283720772006993595795895817681069976667811`\ 50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\ 294762`50.}}, {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17, 9}}], Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellLabel-> "Out[146]=",ExpressionUUID->"5856ab11-f1ab-4081-8601-4e342d3ee7e7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",", "can", ",", "Yellow", ",", RowBox[{"Sphere", "[", "]"}]}], "}"}], "]"}]], "Input", CellLabel-> "In[147]:=",ExpressionUUID->"78f5799d-496a-4fb2-99dc-390a9afef4fa"], Cell[BoxData[ Graphics3DBox[ {RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[CompressedData[" 1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR 1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia 4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34 Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p 5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH 75MLig== "], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, { 10, 18, 13, 17, 9}}], {RGBColor[1, 1, 0], SphereBox[{0, 0, 0}]}}]], "Output", CellLabel-> "Out[147]=",ExpressionUUID->"e8631154-9a7d-4613-8fd9-cf8c5f887ee2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"lens", "=", RowBox[{"Mean", "/@", RowBox[{"Split", "[", RowBox[{ RowBox[{"Sort", "[", RowBox[{"PolyhedronEdgeLengths", "[", "can", "]"}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#1", "-", "#2"}], "]"}], "<", "1.*^-10"}], "&"}]}], "]"}]}]}], ")"}], "//", "N"}]], "Input", CellLabel-> "In[148]:=",ExpressionUUID->"8911d37f-34df-40a4-afd3-ca8e63226e43"], Cell[BoxData[ RowBox[{"{", "0.7639320225002103`", "}"}]], "Output", CellLabel-> "Out[148]=",ExpressionUUID->"a28c3e3d-053f-467c-ae04-8bf33cb6f27f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"PolyhedronCoordinates", "[", "can", "]"}]}], ";"}]], "Input", CellLabel-> "In[149]:=",ExpressionUUID->"5944530c-cf90-4dd2-a5fd-7c0219fb6320"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"colors", "=", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", RowBox[{"Length", "[", "lens", "]"}]}], "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"Hue", "[", RowBox[{"i", "/", "n"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input", CellLabel-> "In[150]:=",ExpressionUUID->"318f6c4f-7708-4a9f-a3ac-7bd48d6b3c42"], Cell[BoxData[ RowBox[{"{", TemplateBox[<|"color" -> Hue[0]|>, "HueColorSwatchTemplate"], "}"}]], "Output", CellLabel-> "Out[150]=",ExpressionUUID->"e9c3d6a5-e82f-4632-ac9a-07a7f8cb9e8d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"Thick", ",", RowBox[{"Sequence", "@@", RowBox[{"Nearest", "[", RowBox[{ RowBox[{"Thread", "[", RowBox[{"lens", "->", "colors"}], "]"}], ",", RowBox[{"EuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}]}], ",", RowBox[{"Line", "[", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronEdges", "[", "can", "]"}]}], ",", RowBox[{"Boxed", "->", "False"}]}], "]"}]], "Input", CellLabel-> "In[151]:=",ExpressionUUID->"accccc50-a1dd-49dd-a406-9b973c85ab5d"], Cell[BoxData[ Graphics3DBox[{ {Hue[0], Thickness[Large], Line3DBox[{{0.7231635472939987, -0.7787547199703313, 0.1283495373556402}, { 0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.7231635472939987, -0.7787547199703313, 0.1283495373556402}, {0.43251262302358423`, -0.5630825195832049, 0.8011048251105495}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.7231635472939987, -0.7787547199703313, 0.1283495373556402}, { 1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.7231635472939987, 0.7787547199703313, -0.1283495373556402}, {-0.43251262302358423`, 0.5630825195832049, -0.8011048251105495}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.7231635472939987, 0.7787547199703313, -0.1283495373556402}, {-0.1460171784760559, 1.0129098506980676`, 0.31399148348167893`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.7231635472939987, 0.7787547199703313, -0.1283495373556402}, {-1.038513049099625, 0.1653561213712012, 0.20011505122101045`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{ 0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, { 0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}}]}, {Hue[0], Thickness[Large], Line3DBox[{{ 0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, { 0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{ 0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, \ {-0.5682299747685228, -0.1836088292836475, -0.8884258704776488}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.5682299747685228, 0.1836088292836475, 0.8884258704776488}, { 0.9427588352804341, 0.42941726160174115`, 0.2696379566927783}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.5682299747685228, 0.1836088292836475, 0.8884258704776488}, { 0.43251262302358423`, -0.5630825195832049, 0.8011048251105495}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.5682299747685228, 0.1836088292836475, 0.8884258704776488}, {-0.10467060786861114`, 0.5442270815288536, 0.9158378575541183}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.43251262302358423`, 0.5630825195832049, -0.8011048251105495}, {0.3242658958550465, 0.6639449000432189, -0.7745494382169802}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.43251262302358423`, 0.5630825195832049, -0.8011048251105495}, {-0.5682299747685228, \ -0.1836088292836475, -0.8884258704776488}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.1460171784760559, 1.0129098506980676`, 0.31399148348167893`}, {0.5013298182074297, 0.9419534797408572, -0.08538201877744163}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.1460171784760559, 1.0129098506980676`, 0.31399148348167893`}, {-0.10467060786861114`, 0.5442270815288536, 0.9158378575541183}}]}, {Hue[0], Thickness[Large], Line3DBox[{{ 0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}, { 0.3242658958550465, 0.6639449000432189, -0.7745494382169802}}]}, {Hue[0], Thickness[Large], Line3DBox[{{ 0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}, { 1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.9427588352804341, 0.42941726160174115`, 0.2696379566927783}, {0.5013298182074297, 0.9419534797408572, -0.08538201877744163}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.9427588352804341, 0.42941726160174115`, 0.2696379566927783}, { 1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.5013298182074297, -0.9419534797408572, 0.08538201877744163}, {-0.3242658958550465, -0.6639449000432189, 0.7745494382169802}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.5013298182074297, -0.9419534797408572, 0.08538201877744163}, { 0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.5013298182074297, -0.9419534797408572, 0.08538201877744163}, {-0.9427588352804341, -0.42941726160174115`, \ -0.2696379566927783}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.3242658958550465, -0.6639449000432189, 0.7745494382169802}, {0.43251262302358423`, -0.5630825195832049, 0.8011048251105495}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.3242658958550465, -0.6639449000432189, 0.7745494382169802}, {-0.6562633907329057, 0.020410069513121566`, 0.8454583518994502}}]}, {Hue[0], Thickness[Large], Line3DBox[{{0.3242658958550465, 0.6639449000432189, -0.7745494382169802}, {0.5013298182074297, 0.9419534797408572, -0.08538201877744163}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-1.038513049099625, 0.1653561213712012, 0.20011505122101045`}, {-0.9427588352804341, -0.42941726160174115`, \ -0.2696379566927783}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-1.038513049099625, 0.1653561213712012, 0.20011505122101045`}, {-0.6562633907329057, 0.020410069513121566`, 0.8454583518994502}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.9427588352804341, -0.42941726160174115`, \ -0.2696379566927783}, {-0.5682299747685228, -0.1836088292836475, \ -0.8884258704776488}}]}, {Hue[0], Thickness[Large], Line3DBox[{{-0.6562633907329057, 0.020410069513121566`, 0.8454583518994502}, {-0.10467060786861114`, 0.5442270815288536, 0.9158378575541183}}]}}, Boxed->False]], "Output", CellLabel-> "Out[151]=",ExpressionUUID->"98f06e3b-fbd7-4d80-8fed-24afa478718e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"PolyhedronGraph", "[", "can", "]"}]}]], "Input", CellLabel-> "In[152]:=",ExpressionUUID->"83c5fa11-ddeb-4787-a7dc-a8ac56a4f58d"], Cell[BoxData[ Graphics3DBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{ 0.7231635472939987137541790307472726624302397147252362876872836758045\ 057116906`50., \ -0.778754719970331262715376328601079875464588736689347027868947806347376899291\ `50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\ 9117512`50.}, \ {-0.72316354729399871391599296659100483465171241996069201848487831591281756377\ 992`50., 0.\ 77875471997033126265756089847860796146423630990612564913251535666583487646651`\ 50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\ 5438148`50.}, { 0.1046706078686111452734238546477794287241475234539559343078546974083\ 2136509776`50., \ -0.544227081528853538489712943670372758564885084920303341813187708637615306487\ 33`50., -0.\ 915837857554118308555336588507369576258302332940424207307784139382341287202`\ 50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\ 39511847`50., 0.183608829283647503459712866119242135147261474000612043984929536230\ 8406973339`50., 0.888425870477648720607239394532194225382531643878915128509584610295\ 27545094946`50.}, \ {-0.43251262302358421341886855415824600200764298981542658141487024603155723400\ 036`50., 0.\ 56308251958320487883281245903175992880933766688648905721748656330353932274647`\ 50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\ 5191037`50.}, \ {-0.14601717847605587567221820801799905412366923920383938245181216374094707696\ 802`50., 1.\ 01290985069806761766531458539973681132412914418132020533662637028923599413417`\ 50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\ 802181`50.}, { 0.6562633907329057524931724751182066309983894112007376028757958426298\ 1574903605`50., \ -0.020410069513121564954951714672287680448257047680534704723918886069318641356\ 1`50., -0.\ 84545835189945014414697645845322545311419760172161217292687224712814869586564`\ 50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\ 04947043`50., 0.429417261601741173660101664908025323157501071705928630523557362245\ 56080261942`50., 0.269637956692778297432602215718467405228487825042080278395216370839\ 41815020235`50.}, \ {-0.50132981820742977160769956418530383504117846687088630768742322001416061582\ 575`50., -0.\ 94195347974085720127831437734894528887488827258173135752722124542549768397809`\ 50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\ 206489`50.}, \ {-0.32426589585504652087563126243650930418068212067845550995371680864218324449\ 629`50., -0.\ 66394490004321889863801198596055598486958145395343058456534633489074315070106`\ 50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\ 805349`50.}, { 0.3242658958550465199360004774773892684307491202176590424731940471836\ 13681878`50., 0.663944900043218898802132437253682562711793731590082756337362315015\ 93278020396`50., \ -0.774549438216980210778999518879135262941306742931189157659544540861039365588\ 42`50.}, { 0.5013298182074297716105899317789314364967401448899662411206220614977\ 963418464`50., 0.941953479740857201243250952262355718417808012533122993073650816633\ 45511261426`50., \ -0.085382018777441624313712682435941193155707258523909876346205115771083384046\ 84`50.}, {-1.\ 03851304909962512899982979901333892568926278353090267121008806429195466651315`\ 50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\ 648816`50., 0.200115051221010444860994071161720832924481287479053496813535055677\ 22361277387`50.}, { 0.1460171784760558765873228389571182457591427679717838276470555075378\ 804002777`50., \ -1.012909850698067617669544952705676315376870302693452196548754960872750361331\ 77`50., -0.\ 3139914834816789541755213130558677841815258606060620709452815197370337525032`\ 50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\ 92951888`50., \ -0.563082519583204878706481832061160765008588338066988138153112209389518497993\ 86`50., 0.\ 80110482511054948777969154409410651082600489732532587212921687290347456420342`\ 50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\ 69089304`50., \ -0.165356121371201215022522440574669032938522849035235415887030208337990703527\ 83`50., -0.\ 20011505122101044455421487980807482532994627794948583777797314478479121162696`\ 50.}, {-0.\ 94275883528043408899877735675225654094256237281270970807942058193232276514149`\ 50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\ 0529229`50., \ -0.269637956692778298340688298265210737475683177086239123310069492402136999634\ 88`50.}, {-0.\ 6562633907329057530454636697333682787203518412502303393689762654431531366201`\ 50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\ 05725`50., 0.845458351899450143720039587793490261870792507606058827558266595518\ 37559191405`50.}, \ {-0.56822997476852273341670324224611194996684966026181987606913664128462602576\ 749`50., -0.\ 18360882928364750382526258950980687861177641350666666610120212527677502688164`\ 50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\ 4763468`50.}, \ {-0.10467060786861114435585351203991618135660677805799489553088918027378231257\ 847`50., 0.\ 54422708152885353862517195436042557283720772006993595795895817681069976667811`\ 50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\ 294762`50.}}}]]}, TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData[" 1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR 1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia 4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34 Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p 5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH 75MLig== "], { {Hue[0.6, 0.2, 0.8], Arrowheads[0.], Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, { 5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}], 0.04646679449579216]}, {Hue[0.6, 0.6, 1], SphereBox[1, 0.04646679449579216], SphereBox[2, 0.04646679449579216], SphereBox[3, 0.04646679449579216], SphereBox[4, 0.04646679449579216], SphereBox[5, 0.04646679449579216], SphereBox[6, 0.04646679449579216], SphereBox[7, 0.04646679449579216], SphereBox[8, 0.04646679449579216], SphereBox[9, 0.04646679449579216], SphereBox[10, 0.04646679449579216], SphereBox[11, 0.04646679449579216], SphereBox[12, 0.04646679449579216], SphereBox[13, 0.04646679449579216], SphereBox[14, 0.04646679449579216], SphereBox[15, 0.04646679449579216], SphereBox[16, 0.04646679449579216], SphereBox[17, 0.04646679449579216], SphereBox[18, 0.04646679449579216], SphereBox[19, 0.04646679449579216], SphereBox[20, 0.04646679449579216]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}}, Boxed->False, DefaultBaseStyle->"NetworkGraphics", FormatType->TraditionalForm, Lighting->{{"Directional", GrayLevel[0.7], ImageScaled[{1, 1, 0}]}, {"Point", GrayLevel[0.9], ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output", CellLabel-> "Out[152]=",ExpressionUUID->"207e38cc-c5f8-44a4-ac82-fe0d9c25a9b9"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Projections", "Section",ExpressionUUID->"188557dc-2d4c-4abe-9380-3f4444f88a9c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"c", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellLabel-> "In[101]:=",ExpressionUUID->"6d921bf1-a537-41f3-b7d2-f2014d783862"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`a$$ = 1., $CellContext`b$$ = 0., $CellContext`c$$ = -0.005000000000018212, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`a$$], -1, 1}, { Hold[$CellContext`b$$], -1, 1}, { Hold[$CellContext`c$$], -1, 1}}, Typeset`size$$ = {360., {206., 211.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`a$$ = -1, $CellContext`b$$ = -1, \ $CellContext`c$$ = -1}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> MathWorld`Graphs`PolyhedronProjectionGraph[ PolyhedronData[ "Dodecahedron", "Polyhedron"], {$CellContext`a$$, $CellContext`b$$, \ $CellContext`c$$}], "Specifications" :> {{$CellContext`a$$, -1, 1}, {$CellContext`b$$, -1, 1}, {$CellContext`c$$, -1, 1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{404., {279., 285.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellLabel-> "Out[101]=",ExpressionUUID->"8130b679-29eb-4af1-ab0a-988ca2c7d189"] }, Open ]], Cell[CellGroupData[{ Cell["{1, 0, 0}", "Subsection",ExpressionUUID->"acebe07c-4761-4d7a-ad97-a47939132b4e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", ".0001", ",", RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel->"In[50]:=",ExpressionUUID->"cbbef6d3-ebf8-48c4-b55f-5da1b70a19c2"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQNOalIR3Fcv7Efj24f8On1298cv9lI79AtrLl/Y D+Xvh/FXfJk+u/zxS/v0QH/G7xfg/P1ofPuvIqfFhS5+hMvD+BDbHtjnVArE rbvw0R7K34/Gt8+G8GHq96PyGRgkJ3Ps8r/40R7NPfZo7rGHqZeAqIe77xvE PXD1MD6a/+3R/G8PABpjnJM= "]}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIYBJzWpCO6rF/av+DJ9dvnjl/bpgf6M3y9csMch vx+XPIwvMZljl//Fj/vR5O3RzMclvx+XPIwvCTHfPuTX6bO7P36xl9qhX1hz GeH+ryKnxYWA9uOSh7kfXR6ND5Pfj6Z/P5r5GPJo5u9HMx/GxxEeD+yzKwXi 1l34iO5eDPdhD68H+9H070fTj2E/zD+47EeVR8Qvenjgsh+Xfph9ORD19jD9 aHy4PPb0iSn/DWIfhnnY0y+mPJp+eHig+w89PWK3H0Mebj66elzxiyYPjz8A 7LLSUQ== "], 0.02743621557726529]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., -0.2630031929371378}, 0.02743621557726529], InsetBox["1", Offset[{2, 2}, {0.02743621557726529, -0.23556697735987253}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.2630031929371378}, 0.02743621557726529], InsetBox["2", Offset[{2, 2}, {0.02743621557726529, 0.2904394085144031}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475, -0.26290808728561077}, 0.02743621557726529], InsetBox["3", Offset[{2, 2}, {1.3364532099522128, -0.2354718717083455}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475, -0.26290808728561077}, 0.02743621557726529], InsetBox["4", Offset[{2, 2}, {-1.281580778797682, -0.2354718717083455}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -0.2627542031089178}, 0.02743621557726529], InsetBox["5", Offset[{2, 2}, {0.8364532099522127, -0.2353179875316525}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -0.2627542031089178}, 0.02743621557726529], InsetBox["6", Offset[{2, 2}, {-0.7815807787976822, -0.2353179875316525}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -1.1135426453996022}, 0.02743621557726529], InsetBox["7", Offset[{2, 2}, {0.8364532099522127, -1.0861064298223368}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -1.1135426453996022}, 0.02743621557726529], InsetBox["8", Offset[{2, 2}, {-0.7815807787976822, -1.0861064298223368}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, 1.1134475397480754}, 0.02743621557726529], InsetBox["9", Offset[{2, 2}, {0.5274362155772653, 1.1408837553253408}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, 1.1134475397480754}, 0.02743621557726529], InsetBox["10", Offset[{2, 2}, {-0.4725637844227347, 1.1408837553253408}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, -1.1134475397480752}, 0.02743621557726529], InsetBox["11", Offset[{2, 2}, {0.5274362155772653, -1.0860113241708098}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -1.1134475397480752}, 0.02743621557726529], InsetBox["12", Offset[{2, 2}, {-0.4725637844227347, -1.0860113241708098}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.1136014239247685}, 0.02743621557726529], InsetBox["13", Offset[{2, 2}, {0.02743621557726529, 1.1410376395020339}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 0.2627542031089178}, 0.02743621557726529], InsetBox["14", Offset[{2, 2}, {0.8364532099522127, 0.29019041868618306}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 0.2627542031089178}, 0.02743621557726529], InsetBox["15", Offset[{2, 2}, {-0.7815807787976822, 0.29019041868618306}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.1136014239247682}, 0.02743621557726529], InsetBox["16", Offset[{2, 2}, {0.02743621557726529, -1.0861652083475029}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 1.1135426453996025}, 0.02743621557726529], InsetBox["17", Offset[{2, 2}, {0.8364532099522127, 1.1409788609768678}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 1.1135426453996025}, 0.02743621557726529], InsetBox["18", Offset[{2, 2}, {-0.7815807787976822, 1.1409788609768678}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475, 0.26290808728561077}, 0.02743621557726529], InsetBox["19", Offset[{2, 2}, {1.3364532099522128, 0.29034430286287605}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475, 0.26290808728561077}, 0.02743621557726529], InsetBox["20", Offset[{2, 2}, {-1.281580778797682, 0.29034430286287605}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[50]=",ExpressionUUID->"8232163e-8eb0-4cba-900e-5a6a7a02ba60"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "z", ",", RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[46]:=",ExpressionUUID->"bbcf51e0-9d6b-4930-b57c-4d8d9e5d8be4"], Cell[BoxData[ TagBox[ DynamicModuleBox[{Typeset`sgraph$$ = Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{ 0, ((-(1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { 0, ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(((Rational[-1, 4] (-3 - 5^Rational[1, 2])) $CellContext`z) ( 1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((Rational[-1, 4] (3 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) ( 1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) ( 1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) $CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] + (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {((( Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) $CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] + (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(( Rational[1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^ Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(( Rational[-1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^ Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(( Rational[1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^ Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) $CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]}, {(( Rational[-1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^ Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) $CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]}, { 0, ((Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2] ( 1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) ( 1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(((Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) $CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] + (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {((( Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-$CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {((( Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], (((-$CellContext`z)/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (( 1 - (1 + Abs[$CellContext`z]^2)^(-1)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {((( Rational[-1, 4] (-3 - 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(((Rational[-1, 4] (3 + 5^Rational[1, 2])) $CellContext`z) (1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2], ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^ Rational[-1, 2] - (($CellContext`z/(1 + Abs[$CellContext`z]^2)) ( Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 + Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]}, InterpretationBox[ RowBox[{ TagBox["Graph", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ GraphicsComplexBox[{{ 0.1, -3.31951456589972}, {-0.14816751450286603`, \ -2.625037331552915}, {0.6310524421714278, -1.3}, { 0.9405108616213151, -2.8841601437046225`}, { 0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \ -1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, { 1.8939086566530445`, -2.50980168725566}, { 1.756629266633539, -3.4622764737192444`}, { 2.119361963550152, -2.99}, {-0.5709741939515942, \ -4.632295267644082}, { 0.20977925607671288`, -4.647162049737781}, \ {-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \ -2.2040562174063485`}}, { Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4, 5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627], Hue[0.6, 0.2, 0.8], EdgeForm[{ GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05], DiskBox[2, 0.05], DiskBox[3, 0.05], DiskBox[4, 0.05], DiskBox[5, 0.05], DiskBox[6, 0.05], DiskBox[7, 0.05], DiskBox[8, 0.05], DiskBox[9, 0.05], DiskBox[10, 0.05], DiskBox[11, 0.05], DiskBox[12, 0.05], DiskBox[13, 0.05], DiskBox[14, 0.05]}], AspectRatio -> 1, Background -> GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True, FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, (3.5 CurrentValue["FontCapHeight"])/ AbsoluteCurrentValue[Magnification]}], PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}], GridBox[{{ RowBox[{ TagBox["\"Vertex count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["20", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Edge count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[ GraphicsComplexBox[{{ 0.1, -3.31951456589972}, {-0.14816751450286603`, \ -2.625037331552915}, {0.6310524421714278, -1.3}, { 0.9405108616213151, -2.8841601437046225`}, { 0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \ -1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, { 1.8939086566530445`, -2.50980168725566}, { 1.756629266633539, -3.4622764737192444`}, { 2.119361963550152, -2.99}, {-0.5709741939515942, \ -4.632295267644082}, { 0.20977925607671288`, -4.647162049737781}, \ {-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \ -2.2040562174063485`}}, { Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4, 5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627], Hue[0.6, 0.2, 0.8], EdgeForm[{ GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05], DiskBox[2, 0.05], DiskBox[3, 0.05], DiskBox[4, 0.05], DiskBox[5, 0.05], DiskBox[6, 0.05], DiskBox[7, 0.05], DiskBox[8, 0.05], DiskBox[9, 0.05], DiskBox[10, 0.05], DiskBox[11, 0.05], DiskBox[12, 0.05], DiskBox[13, 0.05], DiskBox[14, 0.05]}], AspectRatio -> 1, Background -> GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True, FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, (3.5 CurrentValue["FontCapHeight"])/ AbsoluteCurrentValue[Magnification]}], PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}], GridBox[{{ RowBox[{ TagBox["\"Vertex count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["20", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Edge count: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["30", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Type: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"undirected graph\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Connected graph: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ ConnectedGraphQ[Typeset`sgraph$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Acyclic graph: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ DynamicBox[ ToBoxes[ AcyclicGraphQ[Typeset`sgraph$$], StandardForm], SynchronousUpdating -> False, TrackedSymbols :> {}, CachedValue :> AnimatorBox[ 0, {0, Infinity}, AppearanceElements -> "ProgressSlider", ImageSize -> 20]], "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], Typeset`sgraph$$, Editable->False, SelectWithContents->True, Selectable->False], DynamicModuleValues:>{}], Setting[#, {0}]& ]], "Output", CellLabel->"Out[46]=",ExpressionUUID->"61c0f29b-e278-4177-bad6-dec70e9273b0"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"Lookup", "[", RowBox[{ RowBox[{"Options", "[", "%", "]"}], ",", "VertexCoordinates"}], "]"}]}], ";"}]], "Input", CellLabel->"In[47]:=",ExpressionUUID->"320bd543-282e-4207-b1f6-de43095fc926"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Limit", "[", RowBox[{"v", ",", RowBox[{"z", "\[Rule]", "0"}], ",", RowBox[{"Direction", "\[Rule]", "\"\\""}]}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel->"In[49]:=",ExpressionUUID->"523e6aa8-3e7c-492f-956d-394d6bb853cf"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox["11", RowBox[{"8", " ", SqrtBox["5"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.11\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.11351636441160684043438777734991163015`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.1135163644116068`}, "NumericalApproximation"], Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.26286555605956679615431426100258249789`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[49]=",ExpressionUUID->"385ea12a-a94a-404d-826b-9660996492b8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetProperty", "[", RowBox[{"g", ",", RowBox[{"VertexCoordinates", "\[Rule]", "%49"}]}], "]"}]], "Input", CellLabel->"In[52]:=",ExpressionUUID->"8969a307-6b74-4b5d-89c4-ca84067de464"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{0, Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0, Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2], Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIYB3uCFvKcuXbBf8WX67PLHL/dD+ftxyNvjkofx t4Zxd3678NEeTX4/mvm45O1xycP42yDm7w/5dfrs7o9f9qO7H2Y/LnmYeejy aHyYvD26/9HMx5DHpR+NjyM8HsDdjy6P7j7s4fXAHk0/QftR4wvTfvT4RDcf TT+G/bj0w+yDxSdMPxofLo89fWLK4zIPe/rFlEe3H5f/0NMjdvsx5NHt248j PWOoR48/AD3g6EE= "], 0.02743621557726529]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., 0.2628655560595668}, 0.02743621557726529], InsetBox["1", Offset[{2, 2}, {0.02743621557726529, 0.2903017716368321}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.2628655560595668}, 0.02743621557726529], InsetBox["2", Offset[{2, 2}, {0.02743621557726529, -0.23542934048230152}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475, 0.2628655560595668}, 0.02743621557726529], InsetBox["3", Offset[{2, 2}, {-1.281580778797682, 0.2903017716368321}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475, 0.2628655560595668}, 0.02743621557726529], InsetBox["4", Offset[{2, 2}, {1.3364532099522128, 0.2903017716368321}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 0.2628655560595668}, 0.02743621557726529], InsetBox["5", Offset[{2, 2}, {-0.7815807787976822, 0.2903017716368321}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 0.2628655560595668}, 0.02743621557726529], InsetBox["6", Offset[{2, 2}, {0.8364532099522127, 0.2903017716368321}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, 1.1135163644116066}, 0.02743621557726529], InsetBox["7", Offset[{2, 2}, {-0.7815807787976822, 1.140952579988872}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, 1.1135163644116066}, 0.02743621557726529], InsetBox["8", Offset[{2, 2}, {0.8364532099522127, 1.140952579988872}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, -1.1135163644116068}, 0.02743621557726529], InsetBox["9", Offset[{2, 2}, {-0.4725637844227347, -1.0860801488343415}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, -1.1135163644116068}, 0.02743621557726529], InsetBox["10", Offset[{2, 2}, {0.5274362155772653, -1.0860801488343415}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5, 1.1135163644116066}, 0.02743621557726529], InsetBox["11", Offset[{2, 2}, {-0.4725637844227347, 1.140952579988872}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5, 1.1135163644116066}, 0.02743621557726529], InsetBox["12", Offset[{2, 2}, {0.5274362155772653, 1.140952579988872}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.1135163644116068}, 0.02743621557726529], InsetBox["13", Offset[{2, 2}, {0.02743621557726529, -1.0860801488343415}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -0.2628655560595668}, 0.02743621557726529], InsetBox["14", Offset[{2, 2}, {-0.7815807787976822, -0.23542934048230152}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -0.2628655560595668}, 0.02743621557726529], InsetBox["15", Offset[{2, 2}, {0.8364532099522127, -0.23542934048230152}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.1135163644116066}, 0.02743621557726529], InsetBox["16", Offset[{2, 2}, {0.02743621557726529, 1.140952579988872}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749475, -1.1135163644116068}, 0.02743621557726529], InsetBox["17", Offset[{2, 2}, {-0.7815807787976822, -1.0860801488343415}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749475, -1.1135163644116068}, 0.02743621557726529], InsetBox["18", Offset[{2, 2}, {0.8364532099522127, -1.0860801488343415}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749475, -0.2628655560595668}, 0.02743621557726529], InsetBox["19", Offset[{2, 2}, {-1.281580778797682, -0.23542934048230152}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749475, -0.2628655560595668}, 0.02743621557726529], InsetBox["20", Offset[{2, 2}, {1.3364532099522128, -0.23542934048230152}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[52]=",ExpressionUUID->"d95d02aa-e9df-4cce-a753-e5e96ab7421b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ RowBox[{"{", RowBox[{"1", ",", "0", ",", RowBox[{ RowBox[{"GoldenRatio", "/", "2"}], "-", "1"}]}], "}"}]],ExpressionUUID->"72b80531-29b7-4479-9e76-4dce4f249e7e"]], \ "Subsection",ExpressionUUID->"969aad1f-1120-4550-a0c5-5d570009f6ad"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]], "Input", CellLabel-> "In[151]:=",ExpressionUUID->"c493e9e1-9518-4614-a05c-582bc8c73392"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}]], "Output", CellLabel-> "Out[151]=",ExpressionUUID->"e768b64f-6462-4925-92a6-76b8a884f384"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{"FullSimplify", "[", RowBox[{"%", "/", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}], "]"}]}]], "Input", CellLabel-> "In[152]:=",ExpressionUUID->"da1123b5-8b76-4357-95ae-d667bc5b4f5c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["5"]}], ")"}]}]}], "}"}]], "Output", CellLabel-> "Out[152]=",ExpressionUUID->"cac3f34c-6b34-4ef7-b2e2-4397e3ab419d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[153]:=",ExpressionUUID->"0f7f8886-efbb-4406-8359-566c093d1b19"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`", ",", "0.19098300562505255`"}], "}"}]], "Output", CellLabel-> "Out[153]=",ExpressionUUID->"931e897a-a4fe-4edb-9ef5-ee3d1cba931e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"(", RowBox[{"1", "-", RowBox[{"GoldenRatio", "/", "2"}]}], ")"}]], "Input",ExpressionUUID->\ "77b693f1-debc-4f34-88a4-9fac90a76dde"], Cell[BoxData["0.19098300562505255`"], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"e83266bf-789c-46fd-9ff3-2a1b33eced24"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", RowBox[{ RowBox[{"GoldenRatio", "/", "2"}], "-", "1"}], ",", RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[2]:=",ExpressionUUID->"31b5bcb9-72a9-408f-8f1f-904e3616ec87"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{ 0, ((-(1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { 0, ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {( Rational[-1, 4] (-3 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (3 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (-1 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (1 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (-1 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2])/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio) + (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {( Rational[-1, 4] (1 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - ( 1 + (1 + Rational[1, 4] (-1 - 5^ Rational[1, 2]))^2)^(-1))^2)))^Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2])/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio) + (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[1, 2] ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2] ( Rational[-1, 4] ( 5 ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/(( 1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[ 3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[1, 2] ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - (((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)}, { Rational[1, 2] ( Rational[-1, 4] ( 5 ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/(( 1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[ 3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - (((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)}, { 0, (1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ( Rational[ 1, 10] ((5 + 5^Rational[1, 2])/(( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)))^ Rational[ 1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {( Rational[-1, 4] (-1 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {( Rational[-1, 4] (1 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { 0, (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2])/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio) + (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {( Rational[-1, 4] (-1 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((((-1)/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (1 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((((-1)/( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {( Rational[-1, 4] (-3 - 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {( Rational[-1, 4] (3 + 5^Rational[1, 2])) ( Rational[ 1, 4] (5 (( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^ Rational[1, 2] + Rational[-3, 4] ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 ( 1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + ( 1 - (1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^ Rational[-1, 2]), ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] ( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^ Rational[-1, 2] - ((( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) (( 1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + ( 1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 + Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 + Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKEYFK2xWf5k+u/zxy/1yfkF5e5/c3Y9D3h6XPIyl BJZ/a48mvwdmvixEPy55e1zyMJYixPz94b9On9398ct+TrOWQJ1rx+xh5ouv jfnHtO2DPS55mPvR5dH4MHl7NP32aOZjyKOZb49mPoy/Hz08IHHyYP91496O ExM+26PLo7sPPbyg+u3R9Nuj6cewH+YfXPbD5NHjFz08cNmPSz+affvR9O9H l0ePP1zyUPswzEOPH1zyaPrh4YHuP/T0iG4/Dnm4+ejqccUvmjw8/gDR8Mkn "], 0.02743621557726529]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{0., 1.6653345369377348*^-16}, 0.02743621557726529], InsetBox["1", Offset[{2, 2}, {0.02743621557726529, 0.027436215577265458}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -1.6653345369377348*^-16}, 0.02743621557726529], InsetBox["2", Offset[{2, 2}, {0.02743621557726529, 0.027436215577265124}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749481, 0.17841104488654505}, 0.02743621557726529], InsetBox["3", Offset[{2, 2}, {-1.2815807787976827, 0.20584726046381036}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749481, 0.17841104488654505}, 0.02743621557726529], InsetBox["4", Offset[{2, 2}, {1.3364532099522135, 0.20584726046381036}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749478, 0.4670861794813577}, 0.02743621557726529], InsetBox["5", Offset[{2, 2}, {-0.7815807787976825, 0.494522395058623}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749478, 0.4670861794813577}, 0.02743621557726529], InsetBox["6", Offset[{2, 2}, {0.8364532099522131, 0.494522395058623}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749478, 1.0444364486709838}, 0.02743621557726529], InsetBox["7", Offset[{2, 2}, {-0.7815807787976825, 1.0718726642482492}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749478, 1.0444364486709838}, 0.02743621557726529], InsetBox["8", Offset[{2, 2}, {0.8364532099522131, 1.0718726642482492}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5000000000000002, -1.2228474935575286}, 0.02743621557726529], InsetBox["9", Offset[{2, 2}, {-0.47256378442273494, -1.1954112779802633}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5000000000000002, -1.2228474935575286}, 0.02743621557726529], InsetBox["10", Offset[{2, 2}, {0.5274362155772655, -1.1954112779802633}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.5000000000000002, 1.2228474935575286}, 0.02743621557726529], InsetBox["11", Offset[{2, 2}, {-0.47256378442273494, 1.250283709134794}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5000000000000002, 1.2228474935575286}, 0.02743621557726529], InsetBox["12", Offset[{2, 2}, {0.5274362155772655, 1.250283709134794}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., -0.9341723589627159}, 0.02743621557726529], InsetBox["13", Offset[{2, 2}, {0.02743621557726529, -0.9067361433854506}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749478, -0.4670861794813578}, 0.02743621557726529], InsetBox["14", Offset[{2, 2}, {-0.7815807787976825, -0.4396499639040925}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749478, -0.4670861794813578}, 0.02743621557726529], InsetBox["15", Offset[{2, 2}, {0.8364532099522131, -0.4396499639040925}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 0.934172358962716}, 0.02743621557726529], InsetBox["16", Offset[{2, 2}, {0.02743621557726529, 0.9616085745399813}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8090169943749478, -1.0444364486709838}, 0.02743621557726529], InsetBox["17", Offset[{2, 2}, {-0.7815807787976825, -1.0170002330937185}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8090169943749478, -1.0444364486709838}, 0.02743621557726529], InsetBox["18", Offset[{2, 2}, {0.8364532099522131, -1.0170002330937185}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3090169943749481, -0.17841104488654505}, 0.02743621557726529], InsetBox["19", Offset[{2, 2}, {-1.2815807787976827, -0.15097482930927975}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3090169943749481, -0.17841104488654505}, 0.02743621557726529], InsetBox["20", Offset[{2, 2}, {1.3364532099522135, -0.15097482930927975}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[2]=",ExpressionUUID->"e9015a6c-0815-467f-9ce5-5eb88b3f2877"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{XXX}", "Subsection",ExpressionUUID->"3024dc8c-b30d-416d-b860-e23fec438550"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Mean", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], "]"}], "]"}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[162]:=",ExpressionUUID->"3dbe8aef-d531-44eb-bd78-c8de0ead7c0b"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "40"]}], " ", SqrtBox[ RowBox[{"650", "+", RowBox[{"290", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}]], "Output", CellLabel-> "Out[162]=",ExpressionUUID->"82aa19b4-0194-4065-a0e9-e73948e9b8cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "40"]}], " ", SqrtBox[ RowBox[{"650", "+", RowBox[{"290", " ", SqrtBox["5"]}]}]]}], ",", RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.263\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.26286555605956679615431426100258249789`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"20", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"80", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2628655560595668}, "NumericalApproximation"], Root[1 - 20 #^2 + 80 #^4& , 3, 0]], ",", RowBox[{"\[Pi]", "/", "10"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[4]:=",ExpressionUUID->"48563c9c-ed47-45df-88d6-5643d4d2c343"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] - ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] - ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + (( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + (( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-3 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) ((( Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-3 - 5^Rational[1, 2])) Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (3 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (3 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 3, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[-1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) ((Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) ((( Rational[-1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ((Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) ((Rational[1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + (( Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ((Rational[1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[-1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) ((Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) ((( Rational[-1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ((Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) ((Rational[1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ((Rational[1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ((1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2))) ( Rational[ 1, 10] ((5 + 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2])) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) ((1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2))) ( Rational[ 1, 10] ((5 + 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2]) + (( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 5 #^2 + 5 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + (( Rational[ 1, 4] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]) (1 - 5^Rational[1, 2])) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + ( Root[1 - 5 #^2 + 5 #^4& , 1, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[ 1, 2] ((Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^ Rational[1, 2]) ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^ Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[1, 2] + ( Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 100 #^2 + 80 #^4& , 1, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (-3 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[1, 2])) ((( Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (-3 - 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}, {( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[ 1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 4] (1 - 5^ Rational[1, 2])) (((Rational[1, 4] (3 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2])), ( Rational[1, 4] (-1 + 5^Rational[ 1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 + 5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0]) Root[1 - 20 #^2 + 80 #^4& , 3, 0])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 + 290 5^Rational[1, 2])/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[ 1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] (1 + Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^ Rational[-1, 2]) + ( Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2]) (((Rational[1, 4] (3 + 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2] + Root[1 - 20 #^2 + 80 #^4& , 2, 0] ( Rational[ 1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^ Rational[1, 2] + Rational[ 3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ((( Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 + 290 5^Rational[1, 2])) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (( Rational[1, 1600] (650 + 290 5^Rational[1, 2])) Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) ( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 + Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/( Rational[1, 64] (3 + 5^Rational[1, 2])^2 + Rational[1, 1600] (650 + 290 5^Rational[1, 2]) + Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^ Rational[-1, 2]))}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKLaWN3nh9Pjl/gXbrSe7yFXtV1A2Ofq8vMhet8Oo WM/v0X50edknhZrqz77s/+F4/2iV53UM+d8BUxwWWz/Yvy6K4YNs3Vt7qLw9 VN4eqt8eqh9DfgHE/v1Q+zHkoebbb4CYv98GKt8AlS9o9DIz77hvv2Pjb5/1 +97ao8uj+w9d/gfzfJ3ff77Yq23ze576/ep+KH8/lG9/4r1Hu5Luq/1lPvP1 BEw+2aPLo4cPujzUvv0NqOEJD491fvKeyTNf2j85fHS7T8YnjPBCdx96eCn8 16z8urRlv9yhJyn+5V8wwhPdfvTwQrcfXR49ftHDA91+dHl0/QkQ9fbyEPX7 ofbvfwqxfz+6PHr8octD7bOH2odhHnr8oMvnQ/y7fxfEv/vRwwPdf+jpEd1+ dHl089HVo8cvunr0+AMA5vj4wQ== "], 0.027477451508580844`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-0.8089918647028534, -0.006376521941758556}, 0.027477451508580844], InsetBox["1", Offset[{2, 2}, {-0.7815144131942726, 0.021100929566822288}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8089918647028534, 0.006376521941758556}, 0.027477451508580844], InsetBox["2", Offset[{2, 2}, {0.8364693162114343, 0.0338539734503394}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8089918647028536, 0.006376521941758528}, 0.027477451508580844], InsetBox["3", Offset[{2, 2}, {0.8364693162114344, 0.03385397345033937}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3117629759801712, 0.3432249792921048}, 0.027477451508580844], InsetBox["4", Offset[{2, 2}, {-1.2842855244715903, 0.37070243080068566}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3061896914425752, 0.36385983775565434}, 0.027477451508580844], InsetBox["5", Offset[{2, 2}, {1.3336671429511562, 0.39133728926423517}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.0045088819054023566, 0.5720436334561377}, 0.027477451508580844], InsetBox["6", Offset[{2, 2}, {0.022968569603178488, 0.5995210849647186}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.49268894483431946, 0.9295269492700333}, 0.027477451508580844], InsetBox["7", Offset[{2, 2}, {0.5201663963429003, 0.9570044007786142}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.818009628513658, 1.137710744970517}, 0.027477451508580844], InsetBox["8", Offset[{2, 2}, {-0.7905321770050772, 1.165188196479098}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.010082166442998364, -1.2791284505038971}, 0.027477451508580844], InsetBox["9", Offset[{2, 2}, {0.03755961795157921, -1.2516509989953162}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7999741008920489, -1.150463788854034}, 0.027477451508580844], InsetBox["10", Offset[{2, 2}, {-0.7724966493834681, -1.1229863373454532}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7999741008920489, 1.1504637888540339}, 0.027477451508580844], InsetBox["11", Offset[{2, 2}, {0.8274515524006297, 1.1779412403626148}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.010082166442998253, 1.279128450503897}, 0.027477451508580844], InsetBox["12", Offset[{2, 2}, {0.01739528506558259, 1.3066059020124778}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.50727999318272, -0.9216451346900012}, 0.027477451508580844], InsetBox["13", Offset[{2, 2}, {0.5347574446913008, -0.8941676831814204}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.0045088819054022455, -0.5720436334561377}, 0.027477451508580844], InsetBox["14", Offset[{2, 2}, {0.03198633341398309, -0.5445661819475569}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3061896914425752, -0.36385983775565434}, 0.027477451508580844], InsetBox["15", Offset[{2, 2}, {-1.2787122399339943, -0.3363823862470735}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.50727999318272, 0.921645134690001}, 0.027477451508580844], InsetBox["16", Offset[{2, 2}, {-0.47980254167413916, 0.9491225861985818}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.818009628513658, -1.137710744970517}, 0.027477451508580844], InsetBox["17", Offset[{2, 2}, {0.8454870800222388, -1.110233293461936}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4926889448343194, -0.9295269492700335}, 0.027477451508580844], InsetBox["18", Offset[{2, 2}, {-0.4652114933257386, -0.9020494977614527}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3117629759801712, -0.3432249792921048}, 0.027477451508580844], InsetBox["19", Offset[{2, 2}, {1.3392404274887522, -0.315747527783524}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8089918647028536, -0.006376521941758528}, 0.027477451508580844], InsetBox["20", Offset[{2, 2}, {-0.7815144131942727, 0.021100929566822316}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[4]=",ExpressionUUID->"7d39f62e-c7f8-41d4-b5b0-f0c2ca1ef90e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{0, 1, 0}", "Subsection",ExpressionUUID->"cf3eb0c3-a1f4-4dda-bcb4-878347f2955a"], Cell[BoxData[ RowBox[{"<<", "MathWorld`Graphs`"}]], "Input", CellLabel-> "In[120]:=",ExpressionUUID->"bbcbaad9-4f9f-46d9-9225-f93f89cd5013"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"0", ",", "1", ",", "0", ",", RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "6"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[124]:=",ExpressionUUID->"7d521d82-7847-41c2-856d-9f83cfa62171"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{ Rational[-1, 2] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[1, 2] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[ 1, 2] (3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[ 1, 2] (3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] ( 3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] ( 3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 4] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-1, 4] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + ( Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[ 1, 2] (3 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] ( 3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]}, { Rational[ 1, 2] (3 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2] + Rational[-1, 2] ( 3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[3, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2]) Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[-1, 2] ( 3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, { Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[ 1, 2] (3 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[ 1, 2] (3 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^ Rational[1, 2] + Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[-1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKA57pLZ6i87X/c27CpQ6Ku/avzvjGCK//NX+d0vc Wm5LvrQnVV5MdO+mjxu/7N8nz36p1/7hfqi8PVR+/1uIfvs3EP0ky0tAzLeH mm//r8b+ceCf+/sX+BdL7dvQtx+mD2rOfnR5dPejy0P59lA+zc1H9+8H4TI2 P7El9tt+f9QLfv8FIzyorR/dP+j60eXR45dS/Q8g6vdvh6i3J8RHD18Meag4 VB3F+tH9g85HT4/o+gnJo/PR44eQPADVaRqN "], 0.02765211202054159]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-1.3234144864674326, 0.46054271090807947}, 0.02765211202054159], InsetBox["1", Offset[{2, 2}, {-1.2957623744468911, 0.48819482292862104}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3234144864674326, -0.46054271090807947}, 0.02765211202054159], InsetBox["2", Offset[{2, 2}, {1.3510665984879742, -0.4328905988875379}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4997753829211006, -0.014985547239497354}, 0.02765211202054159], InsetBox["3", Offset[{2, 2}, {-0.472123270900559, 0.012666564781044234}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.4997753829211006, -0.014985547239497354}, 0.02765211202054159], InsetBox["4", Offset[{2, 2}, {-0.472123270900559, 0.012666564781044234}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8329006810803584, -0.7844064315333106}, 0.02765211202054159], InsetBox["5", Offset[{2, 2}, {0.8605527931009, -0.756754319512769}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8329006810803584, -0.7844064315333106}, 0.02765211202054159], InsetBox["6", Offset[{2, 2}, {0.8605527931009, -0.756754319512769}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7844064315333106, -0.8329006810803584}, 0.02765211202054159], InsetBox["7", Offset[{2, 2}, {-0.756754319512769, -0.8052485690598168}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7844064315333106, -0.8329006810803584}, 0.02765211202054159], InsetBox["8", Offset[{2, 2}, {-0.756754319512769, -0.8052485690598168}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.039232672013021164, 1.3084289392279354}, 0.02765211202054159], InsetBox["9", Offset[{2, 2}, {-0.011580559992479575, 1.3360810512484769}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.039232672013021164, 1.3084289392279354}, 0.02765211202054159], InsetBox["10", Offset[{2, 2}, {-0.011580559992479575, 1.3360810512484769}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.039232672013021275, -1.3084289392279351}, 0.02765211202054159], InsetBox["11", Offset[{2, 2}, {0.06688478403356286, -1.2807768272073936}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.039232672013021275, -1.3084289392279351}, 0.02765211202054159], InsetBox["12", Offset[{2, 2}, {0.06688478403356286, -1.2807768272073936}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.293443391988438, 0.5390080549341218}, 0.02765211202054159], InsetBox["13", Offset[{2, 2}, {1.3210955040089796, 0.5666601669546635}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8329006810803585, 0.7844064315333108}, 0.02765211202054159], InsetBox["14", Offset[{2, 2}, {-0.8052485690598169, 0.8120585435538524}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8329006810803585, 0.7844064315333108}, 0.02765211202054159], InsetBox["15", Offset[{2, 2}, {-0.8052485690598169, 0.8120585435538524}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.2934433919884376, -0.5390080549341218}, 0.02765211202054159], InsetBox["16", Offset[{2, 2}, {-1.265791279967896, -0.5113559429135802}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7844064315333108, 0.8329006810803585}, 0.02765211202054159], InsetBox["17", Offset[{2, 2}, {0.8120585435538524, 0.8605527931009002}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7844064315333108, 0.8329006810803585}, 0.02765211202054159], InsetBox["18", Offset[{2, 2}, {0.8120585435538524, 0.8605527931009002}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4997753829211006, 0.014985547239497354}, 0.02765211202054159], InsetBox["19", Offset[{2, 2}, {0.5274274949416422, 0.04263765926003894}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.4997753829211006, 0.014985547239497354}, 0.02765211202054159], InsetBox["20", Offset[{2, 2}, {0.5274274949416422, 0.04263765926003894}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[124]=",ExpressionUUID->"1f7fb817-acb5-4f3b-8beb-da6307532064"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{0, 0, 1}", "Subsection",ExpressionUUID->"953ec095-87c6-46f2-99b4-7f2cd7dea229"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[102]:=",ExpressionUUID->"c4e333e2-2a54-4639-8900-ff19220c622c"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], 0}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKK5cXcyzkvXbfgYo2BbG3fntwsf9K75Mn13++OV+ AvL26PJPmN24Oyxew/lQeXsYfytEvz2a+bjk7dHln0LMt0e17/b+kF+nz+7+ +GU/b/BC3lOXLsDdjy6P7j90eSjfHo0Pk7dHM98eXR49fNDl0cy3xx4ez6D+ e7AfXR7dfdjDC64f3XwM+9HDC91+7OGJiF/08EC3H3t4oaePZ/th9qHx7dHl sadPhDzUPvTwhJuHPf0i5NH0o/sHPXzs0dMjuv0E5NHtw4hfdPXo8QcAyFrJ Dw== "], 0.02843987676872603]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1.3763819204711736, 0.}, 0.02843987676872603], InsetBox["1", Offset[{2, 2}, {-1.3479420437024476, 0.02843987676872603}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3763819204711736, 0.}, 0.02843987676872603], InsetBox["2", Offset[{2, 2}, {1.4048217972398995, 0.02843987676872603}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.42532540417601994, -1.3090169943749475}, 0.02843987676872603], InsetBox["3", Offset[{2, 2}, {-0.3968855274072939, -1.2805771176062215}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.42532540417601994, 1.3090169943749475}, 0.02843987676872603], InsetBox["4", Offset[{2, 2}, {-0.3968855274072939, 1.3374568711436734}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.1135163644116066, -0.8090169943749475}, 0.02843987676872603], InsetBox["5", Offset[{2, 2}, {1.1419562411803326, -0.7805771176062214}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.1135163644116066, 0.8090169943749475}, 0.02843987676872603], InsetBox["6", Offset[{2, 2}, {1.1419562411803326, 0.8374568711436735}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.2628655560595668, -0.8090169943749475}, 0.02843987676872603], InsetBox["7", Offset[{2, 2}, {-0.23442567929084077, -0.7805771176062214}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.2628655560595668, 0.8090169943749475}, 0.02843987676872603], InsetBox["8", Offset[{2, 2}, {-0.23442567929084077, 0.8374568711436735}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6881909602355868, -0.5}, 0.02843987676872603], InsetBox["9", Offset[{2, 2}, {-0.6597510834668607, -0.47156012323127394}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6881909602355868, 0.5}, 0.02843987676872603], InsetBox["10", Offset[{2, 2}, {-0.6597510834668607, 0.5284398767687261}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6881909602355868, -0.5}, 0.02843987676872603], InsetBox["11", Offset[{2, 2}, {0.7166308370043128, -0.47156012323127394}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6881909602355868, 0.5}, 0.02843987676872603], InsetBox["12", Offset[{2, 2}, {0.7166308370043128, 0.5284398767687261}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.85065080835204, 0.}, 0.02843987676872603], InsetBox["13", Offset[{2, 2}, {0.879090685120766, 0.02843987676872603}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.1135163644116068, -0.8090169943749475}, 0.02843987676872603], InsetBox["14", Offset[{2, 2}, {-1.085076487642881, -0.7805771176062214}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.1135163644116068, 0.8090169943749475}, 0.02843987676872603], InsetBox["15", Offset[{2, 2}, {-1.085076487642881, 0.8374568711436735}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8506508083520399, 0.}, 0.02843987676872603], InsetBox["16", Offset[{2, 2}, {-0.8222109315833138, 0.02843987676872603}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.2628655560595668, -0.8090169943749475}, 0.02843987676872603], InsetBox["17", Offset[{2, 2}, {0.2913054328282928, -0.7805771176062214}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.2628655560595668, 0.8090169943749475}, 0.02843987676872603], InsetBox["18", Offset[{2, 2}, {0.2913054328282928, 0.8374568711436735}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.42532540417601994, -1.3090169943749475}, 0.02843987676872603], InsetBox["19", Offset[{2, 2}, {0.453765280944746, -1.2805771176062215}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.42532540417601994, 1.3090169943749475}, 0.02843987676872603], InsetBox["20", Offset[{2, 2}, {0.453765280944746, 1.3374568711436734}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[102]=",ExpressionUUID->"de3f19cf-a75b-431e-b269-2583eb97f58a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 0, 1}", "Subsection",ExpressionUUID->"3fd9f6cf-6ab4-4d21-a2fa-65e0d970cb66"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[105]:=",ExpressionUUID->"d74853fe-7fcc-49be-aeea-c54071215886"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], 0}, {(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], 0}, { 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^ Rational[ 1, 2])}, {-( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2]}, { Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[ 1, 2]}, {( Rational[1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^Rational[1, 2] - ( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2], Rational[-1, 2]}, {(Rational[1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^Rational[1, 2] - ( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2], Rational[1, 2]}, { Rational[1, 2] (Rational[1, 5] (5 + 5^Rational[1, 2]))^ Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {-( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, {(-2^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(-2^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {( Rational[1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] - 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJyFkqEKAkEURQetIn6BKPgRtldXo5i0CWajzWSzGASDWfAfDFNsYhLTCits sqy4LBtMCjM74ewuDky4nHnvztw37clsMK0qpZq/XbE7ju7r0yrWyq7e3osW EupDst3Nw6f+w4W8tvTTWzd12nLJtGfqBf3LuJDXTX+nR61Nw+8Eevg5X47v RBv9cvcn5/uK6wOBzrigv5Azn+J611+Yh9FXm99Dk/N+zAv17J/zZ170J+d8 mQf9yVnfN+cl84MWcs6PfGz8pITn5kOOer6H+Qj/I/3/cPrl5svznN8XR+zb fg== "], 0.028624219028096476`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1.1591230066978224, 0.}, 0.028624219028096476], InsetBox["1", Offset[{2, 2}, {-1.130498787669726, 0.028624219028096476}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.1591230066978224, 0.}, 0.028624219028096476], InsetBox["2", Offset[{2, 2}, {1.187747225725919, 0.028624219028096476}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.48662449473386504, -1.3090169943749475}, 0.028624219028096476], InsetBox["3", Offset[{2, 2}, {-0.45800027570576857, -1.280392775346851}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.48662449473386504, 1.3090169943749475}, 0.028624219028096476], InsetBox["4", Offset[{2, 2}, {-0.45800027570576857, 1.337641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6015009550075456, -0.8090169943749475}, 0.028624219028096476], InsetBox["5", Offset[{2, 2}, {0.6301251740356422, -0.7803927753468509}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6015009550075456, 0.8090169943749475}, 0.028624219028096476], InsetBox["6", Offset[{2, 2}, {0.6301251740356422, 0.837641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9732489894677301, -0.8090169943749475}, 0.028624219028096476], InsetBox["7", Offset[{2, 2}, {-0.9446247704396336, -0.7803927753468509}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9732489894677301, 0.8090169943749475}, 0.028624219028096476], InsetBox["8", Offset[{2, 2}, {-0.9446247704396336, 0.837641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.30075047750377293, -0.5}, 0.028624219028096476], InsetBox["9", Offset[{2, 2}, {0.3293746965318694, -0.4713757809719035}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.30075047750377293, 0.5}, 0.028624219028096476], InsetBox["10", Offset[{2, 2}, {0.3293746965318694, 0.5286242190280965}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.3007504775037728, -0.5}, 0.028624219028096476], InsetBox["11", Offset[{2, 2}, {-0.27212625847567634, -0.4713757809719035}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.3007504775037728, 0.5}, 0.028624219028096476], InsetBox["12", Offset[{2, 2}, {-0.27212625847567634, 0.5286242190280965}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3888759272451838, 0.}, 0.028624219028096476], InsetBox["13", Offset[{2, 2}, {1.4175001462732804, 0.028624219028096476}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6015009550075457, -0.8090169943749475}, 0.028624219028096476], InsetBox["14", Offset[{2, 2}, {-0.5728767359794493, -0.7803927753468509}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6015009550075457, 0.8090169943749475}, 0.028624219028096476], InsetBox["15", Offset[{2, 2}, {-0.5728767359794493, 0.837641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.3888759272451834, 0.}, 0.028624219028096476], InsetBox["16", Offset[{2, 2}, {-1.3602517082170869, 0.028624219028096476}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9732489894677302, -0.8090169943749475}, 0.028624219028096476], InsetBox["17", Offset[{2, 2}, {1.0018732084958266, -0.7803927753468509}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9732489894677302, 0.8090169943749475}, 0.028624219028096476], InsetBox["18", Offset[{2, 2}, {1.0018732084958266, 0.837641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.48662449473386504, -1.3090169943749475}, 0.028624219028096476], InsetBox["19", Offset[{2, 2}, {0.5152487137619615, -1.280392775346851}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.48662449473386504, 1.3090169943749475}, 0.028624219028096476], InsetBox["20", Offset[{2, 2}, {0.5152487137619615, 1.337641213403044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[105]=",ExpressionUUID->"3ef5dd85-16d4-4e93-82b4-baa763202dfa"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1, 0, -1}", "Subsection",ExpressionUUID->"bc8f9aef-6c65-471c-a5d8-611edbb0b949"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel-> "In[117]:=",ExpressionUUID->"63e8e1ec-b968-4463-a427-c424c368edcf"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], 0}, {(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], 0}, { 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-3 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^ Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2]}, {(Rational[1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^ Rational[1, 2] + ( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2], Rational[ 1, 2]}, {( Rational[1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^ Rational[1, 2] + ( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 5] (5 + 5^Rational[1, 2]))^ Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2])}, { 2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^ Rational[1, 2])}, {( Rational[1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2])}, {( Rational[1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] + 2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKL6YlPdfx+jlfgYoiFaYInBb5f3+FV+mzy5//NKe gPx+dHmVb9Ncdpw6bg/jQ+Xh/CiIfns083HJ70eXh5oPt+/Gii/63Rl794f8 On1298cv9h5LPd7V2T+Gm48uj+4/dHko3x6ND5Pfj2b+fnR59PBBl0czfz96 eNRb3nH2TfoC9e8De3R5dPehhxeafnTzMexHDy90+9Hl0eMXPTzQ7UeXR9ff AFG/H2YfGn8/ujx6/KHLe0LswyWPET/o8mj60f2DHj770dMjuv0E5NHtw4hf dPXo8QcAM1neDA== "], 0.02743621557726529]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-0.7873749722376379, 0.}, 0.02743621557726529], InsetBox["1", Offset[{2, 2}, {-0.7599387566603726, 0.02743621557726529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7873749722376379, 0.}, 0.02743621557726529], InsetBox["2", Offset[{2, 2}, {0.8148111878149031, 0.02743621557726529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.11487646027368059, 1.3090169943749475}, 0.02743621557726529], InsetBox["3", Offset[{2, 2}, {-0.0874402446964153, 1.3364532099522128}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.11487646027368059, -1.3090169943749475}, 0.02743621557726529], InsetBox["4", Offset[{2, 2}, {-0.0874402446964153, -1.281580778797682}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9732489894677301, 0.8090169943749475}, 0.02743621557726529], InsetBox["5", Offset[{2, 2}, {1.0006852050449955, 0.8364532099522127}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9732489894677301, -0.8090169943749475}, 0.02743621557726529], InsetBox["6", Offset[{2, 2}, {1.0006852050449955, -0.7815807787976822}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6015009550075456, 0.8090169943749475}, 0.02743621557726529], InsetBox["7", Offset[{2, 2}, {0.6289371705848109, 0.8364532099522127}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6015009550075456, -0.8090169943749475}, 0.02743621557726529], InsetBox["8", Offset[{2, 2}, {0.6289371705848109, -0.7815807787976822}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.2739994669715031, 0.5}, 0.02743621557726529], InsetBox["9", Offset[{2, 2}, {-1.2465632513942377, 0.5274362155772653}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.2739994669715031, -0.5}, 0.02743621557726529], InsetBox["10", Offset[{2, 2}, {-1.2465632513942377, -0.4725637844227347}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.273999466971503, 0.5}, 0.02743621557726529], InsetBox["11", Offset[{2, 2}, {1.3014356825487683, 0.5274362155772653}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.273999466971503, -0.5}, 0.02743621557726529], InsetBox["12", Offset[{2, 2}, {1.3014356825487683, -0.4725637844227347}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.18587401723009223, 0.}, 0.02743621557726529], InsetBox["13", Offset[{2, 2}, {-0.15843780165282695, 0.02743621557726529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9732489894677302, 0.8090169943749475}, 0.02743621557726529], InsetBox["14", Offset[{2, 2}, {-0.9458127738904649, 0.8364532099522127}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9732489894677302, -0.8090169943749475}, 0.02743621557726529], InsetBox["15", Offset[{2, 2}, {-0.9458127738904649, -0.7815807787976822}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.18587401723009223, 0.}, 0.02743621557726529], InsetBox["16", Offset[{2, 2}, {0.2133102328073575, 0.02743621557726529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6015009550075457, 0.8090169943749475}, 0.02743621557726529], InsetBox["17", Offset[{2, 2}, {-0.5740647394302805, 0.8364532099522127}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6015009550075457, -0.8090169943749475}, 0.02743621557726529], InsetBox["18", Offset[{2, 2}, {-0.5740647394302805, -0.7815807787976822}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.11487646027368059, 1.3090169943749475}, 0.02743621557726529], InsetBox["19", Offset[{2, 2}, {0.14231267585094587, 1.3364532099522128}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.11487646027368059, -1.3090169943749475}, 0.02743621557726529], InsetBox["20", Offset[{2, 2}, {0.14231267585094587, -1.281580778797682}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[117]=",ExpressionUUID->"4c23f1fc-b918-4f6a-8472-6d6f36b0e1d8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["{1.,5/2,5/2,-\[Pi]/8}", "Subsection",ExpressionUUID->"8e7630aa-33de-41f7-89e5-67211777b543"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronProjectionGraph", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"1.", ",", RowBox[{"5", "/", "2"}], ",", RowBox[{"5", "/", "2"}], ",", RowBox[{ RowBox[{"-", "\[Pi]"}], "/", "8"}]}], "}"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"96d0d904-4944-4e45-b9b5-c2196ef40be3"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo 8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/ r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+ /rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq "]}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKH5qs79xQ9nX/d/avU0XrL9m/1EnSeO237v9BhPt dlT4z9qPLl8TcynwasPL/bapQXtKMj7Zo8t3tn7qXS72Zb+91peUOU5XYfrt ofL7qyD67aH6MeTfQ+y3d4DYb48u3w0x394RYr69hNTOKWaHHu+3aqo9Fh7w bn/eCouFS2+/3P98Wch9PoNP+9Hl0f2HLr/jtJ3+3+/X7XO2rP3COw3O3w/l 2/++vuLUfN6n+yOEr/8uN1lijy6PHj7o8lD77KH22aOHxw7bJwqhbzbYN77a ZFBg9AUjvNDdhx5ezOtman0OO2IfF7vwyX3Fhxjy6Pajhxe6/ejy6PGLHh7o 9qPLo+tngKjfnwBRb78BYv/+Joj99ujy6PGHLv8HYp+9DcS+/ejmoccPunwB xL/2LyD+tUcPD3T/oadHdPvR5dHNR1ePHr/o6tHjDwDbABbl "], 0.027921892559131634`]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], { DiskBox[{-1.3414769237750133, 0.35446934895128324}, 0.027921892559131634], InsetBox["1", Offset[{2, 2}, {-1.3135550312158817, 0.38239124151041487}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.3414769237750133, -0.35446934895128324}, 0.027921892559131634], InsetBox["2", Offset[{2, 2}, {1.3693988163341448, -0.3265474563921516}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6174576668498188, -0.9473074795496992}, 0.027921892559131634], InsetBox["3", Offset[{2, 2}, {-0.5895357742906873, -0.9193855869905676}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.3745110474948734, 0.9558172015073416}, 0.027921892559131634], InsetBox["4", Offset[{2, 2}, {-0.3465891549357418, 0.9837390940664732}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.7969767187195338, -1.150501952774291}, 0.027921892559131634], InsetBox["5", Offset[{2, 2}, {0.8248986112786654, -1.1225800602151594}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9471259869327734, 0.02569378494776342}, 0.027921892559131634], InsetBox["6", Offset[{2, 2}, {0.9750478794919051, 0.053615677506895054}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.8080623768667132, -1.1367329334120144}, 0.027921892559131634], InsetBox["7", Offset[{2, 2}, {-0.7801404843075816, -1.1088110408528828}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6579131086534739, 0.039462804310039956}, 0.027921892559131634], InsetBox["8", Offset[{2, 2}, {-0.6299912160943422, 0.06738469686917159}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.15890349941342663, 0.5353850808559564}, 0.027921892559131634], InsetBox["9", Offset[{2, 2}, {-0.130981606854295, 0.563306973415088}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.06610614827172046, 1.262314024190943}, 0.027921892559131634], InsetBox["10", Offset[{2, 2}, {-0.03818425571258882, 1.2902359167500745}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.06610614827172057, -1.2623140241909427}, 0.027921892559131634], InsetBox["11", Offset[{2, 2}, {0.0940280408308522, -1.2343921316318112}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.1589034994134267, -0.5353850808559562}, 0.027921892559131634], InsetBox["12", Offset[{2, 2}, {0.18682539197255835, -0.5074631882968246}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.2555308861559265, 0.3321906076313646}, 0.027921892559131634], InsetBox["13", Offset[{2, 2}, {1.283452778715058, 0.36011250019049623}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9471259869327736, -0.025693784947763365}, 0.027921892559131634], InsetBox["14", Offset[{2, 2}, {-0.9192040943736419, 0.0022281076113682685}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.796976718719534, 1.150501952774291}, 0.027921892559131634], InsetBox["15", Offset[{2, 2}, {-0.7690548261604024, 1.1784238453334226}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.255530886155926, -0.3321906076313645}, 0.027921892559131634], InsetBox["16", Offset[{2, 2}, {-1.2276089935967944, -0.30426871507223285}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.657913108653474, -0.03946280431003976}, 0.027921892559131634], InsetBox["17", Offset[{2, 2}, {0.6858350012126055, -0.011540911750908128}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8080623768667134, 1.1367329334120146}, 0.027921892559131634], InsetBox["18", Offset[{2, 2}, {0.835984269425845, 1.1646548259711462}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.3745110474948734, -0.9558172015073416}, 0.027921892559131634], InsetBox["19", Offset[{2, 2}, {0.40243294005400504, -0.92789530894821}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.6174576668498188, 0.9473074795496992}, 0.027921892559131634], InsetBox["20", Offset[{2, 2}, {0.6453795594089504, 0.9752293721088308}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[25]=",ExpressionUUID->"fcf387ae-b103-4296-87f1-14351fa49c16"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Stereoscopic projections", "Section",ExpressionUUID->"16039d06-ccd4-4310-a720-aafa21f8cb02"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"927f151d-e8eb-4ffe-9e2e-079776adaa6d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"C2\"\>", ",", "\<\"C3\"\>", ",", "\<\"C5\"\>"}], "}"}]], "Output",ExpressionUUID->"84e2db5a-415b-48ff-b410-af29b8fd7b3e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Quiet", "@", RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "4111de57-9857-4f1e-bda9-3e9b8c6c0e82"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfXVcP3Xbxv2M0BBTknN/ATR7fYMaOB89xH+Te+v w9XJLN6V/uvNa3s0eXs0+f1Q8+HiUPPh5oT8On1298cvUP6D/Wh8++Pqd69P bzuyH0aHsibyP2W4aA+j0eTt0eTh4mj696Ppt0fTD1cHdY89mvtgfHsANTGF 4A== "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHfXVcP3Xbxv2M0BBTknN/ATR7fYMaOB89xH+Te+v w9XJLN6V/uvNa3s0eXs0+f1Q8+HiUPPh5oT8On1298cvUP6D/Wh8++Pqd69P bzuyH0aHsibyP2W4aA+j0eTt0eTh4mj696Ppt0fTD1cHdY89mvtgfHsANTGF 4A== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzbrh4OyJd7fvZ4CCW6uaprmxH7ZnQAP13zdumZl1 H66uEcz/b48mb48mvx9qPlwcaj7cnJBfp8/u/vgFyn+wH41vnzVjoZwe85n9 MNopZPcz4ZZ79jAaTd4eTR4ujqZ/P5p+ezT9cHVQ99ijuQ/GtwcAFnuBhg== "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzbrh4OyJd7fvZ4CCW6uaprmxH7ZnQAP13zdumZl1 H66uEcz/b48mb48mvx9qPlwcaj7cnJBfp8/u/vgFyn+wH41vnzVjoZwe85n9 MNopZPcz4ZZ79jAaTd4eTR4ujqZ/P5p+ezT9cHVQ99ijuQ/GtwcAFnuBhg== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfaUkVbXg6979DFBgc6H+UrfmGXsGNJAuru76Z+4j uLrQX6fP7v4o4oAmb48mfwBqPlwcaj7cnBCwui9Q/oP9aHz7JVl6n6MVL+6H 0fKb1StjAl/aw2g0eXs0ebg4mv79aPrt0fTD1UHdY4/mPhjfHgBgPn8W "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfaUkVbXg6979DFBgc6H+UrfmGXsGNJAuru76Z+4j uLrQX6fP7v4o4oAmb48mfwBqPlwcaj7cnBCwui9Q/oP9aHz7JVl6n6MVL+6H 0fKb1StjAl/aw2g0eXs0ebg4mv79aPrt0fTD1UHdY4/mPhjfHgBgPn8W "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", RowBox[{"GraphPlot", "[", RowBox[{ InterpretationBox[ StyleBox[ RowBox[{"\[SkeletonIndicator]", RowBox[{"Graph", ":", "<"}], "30", ",", "20", ",", "Undirected", RowBox[{">", "\[SkeletonIndicator]"}]}], ShowAutoStyles->False, AutoSpacing->False], Combinatorica`Graph[{{{1, 7}}, {{1, 11}}, {{1, 13}}, {{2, 8}}, {{2, 12}}, {{2, 14}}, {{3, 4}}, {{3, 11}}, {{3, 15}}, {{4, 12}}, {{4, 16}}, {{5, 6}}, {{5, 13}}, {{5, 17}}, {{6, 14}}, {{6, 18}}, {{7, 15}}, {{7, 17}}, {{8, 16}}, {{8, 18}}, {{9, 10}}, {{9, 11}}, {{9, 12}}, {{10, 13}}, {{10, 14}}, {{15, 19}}, {{16, 19}}, {{17, 20}}, {{18, 20}}, {{19, 20}}}, {{{-0.1381966011250105, 0}}, {{0.3090169943749474, 0}}, {{ 0, -0.6545084971874737}}, {{Indeterminate, DirectedInfinity[]}}, {{0, 0.6545084971874737}}, {{Indeterminate, DirectedInfinity[]}}, {{ 0.1381966011250105, 0}}, {{-0.3090169943749474, 0}}, {{-1.3090169943749475`, -0.5}}, {{-1.3090169943749475`, 0.5}}, {{-0.30901699437494745`, -0.30901699437494745`}}, {{ 1.3090169943749472`, 1.3090169943749472`}}, {{-0.30901699437494745`, 0.30901699437494745`}}, {{ 1.3090169943749472`, -1.3090169943749472`}}, {{ 0.30901699437494745`, -0.30901699437494745`}}, {{-1.3090169943749472`, 1.3090169943749472`}}, {{0.30901699437494745`, 0.30901699437494745`}}, {{-1.3090169943749472`, \ -1.3090169943749472`}}, {{1.3090169943749475`, -0.5}}, {{1.3090169943749475`, 0.5}}}], Editable->False], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/VbL5F6J7JH9DFCwRkTcMkvktj0DGlhkf/y75s1n cHXl3zdumZklfwBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vn9NnphXK c20/jGa0O6inPYXJAUajydujyR+AiaPpP4Cm3x5NP0z+ANQ99mjug/HtAZjz bAo= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/VbL5F6J7JH9DFCwRkTcMkvktj0DGlhkf/y75s1n cHXl3zdumZklfwBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vn9NnphXK c20/jGa0O6inPYXJAUajydujyR+AiaPpP4Cm3x5NP0z+ANQ99mjug/HtAZjz bAo= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHW0TMmulz7H9DFAQWO6h/Cr5kT0DGtjhd1gqOv8F XB1XtVBIS7DQATR5ezR5B6j5cHGo+XBzQn6dPrv74xco/8F+NL79srQ/i9aw 3NgPo1Mfdc9MOi7iAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AC3F gio= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHW0TMmulz7H9DFAQWO6h/Cr5kT0DGtjhd1gqOv8F XB1XtVBIS7DQATR5ezR5B6j5cHGo+XBzQn6dPrv74xco/8F+NL79srQ/i9aw 3NgPo1Mfdc9MOi7iAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AC3F gio= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzX2/cfk1txP7GaDgxLyvfY2qL+0Z0IBuvlI73/GX cHVSi3el/3rDfQBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vHxiqMC94 3839MDoOLB/oAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AO7vi5w= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzX2/cfk1txP7GaDgxLyvfY2qL+0Z0IBuvlI73/GX cHVSi3el/3rDfQBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vHxiqMC94 3839MDoOLB/oAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AO7vi5w= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzTCLfZO+8Kn9DFDw9HI8V9asj/YMaMBDdm/girev 4OrmVra6f+5nP4Amb48m7wA1Hy4ONR9uTsiv02d3f/wC5T/Yj8a3b3XrdPB2 ub0fRqeybf6SyahwAEajydujyTvAxNH0O6Dpt0fTD5N3gLrHHs19ML49APvJ c7g= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzTCLfZO+8Kn9DFDw9HI8V9asj/YMaMBDdm/girev 4OrmVra6f+5nP4Amb48m7wA1Hy4ONR9uTsiv02d3f/wC5T/Yj8a3b3XrdPB2 ub0fRqeybf6SyahwAEajydujyTvAxNH0O6Dpt0fTD5N3gLrHHs19ML49APvJ c7g= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHZ5qwrxy++n9DFCw/Mv02eWPf9ozoAGpxbvSf715 DVcX8uv02d0fWQ6gydujyTtAzYeLQ81HM+cLlP9gPxrf/ubb/UdV59/ZD6ND wfICB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwBVw5qy "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQHZ5qwrxy++n9DFCw/Mv02eWPf9ozoAGpxbvSf715 DVcX8uv02d0fWQ6gydujyTtAzYeLQ81HM+cLlP9gPxrf/ubb/UdV59/ZD6ND wfICB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwBVw5qy "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzfWm97Sl5dn9DFCgbb1clJOX1YEBDZhU/LBKOvMG rk4pIED9jRHzATR5ezR5B6j5cHGo+XB9Ib9On9398QvU3Af70fj2x/55Llt5 9e5+GF3Tm7cyv5zjAIxGk7dHk3eAiaPpd0DTb4+mHybvAHWPPZr7YHx7AEyQ gb4= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQzfWm97Sl5dn9DFCgbb1clJOX1YEBDZhU/LBKOvMG rk4pIED9jRHzATR5ezR5B6j5cHGo+XB9Ib9On9398QvU3Af70fj2x/55Llt5 9e5+GF3Tm7cyv5zjAIxGk7dHk3eAiaPpd0DTb4+mHybvAHWPPZr7YHx7AEyQ gb4= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/Z7n7CS+Oef2M0DBzwf/ei4yizkwoIGHNxlnN058 C1d3K+Ny99HPjAfQ5O3R5B2g5sPFoebD9YX8On1298cvUHMf7Efj29exR7G4 vL23H0a7dJz9Zn2X+QCMRpO3R5N3gImj6XdA02+Pph8m7wB1jz2a+2B8ewDO LoHA "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/Z7n7CS+Oef2M0DBzwf/ei4yizkwoIGHNxlnN058 C1d3K+Ny99HPjAfQ5O3R5B2g5sPFoebD9YX8On1298cvUHMf7Efj29exR7G4 vL23H0a7dJz9Zn2X+QCMRpO3R5N3gImj6XdA02+Pph8m7wB1jz2a+2B8ewDO LoHA "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ3Wtbxrfh8fn9DFDgrsW8t4k1yIEBDXC2xX/Y6fAO ri5lt+n0DBbGA2jy9mjyDlDz4eJQ8+H6Qn6dPrv74xeouQ/2o/Htr9340BX1 6v5+GF24aN/d70qMB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwAt e4uM "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ3Wtbxrfh8fn9DFDgrsW8t4k1yIEBDXC2xX/Y6fAO ri5lt+n0DBbGA2jy9mjyDlDz4eJQ8+H6Qn6dPrv74xeouQ/2o/Htr9340BX1 6v5+GF24aN/d70qMB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwAt e4uM "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvWGL1voJnRf2M0CBGd/nrynH5A4woIH85Bm9DXff wdVVmTTtsfFiOIAmb48m7wA1Hy4ONd8Bxg/5dfrs7o9foOY+2I/Gt1e/Ldnh nPFgP4zeN/NwO8uqf3AaTd4eTR6m3x5Nvz2afns0/XAa6h57NPfB+PYAs2yD sg== "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvWGL1voJnRf2M0CBGd/nrynH5A4woIH85Bm9DXff wdVVmTTtsfFiOIAmb48m7wA1Hy4ONd8Bxg/5dfrs7o9foOY+2I/Gt1e/Ldnh nPFgP4zeN/NwO8uqf3AaTd4eTR6m3x5Nvz2afns0/XAa6h57NPfB+PYAs2yD sg== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPZX5wstqsYv7GaCg4fvGLTOz+A8woIE6sPj7/aj8 /2j89/Zo8vZQ8+HiUPMdYPyQX6fP7v74BWrOg/1ofPu/vKl3Ei8+2A+jT3+1 tm+V/AOn0eTt0eRh+u3R9Nuj6bdH0w+noe6xR3MfjG8PAAxPj1Y= "], { {GrayLevel[0], LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, { 3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6, 14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, { 9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, { 19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPZX5wstqsYv7GaCg4fvGLTOz+A8woIE6sPj7/aj8 /2j89/Zo8vZQ8+HiUPMdYPyQX6fP7v74BWrOg/1ofPu/vKl3Ei8+2A+jT3+1 tm+V/AOn0eTt0eRh+u3R9Nuj6bdH0w+noe6xR3MfjG8PAAxPj1Y= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "def94d1d-b8e4-4da4-8937-b41b86308424"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "2", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "95edaba2-bd35-4c29-b487-ebd3f62e713d"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiwi2jr7ZM8uF+k2uX499j39mj8/SZWxwqWmW+2 d9xSfbBryQF0vn2tySzTD2wv96/aGMN+OukxOn9//U+Vg/G+b+2vTjpfH/nt uj0af3/jj0/TD5Vdt/euu/dE2uAwOt8eYt/h/TD3+lvZpHME7bHf+Ngtd1vb CXs0/n4I/wxc/Qkbi51JXFf2X648NPEr9/n9aHz7k3evfv2XtHo/f03Abg65 m/vR+PYA9DSQ/g== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQiwi2jr7ZM8uF+k2uX499j39mj8/SZWxwqWmW+2 d9xSfbBryQF0vn2tySzTD2wv96/aGMN+OukxOn9//U+Vg/G+b+2vTjpfH/nt uj0af3/jj0/TD5Vdt/euu/dE2uAwOt8eYt/h/TD3+lvZpHME7bHf+Ngtd1vb CXs0/n4I/wxc/Qkbi51JXFf2X648NPEr9/n9aHz7k3evfv2XtHo/f03Abg65 m/vR+PYA9DSQ/g== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4/TqWFtFwZb/Z/K3HCs8yOaDxD/Qxnr09dd0u +5OnZR+WSh/fj8a39zSwCRBj/Ld/0cEFM/fZfkfn78/7/s1k2gRGhyk/pzz3 3PXGHo2//yyHg0TP7Hv2DxUTz81nP4nOt4fYd2o/zL0dZWnWn8RP2P97wi03 8+4VezT+fgj/Bly9+AYu82iVW/sTv7yseWB/ZT8a3/5m0tWWw3c27l/pxGt0 I/HBfjS+PQCgDpS8 "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4/TqWFtFwZb/Z/K3HCs8yOaDxD/Qxnr09dd0u +5OnZR+WSh/fj8a39zSwCRBj/Ld/0cEFM/fZfkfn78/7/s1k2gRGhyk/pzz3 3PXGHo2//yyHg0TP7Hv2DxUTz81nP4nOt4fYd2o/zL0dZWnWn8RP2P97wi03 8+4VezT+fgj/Bly9+AYu82iVW/sTv7yseWB/ZT8a3/5m0tWWw3c27l/pxGt0 I/HBfjS+PQCgDpS8 "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjI1pSLmLF+3P//kdIqPwt5BzT+gTNzG86U9R2w lzRS07dZe2Y/Gt+eK//A0ccvJA48qFKpa/EWdkDjHxD0u+dlqCXrYHfhT/iU m+wOaPwDV9NMExx5H9m7Zp5jNWg7ux+Nbw+x78J+mHuTDpmIcPZdsv/H+PrA MsEH9mj8/RD+I7h6h83G77iv3ds/0/jw4c2Pru9H49svz7zjcVtw6345k9DH T4Me70fj2wMAJeKG5g== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjI1pSLmLF+3P//kdIqPwt5BzT+gTNzG86U9R2w lzRS07dZe2Y/Gt+eK//A0ccvJA48qFKpa/EWdkDjHxD0u+dlqCXrYHfhT/iU m+wOaPwDV9NMExx5H9m7Zp5jNWg7ux+Nbw+x78J+mHuTDpmIcPZdsv/H+PrA MsEH9mj8/RD+I7h6h83G77iv3ds/0/jw4c2Pru9H49svz7zjcVtw6345k9DH T4Me70fj2wMAJeKG5g== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgU33L5sGQdq4OPX1r/xkfGB9D4DpnzeZs4ow/b V9zMUTY4fGE/Gt9+4zPGzKbd+g5e2tl1hVM0DqDxHZb3dV6aOtnowJxHhxwe J8odQOM7rOnaNN3B+on9Pd+PdundF/aj8e0h9l3eD3OvbdUHE8WS2/YTveZ8 7jz23B6Nvx/Cfw1Xr8p1nneO+8P9Um03T7AdvbUfjW9vwSLjrzJ3+/4/mU+Z zVc83Y/GtwcAMBWIjQ== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgU33L5sGQdq4OPX1r/xkfGB9D4DpnzeZs4ow/b V9zMUTY4fGE/Gt9+4zPGzKbd+g5e2tl1hVM0DqDxHZb3dV6aOtnowJxHhxwe J8odQOM7rOnaNN3B+on9Pd+PdundF/aj8e0h9l3eD3OvbdUHE8WS2/YTveZ8 7jz23B6Nvx/Cfw1Xr8p1nneO+8P9Um03T7AdvbUfjW9vwSLjrzJ3+/4/mU+Z zVc83Y/GtwcAMBWIjQ== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgY/FQV3nL0pb2g+T+lv4vED6DxHe788GoqvXDU fvql9G6PJ5f2o/HtbeT4Zb/cFnKYZ+z9K8+c9wAa3yH5bvH8VSJiB1qsNnp3 8zEdQOM7lAqn16xieGbPd1LKxuDfxf1ofHuIfVf3w9wbw7/fcaPuE/ukh6Ef 5lV+tEfj74fwv8DVm36f/u/eqUf7G1bt0/4hc3c/Gt/+z8OKd9Hrdu4/vvON 8ZTe5/vR+PYAViaQ+w== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgY/FQV3nL0pb2g+T+lv4vED6DxHe788GoqvXDU fvql9G6PJ5f2o/HtbeT4Zb/cFnKYZ+z9K8+c9wAa3yH5bvH8VSJiB1qsNnp3 8zEdQOM7lAqn16xieGbPd1LKxuDfxf1ofHuIfVf3w9wbw7/fcaPuE/ukh6Ef 5lV+tEfj74fwv8DVm36f/u/eqUf7G1bt0/4hc3c/Gt/+z8OKd9Hrdu4/vvON 8ZTe5/vR+PYAViaQ+w== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhYa6773qbx0H5ixgkpsUr+A2h8h52P/Tdu/3vc vvbmTfVHx67sR+PbL1/aEj5ZhtOhhDtwfm8x8wE0vsN3/QLRrWm8Byx3vfsm wP1jPxrf3mRNvlpixXP7/j7r53mGl/ej8e0h9l3fD3Mv+4+VvFEJ7+w3X5q1 vMXvlz0afz+E/w+uPnEu/5kj3E/2P17LLSnFd38/Gt++r4zh8qOU3fst5yk3 HJF/uR+Nbw8AAwWLQA== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhYa6773qbx0H5ixgkpsUr+A2h8h52P/Tdu/3vc vvbmTfVHx67sR+PbL1/aEj5ZhtOhhDtwfm8x8wE0vsN3/QLRrWm8Byx3vfsm wP1jPxrf3mRNvlpixXP7/j7r53mGl/ej8e0h9l3fD3Mv+4+VvFEJ7+w3X5q1 vMXvlz0afz+E/w+uPnEu/5kj3E/2P17LLSnFd38/Gt++r4zh8qOU3fst5yk3 HJF/uR+Nbw8AAwWLQA== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjwrbtQZ19w2/5GYJ2qgRbnATS+w5TDNTd73p20 F3OOMFIvvbYfjW//fomko6gIi8O1nsDa31L/96Px7Tfu+mwg28R+4JbY6rMp lp/3o/HtHUoUpU9teWHvE1XTpmdyZT8a3x5i3839MPeWdJTO6iz9Yf/u+dKu ZXqsDmj8AxA+xwGY+otRufeZpZ7uv3kvhT0p4sF+NL596ekFdw2v7dn/n3ux V2XRq/1ofHsAS4eKgQ== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjwrbtQZ19w2/5GYJ2qgRbnATS+w5TDNTd73p20 F3OOMFIvvbYfjW//fomko6gIi8O1nsDa31L/96Px7Tfu+mwg28R+4JbY6rMp lp/3o/HtHUoUpU9teWHvE1XTpmdyZT8a3x5i3839MPeWdJTO6iz9Yf/u+dKu ZXqsDmj8AxA+xwGY+otRufeZpZ7uv3kvhT0p4sF+NL596ekFdw2v7dn/n3ux V2XRq/1ofHsAS4eKgQ== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjsY/y49cWe6/ZXL59tjzzKegCN7+C/YMNi9zWn 7SPb/SZrfb++H41v/1fvMdftOEYH3Q+mLFwvf+1H49ub+i9UrAhjOVC7PZV7 5cIP+9H49mHzFj97ceilvceNiy3Cglf3o/HtIfbd3g9zr9NsOdHFHuwOVf1h 6gJaIg5o/AMQvvgBmPqL5k8272R4tn91uaaCOPfD/Wh8eyWT31MrBfftP588 6dGCya/3o/HtATBsiLc= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjsY/y49cWe6/ZXL59tjzzKegCN7+C/YMNi9zWn 7SPb/SZrfb++H41v/1fvMdftOEYH3Q+mLFwvf+1H49ub+i9UrAhjOVC7PZV7 5cIP+9H49mHzFj97ceilvceNiy3Cglf3o/HtIfbd3g9zr9NsOdHFHuwOVf1h 6gJaIg5o/AMQvvgBmPqL5k8272R4tn91uaaCOPfD/Wh8eyWT31MrBfftP588 6dGCya/3o/HtATBsiLc= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh0Pf7GL5V71V4hSJZv6jLmA2h8ByuVc4fT7c7a V/kvOJsVfHM/Gt/+86z7EtOi/9uXlWc7qnj92I/Gt3+9Ms8vL5rpwOTIeVu5 2d7tR+Pb17ty7TVZ88reKXB97e3zV/ej8e0h9t3dD3OvuGkY31lWVYc9cjIH j5kYOaDxD0D4pgdg6g/XKX3+ffzZfg9N67r8pQ/3o/Ht75va+R9T3L//5UUh 29jeN/vR+PYAe2GDVQ== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh0Pf7GL5V71V4hSJZv6jLmA2h8ByuVc4fT7c7a V/kvOJsVfHM/Gt/+86z7EtOi/9uXlWc7qnj92I/Gt3+9Ms8vL5rpwOTIeVu5 2d7tR+Pb17ty7TVZ88reKXB97e3zV/ej8e0h9t3dD3OvuGkY31lWVYc9cjIH j5kYOaDxD0D4pgdg6g/XKX3+ffzZfg9N67r8pQ/3o/Ht75va+R9T3L//5UUh 29jeN/vR+PYAe2GDVQ== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4TDUV9Ltx2b6VX0sxxJjpABrfYV6M2E221efs c6yueBj039qPxre321H+SJ37r/3G379N7eu/7Ufj25/oS9o8l4HxwEa3DRKX zr3ej8a356qW8dlV/to+YdtvW6+ya/vR+PYQ++7th7l3QmfCpOI6pQNKqUZ7 1VkMDqDxHSB8IweYemnmuH/nS5/vFxcwEBHVebQfjW+/6/5Ps5XsB/a7v9Y1 tkp/ux+Nbw8A1Zd/bQ== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4TDUV9Ltx2b6VX0sxxJjpABrfYV6M2E221efs c6yueBj039qPxre321H+SJ37r/3G379N7eu/7Ufj25/oS9o8l4HxwEa3DRKX zr3ej8a356qW8dlV/to+YdtvW6+ya/vR+PYQ++7th7l3QmfCpOI6pQNKqUZ7 1VkMDqDxHSB8IweYemnmuH/nS5/vFxcwEBHVebQfjW+/6/5Ps5XsB/a7v9Y1 tkp/ux+Nbw8A1Zd/bQ== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQicv/cj98fGS/b7vX57JakyHkDjO0holRlrfD9v 37C/MO3Sutv70fj2VZwvjiTH/LZ3zPi1abLh1/1ofPvpCsYfClgYDlRE/Tia aPRqPxrfvviigN1VrTf2RzidKg5yXN+PxreH2Hd/P8y9vt35OTyXeQ7cu8Hf UfhN4gAa3wHCl3GAqb8+ySnhJN+L/dffvo+avOjRfjS+fc4vi3L9ggP7d34S EP+i9m4/Gt8eAD2wjtA= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQicv/cj98fGS/b7vX57JakyHkDjO0holRlrfD9v 37C/MO3Sutv70fj2VZwvjiTH/LZ3zPi1abLh1/1ofPvpCsYfClgYDlRE/Tia aPRqPxrfvviigN1VrTf2RzidKg5yXN+PxreH2Hd/P8y9vt35OTyXeQ7cu8Hf UfhN4gAa3wHCl3GAqb8+ySnhJN+L/dffvo+avOjRfjS+fc4vi3L9ggP7d34S EP+i9m4/Gt8eAD2wjtA= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjYbTK64H/pov3nvJemThEMB9D4DsGdDuJVky/Y M9jYvXy19c5+NL69/OJsB37RX/b/t8kasZt82Y/Gt1/vX2GyuPPf/nO+WcW/ frzYj8a3n21psH/VyTf2/01ivy3pur4fjW8Pse/Bfph7Vz5iYfjHyHxgfr39 MqEygQNofAcIX9gBpn5tX2pR0bQX+5lcdias4H68H41vv2O1lvHDMwf2N917 fvvXhXf70fj2ACL1jrQ= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjYbTK64H/pov3nvJemThEMB9D4DsGdDuJVky/Y M9jYvXy19c5+NL69/OJsB37RX/b/t8kasZt82Y/Gt1/vX2GyuPPf/nO+WcW/ frzYj8a3n21psH/VyTf2/01ivy3pur4fjW8Pse/Bfph7Vz5iYfjHyHxgfr39 MqEygQNofAcIX9gBpn5tX2pR0bQX+5lcdias4H68H41vv2O1lvHDMwf2N917 fvvXhXf70fj2ACL1jrQ= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhkeVn8nal00T6eg6vPPO//fjS+PcP12NpPchft m2dV7KtZfnc/Gt++9eEkk+fCP+3z7CpeXs35vB+Nby//5cHm3pi/+x9PVvY8 zPRiPxrfPo3x7eKa8Lf2L6eUzJj37/p+ND7U/of7Ye79nTRH6n/O3/2afv16 R6o5D6DxHSB8XgeY+pzlhxMn87/cnzV97enqzMf70fj2z9KXciyVP7j//sPn 4qcz3u9H49sDAL6OltY= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhkeVn8nal00T6eg6vPPO//fjS+PcP12NpPchft m2dV7KtZfnc/Gt++9eEkk+fCP+3z7CpeXs35vB+Nby//5cHm3pi/+x9PVvY8 zPRiPxrfPo3x7eKa8Lf2L6eUzJj37/p+ND7U/of7Ye79nTRH6n/O3/2afv16 R6o5D6DxHSB8XgeY+pzlhxMn87/cnzV97enqzMf70fj2z9KXciyVP7j//sPn 4qcz3u9H49sDAL6OltY= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgIZHrceTnlgv3+q08XBmX924/Gt3+WvSS7ZP5F +/Wf1i0UbLu3H41v/6vcmrXL5Ye90rLvvmZnPu1H49vbT/KtOZL5Z79V/J3l FjbP96Px7e+s9TF6fO2tfZF//bSzaTf2o/Gh9j/cD3PvwWWRy9Nm/9ivGa/7 o8Cf9QAa3wHC53CAqTdzvNaZXPNyf2DGS5Gjex/vR+PbT990c+G/zIP7uQQ0 H2h/fL8fjW8PABCwmPk= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQgIZHrceTnlgv3+q08XBmX924/Gt3+WvSS7ZP5F +/Wf1i0UbLu3H41v/6vcmrXL5Ye90rLvvmZnPu1H49vbT/KtOZL5Z79V/J3l FjbP96Px7e+s9TF6fO2tfZF//bSzaTf2o/Gh9j/cD3PvwWWRy9Nm/9ivGa/7 o8Cf9QAa3wHC53CAqTdzvNaZXPNyf2DGS5Gjex/vR+PbT990c+G/zIP7uQQ0 H2h/fL8fjW8PABCwmPk= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhcY3gkYKtwwd7kT7ym/5S/+9H49gqvLjrbiV2y v376G9vF4Pv70fj2f3dYuZ+Y+d3eMk/45Ef3T/vR+PbGlsXd1xf+3v9NeuaB XTOe7Ufj2+v5hah+83xnf2i/P9eLIzf2o/Gh9j/aD3Pv8y9bdz1p/bo/a7qu 7tbFTAfQ+A4QPqsDTP2/dPWaNfde7o/cc3TVM84n+9H49ntnbF6itvbgftlz 38J1zT7sR+PbAwA1Dpn7 "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhcY3gkYKtwwd7kT7ym/5S/+9H49gqvLjrbiV2y v376G9vF4Pv70fj2f3dYuZ+Y+d3eMk/45Ef3T/vR+PbGlsXd1xf+3v9NeuaB XTOe7Ufj2+v5hah+83xnf2i/P9eLIzf2o/Gh9j/aD3Pv8y9bdz1p/bo/a7qu 7tbFTAfQ+A4QPqsDTP2/dPWaNfde7o/cc3TVM84n+9H49ntnbF6itvbgftlz 38J1zT7sR+PbAwA1Dpn7 "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhMZf3P/LvmvP28Lg1t5od/9qPx7bmZrRgSWi7Z H+cNZvTkfLAfjW+/5tqulTu5vtv/PjiDXenmx/1ofPv47VZckb9+7XedKO9+ iP/ZfjS+/bn+mtCsTe/sPxllGARL3dyPxofa/2g/zL2pMTPf2id+3p/K2F09 8QTDATS+A4TP7ABTf6GTJ/Sx+av9gvee9DP6P9mPxrf/In6AUebVwf1Hq3mm iOZ92I/GtwcACdmF6w== "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQhMZf3P/LvmvP28Lg1t5od/9qPx7bmZrRgSWi7Z H+cNZvTkfLAfjW+/5tqulTu5vtv/PjiDXenmx/1ofPv47VZckb9+7XedKO9+ iP/ZfjS+/bn+mtCsTe/sPxllGARL3dyPxofa/2g/zL2pMTPf2id+3p/K2F09 8QTDATS+A4TP7ABTf6GTJ/Sx+av9gvee9DP6P9mPxrf/In6AUebVwf1Hq3mm iOZ92I/GtwcACdmF6w== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4L44MuXjtnH29XWb4PI8/+9H49v7Tv0YffnXJ PsxNdOuXxAf70fj2p3tdtJUmfrPXkzt57FPVx/1ofHvTQ+dD/2T/2r/IwUEx fPbT/Wh8+/LlB9qXC763T3sy09Y04+Z+ND7U/kf7Ye5tP9WedfXsx/1zhdKd 067924/Gt4fwGR1g6u/uVIux7ny1n2/2nRPMfU/2o/HtU7elr9ugeGj/gmNX jPkXftiPxrcHANSlmAk= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQh4L44MuXjtnH29XWb4PI8/+9H49v7Tv0YffnXJ PsxNdOuXxAf70fj2p3tdtJUmfrPXkzt57FPVx/1ofHvTQ+dD/2T/2r/IwUEx fPbT/Wh8+/LlB9qXC763T3sy09Y04+Z+ND7U/kf7Ye5tP9WedfXsx/1zhdKd 067924/Gt4fwGR1g6u/uVIux7ny1n2/2nRPMfU/2o/HtU7elr9ugeGj/gmNX jPkXftiPxrcHANSlmAk= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjkXHK/f8P9nH35HqVDdUd/70fj27M59gYaeV22 t2J41zlry4P9aHx78y0Jgc0a3+yNp7fee6H5cT8a3751nWdu3cef+zu8rI5r mz/dj8a3V5Vq3Hoj4739LsfY9U3rb+5H40Ptf7wf5l4xp41Hd8z4sP/9xWcN DPv/7Efj20P4DA4w9XJx+m82X361f9a7eYqbjz/Zj8a3l/7gpjo55ND+3ceX 2ew6/2E/Gt8eAFphlns= "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjkXHK/f8P9nH35HqVDdUd/70fj27M59gYaeV22 t2J41zlry4P9aHx78y0Jgc0a3+yNp7fee6H5cT8a3751nWdu3cef+zu8rI5r mz/dj8a3V5Vq3Hoj4739LsfY9U3rb+5H40Ptf7wf5l4xp41Hd8z4sP/9xWcN DPv/7Efj20P4DA4w9XJx+m82X361f9a7eYqbjz/Zj8a3l/7gpjo55ND+3ceX 2ew6/2E/Gt8eAFphlns= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjM3bFuY/vps/YWF/4eqAr+vR+Nb//o8dfAmMWX 7e+qLMi/xPhwPxrfvq5h4rWus1/tQ3n2bSh8/GE/Gt9+UvjxM7/bfu4/1l6v IPTgyX40vv18t8NxP3a8t5+xwz6e4+PN/Wh8qP2P98Pcm3Nli+tcj/f7gzI8 b64U/70fjW8P4f+3h6k/94Dlp5LE6/1b3NxDtv55sh+Nb+84/ee00OZD+xsm fj4459eH/Wh8ewDBRKVC "], { {GrayLevel[0], LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, { 3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, { 9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, { 18, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQTQjM3bFuY/vps/YWF/4eqAr+vR+Nb//o8dfAmMWX 7e+qLMi/xPhwPxrfvq5h4rWus1/tQ3n2bSh8/GE/Gt9+UvjxM7/bfu4/1l6v IPTgyX40vv18t8NxP3a8t5+xwz6e4+PN/Wh8qP2P98Pcm3Nli+tcj/f7gzI8 b64U/70fjW8P4f+3h6k/94Dlp5LE6/1b3NxDtv55sh+Nb+84/ee00OZD+xsm fj4459eH/Wh8ewDBRKVC "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "16c0681c-8337-46a6-ba11-f4b5f86ecfc9"] }, Closed]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Quiet", "@", RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"SkeletonGraph", "[", RowBox[{ RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",", "\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",", RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@", RowBox[{"Range", "[", RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\ "78a751de-431d-4448-89fc-af1caef794f0"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXdYryiLSdty+w/yJY7Pko/1ofHv5lO5Sac/D+zfF z8ziZNuDzt/v/PmPo3Q4z4Hs6ze2qkxncUDjH7hq7sX8vFnQgQEKRJMvGTtd 3rWf75rx36jazfvR+PYiKZrrvrE/toep93GvZzCecgDOZ4/7vHTmteNw/gUt kw0Mp+/tL/khYhQWf20/Gt/+Vllqbcayr/amx1deKFwh4IDGP5B/xa3Lqnyt fVv4yTevVh+zR+Pvn2i+LE2ubon9jObUiE8d+9H59gAsno1K "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXdYryiLSdty+w/yJY7Pko/1ofHv5lO5Sac/D+zfF z8ziZNuDzt/v/PmPo3Q4z4Hs6ze2qkxncUDjH7hq7sX8vFnQgQEKRJMvGTtd 3rWf75rx36jazfvR+PYiKZrrvrE/toep93GvZzCecgDOZ4/7vHTmteNw/gUt kw0Mp+/tL/khYhQWf20/Gt/+Vllqbcayr/amx1deKFwh4IDGP5B/xa3Lqnyt fVv4yTevVh+zR+Pvn2i+LE2ubon9jObUiE8d+9H59gAsno1K "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPffNwQuuLGftzz6svVke/Gw/Gt9ee0Fp1T/bC/sv LnR3fT3zODp/f/AZs5l3/io6xPn2lW5VkTqAxnc4fv5brYat2gEGKPhb83S1 0KZD+zVPfTaYpLV7PxrfnqE2yH9m5XN7mPoP+xeFv5Q+DucfUlhmMkH4Cpy/ YudN6Xt/H+0v/GnBuXXG7f1ofPvdE99mKNZyH5C6vvFRs5rqATS+g5p9V8PN CzvsOz+ZP2KWuGyPxt8vVhLAUDFhjT3/pA17Y38dRefbAwCAKJu8 "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPffNwQuuLGftzz6svVke/Gw/Gt9ee0Fp1T/bC/sv LnR3fT3zODp/f/AZs5l3/io6xPn2lW5VkTqAxnc4fv5brYat2gEGKPhb83S1 0KZD+zVPfTaYpLV7PxrfnqE2yH9m5XN7mPoP+xeFv5Q+DucfUlhmMkH4Cpy/ YudN6Xt/H+0v/GnBuXXG7f1ofPvdE99mKNZyH5C6vvFRs5rqATS+g5p9V8PN CzvsOz+ZP2KWuGyPxt8vVhLAUDFhjT3/pA17Y38dRefbAwCAKJu8 "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Tk9xFsi94K9WOayoz/dXu5H49srGsc8+bPhxn7j iMqc8g8X0fn7F97f9e/8b04HB/v5MpcfMB1A4zvEuhy4zM0vcIABCjgbm8TP uh/fXz4/uYvn1YH9aHz7pxVNnX8mv7KHqT/176DajmNn4Hz+qMUbtVvvwfni HdlZXQ1P9xvosN2cYHd/Pxrfvt3sa2jHzc/75wVNW7+mm+8AGt/BiEdU/Nyd Q/an1+0JOsJ21x6Nv9+D2Znj0YmN9qcDEmZrxZ1G59sDAFbklFI= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Tk9xFsi94K9WOayoz/dXu5H49srGsc8+bPhxn7j iMqc8g8X0fn7F97f9e/8b04HB/v5MpcfMB1A4zvEuhy4zM0vcIABCjgbm8TP uh/fXz4/uYvn1YH9aHz7pxVNnX8mv7KHqT/176DajmNn4Hz+qMUbtVvvwfni HdlZXQ1P9xvosN2cYHd/Pxrfvt3sa2jHzc/75wVNW7+mm+8AGt/BiEdU/Nyd Q/an1+0JOsJ21x6Nv9+D2Znj0YmN9qcDEmZrxZ1G59sDAFbklFI= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQnX1618Ww6xftl80P7sgseb0fjW9/OEXMuOfTw/1d gUf3uYjcQufvZ8y8opN1gsnh+sJLspzev9H59g1aizjbzdkPMEDBB56117l8 Tu8v1tBUk7l6eD8a3/7vyg41mXtv7GHqZ5/SZLp57wKcz9QxI0JH/xmcv2WX Ys3OqOf7P/TtMjrz/cF+NL49oz/vglmb3uzPEtqevVCE7QAa34GzWUP6RvZp +wcSD7+ZST61R+PvX9nCtjr51hZ7we+598q5L6Dz7QGQqZNj "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQnX1618Ww6xftl80P7sgseb0fjW9/OEXMuOfTw/1d gUf3uYjcQufvZ8y8opN1gsnh+sJLspzev9H59g1aizjbzdkPMEDBB56117l8 Tu8v1tBUk7l6eD8a3/7vyg41mXtv7GHqZ5/SZLp57wKcz9QxI0JH/xmcv2WX Ys3OqOf7P/TtMjrz/cF+NL49oz/vglmb3uzPEtqevVCE7QAa34GzWUP6RvZp +wcSD7+ZST61R+PvX9nCtjr51hZ7we+598q5L6Dz7QGQqZNj "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfeD6/dPz3l6yv9W9d+oShbf70fj2xnFMd+V3v9zf WXeq4vLGR+j8/XYChRu0t/6339p40LaC8zs63z6F/cm39TOYDzBAQWH74VUu N87t/61/pOVnxrH9aHz7pt83biUseGcPU29ctL1JU+AynP+YZ52J0rn3cP6i zJjL/4+92J/DGlBYyvBoPxrffpOgVPF3ixf7X6zKt1BfzHQAje/Qsj6sVXbF ZfutuvGiC+3f2aPx91drSQSYTdhub3pPNNZf8RI63x4Ap+uZ6Q== "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQfeD6/dPz3l6yv9W9d+oShbf70fj2xnFMd+V3v9zf WXeq4vLGR+j8/XYChRu0t/6339p40LaC8zs63z6F/cm39TOYDzBAQWH74VUu N87t/61/pOVnxrH9aHz7pt83biUseGcPU29ctL1JU+AynP+YZ52J0rn3cP6i zJjL/4+92J/DGlBYyvBoPxrffpOgVPF3ixf7X6zKt1BfzHQAje/Qsj6sVXbF ZfutuvGiC+3f2aPx91drSQSYTdhub3pPNNZf8RI63x4Ap+uZ6Q== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQnfKSx0Py1GX73dpFi98Uv9uPxre/YicbuW3xp/1s Uxz0toi+RufvP6qXsXNJ+x97UQfR8IxdX9D59i3Gs+OfLWQ8wAAFru8427UY Lu4XfO/kLbjlxH40vr2HZEZ0P9MHe5j6/oUHd09ivgrn67yW19Dk+g7n/+rN +z/7+cv96hGT81UvPdqPxrdv+DZzc83pp/uVtugH/TzCcACN7/BNxVSkveqO /d/wTd+qX361R+Pv/1q6ZEnLz532p/+bG7v/uYzOtwcAIP2a0Q== "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQnfKSx0Py1GX73dpFi98Uv9uPxre/YicbuW3xp/1s Uxz0toi+RufvP6qXsXNJ+x97UQfR8IxdX9D59i3Gs+OfLWQ8wAAFru8427UY Lu4XfO/kLbjlxH40vr2HZEZ0P9MHe5j6/oUHd09ivgrn67yW19Dk+g7n/+rN +z/7+cv96hGT81UvPdqPxrdv+DZzc83pp/uVtugH/TzCcACN7/BNxVSkveqO /d/wTd+qX361R+Pv/1q6ZEnLz532p/+bG7v/uYzOtwcAIP2a0Q== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvdDk3Wex2iv20/x3fohpf78fjW//SFPpyHmJP/vj /T7qPsr8gs7fv7zq0Ub2zl/2PvM+385x/4zOt998K/9cUBrDAQYomOeuy/4j 89L+u1MizM4cPLUfjW8vwWF4L3byB3uY+l8vvExOHroG5zcFH3udFsvoAONn KmlEvLz4ar9JS2x+Qs3j/Wh8+2f2T49luj7Zz/T4Yt96w//70fj2B9Zs33Cx 7Km9THis7JVmBgc0/oFmH/ktvkp77H8/u+87a+nV/Wh8ewDywqBA "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvdDk3Wex2iv20/x3fohpf78fjW//SFPpyHmJP/vj /T7qPsr8gs7fv7zq0Ub2zl/2PvM+385x/4zOt998K/9cUBrDAQYomOeuy/4j 89L+u1MizM4cPLUfjW8vwWF4L3byB3uY+l8vvExOHroG5zcFH3udFsvoAONn KmlEvLz4ar9JS2x+Qs3j/Wh8+2f2T49luj7Zz/T4Yt96w//70fj2B9Zs33Cx 7Km9THis7JVmBgc0/oFmH/ktvkp77H8/u+87a+nV/Wh8ewDywqBA "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvanz9llvwav2ax9JfNlm+mE/Gt/equFMyX0T9gNL D3/85X2HwQGNf+DPjuzSzVo/7QOX9xc99fi0H41vz3Lh8Zm50v/3M0CBa+Ou 3qvrL+9nrbt8wm/2mf1ofPugjsCVLtwf7WHqHbaUPJwcegPOr4g8OzdoPY8D jK/taz/h1eTX+9P8DEJCOJ/sR+Pbf1r4Wfak5eP9j1Vdsm5O/bsfjW//e9lp 75xdH+15kmstXrlzO6DxD0yaw1CiJ7LPfve7LIN1Ktf3o/HtAZwHnIA= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvanz9llvwav2ax9JfNlm+mE/Gt/equFMyX0T9gNL D3/85X2HwQGNf+DPjuzSzVo/7QOX9xc99fi0H41vz3Lh8Zm50v/3M0CBa+Ou 3qvrL+9nrbt8wm/2mf1ofPugjsCVLtwf7WHqHbaUPJwcegPOr4g8OzdoPY8D jK/taz/h1eTX+9P8DEJCOJ/sR+Pbf1r4Wfak5eP9j1Vdsm5O/bsfjW//e9lp 75xdH+15kmstXrlzO6DxD0yaw1CiJ7LPfve7LIN1Ktf3o/HtAZwHnIA= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Ww09xt731V7gQ9OlhumftiPxrcX7LBI+m0vcaDz 4pXnMfMEHdD4B4Sv78jL0f5h37T4kmpu/8f9aHz7Ys7wWuEHf/czQEHhP7Pf d65d2T+XaXY/k8e5/Wh8ez5NlSC9go/2MPWP/ka/cjh0E85nMHt0q+anrAOM a3CoyNfI/M1+sRUf5n6tf7IfjW+/eYlUwtGyR/s37lFceyDzz340vr3yrb6X lW1MDn/E6pa+bpRxQOMfYPynLPHp2n771NeJjE31N/aj8e0BvY2Y/A== "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ7Ww09xt731V7gQ9OlhumftiPxrcX7LBI+m0vcaDz 4pXnMfMEHdD4B4Sv78jL0f5h37T4kmpu/8f9aHz7Ys7wWuEHf/czQEHhP7Pf d65d2T+XaXY/k8e5/Wh8ez5NlSC9go/2MPWP/ka/cjh0E85nMHt0q+anrAOM a3CoyNfI/M1+sRUf5n6tf7IfjW+/eYlUwtGyR/s37lFceyDzz340vr3yrb6X lW1MDn/E6pa+bpRxQOMfYPynLPHp2n771NeJjE31N/aj8e0BvY2Y/A== "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrVmhJF7246r9F/uab5Off9iPxrc/fUKZ8zGDz4EF PKm+DREuDmj8A1rLtucrZX637xO6meDC9HE/Gt8+vJrp0+v3f/YzQEGy9RoT m8dX92fqTTD4dfb8fjS+/RWGSc88jn20h6kPDMs6+ov3Npw/9Y3Cwrl+gQ4w /isb5U/Nh97sP7PKzlLv6ZP9aHz7Pxdy3kY8erj/hctW9ajW3/vR+Pa5O1gv dKWYOigkLhM7UhrggMY/UKrwbnHtjgP2c50iav/vurkfjW8PAAormaY= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQrVmhJF7246r9F/uab5Off9iPxrc/fUKZ8zGDz4EF PKm+DREuDmj8A1rLtucrZX637xO6meDC9HE/Gt8+vJrp0+v3f/YzQEGy9RoT m8dX92fqTTD4dfb8fjS+/RWGSc88jn20h6kPDMs6+ov3Npw/9Y3Cwrl+gQ4w /isb5U/Nh97sP7PKzlLv6ZP9aHz7Pxdy3kY8erj/hctW9ajW3/vR+Pa5O1gv dKWYOigkLhM7UhrggMY/UKrwbnHtjgP2c50iav/vurkfjW8PAAormaY= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvbJ9o154yDX7l//5prrqfdyPxrdnK1t8S1BS2WHd EofP1gekD6DxHeoEBKP8L3yz71+ietp68of9aHz76k4HdVbjP/sZoGCm4B3l jBvX9n+Q0DosO/PCfjS+/c+NKnfnCnyyh6nf+m+DE7vtHTg/8dLbHxaz1Q/A +OdKa0tOWr3dv8O3Q2aCzdP9aHz7+ukPe2bmPtzvl/PTdNPFX/vR+Pahxpsq ruryHqh8K2tZVKx2AI3vUKvCznqy+KD9618Zr81u39qPxrcHAOQvlL0= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvbJ9o154yDX7l//5prrqfdyPxrdnK1t8S1BS2WHd EofP1gekD6DxHeoEBKP8L3yz71+ietp68of9aHz76k4HdVbjP/sZoGCm4B3l jBvX9n+Q0DosO/PCfjS+/c+NKnfnCnyyh6nf+m+DE7vtHTg/8dLbHxaz1Q/A +OdKa0tOWr3dv8O3Q2aCzdP9aHz7+ukPe2bmPtzvl/PTdNPFX/vR+Pahxpsq ruryHqh8K2tZVKx2AI3vUKvCznqy+KD9618Zr81u39qPxrcHAOQvlL0= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPXlzknvZkmv2W4V77F9nf9yPxrffqxvFNMtA2KHO L6Y/9xH3ATS+Q9PsKTu/hHyz1/n/f/Icyw/70fj2ti3PL3XP+r2fAQrm1a3n dN55ff+5lmvLq20u7kfj2zPW1G/ID/xkD1Mf1+z66lvQXTg/1faqjf8O8QMw /umrBldWLX67//zTk0GHO57uR+PbH9vkuCCW/+F+wYYffusdfu1H49tr2ezr Pxn4d//ktWe5ZPrFDqDxHe5VSmr2yx+yn7RZUKvn8e39aHx7AIxOnD0= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQPXlzknvZkmv2W4V77F9nf9yPxrffqxvFNMtA2KHO L6Y/9xH3ATS+Q9PsKTu/hHyz1/n/f/Icyw/70fj2ti3PL3XP+r2fAQrm1a3n dN55ff+5lmvLq20u7kfj2zPW1G/ID/xkD1Mf1+z66lvQXTg/1faqjf8O8QMw /umrBldWLX67//zTk0GHO57uR+PbH9vkuCCW/+F+wYYffusdfu1H49tr2ezr Pxn4d//ktWe5ZPrFDqDxHe5VSmr2yx+yn7RZUKvn8e39aHx7AIxOnD0= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvVLyTtanV9fs9/VznFRb9HE/Gt9e/HF35rTnXA5m zxcIKvQwH0DjO/Rcd9T2ef/VXojJz7nx/vv9aHz7zk75LY9lfu9ngII328+u suy4sV88hOnUzUsX96Px7W+FuG0p7fpkD1O/Wv4j98mge3B+w/XMxMMLBA7A +BsSt7x89//t/uim5YFnTj/dj8a371dNWbTl4IP9+zjXztY9+XM/Gt9eT9xF YFnvl/2GyqedbizgP4DGd9AJWOW5au8he9Vw3t83rt3Zj8a3BwC6pJ0Q "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvVLyTtanV9fs9/VznFRb9HE/Gt9e/HF35rTnXA5m zxcIKvQwH0DjO/Rcd9T2ef/VXojJz7nx/vv9aHz7zk75LY9lfu9ngII328+u suy4sV88hOnUzUsX96Px7W+FuG0p7fpkD1O/Wv4j98mge3B+w/XMxMMLBA7A +BsSt7x89//t/uim5YFnTj/dj8a371dNWbTl4IP9+zjXztY9+XM/Gt9eT9xF YFnvl/2GyqedbizgP4DGd9AJWOW5au8he9Vw3t83rt3Zj8a3BwC6pJ0Q "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]], ",", GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXfrIODtf87o9488gM+tLH/ej8e0nth2+qRrH6vAo +pbAdJ7/+9H49i9m29wQmvXVXkjh8NVVye/3o/Htp279ztiz+dd+BigoPTX9 ZKT7zf0bHpqrbYu9tB+Nb/+O/VoP895P9jD1vxQa29nt78P5TWwc9ZWZXAdg fM2f+U67A9/tf+nHH2/F/mw/Gt/eqqlx3cyGB/vfvpU/9zfl5340vv18tnqT S0Ef9n8Ln5LULcd5AI3v8LF4Hfca/8P2Le1d+e3b7+5H49sDALC1mP0= "], { {GrayLevel[0], LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, { 3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7, 13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, { 11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15, 17}, {16, 18}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXfrIODtf87o9488gM+tLH/ej8e0nth2+qRrH6vAo +pbAdJ7/+9H49i9m29wQmvXVXkjh8NVVye/3o/Htp279ztiz+dd+BigoPTX9 ZKT7zf0bHpqrbYu9tB+Nb/+O/VoP895P9jD1vxQa29nt78P5TWwc9ZWZXAdg fM2f+U67A9/tf+nHH2/F/mw/Gt/eqqlx3cyGB/vfvpU/9zfl5340vv18tnqT S0Ef9n8Ln5LULcd5AI3v8LF4Hfca/8P2Le1d+e3b7+5H49sDALC1mP0= "]]& ], AspectRatio->Automatic, FrameTicks->None, PlotRange->All, PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\ "944adf27-c5f6-4100-875d-1d0e26b59c6c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Properties", "Section",ExpressionUUID->"83b5fe29-9f96-4dcf-a9fb-36e65102afcd"], Cell[CellGroupData[{ Cell["Classes", "Subsection",ExpressionUUID->"8b730682-5e81-41e1-a487-581abd20811f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"8dfb3551-9dd3-44ae-bab3-d2f91bd24059"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Biconnected\"\>", ",", "\<\"Bridgeless\"\>", ",", "\<\"Class1\"\>", ",", "\<\"CompletelyRegular\"\>", ",", "\<\"Connected\"\>", ",", "\<\"Cubic\"\>", ",", "\<\"DeterminedBySpectrum\"\>", ",", "\<\"DistanceRegular\"\>", ",", "\<\"EdgeTransitive\"\>", ",", "\<\"GeneralizedPetersen\"\>", ",", "\<\"Hamiltonian\"\>", ",", "\<\"LCF\"\>", ",", "\<\"Noneulerian\"\>", ",", "\<\"Planar\"\>", ",", "\<\"Platonic\"\>", ",", "\<\"Polyhedral\"\>", ",", "\<\"Regular\"\>", ",", "\<\"SquareFree\"\>", ",", "\<\"Symmetric\"\>", ",", "\<\"Traceable\"\>", ",", "\<\"TriangleFree\"\>", ",", "\<\"Unitransitive\"\>", ",", "\<\"VertexTransitive\"\>", ",", "\<\"WeaklyRegular\"\>"}], "}"}]], "Output",ExpressionUUID->"e7cc43e7-bc53-4b61-9daa-80e9fe10d3a6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Matrices", "Subsection",ExpressionUUID->"fc440145-9aa5-44c8-a3e8-b8efcd991d3d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsRow", "[", RowBox[{"GraphMatrixPlot", "[", RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}], "]"}]], "Input", CellLabel-> "In[140]:=",ExpressionUUID->"b7326196-fac2-42d1-a7ea-61dcc1e428c3"], Cell[BoxData[ GraphicsBox[{{}, {InsetBox[ GraphicsBox[ RasterBox[SparseArray[ Automatic, {20, 20}, 1., { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{4}, {6}, {18}, {3}, {5}, {17}, {10}, {13}, { 20}, {9}, {13}, {19}, {1}, {7}, {8}, {1}, {4}, {10}, {1}, {3}, { 9}, {2}, {17}, {18}, {6}, {8}, {11}, {5}, {7}, {12}, {9}, {15}, { 18}, {10}, {14}, {17}, {4}, {12}, {16}, {3}, {11}, {16}, {2}, { 12}, {20}, {2}, {11}, {19}, {8}, {15}, {20}, {7}, {14}, {19}, {5}, { 6}, {13}, {14}, {15}, {16}}}, CompressedData[" 1:eJxTTMoPSmVkYGCwYRgFwx0AAKQdAec= "]}], {{0, 0}, {20, 20}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.5, 1.5}, {1.5, 16.50000000000003}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"adjacency matrix\"", TraditionalForm]], {89.63777380299078, -94.87765161036491}, ImageScaled[{0.5, 0.5}], {164.98010456800387, 180.71933640069506}], InsetBox[ GraphicsBox[ RasterBox[SparseArray[ Automatic, {20, 30}, 1., { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{12}, {16}, {30}, {9}, {14}, {29}, {25}, {28}, { 30}, {23}, {27}, {29}, {3}, {18}, {20}, {2}, {11}, {24}, {1}, {8}, { 22}, {6}, {27}, {28}, {15}, {19}, {26}, {13}, {17}, {26}, {21}, { 24}, {25}, {21}, {22}, {23}, {10}, {19}, {20}, {7}, {17}, {18}, {5}, {15}, {16}, {4}, {13}, {14}, {10}, {11}, {12}, {7}, {8}, {9}, { 4}, {5}, {6}, {1}, {2}, {3}}}, CompressedData[" 1:eJxTTMoPSmVkYGCwYRgFwx0AAKQdAec= "]}], {{0, 0}, {30, 20}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.4999999999999991, 1.4999999999999432`}, {1.5, 16.50000000000003}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"incidence matrix\"", TraditionalForm]], {307.3520253165203, -94.87765161036491}, ImageScaled[{0.5, 0.5}], {241.8575123830999, 180.71933640069506}], InsetBox[ GraphicsBox[RasterBox[CompressedData[" 1:eJzNWT1OQzEMfoKVkYkBqTMDB2B4MxOCqTOCmY0bICbOwBUYmRgZOEBXxMSA kDgCQvCKmsSJP+dzXipVbd08+7Njf87P4vzq7HJ7GIbdv/fP983X17i8OHo9 uXsfH453tg5un8dJvh5x+rh/8/E2hs9Nny/XT/d7h5/B/7H+0vhf+6v1OAkP ih8dX9JTizMv18cnb0/vr2SXNe/e8Zxr3iX902+0LtLj9HbninM+T1CcaP7H +kt6MDxo3PT1yMI5F1+h/GC1K/Get/7wSWvepu3W98E2fQf1K5aj+KW8ssUB 51WMZyS5H4+hfCvJrfHk+KXHk/6N5z+b59F1Wm0doXWR1+/Nn7LdUCOah97z npe350MUZ6t+kX5er8e2v9DnbZ/7CLTucP7H8hafR6/9SMkuql87vg1/4nwb xqdULxLuWr6S8LD6hXedWvWg+cnZn8Y40Hpnr+tC/N565sqHTfu1847Xo7be 2TyT9qufPoviRO2y94+Yv/X7Kfb6IdQv4fHupzZ/Zf3hiLnPozj9VB836/6R tT9i9am0n7G/rP7O4lvWuY3V37Se+nMMW5zrzwHyfsnyWr9QPNz7Eckvb/7E 7x9b81tv6xAW/7e5Z+HNY+25WW/ziNplxUead9s5gOSvJPe7D0Llre4pvM5X Wesc7r1Yb/7++8Pu4zY5jkcr/wb8Yet+ "], {{0, 0}, {20, 20}}, {0, 1}], DisplayFunction->Identity, Frame->Automatic, FrameLabel->{None, None}, FrameTicks->{{None, None}, {None, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0.5, 1.5}, {1.5, 16.50000000000003}}, LabelStyle->Directive[12, GrayLevel[0], Italic, FontFamily -> "Times New Roman"], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic}, PlotLabel->FormBox["\"distance matrix\"", TraditionalForm]], {525.0662768300499, -94.87765161036491}, ImageScaled[{0.5, 0.5}], {164.98010456800387, 180.71933640069506}]}, {}}, ImageSize->{ UpTo[600], UpTo[360]}, PlotRange->{{0, 614.7040506330407}, {-189.75530322072981`, 0}}, PlotRangePadding->{6, 5}]], "Output", CellLabel-> "Out[140]=",ExpressionUUID->"b4385df9-37bc-40ad-8288-fd0c2db99ff0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Properties", "Subsection",ExpressionUUID->"e77a0d4d-7216-4d05-8893-611d3947da39"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TableForm", "[", RowBox[{ RowBox[{"GraphDataTable", "[", RowBox[{"\"\\"", ",", "x"}], "]"}], ",", RowBox[{"TableDepth", "\[Rule]", "2"}]}], "]"}], "//", "TraditionalForm"}]], "Input",ExpressionUUID->"5db89822-e1cb-4c40-9ea9-\ 4bd3852d4ee8"], Cell[BoxData[ RowBox[{ RowBox[{"GraphData", "::", "\<\"notdef\"\>"}], ":", " ", "\<\"GraphData has no defined value for the specified tag or \ properties.\"\>"}]], "Message", \ "MSG",ExpressionUUID->"36ae7f36-2ce6-4a1f-9d13-48632ef85e3e"], Cell[BoxData[ FormBox[ TagBox[GridBox[{ {"\<\"automorphism group order\"\>", "120"}, {"\<\"characteristic polynomial\"\>", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "3"}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], "5"], " ", SuperscriptBox["x", "4"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"x", "+", "2"}], ")"}], "4"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["x", "2"], "-", "5"}], ")"}], "3"]}]}, {"\<\"chromatic number\"\>", "3"}, {"\<\"chromatic polynomial\"\>", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "2"}], ")"}], " ", RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], " ", "x", " ", RowBox[{"(", RowBox[{ SuperscriptBox["x", "17"], "-", RowBox[{"27", " ", SuperscriptBox["x", "16"]}], "+", RowBox[{"352", " ", SuperscriptBox["x", "15"]}], "-", RowBox[{"2950", " ", SuperscriptBox["x", "14"]}], "+", RowBox[{"17839", " ", SuperscriptBox["x", "13"]}], "-", RowBox[{"82777", " ", SuperscriptBox["x", "12"]}], "+", RowBox[{"305866", " ", SuperscriptBox["x", "11"]}], "-", RowBox[{"921448", " ", SuperscriptBox["x", "10"]}], "+", RowBox[{"2297495", " ", SuperscriptBox["x", "9"]}], "-", RowBox[{"4783425", " ", SuperscriptBox["x", "8"]}], "+", RowBox[{"8347700", " ", SuperscriptBox["x", "7"]}], "-", RowBox[{"12195590", " ", SuperscriptBox["x", "6"]}], "+", RowBox[{"14808795", " ", SuperscriptBox["x", "5"]}], "-", RowBox[{"14713381", " ", SuperscriptBox["x", "4"]}], "+", RowBox[{"11613602", " ", SuperscriptBox["x", "3"]}], "-", RowBox[{"6892084", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"2751604", " ", "x"}], "-", "555984"}], ")"}]}]}, {"\<\"circulant graph\"\>", "\<\"Circulant\"\>"}, {"\<\"claw-free\"\>", "\<\"N\"\>"}, {"\<\"clique number\"\>", "2"}, {"\<\"graph complement name\"\>", RowBox[{"{", RowBox[{"GraphData", "[", RowBox[{ FormBox[ TagBox[ TooltipBox["\<\"\[LongDash]\"\>", "\"(not available)\""], Annotation[#, "(not available)", "Tooltip"]& ], TraditionalForm], ",", "\<\"Name\"\>"}], "]"}], "}"}]}, {"\<\"cospectral graph names\"\>", "\<\"---\"\>"}, {"\<\"determined by spectrum\"\>", "\<\"Y\"\>"}, {"\<\"diameter\"\>", "5"}, {"\<\"distance-regular graph\"\>", "\<\"Y\"\>"}, {"\<\"dual graph name\"\>", RowBox[{"{", "\<\"icosahedral graph\"\>", "}"}]}, {"\<\"edge chromatic number\"\>", "3"}, {"\<\"edge connectivity\"\>", "3"}, {"\<\"edge count\"\>", "30"}, {"\<\"Eulerian\"\>", "\<\"N\"\>"}, {"\<\"generalized Petersen graph\"\>", RowBox[{"{", RowBox[{"\<\"Gp8\"\>", ",", GridBox[{ {"10", "2"} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}]}], "}"}]}, {"\<\"girth\"\>", "5"}, {"\<\"Hamiltonian\"\>", "\<\"Y\"\>"}, {"\<\"Hamiltonian cycle count\"\>", "60"}, {"\<\"Hamiltonian path count\"\>", "\<\"?\"\>"}, {"\<\"integral graph\"\>", "\<\"N\"\>"}, {"\<\"independence number\"\>", "8"}, {"\<\"LCF notation\"\>", GridBox[{ { RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "4"}], ",", "7", ",", RowBox[{"-", "7"}], ",", "4", ",", RowBox[{"-", "10"}], ",", "7", ",", "4", ",", RowBox[{"-", "4"}], ",", RowBox[{"-", "7"}]}], "}"}], "2"} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}]}, {"\<\"line graph\"\>", "\<\"?\"\>"}, {"\<\"line graph name\"\>", RowBox[{"{", "\<\"icosidodecahedral graph\"\>", "}"}]}, {"\<\"perfect matching graph\"\>", "\<\"N\"\>"}, {"\<\"planar\"\>", "\<\"Y\"\>"}, {"\<\"polyhedral graph\"\>", "\<\"Y\"\>"}, {"\<\"polyhedron embedding names\"\>", GridBox[{ {"\<\"dodecahedron\"\>"}, {"\<\"great stellated dodecahedron\"\>"} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}]}, {"\<\"radius\"\>", "5"}, {"\<\"regular\"\>", "\<\"Y\"\>"}, {"\<\"spectrum\"\>", TagBox[ RowBox[{ TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", SqrtBox["5"]}], ")"}], "3"], HoldForm], " ", TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "2"}], ")"}], "4"], HoldForm], " ", TagBox[ SuperscriptBox["0", "4"], HoldForm], " ", TagBox[ SuperscriptBox["1", "5"], HoldForm], " ", TagBox[ SuperscriptBox[ SqrtBox["5"], "3"], HoldForm], " ", TagBox[ SuperscriptBox["3", "1"], HoldForm]}], HoldForm]}, {"\<\"square-free\"\>", "\<\"Y\"\>"}, {"\<\"strongly regular parameters\"\>", "\<\"StronglyRegular\"\>"}, {"\<\"traceable\"\>", "\<\"Y\"\>"}, {"\<\"triangle-free\"\>", "\<\"Y\"\>"}, {"\<\"vertex connectivity\"\>", "3"}, {"\<\"vertex count\"\>", "20"}, {"\<\"weakly regular parameters\"\>", RowBox[{"{", RowBox[{"20", ",", RowBox[{"{", "3", "}"}], ",", RowBox[{"{", "0", "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Function[BoxForm`e$, TableForm[BoxForm`e$, TableDepth -> 2]]], TraditionalForm]], "Output",Expr\ essionUUID->"8ad34215-0530-433d-b2de-78839e4786e6"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Graceful labelings", "Section",ExpressionUUID->"7e6802a5-1c3c-42c3-9b80-595f5898e3b7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel-> "In[150]:=",ExpressionUUID->"d7480361-7534-4df3-a485-240d88ccfe47"], Cell[BoxData["True"], "Output", CellLabel-> "Out[150]=",ExpressionUUID->"b10900cb-510c-46ed-baa1-fbb284f2f7ed"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input", CellLabel->"In[7]:=",ExpressionUUID->"3e7fb1c9-9f23-444c-94a7-12f2c13edeac"], Cell[BoxData[ RowBox[{"Missing", "[", RowBox[{"\<\"TooLarge\"\>", ",", RowBox[{"{", RowBox[{ "0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",", "14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",", "18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}], "}"}]}], "]"}]], "Output", CellLabel->"Out[7]=",ExpressionUUID->"0b78b421-80ad-45ea-a688-ad31fc657e8b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"lab", "=", RowBox[{"%", "[", RowBox[{"[", "2", "]"}], "]"}]}]], "Input", CellLabel->"In[8]:=",ExpressionUUID->"0f964443-e679-498e-a856-12eca09d8673"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",", "14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",", "18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}], "}"}]], "Output", CellLabel->"Out[8]=",ExpressionUUID->"b0f97601-0f57-4ba2-819a-961d15389e97"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetProperty", "[", RowBox[{ RowBox[{"GraphData", "[", "\"\\"", "]"}], ",", RowBox[{"VertexLabels", "\[Rule]", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "lab"}], "]"}]}]}], "]"}]], "Input", CellLabel->"In[9]:=",ExpressionUUID->"7ea3f009-dfc5-4034-89b4-a502517626fd"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, { 16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, { 12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, { 17}, {4}, {6}, {18}}}, Pattern}]}, { VertexLabels -> { 6 -> 26, 18 -> 29, 3 -> 1, 20 -> 6, 11 -> 12, 5 -> 8, 8 -> 14, 7 -> 3, 14 -> 30, 10 -> 2, 9 -> 23, 4 -> 17, 17 -> 10, 16 -> 28, 12 -> 4, 13 -> 5, 2 -> 20, 15 -> 18, 1 -> 0, 19 -> 27}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKP4R/Hjp7CM/7Ouz9pRMlnhgnwYGz+wfVomsc3/4 zh5dPgTEVfhkzxLGp7tp7vX96PKHv2rE9B9icviz8uMl36QX9vvmS+nfVfm0 PyrF+r5/L1z9fph6dHnLLSfK9s1/tx/ImZ4n9HU/uvymue+XH/O+v1/dkGON TNSR/QxQYG8at8uT55c9jP+uBiTC7IAuj+4/HPL7YfJQ99jD3HOyDOSi7/Zv AnfItb7+vx9dHj180OVh9kH4nzHCAxp+B2Dhhy6Pw33w8DIGg+/70dy3H5f9 6OGFbj8OeXj8oocHuv3o8uj628VunvsefBnqj1v20Pi1h8Uvujx6/KHLQ/n7 cZmHHj/o8jD/LgOq2lD0YD96eKD7Dz094rAfI73CzEdXjx6/6OrR4w8AMJHe Eg== "], 0.0412452419793366]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{1.548, 0.503}, 0.0412452419793366], InsetBox["0", Offset[{2, 2}, {1.5892452419793366, 0.5442452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.134, -0.368}, 0.0412452419793366], InsetBox["20", Offset[{2, 2}, {-1.0927547580206634, -0.3267547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 1.628}, 0.0412452419793366], InsetBox["1", Offset[{2, 2}, {0.0412452419793366, 1.6692452419793364}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.957, -1.317}, 0.0412452419793366], InsetBox["17", Offset[{2, 2}, {0.9982452419793366, -1.2757547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.548, 0.503}, 0.0412452419793366], InsetBox["8", Offset[{2, 2}, {-1.5067547580206635, 0.5442452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.957, -1.317}, 0.0412452419793366], InsetBox["26", Offset[{2, 2}, {-0.9157547580206633, -1.2757547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 2.466}, 0.0412452419793366], InsetBox["3", Offset[{2, 2}, {0.0412452419793366, 2.5072452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.449, -1.995}, 0.0412452419793366], InsetBox["14", Offset[{2, 2}, {1.4902452419793366, -1.9537547580206636}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.302, 0.416}, 0.0412452419793366], InsetBox["23", Offset[{2, 2}, {0.3432452419793366, 0.4572452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.489, -0.159}, 0.0412452419793366], InsetBox["2", Offset[{2, 2}, {0.5302452419793366, -0.1177547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-2.345, 0.762}, 0.0412452419793366], InsetBox["12", Offset[{2, 2}, {-2.3037547580206637, 0.8032452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.45, -1.995}, 0.0412452419793366], InsetBox["4", Offset[{2, 2}, {-1.4087547580206634, -1.9537547580206636}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.489, -0.159}, 0.0412452419793366], InsetBox["5", Offset[{2, 2}, {-0.4477547580206634, -0.1177547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.7, 0.965}, 0.0412452419793366], InsetBox["30", Offset[{2, 2}, {0.7412452419793365, 1.0062452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.133, -0.369}, 0.0412452419793366], InsetBox["18", Offset[{2, 2}, {1.1742452419793366, -0.3277547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{2.345, 0.762}, 0.0412452419793366], InsetBox["28", Offset[{2, 2}, {2.3862452419793367, 0.8032452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.302, 0.416}, 0.0412452419793366], InsetBox["10", Offset[{2, 2}, {-0.2607547580206634, 0.4572452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -0.514}, 0.0412452419793366], InsetBox["29", Offset[{2, 2}, {0.0412452419793366, -0.4727547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7, 0.965}, 0.0412452419793366], InsetBox["27", Offset[{2, 2}, {-0.6587547580206634, 1.0062452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -1.192}, 0.0412452419793366], InsetBox["6", Offset[{2, 2}, {0.0412452419793366, -1.1507547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel->"Out[9]=",ExpressionUUID->"0634ede0-3202-43d4-a9e1-d152a80128d0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GracefullyLabeledGraphQ", "[", "%", "]"}]], "Input", CellLabel->"In[10]:=",ExpressionUUID->"91133d85-4205-465e-887d-bda94012de9f"], Cell[BoxData["True"], "Output", CellLabel->"Out[10]=",ExpressionUUID->"355d5388-c9c8-408b-9ea7-407c99074eb9"] }, Open ]], Cell[CellGroupData[{ Cell["Partial population", "Subsection",ExpressionUUID->"2a897ff8-6b5f-4c86-b9c8-94e10e8d1152"], Cell["Bert Dobbelaere 2020-10-06:", "Text",ExpressionUUID->"404aea2f-6f88-4db8-87c8-e93fed9d091c"], Cell["\<\ Over 12 million \"fundamentally different\" solutions after running \ overnight. I estimate the program could run for a month or so.\ \>", "Text",ExpressionUUID->"f50ff6d5-2d1f-4972-b0f4-65532c9f0e60"], Cell[BoxData[ RowBox[{ RowBox[{"adj", "=", RowBox[{"1", "+", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "3", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "6", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "7", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "9", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "11", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "10", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "13", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "12", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "13", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "16", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "15", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "16", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "15", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "17", ",", "18"}], "}"}]}], "}"}]}]}], ";"}]], "Input", CellLabel-> "In[137]:=",ExpressionUUID->"87918fa1-9ee8-474f-9d5e-e50cfb87f191"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"r", "=", RowBox[{"RecognizeGraph", "@", RowBox[{"(", RowBox[{"dodec", "=", RowBox[{"FromAdjacencyLists1", "[", "adj", "]"}]}], ")"}]}]}]], "Input", CellLabel-> "In[138]:=",ExpressionUUID->"942c5efd-f6a1-4390-858d-dd8490085201"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel-> "Out[138]=",ExpressionUUID->"a6cbc13c-bd80-4522-8893-caa862c5dbe9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"iso", "=", RowBox[{ RowBox[{"FindGraphIsomorphism", "[", RowBox[{ RowBox[{"GraphData", "[", "r", "]"}], ",", "dodec"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellLabel-> "In[139]:=",ExpressionUUID->"9a957ae8-67c4-4e4c-aed4-d819de287701"], Cell[BoxData[ RowBox[{"\[LeftAssociation]", RowBox[{ RowBox[{"1", "\[Rule]", "1"}], ",", RowBox[{"2", "\[Rule]", "18"}], ",", RowBox[{"3", "\[Rule]", "3"}], ",", RowBox[{"4", "\[Rule]", "15"}], ",", RowBox[{"5", "\[Rule]", "11"}], ",", RowBox[{"6", "\[Rule]", "20"}], ",", RowBox[{"7", "\[Rule]", "4"}], ",", RowBox[{"8", "\[Rule]", "14"}], ",", RowBox[{"9", "\[Rule]", "8"}], ",", RowBox[{"10", "\[Rule]", "7"}], ",", RowBox[{"11", "\[Rule]", "12"}], ",", RowBox[{"12", "\[Rule]", "13"}], ",", RowBox[{"13", "\[Rule]", "17"}], ",", RowBox[{"14", "\[Rule]", "2"}], ",", RowBox[{"15", "\[Rule]", "6"}], ",", RowBox[{"16", "\[Rule]", "5"}], ",", RowBox[{"17", "\[Rule]", "9"}], ",", RowBox[{"18", "\[Rule]", "16"}], ",", RowBox[{"19", "\[Rule]", "10"}], ",", RowBox[{"20", "\[Rule]", "19"}]}], "\[RightAssociation]"}]], "Output", CellLabel-> "Out[139]=",ExpressionUUID->"4753f43a-c89c-411a-9799-581c6ce2f69a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vorder", "=", RowBox[{ RowBox[{"Normal", "[", "iso", "]"}], "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}]], "Input", CellLabel-> "In[140]:=",ExpressionUUID->"600b8144-165e-4469-9b80-7ab84bbb31ee"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "18", ",", "3", ",", "15", ",", "11", ",", "20", ",", "4", ",", "14", ",", "8", ",", "7", ",", "12", ",", "13", ",", "17", ",", "2", ",", "6", ",", "5", ",", "9", ",", "16", ",", "10", ",", "19"}], "}"}]], "Output", CellLabel-> "Out[140]=",ExpressionUUID->"681ba0ee-cf39-43b6-91ce-4b8f0ea33f15"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vlab", "=", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "30", ",", "1", ",", "3", ",", "28", ",", "18", ",", "2", ",", "23", ",", "10", ",", "27", ",", "8", ",", "12", ",", "4", ",", "14", ",", "17", ",", "29", ",", "5", ",", "20", ",", "6", ",", "26"}], "}"}], "[", RowBox[{"[", "vorder", "]"}], "]"}]}]], "Input", CellLabel-> "In[141]:=",ExpressionUUID->"8fa186f2-09ac-41e4-a73f-b57b654851d1"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",", "14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",", "18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}], "}"}]], "Output", CellLabel-> "Out[141]=",ExpressionUUID->"93d2c122-a462-480c-9d6b-0a254dbfb52a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"glab", "=", RowBox[{"SetProperty", "[", RowBox[{ RowBox[{"GraphData", "[", "r", "]"}], ",", RowBox[{"VertexLabels", "\[Rule]", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "vlab"}], "]"}]}]}], "]"}]}]], "Input", CellLabel-> "In[143]:=",ExpressionUUID->"dcae9c4f-3022-4b4e-8021-95816da05133"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, { 19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, { 16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, { 12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, { 10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, { 17}, {4}, {6}, {18}}}, Pattern}]}, { VertexLabels -> { 6 -> 26, 18 -> 29, 3 -> 1, 20 -> 6, 11 -> 12, 5 -> 8, 8 -> 14, 7 -> 3, 14 -> 30, 10 -> 2, 9 -> 23, 4 -> 17, 17 -> 10, 16 -> 28, 12 -> 4, 13 -> 5, 2 -> 20, 15 -> 18, 1 -> 0, 19 -> 27}, VertexCoordinates -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf 9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7 AVLKoH4= "]}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKP4R/Hjp7CM/7Ouz9pRMlnhgnwYGz+wfVomsc3/4 zh5dPgTEVfhkzxLGp7tp7vX96PKHv2rE9B9icviz8uMl36QX9vvmS+nfVfm0 PyrF+r5/L1z9fph6dHnLLSfK9s1/tx/ImZ4n9HU/uvymue+XH/O+v1/dkGON TNSR/QxQYG8at8uT55c9jP+uBiTC7IAuj+4/HPL7YfJQ99jD3HOyDOSi7/Zv AnfItb7+vx9dHj180OVh9kH4nzHCAxp+B2Dhhy6Pw33w8DIGg+/70dy3H5f9 6OGFbj8OeXj8oocHuv3o8uj628VunvsefBnqj1v20Pi1h8Uvujx6/KHLQ/n7 cZmHHj/o8jD/LgOq2lD0YD96eKD7Dz094rAfI73CzEdXjx6/6OrR4w8AMJHe Eg== "], 0.0412452419793366]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{1.548, 0.503}, 0.0412452419793366], InsetBox["0", Offset[{2, 2}, {1.5892452419793366, 0.5442452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.134, -0.368}, 0.0412452419793366], InsetBox["20", Offset[{2, 2}, {-1.0927547580206634, -0.3267547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 1.628}, 0.0412452419793366], InsetBox["1", Offset[{2, 2}, {0.0412452419793366, 1.6692452419793364}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.957, -1.317}, 0.0412452419793366], InsetBox["17", Offset[{2, 2}, {0.9982452419793366, -1.2757547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.548, 0.503}, 0.0412452419793366], InsetBox["8", Offset[{2, 2}, {-1.5067547580206635, 0.5442452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.957, -1.317}, 0.0412452419793366], InsetBox["26", Offset[{2, 2}, {-0.9157547580206633, -1.2757547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., 2.466}, 0.0412452419793366], InsetBox["3", Offset[{2, 2}, {0.0412452419793366, 2.5072452419793367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.449, -1.995}, 0.0412452419793366], InsetBox["14", Offset[{2, 2}, {1.4902452419793366, -1.9537547580206636}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.302, 0.416}, 0.0412452419793366], InsetBox["23", Offset[{2, 2}, {0.3432452419793366, 0.4572452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.489, -0.159}, 0.0412452419793366], InsetBox["2", Offset[{2, 2}, {0.5302452419793366, -0.1177547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-2.345, 0.762}, 0.0412452419793366], InsetBox["12", Offset[{2, 2}, {-2.3037547580206637, 0.8032452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.45, -1.995}, 0.0412452419793366], InsetBox["4", Offset[{2, 2}, {-1.4087547580206634, -1.9537547580206636}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.489, -0.159}, 0.0412452419793366], InsetBox["5", Offset[{2, 2}, {-0.4477547580206634, -0.1177547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0.7, 0.965}, 0.0412452419793366], InsetBox["30", Offset[{2, 2}, {0.7412452419793365, 1.0062452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.133, -0.369}, 0.0412452419793366], InsetBox["18", Offset[{2, 2}, {1.1742452419793366, -0.3277547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{2.345, 0.762}, 0.0412452419793366], InsetBox["28", Offset[{2, 2}, {2.3862452419793367, 0.8032452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.302, 0.416}, 0.0412452419793366], InsetBox["10", Offset[{2, 2}, {-0.2607547580206634, 0.4572452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -0.514}, 0.0412452419793366], InsetBox["29", Offset[{2, 2}, {0.0412452419793366, -0.4727547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7, 0.965}, 0.0412452419793366], InsetBox["27", Offset[{2, 2}, {-0.6587547580206634, 1.0062452419793366}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, {DiskBox[{0., -1.192}, 0.0412452419793366], InsetBox["6", Offset[{2, 2}, {0.0412452419793366, -1.1507547580206634}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[143]=",ExpressionUUID->"95af7c10-d189-40a0-a8ce-450652f4e937"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GracefullyLabeledGraphQ", "[", "glab", "]"}]], "Input", CellLabel-> "In[144]:=",ExpressionUUID->"2cbbc6fe-8f61-454d-82eb-38d8e66e3f71"], Cell[BoxData["True"], "Output", CellLabel-> "Out[144]=",ExpressionUUID->"23378912-f4bc-4056-9210-02ffae610868"] }, Open ]], Cell[CellGroupData[{ Cell["Full computation", "Subsubsection",ExpressionUUID->"105591d8-e1a7-4797-96ad-debb455290c1"], Cell["\<\ On 10/21/20 12:50 PM, Bert Dobbelaere wrote: > I couldn't resist starting the dodecahedron run anyway, split in multiple \ ranges so I could compute them in parallel. > > The total number of graceful labelings I obtained for the dodecahedral \ graph is 784298856 * 240 = 188231725440. > > Quite a number compared to the icosahedron...\ \>", "Text",ExpressionUUID->"4fdbf445-4269-4121-a87c-1dcc4b4691bb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"2", RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}]], "Input", CellLabel-> "In[142]:=",ExpressionUUID->"82656cf4-5dfd-4ad8-be89-ddad69d29e32"], Cell[BoxData["240"], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"5ffb2a7b-ee2e-468a-81c8-c284e745fa19"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Construction", "Section",ExpressionUUID->"0b2d5c90-e928-4e33-abd5-88e2eebbbab8"], Cell[CellGroupData[{ Cell["distanceregular.org", "Subsection",ExpressionUUID->"82b341c1-e7a1-49cf-91f8-6c8eaeff028f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{ "DistanceRegularGraph", "[", "\"\\"", "]"}]}]], "Input", CellLabel-> "In[247]:=",ExpressionUUID->"deacf966-44c3-43ea-b661-4414e3a3dc01"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, SparseArray[ Automatic, {20, 20}, 0, { 1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60}, {{3}, {4}, {5}, {6}, {7}, {8}, {1}, {9}, {10}, { 1}, {11}, {13}, {1}, {12}, {14}, {2}, {15}, {16}, {2}, {17}, {19}, { 2}, {18}, {20}, {3}, {11}, {18}, {3}, {12}, {17}, {4}, {9}, {20}, { 5}, {10}, {19}, {4}, {14}, {15}, {5}, {13}, {16}, {6}, {13}, {20}, { 6}, {14}, {19}, {7}, {10}, {18}, {8}, {9}, {17}, {7}, {12}, {16}, { 8}, {11}, {15}}}, Pattern}]}]]}, TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQvUB0wYY1ctfty/p2cyVdZHUokS04+fEeh8O3Q/pz qkIf20cc+uPBe/O9/bpLUyfsesbowAAFu6fn7cuq/G3/4/uG59zfP9snyNjF b1vG5fBH+eSZ7tPMDjxlrJ8Smz/an1EUCfY+zO1w3EnDN/XyT/ve9ownCccQ 5rwSvHFq7bl39t0H1sg8tf1kHxiqZ/M6lcGBRyUy4UsMi0NK18z//raX7R/J 32E8//upff0y70OLJjA5zLW/wbgplcvBcMMbU+VFL+0Tmv8JLhD7bS8TVN6r 3//dvqeCm4mznsVBV0Uio2XnN/uvAVcDtyi9tP+QLf+Wn4/F4d/krwvmdzI6 bC7K6Z8Xyeqg5yj5Jt/ol32Vz/Nf8V/+2x9caXv674IX9n3Slv8mRHE6rHv0 xe2cGquD410veYGUT/YNlTWvd0kvsAcAJOiTfg== "], { {Hue[0.6, 0.7, 0.5], Opacity[0.7], LineBox[{{1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {2, 8}, {3, 9}, {3, 10}, {4, 11}, {4, 13}, {5, 12}, {5, 14}, {6, 15}, {6, 16}, {7, 17}, {7, 19}, {8, 18}, {8, 20}, {9, 11}, {9, 18}, {10, 12}, {10, 17}, {11, 20}, {12, 19}, {13, 14}, {13, 15}, {14, 16}, {15, 20}, { 16, 19}, {17, 18}}]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.03352019566842021], DiskBox[2, 0.03352019566842021], DiskBox[3, 0.03352019566842021], DiskBox[4, 0.03352019566842021], DiskBox[5, 0.03352019566842021], DiskBox[6, 0.03352019566842021], DiskBox[7, 0.03352019566842021], DiskBox[8, 0.03352019566842021], DiskBox[9, 0.03352019566842021], DiskBox[10, 0.03352019566842021], DiskBox[11, 0.03352019566842021], DiskBox[12, 0.03352019566842021], DiskBox[13, 0.03352019566842021], DiskBox[14, 0.03352019566842021], DiskBox[15, 0.03352019566842021], DiskBox[16, 0.03352019566842021], DiskBox[17, 0.03352019566842021], DiskBox[18, 0.03352019566842021], DiskBox[19, 0.03352019566842021], DiskBox[20, 0.03352019566842021]}}]], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[247]=",ExpressionUUID->"18fa493d-646c-41f7-a4f4-c761a25d015d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ToEntity", "[", "g", "]"}]], "Input", CellLabel-> "In[248]:=",ExpressionUUID->"a346918b-79dd-4d71-9de3-21679b99dbe8"], Cell[BoxData[ TemplateBox[{"\"dodecahedral graph\"", RowBox[{"Entity", "[", RowBox[{"\"Graph\"", ",", "\"DodecahedralGraph\""}], "]"}], "\"Entity[\\\"Graph\\\", \\\"DodecahedralGraph\\\"]\"", "\"graph\""}, "Entity"]], "Output", CellLabel-> "Out[248]=",ExpressionUUID->"166cb3ab-0bd1-4ff0-b4ca-9ebf53e4f20b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"VertexCount", "[", "g", "]"}]], "Input", CellLabel-> "In[249]:=",ExpressionUUID->"8b8ae36d-252c-4be9-aad4-bb129949a6c6"], Cell[BoxData["20"], "Output", CellLabel-> "Out[249]=",ExpressionUUID->"deae0efb-f102-4e68-87f7-091f8fbfacfe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"GraphDiameter", "[", "g", "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[250]:=",ExpressionUUID->"72fe1085-33a6-40ef-a820-578bd2cf6a95"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.000051`", ",", "5"}], "}"}]], "Output", CellLabel-> "Out[250]=",ExpressionUUID->"e99e24f4-0801-488c-bb3a-bc0b1223110f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RegularParameters", "[", "g", "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[251]:=",ExpressionUUID->"8e9d4fe8-1597-4406-b2b2-b3d52378b7ae"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.003891`", ",", RowBox[{"{", RowBox[{"20", ",", RowBox[{"{", "3", "}"}], ",", RowBox[{"{", "0", "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[251]=",ExpressionUUID->"0dd0d847-0683-40a3-8093-9360e69b4597"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"DistanceRegularGraphQ", "[", "g", "]"}], "//", "Timing"}]], "Input",\ CellLabel-> "In[252]:=",ExpressionUUID->"474c91b2-0b9d-4784-8d85-2a3b37609c2b"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.061212`", ",", "True"}], "}"}]], "Output", CellLabel-> "Out[252]=",ExpressionUUID->"77a94d54-ed3d-4579-a5f5-e354367b87f4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntersectionArray", "[", "g", "]"}], "//", "Timing"}]], "Input", CellLabel-> "In[253]:=",ExpressionUUID->"2badbb65-2bae-4481-b877-09da698b9695"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.060375`", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "2", ",", "1", ",", "1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1", ",", "1", ",", "2", ",", "3"}], "}"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[253]=",ExpressionUUID->"84daac03-a3f7-4d54-b30b-7bc13f27e985"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegerSpectrum", "[", "g", "]"}], "//", "SpectrumForm"}]], "Input",\ CellLabel-> "In[254]:=",ExpressionUUID->"ea1be9a2-ee95-4b80-8a22-be209f7b61b4"], Cell[BoxData[ TagBox[ RowBox[{ TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", SqrtBox["5"]}], ")"}], "3"], HoldForm], " ", TagBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "2"}], ")"}], "4"], HoldForm], " ", TagBox[ SuperscriptBox["0", "4"], HoldForm], " ", TagBox[ SuperscriptBox["1", "5"], HoldForm], " ", TagBox[ SuperscriptBox[ SqrtBox["5"], "3"], HoldForm], " ", TagBox[ SuperscriptBox["3", "1"], HoldForm]}], HoldForm]], "Output", CellLabel-> "Out[254]=",ExpressionUUID->"4aa48be7-b355-449f-8eee-f09970cb5988"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GroupOrder", "[", RowBox[{"GraphAutomorphismGroup", "[", "g", "]"}], "]"}]], "Input", CellLabel-> "In[255]:=",ExpressionUUID->"989f74d1-bd67-4d6d-b96d-5c57147c0fb0"], Cell[BoxData["120"], "Output", CellLabel-> "Out[255]=",ExpressionUUID->"654e9ef8-f250-4986-8b27-3d9adaf9eb48"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"HamiltonianGraphQ", "[", "g", "]"}]], "Input", CellLabel-> "In[256]:=",ExpressionUUID->"0f0b755b-637e-4064-842e-601558288657"], Cell[BoxData["True"], "Output", CellLabel-> "Out[256]=",ExpressionUUID->"f13fe61f-9fb5-4b12-8a3c-effb9bced661"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["MinimalPlanarIntegral [old]", "Subsection",ExpressionUUID->"dc779de8-88c6-4d15-9d85-c74ea57b5a5b"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzs3Q2OG7uyGOAGgiwkW8oS3gayzywjG1Hy4FhPlmZabDZ/qsjvAy5wrs+x ukgWi8X2zPh//Mf/+p//8d+O4/jf//04/s//+99//vMDAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAALju+NfscAAAAAC2c5yaHR0AAADA+s7fz3hL AwAAADBGyVsar2sAAAAAurr0isaLGgAAAIDmKt7PeFcDAAAA0NbNVzRe1AAA AAA00eQtjXc1AAAAANUavp/xogYAAACgQo/3M97VAAAAAFx19ZWLFzUAAAAA PVS8b6l4UeNdDQAAAMCPmrxg8aIGAAAAoM5R9V1L5x/oXQ0AAADAVZ1eqlR8 rNc1AAAAwOb6vUup+2SvawAAAIDdXH2LUv3+pOJBN58IAAAAkML4tyXe0gAA AAC8Oqp+XHCTtyVe1AAAAAC8mviexIsaAAAAgEeYvybbuxoAAABgZ9HeinhR AwAAAOym7n3IgFciYQMDAAAA6CH4a5DqdzVe1wAAAABZJHr1kShUAAAAgEsy vveoi3l62AAAAAC/yfuu408YSYMHAAAAeJX3Fc1T9vgBAAAAFnhF87TMQAAA AIDdrPSK5o/FhgMAAADsYL1XNE+rjgsAAABYyVH743bTvcq4OrR0AwQAAABS q3s/k/QNxibDBAAAANLZ6hXN0z4jBQAAAOKrfj+zzLuL3cYLAAAABLTzy5lX O48dAAAAmM4rmjcV87DwbAAAAAADVL+f2eGlhNkAAAAAxrjzimaH9xKmBQAA ABjg5vuZfV5HeFEDAAAAdHXnFc2GzBIAAADQXPX7GS8fzBUAAADQyp1XNJ9v Hl5/ZYdXE8ff7/byogYAAACodvP9zG/vHPZ8R3F/3gAAAIBtjXw/s8nbiSbT CAAAAGyl6t3M2bsF7yUe/vonAAAA4KKKlwnnrxS8mnhjQgAAAIATV18dlL9M aPtpazAVAAAAwG/q3qWUvEno98nZmQcAAADg1c23KOfvELp++BoqZmP5OQEA AIAN9XuFcv+TXx9x8qDs2k47AAAAkNH9lyf9PrziidmZBwAAANhT7xcmNz// zqPzMg8AAACwmwHvSW4+okkMGZkHAAAA2MSYdyM3n9IwkrzMAwAAACxszIuR m0/pFFVG5gEAAADWM/JlyNcPuR/MnfDSMQ8AAACwkmHvQMo/5GZId4LMxVQA AADAMka+ALn0IfcDq44zI1MBAAAAqY189VHxIffDq442I1MBAAAAGY1/41H3 OffjvB95IqYCAAAAchn/oqP6o+6H2nAUWZgHAAAAyGLwm437H1ge2LBBBbf5 8AEAACC+upcYN2/0TT7tUmBjxhWfSQAAAICAKl5ctLrFt/rAr7Ed997V1I0u PpMAAAAAcVx9X9Hw/t7wAyuCHDbM4K7OwKrzAAAAANNVvKxo8u6i+WfWhTpm sPGZBAAAAJjo6guKthf2Hh9bF3DdqG8OP6CKSQAAAACaqHg70eqe3u/6fyfm YcOP6Xh5+7TnDAAAAMBgV99FNL+n97743/n8iuE3iTmOq8MHAAAAql19EdH2 ej7m4n/zEVNmJpo9Rw0AAABj3Hn58Hofv3MrH3PfLxzIzU/oF38Q2w4cAAAA uqp+7dD2Mj7smt9kFHPnKoLdxgsAAAC93Xzb0PAaPvKO32Q402csgt3GCwAA AM3dfMPQ9vY963bf6rk3Z6/rGIe5NGQAAADg1Z13C21v3LMu9W1HN30a59pt vAAAANDKnVcKze/aE6/zzQc4fTLn2nDIAAAAUK36NUKPW3aEi3ynACbO6lxb DRYAAACqVb866HS/DnKF7xfGrImdbrfxAgAAwFUVLw26Xq6D3N/7jTfCJM+y 1WABAACg3M3XBc2v0tHu7L3jmT7h4x1//warS4NNPWQAAAA4V/1+oOsbg5HP ihPS9GmfomKwC4waAAAAPtW9Gej9rmDkswJGVTf/E2fmvorxAgAAwDIqXgUM uzWHvZ6PnIfpqzDYVoMFAACAp4o3AGMuy/Ev5nFmI/Is3bHbeAEAANhW3cV/ 2B05xX18cJDTF2WwqyPNPl4AAAA2dLz88NUmOgU58nF1os1M/Bmrs9VgAQAA 2ErFNX/wpTjLHfz49rdId310kMUaYJ+RAgAAsJW62/3gi3Ci23fJLPULO9rC 9XN1gEmHCQAAwD7qLvWDb/oTH13h+PblNL3DDrV2A2w1WAAAAFZVcZ0ff/PN eN0+yl7UDAijfPkiz2eJ8sFmHykAAAArKXyHEOTam/euPXfeHlUL3TWe3vYZ KQAAAMu4dJmde+1NfdGeMmNvARRG8hZV/Ln9zdWRAgAAwCxHqq+i+Rpq10e3 EmcIoVa2q02GCQAAQF5XL+nTb7jLXK7nTuPVYJJO8qdNhgkAAEBGl67n0y+2 i12rp8/nayQl8WSf8D+WHyAAAAAZXb2VT7/VLnanjjClFSFFiPO+tUcHAABA FkeHH0Qz4Ca73j06wqzWRRUn2jvWHh0AAAAp3LmGz7rALnx9jjC9dVFFiPOm 5QcIAABAcHUX8Ln31ggxdBJnkutiixNtnbVHBwAAQFh1l+7pN9YIMXQVZJ6r w4sWcIXlBwgAAEAcFRftIBfVIGF0FWe270QYKuAKyw8QAACACCqu2KGuqEHC GCDOnP+mIk+CRF5o7dEBAAAw19VrdeHlNEj8IyMZIMVg4+fMTdWjyzVMAAAA Rqq7TRdeSIOMYnAwA0Sb/9+kSJ6b1h4dAAAAw9RdoqNdQqPFM0bMtfhRiiy6 Y+3RAQAAMEDF3Tng9TNgSMPEXJEfpcilO9YeHQAAAP1UXJnDXjyjxTNS5HX5 UUVGhYq/xNqjAwAAoK2rN+XyK2e0sUwJabywq/PpGUz81Kp2aWjpRgcAAEBb V2+RkS+bAUOaIubqnKjIroCjOHF1gLlGBwAAwB3PO2DF5THsBTNgSLOEXaNz iZLtqrpxZRkdAAAAdxzXv82k/Go5a0QxA5sl8mKdS5R1FRYeGgAAAHUqLsLB b5SRY5sl9Zyky8ByFYPKMjQAAACuqrv/fr1IRh7R3PAmSj0z6fLwqoWHBgAA QImKm2/wK+TXwDa/4UZeuxLpErLcquMCAADgq7rbbvxr43lsESKcK8s6nqvL zPjjevhJNQAAAFuquOemuDAGDy+CRKt5Im+KfrXkoAAAAPjRpdtfrtti8PBC ib+aJS7l59pDmx0vAAAAl1269KW7IcaPMI5Ey3quPEtzjeux9NAAAAA2V3fd y3U3DB5eKIXLmmj2CnM13dAujSvLoAAAALZVfXvNdSuMH2FAWRa3XGHSphvj koMCAADYTd3NLt1lMH6EkS02e+XZm2uYSw4KAABgK1fvdEnvgFnijCnRQpcr z+R0g11vRAAAAMuru5+mu/pliTOyRMt9VWE+JxrpkfAvXwMAANhZ9c0046Uv S5zxJVr0S0q3QbbxrjouAACAldTd3ZLe8hKFmsKq83ms+/UnSw4KAABgGVev bKlvebmijS9jDlxyKds/Rx12+BVjAQAAoKu6W2fey12uaBP5OrELTO+lzE+R VMsMBAAAYAF1d7S817rj2/ewzA4wsXTJUKE883MNfLHhAAAAZFR32Ux9m0sX cC4ZU6JC+RbINfbFhgMAAJBIxY3suPLDVKcO7lfpAk4nY1bUKdwIr2OPPwPr jQgAACC4q7fLY4mvonl4RTNK0vSoU74psgx/seEAAABEdufylf3WljHmjPJm SJ3CfZFrEhYbDgAAQEDVd64FbmpJw04qdapUKNwg6SZhseEAAADEUX3bWuOO ljfyvLLnzFWFOyXXJCw2HAAAgAjqLlkr3ctSB5/XAplzVfleyzIPiw0HAABg rurr1TI3stTBp7ZMCtUp3XgZJqF8LCmGAwAAMEXdxWqlu1j2+FNbJovqFO6j RPNwaThZBgUAADBAxfXwebda5lL58IU0ASyTS3UKN1SW2VhsOAAAAL3duUMt dvNaYAgLWCadqh1X3n+mmJDysWQZEQAAQCfVV6f17lwLDGEBK2XUTeVbLMWc rDQWAACA5u7cAde7cK0ximWslFp3lG+0LHOy3ogAAADuu3NRWu96tdJYlmFR /ijcbommZaWxAAAA3Hfn0rfk9WqNUaxnpRy76cKOzTA/ywwEAADgpquXo7d/ WO9KtdJYFrNest1UvHdzzM9KYwEAAKhw6U70ejNa9Sa12HCWtF7W3VS4GY+P XRxT+XCOlxfFs6MGAABooPwqdP93pbDYcJa0ZOI1Ubgxj/Cva8oHYtEBAIA1 VN99Fr43rTSWtS2Zfk2Ub8/4U3RpLPGHAwAA8JvqW8/CN6aVxrKDJZOwifJN GnyWrg4k+HAAAAB+VHfZuXRLynhXcvVLZ9VUbKJ8w0aerrpRAAAApHDnmrP8 FWm9Ee1g4YRsonDbxp+xNUYBAADwqvp2s8PNaOGhLWz5tLyvcPPGn65lBgIA AHDnarPDnWjVce1g7cxspXAXx5+3NUYBAADs7M6lpvC3pL4NueJldzWrt1VY BIJP2qVRBB8LAACwlZsXmU3uPssPcBObpOt9F4pC1Em7NITgYwEAAPZx5/Ky ya1n7dHtZoeMbaKwMsSft2UGAgAArO3mtWWTK8/CQ9vT8hnbVuE2jz+BCwwB AABY2M07yz43neUHuKEd8ratC8Ui9hyuMQoAAGAlTS5c+1xwlh/ghqrTfnMX qkbsOVxgCAAAwBqaXLL2udrsMMY93cn/zZWWj9jTeHUUYQcCAAAk1epKss9d Zocx7myfTG7uQh2JPZkLDAEAAMio1ZVqq7vMDmPc3D7J3ENpNQk/mWuMAgAA SKTJNWSrK8wOY+ThJwnfc6GshJ/SBYYAAACk0OT2sdv9ZYcx8vDlNLcVVoYU s7rAEAAAgMiaXJ02vLNsMkye9sntfkqrTPhZXWAIAABANFdvTL/dOAp/42IX FveyDVn0Ji7VnLBzmz1+AAAgmiZ3pW0vKVsNlj/2TPVOLpSeqNObPX4AACCC isvRyf1iw1vJhkPmj+ptwo8uFKDY85w3cgAAYLpWt6Ft7yMbDplXe6Z9J5fK UdhJrgg+4CgAAIDxGl6F0t2kmthwyHySBs1dKExRZ/hS/GFHAQAADNPwHpT0 GnXfhkPmR3vmf1eXCtRznqPN9tX4AQCAbbW6O2x779hz1Pxm243QW3mlCjjP x993R6lHAQAAdNXqsrD5dWPPUfObnfdCb6UFK/Bspw4eAADopNU1wV1j24Fz YucdMUBh2Yk84XkjBwAAemh1Qdj8orHhkCm0874Yo7D4hJ3zjDEDAADNNbwa uF/sPHa+2nx39FZUxcJPe9KwAQCAJprcCI7iH4M5aljTbD58vrJHeispRJ9z HmrmL0UOAACs4eot5uZHjRnUXGaAr+yUYYpKW+CZzxs5AABwVcPLi0vEH2aA QvbLMEUFLvDkpw4eAAAo1LDhd3f4Y/Phc5UtM0xhjQo+/5ciDxg/AADwo6P4 B8h87fPz3nd62Hz4VLBxRiqvV8/JD7UEV4N/BIsfAAD4VNHn3/+0AeOabvPh U832GaywasVcgtTBAwAAb5r39i4If5gE7mi1HylXVASjLkFF8KHiBwAAHsN/ VvBW9wIzwB1fN5FE6qS8lIXazseV71oNFTkAAPBHw2beveCNGeA+W2mW8oL2 uhyv6zJ3gS6FDQAARNCwjXcd+GQeaMK2mquwuEVbl1zRAgDA5tp2764APzIV NNFwq1KnfAmirUiuaAEAYE9tm3b9/49MBQ3ZYkEUlrtQq5MlTgAA2FPbdl3b /yMTQg/2WgRF1TPe6lyKc3q0AACwiYa3iSx3kynMBj3YbkGUV79oq3M11Agx AwDAktreI7JcSaYwIfRj38VRWAajLVOWOAEAYGHNG3Lt/W9MCL3ZenEUVsLf 1mj8Sj2fWx0zAABwR/MOXD9/zoQwgA0YSnlVjLZGGWMGAIC8evTe2vgTpoVh bMNoiupspMXKFS0AAGTXqevWwJ8wLQzTdl/TVmnlDbBYiUIFAIDUmnfduvdz poXxbMmwSotvmPXKFS0AAOTSvNPWsZ8zM0xhY0ZWsjqhlixLnAAAkEvbBlvH XsK0MIuNGVx5CQ2yalniBACA+JpfBDTqhUwOE9mh8RXW0jirlihUAACIqXlH rT8vZHKYziZNobRGvyzc3OVLFCoAAIRS3kg3/MxOY0nH5BCB3ZpCYa2Os3xZ 4gQAgDiat9Aa8nImhyDs2UQKa2ycFSwPT5oBALCnZz/cvLcPflmIxvwQh22b SGntDrOIKYIEAIBZOjX22u9yZomAbOF0SpYsyCJmiRMAAMbr0SRruS8xS8Rk F6dTWs1jLGWKIAEAYJhO7bFm+xKzRFj2cl5FZX32ah4Xv99WvgEAsLYeXbFO +yqzRHA2dVKFCxdkHVMECQAAnfToh7XWdcwV8TUvF4xxXP9ilYmLmCJIAABo qKJjL/xYfXUdc0UK9nhq5csXYSnjRwgAAK10atF11NVMFynY4wsoXMQgC5ol TgAAqNap6dVC1zFj5GKnr6FkHYOsbPwIAQCgWo92V/98hxkjI3m7gPLSPX1x L4UnAwEAyKJHHx65sU/BjJGRLb+M0lNh9vqmCBIAAMr16Gx1yzeZMfKy61dS XsznLnFFhFIRAIBoOrXckTv5LEwaeakAiylf0LnrmyJIAAA40aOJ1RjfZ97I rrAOyOpcLi3rc3HHL7H0AwAgnR4drK64CbPHMlSDJZWX+rkLHTw8AAB41aNx 1Q+3YupYiYKwpPKC/7rQ41f8UngAADBFp5ZVJ9yKqWMlasLaCiv/63KPXPSr sQEAwDBdm1U9cBOmjiUpDgsrLP4/rviwda8LDwAAuurRoOp72zJ1rEqJWN7V 42DwcgcPDwCA3fRrTbW7TZhA1tap/hBN+UJPWe6r4UlIAACa69qO6nJbMYHs QK3YROHRMGvpI8cGAMDaunah+tuGzCE7UDE2UXg6zFr94+UvnIoWGwAAC+vX gpa3uN0GtxoTyD4UjX1cOoPG50DMqAAAWFW/zlND25ZpZCuqx24KD6MpaVAR lRQFAOCqfp1wqO56GWaSrSggeyo8PqakQeTYAABIrXeTqX1tzmSyIWVkT0WH 06RMiBwbAABJ9e4tda09mEn29LWS2AWrKj+qxidDRWwAAPDp2cf26yo1q82Z T7AL9lR4Ws1KhrCBAQCQRdd+UqfaifkEu2BzhefLlKy4GpWMBQDgj679baie eSXmE55UmJ1dOMCGZ0XYwAAACKtr36gp7ceUwpPtQOFx85oVw3LjamySFgBg W13bxWh98mK09/DKtZfCE21KbgQMCQCAaPq1ixrRAUwpvFFweMT+wpWYUQEA MF3vFlEL2ptZhU9qDk+Fx9CU9AgYEgAAE/XuD3WevZlb+I3iw1PROTcpPQKG BADAFF07Qz3nAOYWzilBvCk8mwYnyfH3J7MFiQcAgMF6d6dazTFMLHylEPGm 9Pz7N0kGpMqleAAAWMPVvrTfI9qOa0/mFkqoRXy6cBaOTZVo8QAA0NWA9k9v OYDphUvsF35UfiaOzJlQwQAA0E/Xru8o/rb61sPakemFq9QlflN+OI5MmGjx AADQVtd+79LH6idv0qtDheZ1j8UUHmSDcyZUMAAAtNK7zdNDjmSSoY4axbnC s+w1YcakzaWQAAAIrndrp3UcyQzDHSoVXxUeaoPTJmBIAABU6NrOaRfHM8lw k3rFV+Wn2+DMCRUMAACX9O7lNIpTmGe4SeGiUOExNzhtYkYFAMC5Af2b5nA8 8wxNqF0UKj9MR+ZPqGAAAPiqsG2707zpDMczz9CQCka5kiNvfP5EiwcAgE9j GjYN4RSmGtpSx7iq/JAdkz/R4gEA4M2Abk0rOIvZhuZUMy4pP2RHZlGoYAAA +GNAh6YDnMhsQydqGhVKT9yBWRQnEgAAxjSK2r9ZzDZ0pbJRofzkfU2krul0 NRgAAJp7dn29WzIt3ywmHHpT3Khz6Qgelk5BwgAA2FN5J1bdkun35jLnMIAS xx2FB+VrLnVNqop4AAC4b0ADpsGby7TDMGoddxSeyMPyKkIMAAD7GNN66e6m M+cwknLHfaXH85DUChIGAMDChvVaOroITDuMpOLRROk5PSq1goQBALCeYY2W dm460w5TKH20UniSjkmtIGEAACxmWIuli5vOzMMsSh8NlR/cvRPsahiyHQDg 3JgGb3obyR8mHyZSBmmr8GwdkGARYgAAyK68m7rZUw17EOe0zTBdSSWESwoP 2d5pNj0AAIDUxrRSGrY4Tmbe/MNI6iHNlZ+2AzJtegAAAOmM6aAKP1+fNoAm GUJxdaWH8sO9d6YFCQMAIIVhjZPeLA5LANGojfRQfsT3zrfpAQAABDeyX9KS RWMVIBp1kn5KD/vOyRYhBgCAsAa0Scff72DSjIViCSAmRZJ+yg/93lkXIQYA gIBK+qL73ZEeLBqrAJEplXRVeCj3zroIMQAAxDGmL9J9xWQhIDgFk97KD+iu iRchBgCAuQb3QpquaCwEpKBsMkB5S9A19+Y+HQBgomGN0FH842haDIsLLASk oHgyTHlv0DX95j4dAGC8kc2PRismCwGJKKEMU3hq987ACDEAAAwwuOHRXMVk ISAdVZTByk/wfkk49+kAAAOM7Ha0VWFZC8hIOWWw0o6hZx7Oei4AQG+D+xwN VWRWBDIaWcPhqTDxuiZhhBgAABoa3Nhon8KyIpDasDIObwpzr2sSRogBAOC+ wS2NxikyiwKpKbBMVNRGdE7IiqfbFABANCP7qPENG5dYFFiAMstEhU1Fv4Sc HgAAQLVhDYxOKQXrAstQb5mo/NB/y8aGaVkXAADALIP7Fj1SfNYFFqPkMlfh 0d8vM4+/39A0/tEAAFeN75T0RcFZHViP2st0hf3GZ2a2ys/qAAAAxhjfpWiH 4rM0sCrllyBKO48+yTnx0QAAJ8Z3KRqhFCwQLEwdJogL/cffzGyYnxVPBwDo Z3BnogVKxALB8pRiIjiu/6CY5vl5NYa2TwcAeBrckGh+srBAsAPVmFAKm4Qe KXpUvSmyRwCAhgZ3IOX9T5PHcZM1gh2oyURTkpO9E3XiowGAbQ3uPfQ5uVgj 2IrKTEClbUq3XJ31XABgQ4Mbj6Psq2iaPIsmLBPsxq4npvKO5TVXGzYwFU8H ALhkfLOht0nHSsGGFGpiKuxb+qXrxEcDAKt69gxhe5uGT+SO4/QLn2ZHB3Sk VhNWYS/RNWNnPRcAWNKsrkYzk5Flgm0VVmwFgVkK+4rm59dR9r3bzZ8LAKxq SkehgcnISsHOCuu2msBEhf1Mp1NsykMBgMVcaidaNRVal4ysF2zuKPuCgdlh srvivubn1L2fw3XPBQA4rnyBbtvn6lgysljAw1sa8ijscDrl8PgnAgCpTWke Dn8Om5b1Ap6UcbIob3Ves7dVDl99bsNHAwCJVLQrg5/b6ok0ZL2AVyo5iZR3 IM0T+OpD7R0A2M2UFqXw0W0fR0NWDXgz5RyBOwqTtkcaj38iAJDCxPZAT5Ka JQN+pLaTTmkn9JHGN/O54okAwNomNga6kdSsGvCbwvKuXBBNSeq2PfuOl588 0/tZAEB8U/oBHcgCLBxwTp0nr8JGpXlKX3qQHQQAixnceFQ8uuETac6qAV8p 9SRV2Kj0yOqRzwIAQpnYAOg6srNqQCHVntTKm6XmWT3loQDALOXHffNzX5ux AMsHlFPzya6ka+qR3iOfBQBMNPG412MswAoCl8w6caCtoubpp9y+k+EVjwMA cpl10OsulmEFgQrqP2so7GfaZvjIZwEAY8w93DUVK7F8QAWnAMso7GoaZvjx 92tyyh9kQwFAcANaiDtP7/FQmrOCwB3OAlZS3lm1SvUBjwAAhpl1oGskVmIR gZscCqykJJ+b5/mYpwAAXc06x/UPi7GCwH2OBlZyXPxepPupPuARAEBXUw5x ncNirCDQkNOBJRU2P62yfdiDAICGCk/t5me3hmElVhBozgHBeo4bX1fzqG3G Kh5U/SwA4Kbyw3rwQ/UG6VhHoDknBasq7IUa5vzIZwEAFWYd0BqDJVlHoIeS w0K1Ia/CpqjJ2Vr3LJsLAAY4ir/attPT9QOLsZRAPyWnhmpDdoV5fjPhrz7F 5gKAMWady1qCVVlHoCunBju41CbdzPwBjwAACk08jjUDS7KUQG+OD/ZRmO33 87/35wMAJWadwhqAhVlQYAyHCJso7JqabIGKz7fXAKCVHod7k+c67vOyrMBI ThP2UdI+tdoCY54CADzNPXOd9QuzrMBIDhR2U9jC3d8IFY+w4wCgTr8DvcnT Oz2XMSwrMJhjhQ0V9nL3t0PvzwcAZh2yTvblWVxgFkcMGypJ+yYbYcAjAGBP 089Wx/ryrCwwiyOGbRU2eHe2w4BHAMBuJh6pTvNNWFxgLgcN2yrstT53xNWt cenDAYDfTDxPHeWbsL5ABGoROytsuu7vjk4fCwCbmHiSOr73YX2BIBw6bKu8 5bu5Nfp9MgCsbfoZ6uDehCUG4ph15EEopf3fja3R6WMBYFX9DuW2T2/+aMb7 bWWtLzCFowcewV7U2HoAMPG4dEzvwxIDYTmJ4BHsb4DqMUAACK73QdwqgObP ZQpLDETmJII/SvvC2j3S9cMBIK8Ih6NzeStWGYjMeQRPpQ3ivW3S6WMBIKm5 J6MTeTfWGohPpYI3pc1i7Tbp+uEAkMXcA9FBvCELDaTgeIJPhZ1b9Tbp9LEA kMWlo7DHgegU3pC1BrJwQsGnwtbxzk7p+uEAEFOE48/JuyHLDeTinIIfFXWQ NzbL1Y+1GQHIrtOR2jyATk9nCssNZKR2wYnCju65WQq3zKWPtRMByG76Yeec 3ZMVBzJyPYRzhY1lxZap+Fj7EYB0mh+gPQLo9GgmstZAXo4tOHf8fUNyVeGH N/9MAAhi+tE2PQCmsOJAdg4vKFHS6X3unZIdVPGxABBZhEPNkbotiw4swBEG hYo6zqq90+ljAWCwIMeZw3RPFh1YhoIG5cr7z0ubqPkHAsAwx8XvEe4ayddH O0lXpX0CVuI4g0uK+9DSxuDqB5Z/MgB0FeTMmh4A01l6YCUONbiqtCW9uI/a fhoA9Bbk5JoeAHNZd2A9jja4qqglvb6Drn6svQnALBGOqggxMJ1FB5bkaIOr yjvDq1up+QcCQFtBTihnJdYdWJgzDuoUtohX99GlD7Q9ARgmSNMYJAwmsvTA 8hx2UK1k+1zdTc0/EADuiHMeRYiB6aw+sANHHlQr7F0vbauGHwUAd8Q5jKYH QBASANiEgw/uKG9iv26r11+//2kAUCfaARQhBuaSAMBWgpy/kFp5Q1u+rXp8 JgCcC3XuRIiBCOQAsBsnINxU3tNe2lnNPxAAfnP8/QH1cQ4dRx5/SANgQ0HO YsiuvLkt31mXPspWBaBOq2NrQDzDYiACmQBsK86hDNkVNrqX9lfbTwOAV6HO lwgxEIRkADYX53SG1Ap73c/Ndb7FKj4QAM5FO1YixEAckgHYXJwDGtZQ3vqW bLHj4k8MsGcBOBftKAkSBnHIB4BQJzUsoLABvrrRLn2ObQvApybn0chgxkRC BPIB4CnUeQ3LKNxZhRvtuP5FNQPHCkAOoY6PkkgcZ/sIkpYAQZQc2cojXFW4 sy5tt/ufAMCGoh0c0eJhOpkA8Kno4qdOwkVH1c+WOd9rTT4EgE1EOy9KgnGE bSVOcgIEFOoQhwUctW9pzrdbw48CYFUBj4lQwRCEfAA44eiErkq22Nt2O9l0 Vz8KgH0EPB2ixUME8gHgKwcodFWyxcp3XNtPA2ABAU+EUMEQh6wAKKRgQlcl zeql3dfkQwBYQ7TjIFQwhCIlAAo5TKG3wl1WvvWafAgAqYU6CI7in8zWOxLC khgA5RypMEbJXivcfa0+B4CMAtb/aPEQipQAuCrgWQ9LurTXPvfd5was+xwA 8opZ8KsPMnYQJ1EBEik88dVSaKJ8x53vvvufAEAiMat9tHgIRW4AVCs895VT aKV8053svqP4pwHYwgCpBSzyAUMiFIkBcJOjFsYr3HdfN+ClT7CRAXIJ2KEF DIlo5AbAfSUHrroKzRVuva/b8P4nABBKzJIeMCQCkh4ATRQ2A6orNHRUfePS bzvRLgZYQ8BiHjAkYpIhAA05fGGKwtb3636883sBiCBmGQ8YEjHJEIDmHMEw S2EP/HUz3vztAEwUs4ZHi4eYJAlADzF7A9jBc2eVb8Pf9uOd3wvAFGFLd7R4 iEmSAHR1qU9QdaGH+9vQRgbIInK5jhYPMUkSgK4utQo/FmEFGe6r2H1ve7Bu /wIwzHH9qyhHxhYnGIKTJwC9XeoWnODQT/WOO6q+f2rqWAG2E7M+x4yKyCQJ wADlB/TX41t9hjuqt171J8waKcBWYpblgCERnDwBGKO8c7jk8e9LG9UbytXt uDu/EYAeIlfjwqicFPwRLYEB1lbeQtwxe5SQyZhdaW8C9BO5CJcH5pjgj1AJ DLC8wi6irYdzH74ZvysBuK+86k6pvY4DrpItAIMV9hKdPAOYPQ0Q0ZQtCUCd 4PU2ZlTEJ1sAxrvUVHT1jGfuhEAoU7YhAJccV/7SvfGxBYyKFCQMwBSFZ/cU s+cGorDvAMIKXmDDBkZ8EgZgikutRfl/3NzDt0exsVkbcPa4ARIoLKdTiqpS TzU5AzBRYWvxWZNLjv4eXuP5jAoWNmW7AfCbyLU0cmzEJ2cA5rp/fBd2AgP0 niuYy4YCCCJmIY0ZFbnIHIAI2lbjI8B3SMGqBu+v2cMFCCdy/QwbGFlIHoAg elfjI9J7m1aDgrkmbiKAPcWvmZFjIwXJAxDE4AO9qL/p5jWAtuOCwaZsH4Bt Ra6WMaMiF8kDEMrcmlze9jT0ePkin2cYY8YLbY3cNQB7Cl4qY0ZFIvIHIJo4 Zbm8C+ph8GChFTsFoJ/gtTFsYGQhfwACClucC/uiTh6+wIZUBu8OgB0EL4wx oyIX+QMQU/z6XN4m9TZ7JuCMjQDQRPx6GDYwEpFCAGElqs/H7L806m1ajnhT xOambASAlQQvgyVRKdGUiJbbADzFbELKlXdTXc2eBvgvMh+gQvzqFzMqkpJI AJEteeJf6rVaefgDLMIYnPkAqcWveJFjIx2JBBDc8oW6tPFq5/Hv3/S9xjSS zsiEB0jn7aQuqXWzKp5STFsSCSC+TU7/Y95Ptnn4MhsmGZbhALlkKXSRYyMj uQSQwrYNQMnAG3p74uzRs5FhGQ6QQpb6FjYwkpJOAFnoAV6Vdmy3PYpf2uy2 BPQwLKsB4ktR1oKHR0bSCQjrePlO5K//zef/fS1lx8td++1fJaJivynpi7r6 MZKJE8IyBicwQDQpqlnw8EhKOgH9lJeRz//y+Oknkzz/1fHL7fjtPy48Oo+C d0FBFA5kTxXr3s/syWAdMhbYU/wKFjk2UpNUwIkf68BvJeLz149/v3zlUfyC Za7289hU6uDHG5MzJcthdagzPlcBJspSu4KHR2qSCrb1uc2fe/+4/QUJN397 BONXpFzeyGc5/n1PONjjZU/NnAWSG5auABOlqFeRYyM1qQVhfW7A1115/Hvd +/z133Z00YHHX2PWulreyEMZlk5WiiYkJ7C2FGUqeHikJrVgpOe2+txib9ut /Hiiq9EpclHq4AM6pr7JfPxbIibPBbGNT06AMVLUpfgRktfXvJJdcPx7dXp8 3OM+/3sWMzjlLskbeS5jMu3rOlpT3kzJQ4B+UhSl+BGSmtSCP45/38A8Zl/K iGZebn6XNOykjtlfbPMaxuPfF8js5hj+FZizRgrsI3g5UjDpR2qxnh8z9iSN j48vjHn+X/jUIWebSRr2GoZlYKG32GZNC1MMTjCAVo4rfwIyN87CCBVMKkgt BvsxnSp+8TU5P3O1sHJCnUa7ob2kYS/m+KhL082eEuaQWkA6KYpPiiBJTXZR 4Twxvv7b4983LY+XPHx85OT5v4VZmmyl5tIFvJsjQB17C4a1DUsq6QQ0UVhz gkc4PUiyc+zu7Cho149//1D47Z8fv79Cecy+icAlVzO2275sIGPMW6nIt36e IR0yZGljckkWAXUulZrgoc4OkPTk2Hg92pgfl+z4eJHyuHg1uPrfM1GTZfrM z8//e3zkWPMwxivZWZd+43TpAt5c03S+6y2wWXNCD1OyCKBE/PISPDxWItMa Ov692P74rz7/sx//1Y8f/uPSFBY0Mnpd38fHq5Lnr3/myY/pd3zkW3MncUZz dVxNPmekhsNnvKbJfsvjpaocMmcVg1MI4FyWepIiSLKTZjcdv7x4eZ264+N2 /PofFFYkUvvMls9EOvm3X3NvuuOXr72J6VE7e+efGdDXeSCF49+DJoiJE0Ir sgWYLlc9iR8ha1gvzT5j/nEUv/3i68CPj5vm+f9lT7+l0/Jehx9c2yF3fURb Y6aFiY4Ye/AtHtKZki0AjzxfQvPwioaBFsu0t4CPbz9b4/kPcGJcBucxe01+ 8Oh/Qzx/ekwZY6ba616IYPZ8cIGUAMbLVT3iR8gagu+IS08/IvWlRPOaG4+P F3StknB5U9buq8fAZQoSxiUlE8g+Wu27Sx5Rdwe/GZASAImKRoogWUbFvvgx CX/7ldf/+O3T3v7h7XEn//fH8AoHQjSPj5cnn//2JPFOMpCbRqVAvcgzMyu2 E7miZZhG2/Gyh7od24AEADaXqFxkiZPsnrlUebh6McJfbxn1+n+//i4ie65U x+y5YvZ8vFss4NnREcIxb8u/BkAovRcd2FCuWhE/QlKrPUVZx1syPP/5Mz1e /9XrfzM0Zensbemfvzjd1FkplXEU6QJmrkYbutLs0fNfrDXQSroqETk2llG3 L4js8fE1D7OzjLje0uO3FBrsx9jiKxxXKOkCJpQ2G/6i2YPmvzxXpMcqW2vY R64jIH6E5HXr7KSbx5W2pPy/hB/Nzvf/77FQMn8daUDpAiaslnWhwNsTHwtV koy6LjSwqlzVIH6EpFZ7Tm7t8e/Xpbz++vNXPuf5t3918rugk8/sjWDunDSX cbDpAia449+TcbCJA+fRbcVnDwvoJVERyBInudw4Gxf0+PgDuIcXJizqM+HH e4vkLbbFlExFKLmiJaN2teSaxwYFJ6YeSwmsJ1EFSBEk6dw7G1cwewVgqNkb 7j/NnoPJck2LdWS8DlXnu9mD3ogVBE7k2vK5oiW+2jNwhNfwnv98Evnrv3r9 h8OOYEvn+2WKibMRTbqJyhUtK2lahK55fPQen7ENnIk1dVo4ILVcOz1XtAR3 7wC8a/boYVlzt/bT49vthvPZiyZXtCzv+PePcoZ5fPxJEK10Wi8gl3QbPFGo BFd71n1JtuOnr2YBBmiyqe+bPQ355JrMXNGyiePlzUnbgnbJ7GlYhHUBcu3u LHES3M2TTqZBHMfUW8ns0a8j1wznipY99al53z18AWEjPdZl9piA7y7t6wgS hUpklcebHIMwbu5iRSCgXBOeK1p4+AKbnCwH7KZ8I8fZzmoOFe4eZtIMAmi7 ka/uent/jPNVCCVRqPDmmP29UZ9hcKLfEgDRpNvCuaIllBuH2D/ZJcdgpCY7 9+auZ7BEyyF5WEzT8nnZ7NHnYNphYUl3bq5omet4+WOam+YOBPZxf7fe9/Ay NoDzBQolS5xQrX2d/eb10RMHHla/CQfmSrdnc0VLEDfOK0kFfR3t3qPe3OB2 ekAlCxdHljjhpsYl+LrZExCL6YWVpNuniUIljnvHlLyCXg5/ExNlEq1jolCh iWP23/Rtfz2ZVcgu4/bMFS0R1B5K0glGuLlDbeqtZFlT6cfmOlTuax4fXxV5 bPbVkr3nE+infGMGkS5gJqo8hyQSdPO6re7v0Kvb2aZewNdVDiJFkDBSy4Je 6xnJ3KkYqdMcAp0k3YzpAmaK2pNHCkEXx0tvPN7csdNcluVOESSMdLx8V9Rj 3nub1xh20Hz2gH7S7cR0ATPY0egaOHcUsIab27B689rCO/iaBkGUZCzwqs1h UOWx+gnSY8aAhjJuwEShMtLr6l87Wn7KH1kE1VrtxEt7lm1lSQxpDBXaHRSV Zk9AR2YJYkq39XJFy2BVp4rkgQaOl3ebTXZiyVa1YfkjS0nPEicE1/g4qTJ7 DpoxMxBK0o2WMWYGuHGYSBu45rll7u87G5ZWUmRLiiAhkWP2YXT8+ycUk6fj huZzAlRIustyRcsYN84QOQOX3dxxdiudpEgeSQ69NTpwbpk9B/VMAkxUuLNC 7a+j7FX57DAZ6v7xIWfgN8/dcXOjNdyeNiznzjMqiBRBwkqOSV9v8/r0LHrM AFAi6bbKGDNdOTKgh+qd1dDsOSCrLHkVP0JYWOsj65rZoy+y4ZBhory7KWPM NFd7OMgT+K7J/rI3mS5FjqUIEpb33HQtD7MrHqdfaROhJjQc5vSxQEzl++gR 6Wvzyvf+7Ejpq+pYeE9s2NBb/r/W+VlmTAMbiZ94NgiEdcz+ccSvkbz9yizN hwb8kXfvZIyZVo5G18m5o4CJbu6d5mbPB1tIkYTBwwOeWp+EDaSehPHBQ0B5 t0zSsGmoqvbLDfZ1zP4TwB/NnhV2FD8ng4cH/Kjp8dhA0rGPDBsCyrtZMsZM K7UlX3qwnePl680eAbrHt6hglpJEnSt4eECJI8bh+zRs1ImihYAy7pGMMdNK bZmXFezl5k5p6OGdDFGd520E8SMELml8xN7wDCb4SDuFB2Hl3RoZY+aOe9Vd VrCy4+WrU44wf2A3dUqgVIo0Dh4ecNXx7xuShofvTY8O720axgabSLojMsbM TTeruqxgVXe2RnOzJwMuS5HSKYIE7mt3IDcWZGj3w4Dgku6FjDFT7Wjx5wuz BwHNvCX2za3RxOwpgTaCJ7ltCFt5bu1mp3UjrYYWIRIIKGnyJw2bq55LWV+7 ZQKruLMLGnqNZPaUQHtfkz9mbLYk7OD+Id7Q4+PPjB4Xi2TbYGANeXM+adhc daNUywTSO14angjmzgaMFHkvRI4NGOBtp39WgJvH/X2fQZYM6v5DYQ15sz1v 5JRTq9nBZ64+E/jmFrhpxmRAFMF3R+TYgGiOqU3Fo/iNTavHQWpJk9z2XNvt 2mz1ie74/Y/Apps1JxBQ8M0SOTYgsqaNwwUjw+s6gdBc9txOHTxfVZVh604m N5O8h9lTAhHF3zXBwwOyaNpTtKmcI58F02XP7YwxU+i496WYs8OH76rTu5XH 7J96CokU7qmYEc4NDEiqTbfRtDSNfyIMljqf80bOV1VF17oT1PHLy5D7eW6D wHiRN1fk2IBltOtHKt/S3I+h9ZRAS6nTOGnYnLhXbi06Ibxl4/2sbuXx+/si oFzhRosZG0ArTTqTiQE0mQRoLm8CJw2bczeqrBUnkJuZ3MTsOYDFBd+DYQMD 1jalXbn6UIWRyPImbd7I+VFtQX1fbovOFK+J1ySZq7cAMFLkLRk5NmATg7uX 0oZJVSSq1BmbNGx+VFtKLTTjHP++hHn+w1yTJgP4R9hNGjYwYB9T+plr7dRH MIokU1zK0mjyRs6nmtJplZnhiPGlMtIeYgq7Z8MGBmxiYm9zrcFSJJkqe2aW hB02eP6oL5exk5OVPIvJRA/VDDL4upHFBuypvOGZHoMKyVypMzNp2LyqrZQW l+7uJGdDs6cBqBFzX8eMCthEqM6nMBhFksEWyMm8kVNRGK0svR0BvmDmafZk ALeE3eAxowJ2EK0FKu3JFElGWSAnk4bNw5caMs9nFlVnY0NTpgLoKuyujxkV sLywrVHYwNjKAnmYN3IupZ8FpaHq3Otn9pQA3cWsADGjAhYWvEEKHh47yJ6B ScPe2aW6Z01p6376NfHwg39hS+dlQVTAJi61TMGDnBghq0qxQU4kDXtP5clm NWnrCPDjZV4DeI0K2MrXQiEqYHmX2qf4oc6OkQXlTby8ke+pZL2sI9V+TJXn L95JP6kLtBWwaChlwEi5WqkUQbKMRFvjR0nD3k1hmllKLnlNjLdsuZ9ydeZN BpBMzGISMypgPen6q+Nbhzk7QNaRaF98yhv5bgrTzDpS6AjwjUtvZk8JkFLM qqLcAQMkbbTiR0h2uXbEq7yRb6i0+H4sn0XkRF1etfIawOyZAHL7Wm2EBKyn ovWKI36EJJV0RzyVhB02+K2UZ1r8rGOuzw0+zGckMyYAWFN58dk5JGAxN5ux ieJHSF4Zd8RTYdgxg99EeYIFTzamO6Z+c9Ps0QOLC1uFAoYELCN7SxY/QtLJ ux0evtEptkupZcn4TXUi3fR89OwJALZzXpqihaROAnfUNWlxpAiSXJLuhT+S hr228oyyXvzomQY3c6ki8SQhEEdJ1YoT0pR4gDVUd25BxI+QXDLugj/yRr6D wtV5WynrtZvXpZ9l9hwA/Cpg+YoWD7CG1P1bljjJIt0WeMq4f3dQuC6WaXN1 edLE7KEDXBCwpoUKBlhD9o4uS5zEl3QLPKUOfknlGWWBNvHj+tblSbXxowZo 7rzKDa51qi7Q1gINXqJQCS7pFvgjb+SLKcwiy7SPH5f4GPs9TbPnAKCxaHUv TiRAdgs0e4lCJbKMyf+Ud/8u6dJyWKAl3cyB5mbPB0B70QpgkDCABazR72WJ k8gyZv5T6uCXUVpArdG67udAQ7MnA6C7aJUwTiRAagv0fimCJLKMaf+UN/Jl FOaPNVpYkxxo5eEvBQN28rUkBolnfCRAUneawDhSBElMSXP+KXXw2ZUnj3VZ 2P00uJlCh9cywN6+1sk48YwPBkjnTlsYR5Y4iSldwr86Cn706MP1rY/iepkp o7jqThrUZc5v+SOvgJ2dV86dgwHSudMoxpElTqJJmvBPeSNP7bjxl/LMjp32 6jKhMFvkDEChaIdvtHiALG52j3FkiZM4kqb6q9TBJ1WeNpZjHzezQpIAtBKq wIYKBshimU4yRZBEkzHVX+WNPJ3nTJbnjLXYiqwACCJU1Q0VDJBFdWMZrbAk CpUgMub5q9TBp1OYLRZiT1eTQVYAdPW1CMcJBuDVpa4yfmFJFCoRpMvwN9nj z6Jkni0EMgEgmjjV2NEAlCu9YCSpKolCZa6M6f0me/wpFOaJ+efhr1cDiCfO MR0nEiC4wltGlqqSJU7mKkn7I/aVqmRjSvv7ClPlt2k3/7uxGQECClKZnRFA ofKLRoqqovpR4jxPPpM/oJIhhA0+hcIZNvM8SQmAmOLU5yBhAMGVV60UVSVO ESam8wzJki0LDCGm8vQ4mXMzvy37ESCmUC1TkDCAsMrrVZzKdiJFkMx1niQp UmWBIQRUMqvmnHMyBCCsOCU6SBhATJcuHSnqSZzyS0BfEz5FqqQOPqbyxDDn nJMnAJHFqdJBwgACKr96xKlpX2WJk/G+Jnz8PEkdfECFKWHCKSRVAIILUqiD hAEEdOn2kaKYXBoRWznPjfhJkjfyaI7ivxvLVHOJtAGIL0itDhIGEM3Vm0iK MqLc8elrqgfPkOzxR1M4nyaZqyQPQApBanWQMIA4Ki4jKcpIiiAZ6WuqB8+Q 1MEHcbT44hlTzVc2KUAKQcp1kDCAOL5eScr/+/HB/+bqoFjYUXwxnx3pFwsM YbqSOTS33CSRABKJULEjxADEUdFMxi8jFYNiYef5kCUxssc/XWEa/DixppdL bFWAXCJUbGcH8EfJ9eTq7xo8hN/Ej5ABjiW+iqZkFLNjjKtk9c0qbckrgFwi FG1nB/BHXTWIX0BUOf44z4QsKZE9/imOGz9/5vkbZw+ClBaoOQAbilCxHRxA XRuZovNMESS9fc3wFMmwxihGKpkxk0k/cgwgowh1O0IMwFx1dSBF9dAhc54D WZKhJP74oximcNHz5gMpyDSApKbXbWcHbK66CKQoHSmCpJ/z9E6UDNnjH6Zw xU0jXck6gNQi1G3HB+ysrgJkqRvxI6ST8xRNlAzZ4x+mfMVNIwPIOoDUpldv Jwjs6WYDGb9uxI+Qfr6md/w0yB7/GCULbQ4ZT/oBpDa9ejtBYEM3u8cUdSNF kDT3NbdTrP4CQ+iqZJXPZ88c0tUahQhgZ9ML+PQAgMHutI5Z2s4scdLQ+aIn Wv0FhtBP4SqbOmaRhwBrmFvDnSOwmzsNZJaKkSJIWvma0olWf4EhNHf8/QKY OrPDZy/SEmAN02v49ACAYW72jSnazhRB0tD5imdZ+gWG0Enh+poxIpCZAMuY W8MdIrCJ+31jirYzRZA08TWljzw/h+T+9lxPyfqaK+KQogArmVvGHSKwiftN Y4q2M36ENHGejYkWfYEhtHK8vFUrXN89J4qY5CrAYuaWcecI7KBJ0xi/XMSP kPvOkznRii8whJuOez92Zp+JIj7pCrCeuZXcOQJra9Iuxm8740fITedLnGut 1xjFfYVraqIITsYCrGd6MXeUwKpatYvTy9S582HGiZM7SlY5/kKvMYo7Cmeg ZGbWnigSsa8B1jO9nk8PAOikVccYvPM8Dy9IkNyRfYmPK9/dMzvYXgqHv+HM kJ0EBljS3JLuTIElNdzawUvE+UiDBEm1r+ubYokLh5BiLFeVrOACS8yeJDDA wiYWdscKLKnh1g5eIhSxVZ2vbKL1XWMUVx23fz7w7BHAd/IZYGFzC7tjBRbT cFPHrw/Bw6PCedblWt+VxlKocMibzAZrk9IAa5tY2J0ssJiGmzp+cYgfIZec Z2+uxV1mIIUOXz/DTiQ2wPIm1naHC6yk7XYOXhmCh8clXw+jXOu7zEC+urRw S84AG5LkAJuYWNudLLCG5o1i8OIQPDwKnedtxpVdZiDnDl88w67kOcA+ZpV3 JwssoEeXGLwyaIzXcL6OGZd1mYH85tKSrTd8kO0A+5hY4R0ukF3zXRy8LOiK l3G+lOmWdY1R/Kh8pdYbO7yS8wD7mFjnnS+QWo/qEbwsTCyYtHK+iK+rmWVZ S8aSUeFKrTdw+JHMB9jHxDrvfIHUOm3hyGVB1Urt/LzLuKBrjOLTpZVaY8hw zkYA2M3EIu98gbx6tIjBa0Lk2Dh3nq5JV3OZgfxRvkY/DjbjkKHQ1e0AwAJm lXpHDCTVqUWMXBDUq9TOMzbjUi4wkGechauTfbxQzXYA2NCsau+UgaR67Nzg 1SB4ePzm/KDJuI7LDORx+/3M7PBhEPsCYE9TCr5TBjLqtG2DV4Pg4fGj81Mm 6QouM5zC1Uk9RmjC7gDY08SC76CBRPpt2OBtZ+TY+HSeTkmXb4GxlK9L3jFC c/YIwJ5mFXwHDeTSacPGLwXBw+PpPJfeFi7X8sXfJr8pX5RlFgsaurpZAFjG rO7IQQMp9G4LI9eBWeWROue5Giq1yiUdS+Fa2F/wm4pdA8BKptR8Zw2k0HWf Bi8CwcPj1fmZknHhcg3n+Ptq5Y7Zg4AobB8AZpV9Zw0E17s4BC8CwcPj6TxR M65axhEVxhx/IDCdTQTAI95f9tTpiUC5AT1h8CIwpTBS7muKvi5WoiUrHFEE 5UsQfCAQR90+spsAljSlidK5QVglbWG/z28yhE7hzQ6N//Q1P5MuVvwRFc78 +RAiDARiqt5WACxpfPF33EBYAy5ZkStA5Ng4WZ28i5ViROUzH3YIEJxtBcCr KcXfoQMx9d6YwTd+8PB2dn5q5F2p4CMqn/awQ4D47CwA3kyp/w4dCGjAroy8 8SPHxvmpkXSlYg7naPE3NyVdEZjC/gLg05T679CBUMZsycgbP3JsOztZl9TL FHBE5VMdLXJIzS4D4EfjDwLnDoQyZj9G3viRY9vT+cGUd40CjujSVEcIGFZi xwHwo/EHgXMHQhmwH4Pv+uDhbej8YMq7QNGGUz7PEaKF9dh6APxoylng6IEI hu3E4Fs+eHj7OD+M3tYl3eqUDCpUPHFChVXZgwD8ZvxZ4NyB6Ubu+shbfnD1 48T5WuRdl+PbT+WNE8lK0w7B2YkAnBt8HDh6YLph2zB4txk8vH2cL0TeFYkw oqPFX940IE7Yis0IwLnxx4GjB+YatgeDd5vBw9vB+RKkXo4ggyqf4ZUmH4Kz GQH4auRx4ACCuYLs9+bPqhA8vOV9PQ7yLkeQEZXPcPYJh1yq96btCbCVwSeC 0wemsNNTxLaD81RMvSLTh3NpbrPPNmRkewJQYvC54ACCKQZvvcg7fWTF4835 5Kdei7kjujSxeScZUrNPASg0+GhwBsF449u/sDt9/FTw5nwJkq7FrBEVTuZn JOlmGLKr2639qgcAkQ0+GhxDMN74TRd2jytB050vQcaFGD+ckjlcZnphDfYs AJeMPxocQzDMlMYvbLcZNrCtnB86uZZj8FhKHpd9SmFJNi8AVw0+HZxEMMz4 vRZ5g0eObR/nJ06itSgZSMPhfH1c6smEtdXtX1sYYHMjDwiHEYwxZa+F3eA6 4SDOFyL+WnyNv+1YLj0u10zCJuxiAOoMPiOcR9DbrMYv7O4OG9iGzpMz+Ip8 Db7hEAqf9eOjg08j7KNuIzesJADkNfKMcCRBb1O2WOStHTaw3ZwnSeQVKYm8 Yfzljzv+fndV5NmDbV3ayz2KCQB5DT4jnEfQz8SWL2y3GTawDZ2sReRFGRZ2 yYPiTxfwR8WOtrUB+GPwGeFIgn5mba7I+zpybLs5WYuwK/I15iZhlzwl8iwB by5tatscgE8jDwtHEnQyd3PF3NfDKhuFzlck4KL0C/jrJ2eZIuBT9Qa3zQF4 GnZYOJKgh+k7K+a+nj4tvDk/a+IsTUmcFdEe//4kmUv6DBToom6b2+8AvBp5 WDiVoLm52yrsjlZtAjo/boIszdcg6+Is+djPpwSZE6BcxWa/WV4AWNKw88Kp BG1Nb/bCbuqwge3sPF0jLM3XCK8GWfKBMacCqFC95e19AN6MPC8cTNBKhE4v 5naePi385jxp5y7Q19jKwyv5qIAzANx0Z+8rAgC8GXZkOJWgiSBt3vQAEkXF 16SduEAlsZWHV/hpcYYPNFG99xUBAD4NOzWcTdDK9K0UdjvHjIpH1Bc196M6 bvxwYJkJa7hTAZQCAH407NRwNsFNQdq8mBs5wszwm6+pO36ZbsZTOKIggwX6 KdzvSgEA5Ya1kfpVuCnIDgoSRnlUKsx056szeJnuB1P4CXOHCYxRuN8VBAAu GdNP6lrhpiA7KEgY5VGpMBGcL9CwZSoJ4zyY8k+QgbC8rxv/+PZ9kbNHAEBQ w9pLhxRUG7NJ70QyMobCkKYHxtP5Go1ZrMIYnpEcBX8OPn1QwETlFUB9AOCq MR2mPhauOgp+POn4kIJEUhKS2hLH+TL1Xq/CpzfUaSBAHAoFAF2NOUQcVXBV tB4vSBglIakqoXzN5H5LVvjoJnrEDwSkYgDQ25hDxFEFV4XaNXEiiR8Vn86T uceSHbf/suxL2gYPBFdSEBQNAO4YcI44qqDc+X6ZsmVCBRM8Kj59TenmS1by xCbahg3EV14TlA4Aqo1pQR1VUGjMlmwS0pRgzkNSUgI6T+nmq1byuPsaBgwk Ul4ZFBAA7hjQizqqoNCA/dgwpCnxnEc1MSR+c57VrRau5Cn33Y8TyKuwPqgh ANw0oCPV9MJX59tk1k6JFk/kqPjN19xusnAlT7npfpBAXpfqg0oCwH0DThOn FZwLeEPMFdKUePjqPIuaLF/hI+q0mgcgtUtVQkkB4L7ep4keGE6cb5CJ2yRa POchKSZhdc3wkg+v03AGgOwu1QqFBYD7eneqOmE4EXN3BNy2AUOixPnC3VnB wk++pPnwgeyuFg11BoAmep8mTiv4TditETCqsHPFifP6X7eChZ95SafhAwu4 VDrUGQCa6N2+6o3hR723XqfAhMQlX/P86iIWfmDbhwLbulRDFBwAmujdxOqT 4Udh90XAqAKGRKGvR8ClpSz/tJLHyR/g3NWqdae+AcCrkm428udDLl93xNxN kSgk1SOFkoT/upSFH3LzKQBPV4uJ4gNAW707W50zPH3dDnN3RKKQlI4UShL+ 62qWf4hsAZq4Wk+UIACa63qyOLngKfJeCBhbwJC45Gv9/7qa5Z8gT4BWrpYU VQiA5nofLrpoeGTo4qLFFn/G+Opr/T9f0PLfLkOAVtpWqsHBA7CMrueLXhoe 4b95J2B4AUPiqq/1/2RNy3+v9ABaaVupxscPwEq6njKOMAie/wF3aMCQuOq8 +J8v66XfKzeAVi6VFxUJgH76nTKaaoif/9HCiz9jFPp6BPy2suW/UVYArVwt NeoSAP107YF11+wsfvIHjDBgSNQ5r/8nK1v+G2UF0MrVOqM0AdBP707YEcae UvRvASMMGBLVznfBb4tb/rtkBdBKRZ1RlwDop2snrLtmQ512U3MBgwwYEtXO N8LJ4lb/RoAKdXVGaQKgq36dsAabDWVJ+2hBRouH+873wvkS1/0ugKsq6ozS BMAA/Y4bBxlbSZTt0UJVKxZzvqAl61v9GwEK1VUYFQmAMTp1whpstpIo26PF mWjqKHRe/78u8Z3fC/BVdXlRkQAYo18b7CxjE4lSvd9+7xHSlHi47zzNSpb4 5m8HOFdXWJQjAIbp1AY7y9hBp+3TQ8xQA4bETeeZVrjKN387wIm6qqIWATBM vx7YWcbycl0ho8WZaOq46nxrlKz1/U8A+FFdPVGFABimX/frOGNt/fZOJ9FC TTeBFDpf2fK1vvnbAX50Ukx+KymqEAAj9WuAnWisLVd6B4w2YEi0cl7/y1f8 /icAvGleiP4ve3e2I9eqLQg0/v+n8+oor1OxswEW7QTGeCgdVW1HwGyxy83M wwNwj0Grx0bjVNvVdsAXZrTz0Fe65Moz3vjDAd6NGETTDg/AVQatnvTH2mvs a7vXWqgDJ1+7QQPIU+ksP016r88BblY9PUweAOYbtH0sNU61XWGHOnB6MoSN IU9lE/0o470+B7hZ3fQweQBYYtACstQ4z46vtVAH3jGAVEgn+mnee30OcLMR 82fCsQG4VnYHVWwie43DbFrScc6cDmDkGPJUNtdPU9/lQ4BrVY8OMweAVQa9 fq02jjGiQeYIdexQh2GcdL/UZb/X5wAXqp4bBg4Aqwx6+npOc4Z9KznUsfcN I0+lc12d/b6fBtyjemKYMwCsNeLRa7txgH1/Shjq2OkwBo8kj2RzXZ39jh8F XKJlXJgzAKw16OlrwbG7fX8+OKKjBx1mi3hSriTddalXSMAj1bPCkAEgghH7 yIJja1v/fDDaybcOJk9l012X+r6fBhyvelaYMwBEMOL1a8exu60LOFQDhjoM o6XT3VgAfT8NOFj1oDBhAIij+9PXmmNTr3//Ev2mBdy9l8cdJn4weSqb8ZYC GPSxwHmqh4PBAkAc3R+91hyb6tsI84U6f/fBQnzZpLeUQfcPBM7TMh/MFgBC 6b6YrDm2c8DzLNT50/HcJaQ8kk16Yxl0/0DgPC3DwXgBII7u7147ju0cULSh rhDqMEyTXiVdSmLEZwJnaJwJ5gkAoXR/63o8s5cDyjVO0yVOsldIqZDOfq96 GPfJwL4aB4J5AkA0HZ+7Xs5s5IxyDXWLUIdhsnT2O5bEoI8F9tU4DQwTAKLp /ty17NjFAT/Ri3OF7pOEvaQLoGNVDP1wYEeNc8AYASCUV+7fIK5YUl7ObOGM Kg11izgnYYn08O9YGEM/HNhO4xwwRgAIqO9b17OZ4E76yV2ci8Q5CaukO6tv bQz9cGAvjRPADAEgoO7PaS9nIjumPkNdJM5JWChdk91rY8JXAME19r4BAkBY fR+69h2RnfEkC3WLUIdhoXQljKiNOd8ChNXY+0YHAJF1fOh6MBPWScUZ5yIn RZVG6WLoXh5zvgUIq7H3zQ0AIuv4yvVaJqyTKjPOXeKchOXS839Ehcz5FiCm xsY3NwAIruND14OZgE6qyVAtFuowrJUuhkFFUvL5ShHO0zhYhs4lAOil48Ky +Aji6+doJxVkqOuEOgzLJdfIwDqZ9kVABF063awAIL5e71vvZOJIV+OmBRnn OufFlkbZjhtUJ9O+CIigS7MbFwBsodfC8lQmiCNLMc6NjgwvjdJVMa5OZn4X sFZ7jxsUAGyk19ryVCaIw4owVGeFOgxBpKtiaKnM/0Zgvi6tbT4AsJFeL1sv ZJY7sghD3ejICNMoXRWjq2XmdwFLdOluIwKAjfR63Hoks1a6Avctwjg3OjK8 dJHtvqE1M/O7gCXaW9uIAGAvXTaX9cdC6fLbugjj3OjI8NJFSQOOK5j53whM 06uvDQcA9tLrceuFzEK9yjigIDc6Nby0y3bf6JqZ/43AHL2a2mQAYDtdHree xyzxWV1dajigIDc6Mrb0ku2+CWWz5EuBCbq0s7EAwI7a95fnMascXHVBrqa1 ScvO/wlls/CrgUF6NbKBAMCOurxpPYyZ7+yqC3KvgyNMF+k2nFY8q74XGKFX I5sGAOzoVfBnRso/yvOYaY4vtiAXjHAGIstO/tH18/5pM78XGKdXC5sGAOyr y7PW25iZzq60OLeLcxIiy87/OcWz9tuBXnq1sDkAwNbSi6xknXkYM83xlRbk ghHOwBay8/9n/QyqosJvB4Lr0sLmAAC7a3/Z2oZM0FilWwhywSDHYAvpxpxZ RQu/GuiiV/+aAADsrv1Z61XMBMfXWJw+CnIMtpCu2/lVtPbbgWodO9cEAGB3 Xdaihchox9dYl04cfZKZx2AL6bpdUktrvx2o07Fh9T4Au+vymvUeZqgbCizI BW8INR2lC2ZJLS0/AFChV7dqfADO0P6atRMZ6obqCnJHvcwj6YJZVUsRzgA8 0rFVdT0AZ2h/zdqJDNJYmbsIcsdLok1H6ZpZVUtBjgGU6Nin+h2AkzS+Zq1F Ruj4cosszjXjnIRdpGtmbTlFOAOQ1bFVtTwAh2lZbdYiI1xSV+lrTrtphDOw o2wBr6qoOCcB/tK3QzU7AIdpXG3WIn3d89YKctMgx2A76cpZW1ShDgP81Lc3 9TgA52lclJYjvXR8s8UX5KZXxZyO0pWzvKiinQd417crNTgA52l8xFqO9HJP LbV03HnHYFPp+lleV9HOA3zp2JK6G4BTVT9iPYDp5bZCinDfCGdgX9n5v7yu Hp1KzcMc3UdEkIEDAN1V77ju25Y7XVVFES6b7twjw05f2RKKUFoxTwU3696G mhqAIzW+YL17aVRde5sKctkgx2Bf6c4NUmABjwQ369uJmhqAUzW+YD19aXRb /QRpmQhnYHfpYg5SYDFPBXfq24Y6GoCzVe9NT19aXFg5Ea4c4QzsLjv849RY zFPBbbq3oaYG4GzVj1hPX1rcVjlBmiXCGThAdv7HqbHgx4NL9G09vQzA2Voe rrYkdS4smyDNEuEMnCFd0qEqLfLZ4Abd+04jA3CD6n1nS/LUnY+rIFcOcgwO kG7kaGUW/4RwsO4dp4UBuEH1w9Vzl6fuLJjlnbL8AJwnXVShii348eBgIzpO CwNwg5Yd6sVLuWurZfmtr40846SLKlq9BT8enKp7r+lfAO5R/XC1Lil3Z6lE 6JEIZ+A86boKVW9f3xv2hHCk7o2meQG4St3isy4pdG2pRLh4hDNwnnRdRSu5 z++NfEI4z4hG07kA3KP61eqtS9blRbL87pfHn0HSdZUuubWFV3hIoMWIFtOz AFyl/HX99MdOvggB3VweEbojwhk4T7qusuKf/GP1rybB1kZMgLBTBQAGqX5X W5okXF4bEa4f4QycJz35s1Yfv+h3kEY4J2xqRPtHHikAMEL1u9rS5C+X10Zd Q808w4QDcLBshUeuvY2OCjsa0VP6FIA71T1WPXH5SVVEiMDyA3C2dJEHL7+9 TgsbGdRNmhSAO9U9Vr1v+UlVRLh+hDNwsHSbxx8CGx0VdjGuoXQoANeq2K3e t3wz7pG2kQjXj3AGDpbt9OAVuNFRYRfjukmHAnCtiveq9y3fKImPAEGQAiZI 13nwInz9+1uCtzgtbGFcK+lQAK5V8Vj1uOUbxfCx+j2pK5kjXWlb1OF2B4bg BnWQxgTgZnXPVI9bPimDT2vjoB+ZJl1su9ThdgeGsEZ0kMYE4HJ1L1WPWz6U wT/LgyARTJMuto2KcN+TQygjekdLAkDFG9WzlnQNXFUGa4MgEcyUrbeN6nDf k0MQgxpHPwJAxRvVsxYF8GV5HPQj02SLbaM63PfkEMG4rtGMAPDhrxHmIdl/ tzwOFf0LdbLFlq7DgNVYeHLgm3EtoxkB4NPTN6o37c2k/t3yUKTTcWdSGCo9 /7ebD5seG9Ya1zKaEQA+VTxTPWvvJO/vloeionOhUbbqtivIfU8Oq4zrFD0I AJ8qHqjetBeS9J/WhkJGWCJbeHsV5O7nh/nGdYoeBIB3TzejNXobb6d3EaKx /ADcKV38O5bl7ueHmYa2SeJj9SAAF3r6QPWavYp0/7Q8IMsPwJ3S02DTWbH7 +WGacT2i9QDgp0eb12v2KnL9zfJoyAirZIf/psW5+/lhjqGtofUA4JtHT1Pv 2HtI9E/L63/5AbhZuvz2Lc4DrgBDDe0LfQcAv3q0Iu3TG8jyr9aGRVJYK12B W9dn4RXiXwRGGNraW48OABiqfEWWPGXZnfz+am1Y9B1rZYd/uj6DV2n5ReAq o9tBuwHAX8qfph6xN5DcX60te33Hctn5v3WVnnEL6Gt0O+g1AEgoXMQesceT 2V+trXlNRwQl83/rKj3pLtDF6EbQZQCQUPgo9Xw9nsz+am1YdBxBlKyAfWv1 mItAL6MbQYsBQFrhu9Tz9WDS+pe1kdF0BJEtxTMK9aS7QIvRLaC/ACCt8EXq +XoqOU1YGxmpIY6SFbB7rRbeZaMbQYXR7XzArACACUo28tfrdPT6ZjLZTFgb HKkhjuzwP6NcD7sOVBhd+ZoLAEoUPkq9Xc8joQlrI6PdiCZbk2eU62HXgadG V77mAoBCJUvT2/UwUpm2NjiyQzQlK+CMoj3vRlBudNlrKwAoVPIc9XA9jDym LQyO1BBQ4Qo4oHSPvBSUmFDqGgoAymX3pifrSbK5Xn3A9dYWuRYjmpLJX/Lf bCF9kU0vBVkT6lw3AcAj5e9SS3Z3Mpi2tsi1GDFlK/O80k3faNNLwV8mlLpu AoBHss/REqsvQZ4MZi0MkRYjrJLKPKx0S/px06vBTxPq/KT5AABzZF+kJVZf ggy5y1oYIs1FWIXFmf7Ptivjwutsdy/4Zk7bnjEWAGCm7HO0xOpL8Ce5K7Qw RBJEZCX1eV4Np2+0773gy5zy1kQAUKfkOWrPbkrWCi0MlOYispL6PK+AX2V/ hf7qY0KTCbWtgwCgWvYt6rG6KSkrtDBQOovICof/kTVceHfY0bTa1kEAUCf7 FvVY3ZF8FVpb29JEZOXD/8gyzl5/9wtyrWlVrX0AoFrJW9Se3YV8PbI2VjJF cIXz5NQyLrw+7GVOVesdAGiUfYtatbuQrEfWxkqyiK+kSg8u4/T1D7ggF5pT z7oGABplH6JeqruQo0cWVrWGYguFw//UYi68PmxkQj1rGQBol32Illh9Cf5H gh5ZGC6ZYguFk//ges5G4IxrcolpNaxTAKBd4UPUGzUyCXpqVbhkio2UlOvx JZ2+4Bl35AZzylizAEAX2SdoidWXuJrUPLUwXJLFRkom/w0lXRIHCG5O9eoU AOgl+wT1Ro1Map5aGDHJYiPl8//sqi6JAEQ2rYC1CQD0kn2CeqDGJDV1FgYt /b1SRkDZTrlhCqXveMw1OdW00tUjANBR9gnqgRqQvNRZGDHJYjvZon357TRn XZbzTCtXrQEAfZW/Qi3fICSlzqqg6SN2VFi0NxR2SQufdF+OMac9bxgCADBZ 9v1p/0YjKRUWRky+2FRJ3V5S3ulrnnRTTjKnXLUGAIyQfX/av3HIRZ1VcdM+ 7KuwdG+o8HQjH3ZZjjGtXPUFAHRX8v60f5eTjhargiZl7KuwdO+p8Gw7H3Zf tjazULUDAHRX8vL0KF0umwW5SFhVwHqHfZVX7z1Fno7JefdlUzOrVDsAwAjZ Z6d3aQTi32JV9PQO+yqs3tsqPBuWI2/NXibXp0YAgEFKXp4W8ULiX21h6DQO Wyss4NvqPH3fI6/MXmYWp0YAgHGyz06LeC3Br7aqdDUOByis4duqPXvf867M RmaWpRYAgKFKnp128Xwi32hV9HQNZyip4Qur/cIrs4uZNakFAGCo7JvTLp5M 2LtYFT254wyFlXxhwaevfOqtCW5yQSp+ABgt++b0HJ1MwBstDKB+4QyFlXxn wadvffDFCWtyNSp+ABgt++C0jmcS8HarYqhfOEZ5Jd9Z8DqdUCZXo+IHgAnS D07P0ZmEut2SitUsnORRMV9Y85qdUCbXobIHgDmyb05LeQJx7mJJxeoUDlNe z3dWfvbWB9+dUOZ334X9DgBLpB+c2eco7cS5lyUxlD4OU17P15Z9SdcfHwSW m9+A17Y8AMyXfXDay0MJby9LIqlBOE95VV9b/OmLXxIEFpq/euZ/IwDcLL15 7eWhhLejJWHUI5ynvKqvrfxsiG4IAmtNLjx1DgCTFT44rebuhLeXVWFMf68k sqNHc+naIZa++A0RYKHJVafIAWCJwgenvdyR8Pa1JJIyyJHKp9Plcyx9/Xvi wGTzi01tA8B8hU9N27kXge1rSSQ1CKd6VNg3t0B2CNwQBCZbUmwqHACWKHlt 2s5dCGl3S+Ipj5zqUW1f3gXpWN0TB6ZZUmnKGwCWKHlq2s5dCGl38+OpNTjb o9rWBQYC0yypNIUNAKtk35l2dDvB7G5JSOWR45VXuF5ID4R74sBoq8pMYQPA Qtmnph3dQjBHCPVklUqO8ajC9cKHX7xlvCU1pqoBYK30A8CCbiSeIyyJpyRy vEcrQEd8mPCMt6S6lDQArJV9ZNrRLURyBK9WGOHRvNIRX4SCcew7ALhT+mVu TVcTw0G8WmGQ8qllvr0TDUZYVVSKGQAiSL8wrek6YjjI/JDqCC7xqM41xZfs iLgtIHSxqpyUMQBEUPLCtKYfEcBx5gdWNrlH+fwv/y8vISD0taqWFDAABJF9 XtrUj4jeIKGerLLJeUqG//v/0B3v0gG5MybUWVhIiS9VwwAwWfZ56alZSNzG WRJbCeUq5fO/8D+7RzZ0d4aFCgsLSQEDQCglL0xrOkvcxon2ZB33pbDKo+Gv O75JR+/myPDIwhJSugAQSsnz0rJOE7RxlgRWQrnNo+GvO37KBvDm4FBoYfGo WwAIpeRtaV//5fXvT20L1yDzY6v+uVP58NcjvyoPIPxqVfGoWwAIKPu2tK8T hGuo+bGVUO70aPjrkV9lY3h5fEhYWDPKFQBiKnlbWtk/idVo88Mrp1yrsPJf ud9DeHOnpMNyeXBIWFgwahUAAip5VVrZPwnUBPMjLKfc6enw1ym/yobx8vjw l4UFo1ABIKaSh6XF/U6UJlgSYTnlWk/Hmhn4l6eRhIXVokoBIKzsq9LifidK E0wOr5zCoxbQL3/JDpPL48M3a0tFlQJAZCUPS4v7kxBNMD+8csrlHrVAdgze 3DUlwbk5PnyzsDzUJwBEVviqtLjFZ475EZZTeDTfTMKEbCRf//4e5tUnZbG1 HaR/ASC4klel3S0yc0yOs7KHp12ga7KyIRKly60tDGUJAPGVvCcv3+BiMsf8 IMssfPhDT72VhEiUbra2KtQkAGyh8El55wYXkJkmx1nBw0fVlNM1Wdnx8vKn n261tn10LgBsoeQxeecSF5CZJsdZcuHL00bQOFnZCSNcd1peD6oRAHbhPfkr 0ZhpcrQlF75UtIMOykqHSKzutLwYlCIA7KLwMXnVHheEmZZEW3Lhy6MeTP/H muhLNlDCdZu1laAUAWAjhS/Jqza4OEw2OdqSC+8qhr8mKpENrHBdZXkZKEUA 2EjJS/KeJX759ZeYGXD5hZ+e9oU+KpQIlKDdZnkBKD8A2EjhM/KGVX759VeZ GXAphp8qmkIfFUrPHEG7xPLsp79dBQJAQIXPyOP3+OXXX2JytCUXfvW0NYzK culYidgNlqdeBQLAdkrekMfv8WsvvtbkmMsv/OrpAEz/93rqXTZWIna2CHmP cAYA4CnPyJvvvsrkgMsv/OVpd2QHpp76SdCutTzjyw8AANS5+QF5562Xmxx2 KYa/VAx/Y/OpbJCF7kgR0r38AABAnWtfjxdeOYjJYZdoSKhoED31VDpiQnek CIlefgAAoNqFr8fb7hvK5MjLMiRU9KPh+VQ6YqJ3pAhZjnAGAKDOha/He24a 0LTIX1XSUKeuR7TVU9lxJIAnCZLiCGcAAKrd9nq84Y5hTYv8PfUMLeraRGdV yA4l0TtDkPxGOAMA0OKe1+PxFwxuWvBvKGZoV9Ep6R+ivxKyoRPAAwRJqwID gN1d8m48/oLxTQu+XEOhik7RX3XScRPAMwRJqwIDgN1d8m48/oLxzQn+DcUM vdQ1i/6qk51OYri7IDlVXQBwhuPfjQdfbQsz4y/XUO5Rv3z+XyZ3hS7LSEdP DPcVJKFKCwCOcfa78dR77WJy/OUaytW1p6HaIh09MdxUkFQqKgA4RuGjccct 7yW83OQUSDc8UtGh5mqLdPTEcDuv3O8xm3mSCMcAALooeTRuuuLPu9F2pqXg yAKG0Sq6Rq+1E8OTxMljnJMAAI2yz8V9V/xh19nRzKI6r4BhtIquSf8QvVZC DE8SJ49xTgIANMo+Fzdd8SfdZV8zi0rGoUJF48zs6yOlAyiSewmSQbUEAMc4 9aF43o2285r+p/VlHCrUTUsztl06hsK4izgZjHMSAKBF9pW46XI/7DqbmllX 59UwzFHXODquXTqGgrmFULmLcxIAoMWRT8TDrrO1aYmQdKhT3Tuarot0GEUy uDi5C3IMAKDaK/enUbZe7ifdZXfTcnFeGcM0de2j6XpJR1IwI4uTNSUEALvL vgk33ewn3eUAM9Mh71CtulX1XS/pFIhqWEGSpXIA4ACnPggPu87upqVD3qFF 9S7Qeh1lsyCk0YTKVKjDAABPlTwFd1zrh13nANPSIfXQqLqJtF5H6SwIaTSh khXnJABAhew7cNOdft6NtjYzHVIPLVqWgtbrqCURzBcqR2oGADZV8gLcdKGf d6PdTUuH1EOjV8HfJ5/4sRqwu3RIBTaCaGUf7TwAQKH0c3rrbX7qvfY1LR3y Dl1kW+mvhtKA3aVzIbYRREtNqMMAAIVKXn2bLvTzbnSAaUmRfeiipZW0YV/p eIpqBNHyolQAYDsHv/cOvtrWpmVE3qGX6llqAo+QTofYrhUtKeoEALZz8GPv 1HttbWZGZB96adkUOnGElowwVLSMKBIA2MvBb7xT77W1V/JvIu3+XWoAOqru KZ04SDojwrtEtHREOw8AkJB93e2+wU+91+6m5eXs8ob5qhtKG45j0IUSMB2h DgMAJGQfEruv71PvdYBpqVED0F26rf5qruSq0Y+t0uEV4ZkC5iLUYQCAX2Wf EAes71PvdYZpqVEG0F11W2nGcdJJEeSZAmYh1GEAgF8d/5Y7+3a7m1Z+ygBG yLZwor+05DgteaGjgPGPdh4A4KfjH3Jn3253c7JzfJHDQtXNpSWHys49cZ4g YPCjnQcAeFfyhDtgcZ99u91Ny44agEFaulhjDpVOjThPEC3y0c4DAHxzw/st fbUDLri7OeV3dpHDctX9pTdHS0dYnIcKGHOVAADB3bCsj7/g1tIV2DFHN5Q6 LFTdYnpzguykFepBAgZcGQBAZDc8286+3QGmVaAygNGqe1l7TpAdtqLdXcxQ xzwVAPBxxy9f3HDH3c3JkUqACaobTYfOkY6zaHcXM84xTwUAXPJIO/6CB5hT h5cUPKzV0mg6dI50jgS8r5hBjnkqALjZ699fmXv8mj7+gmeYk6YbCh4iaGk0 HTpBehgKeF8xgxzzVABws0veZpdc8wBz0qQYYI707E13nD6dJpsmMe8iZngD HgkAbnbPq+yGOx5gWjWqB5ijsan16TTpTIl5u7DhDXgkALjWVU+yS665uzkF eVXlw1qNvaZJZyqZjYJfLezSiXkqALhQyWPsGJdc8wBzalI9wEwtfa1bZ0pn SvAbhY1nzFMBwFWueoBdcs0zTCtLJQEzNba2bp0smy/BrxA5mGEPBgD3uOr1 dc9NDzCnMpUEzNfSdxp2vjnT+DYxgynLALBc9ul12F6+5JrHmJCve4of4mjs Ow07WTpfgl8hbDBjngoA7nHho+uqy+5uTnHe1gIQREvr6dkl0ikT/0fCBlBy AWCh255bV132DNPypSpgvpYGN8yXSIdd8MtFjmHYgwHADS58a9123wPMyZeS gPlaBrJhvko68oJfKHIAwx4MAM72uW1ve2tdddljTEiZwoBVWrpP266Szpr4 l4gcvbAHA4CzZZ9Y523ke256mAlZUxuwUHX3adtV0jNTCkqEjV7YgwHA8S58 Yl112ZOMzprCgLVaelD/LpQOviykRQ6XhALAfBc+q6667EkmZE1tQATVPah/ F0rPT1lIiByxyGcDgCPd+aa67b7HmJA4tQERtLShFl4rPUVl4VeRYyWVADBT 9il15Ba+6rKHmZA7tQERtHSiLo4gPa7l4pvIgYp8NgA4TPYFdeT+vfDKx5iT OLUBETT2u0ZeLp1BiXgXPFCRzwYAJ8k+nw5evhde+QxzylV5QBAtnXjndgso nQi5+BQ8PjIIAHNcu3OvvfgB5iROhUAQjc2okSNIJ1EuPkWOT+SzAcBJ7nw1 ZW996sXPMCd3ygNCaelH7RxEdnpfno7gkYl8NgA4w82PpZvvfoYJuVMeEEpL P+rlONKj9fKMxA9L8OMBwO6yL6WD1+7Ndz/AnMSpDQilcWjr6Diyqbw2KfED Evx4ALC1a99IJRc/9e7HmJA75QEBNTampg4incebkxI/FMGPBwD7uvl1VHj3 gyNwgAmle22DQGSNXamj48jO2AtTEz8IwY8HAJu6+VHkTXiGOblTIRBTY29q 6lDS2bwtO/GvL0cAMMK1z6HCp+DZQTjDnNwpDIipsf2N/WiyI/2e1MSPQPDj AcB2Sh5Cp67awrufHYRjTMid2oCwGieA4R9QOin3pCb+9YMfDwB2dOErqOTt d0kojpHOWnvu1AZE1t6hujsgU3eL629xSADYRfr9c/CGLbn4PdE4w+jEqQ0I rrFDNXhA2cF7Q2riXzz+CQFgF3c+fkpufVVAjjE6d2oDgmvvUA0e083jN/6t 458QADZy4bPn9e8Pv1RbfQP+NDpxCgPia2xSPR5WegKfmqMtLntbUgBgEK+d FqvvwS9GZ01VQHxdBrhOj6kkueclaIubbnFIAAjOOyd98duCc4YJKVMVEF/7 ANfpkWXze1iOtrjmFocEgMhue+F8Krn1+8WvCs4ZRpf0bS0Dmyqf83UfMvr8 pGXze1iatrjjFocEgOAuedt8KnzRfbv7VSE6QHlmR3xF+4cDHTVOA/M/uOzA PylTW9zu+CwAwFCXvGo+FT7kfr34JSE6xoSqVhKwkcaZMGGk0CKdoGMytcvV zs4CAAx1w5PmS+ET7q9b3xCik0wobCUBG2kfCKNHCo2yY/+ANO1ytS0OCQAB 3fCeeVd438StLwnUGUYXtmKAvbTPhOwnaP/l0jnafUTvcqlT4w8Ao539kvmm 5LIlV74hVscYXduKAbbTPhZGDxbapXP02vnX03apPW0CABWyb5jDNmmv+94Q q2MMTdY9vQMnaW9bjR9fdj7vm69d7nJe5AFggiNfL3/p+Fq7IVzHGJqsS3oH zmMRXCKd6E3ztctdDgs7AIxW8m45Zod2v+zxETvG6Aq/oX3gSO3Nq/23kN0C OyZrl7vsck4AWO71789in/du+VXJTZ9e9oa4nWFopi7pIDhSe/Nq/42cNK43 usVGRwWAtbJvlZMW6KCb3hC6MwzN1CVNBKdq7F8TYCPZZO2Ssr3Ov9FRAWCt A14phcY9yS4J4AGGVvu4AgMmaG9e7b+RkokdP2sbHX6XcwLAcgc8UQoNvekN ATzD0EwpA9hdYwsbAntJ52uXxO1y8q2DDABzFD5OzlidE655dgCPsaoGlAFs ob2FzYG9pPMVP3F7HXujowLAfIXPkgP25rQ7HhzDkwxNkwKAAzROiTkbh46y KYucuI0OvNFRAWCJfR8k5Sa/u84O5hmGFoMCgDO093L2E8yEaLLbIWbK9jrw XqcFgMk2fY08VXLNjje9IaS7G5od2YcztPdy9hPMhIDSWQs7yTc67XaxBYBp St4hB6zLwmt2vOnxIT3A0OxIPZyhSy9bBztKZy1g7jY66octCQC/KXl+HLAu V13z4JAeY1yCZB+O0aud059jMsSUzVqo3MU/4bu9TgsAc2z08Ki28H11dmAP MDRBsg8n6dLR6Q8xGcLKJi5O7uKf8N1epwWACTZ6dTxVcrUJ1zwyticZmiDZ h8N06WiTYVPpxAXJYNiD/SVyMAFgpte/v6gw+GOjWvkFR1/zyPCeZGh2ZB8O 097R6bFgMgSXTd/yDIY92K8iRxIA5it5aey7IgtvN+ea54X3DKMLY2HJAYP0 amrDYV+jd8e44y081V/2Oi0ADFXyxth3RRbebs4FI5yBvwzNjrzDkbq0tuGw tezuWJXHgEdK2+u0ADBOyeti0/1YeLXJd4xwBn41tELkHY7Uq7XNh31ld8eq VIY6TKG9TgsAgxS+K3ZckTEfTnFOwrvRRRKqCIFeevW1+bC77JBfksogxygU J24AsFDAF0Uvhe+l+XeMcxLejc6LpMOReu2XXp/DKtkMzk9lhDM8st2BAaC7 aM+JRq+H/5DTqguGOgzvxuVF0uFgvRrcoNhdOoPzU7n8AE9FCBoArFL4kNhu LZbfa+3tAh6JodUSsw6BLno1uEFxhuw2mZbQ7WpJ/QNwrTjvh44KL/V+u1V3 PCnsJxmaF0mHs3XpcYPiGOlUzsnpjuW03YEBoIsIL4cRCu8V4WrxT3inoUmR cThbl8FuUBwjWw8TcrpjIal/AG7zKv5rW1af9LHC51Cc28U/4YWGJkW64Wy9 BohZcYx0SUzI7I6FpP4BuNDaB8Mg5Q+hOFfb4pBXGVo80g036DJDjIvDlCyX r8x2TPGmVbTjmQGg2qN3wkYK7xXtahsd9RJD60e64Qa9xsjQccRk2WwOyuym 9bPjmQGg2uTnwRzznz297HXaG4wroR3rE6jQq9MNjZNkszkos4mvCFtCah6A q0x+G0yw6tnT0V6nPdvQEtqxOIE6vfp96FBivmxC++Z308rZ9NgAUOew997M p844O575YOPSsWl9AnW69Ht6bhgd23kV//MNXZK7afFsd2AAqFD4HthoA5bf KP69Nj32qcalY98SBSr0anmj40jptPZK7qaVs+mxAeCpOe+BaUqus8Wltj78 kcZlRK7hNr263ug4T7o2eiV337LZ9NgAUKjkJbDL+iu/yy43+vD8DmZQRR1Q qMBTvRrfADlSOq1d8rtjzSh1AG4w+g0wU+GT5phLrT7ajQbV1Rm1CjzVq/HN kCNlN05LcvctmH1PDgAlhj4AJnsV/517X//xFg5IzUlGNMsxPQg81avxzZBT jVsQmxbMuIAAwHLZNbfLsnvN/QcR5jvvRvsalIsj6xYo0bH3zZBTZXdEXYo3 LZjucQCAOAYt/flKLrLXjb4570b7GpGLI4sWKNRxApgkZ+u7LPYtFXUOwKmy u36XTVdykV3u8peDr7adEYk4u3qBtI4TwDA5Wza/jxK9b50ocgCO1HHLr1X6 XtnhLmkHX20jg2rs7NIFsnoNgfTnmCcHyKa4PMv71okiB+BIZzzkSt4qe90o 4eCrbWRQmZ1dukCJLnNg0IwilGyWS9K9dZ3se3IA+FXjWo+j/JWyy43Szr7d LgaV2fHVC2R1HALmyQ3SiyOb8fQPCV4qKhyAYzQu9FBOukuhe24a2aAsSC7Q caMZKZfI1kwi3VtXyNaHB4AvJat8i+1WeJEt7vLIPTeNbETJ3VbJQEKvaWCq 3CC7PhLp3ro8tj48AHxpWeVxFN4i/kXq3HbfUF7/fhN49yxcWMnAX3oNBIPl Buks/8z11//N7uWx78kB4N2jPR5TyWtkl7tUuPDK0QxKgcwCnzpuN4PlEtma ec/4+//YukI2PTYAfHm0wSM74xbVbr57ECPiL63Au44DwWC5RHaP/Mz77ntn 35MDwMf+v0RT/vaIfIsuLr9+BIOCL6fAu14zwcq4Sjrd70kv/M/C2vfkAPCp fGsHVHL4LS7SxeXXj2BE/OUUeNd3Jhgv90hXziOrr5Kx78kB4GPzX6L58Btp fhCBtUYEX0KBb/qOBUPmKul3QonVN8jb9+QAsPsuPulF0Ys4LDQi+BIK/JQe C0+HgzlzlXS6s1Yfv8jWhwfgWruv4yMfFV2Iw0KDIi+hwDfdR705c5V0/XSv rvm2PjwAN9t3F5/3nOhINBYaEXkJBX7VdziYM7dJ18/u9bD14QG409a7eOvD zyEgq4yoRhUO/KrvBrRPb5PO+O7FsPXhAbjTvlv4pCfEIMKy0IjIK3XgL33n gzlzoXQJbVoPWx8egAttvX+PeT8MJTgL9Q27UgfS+o4I0+ZC2UWzYzHse3IA LrTj/n39++cqdjz8KuKzSt+wK3ggq+98MHDuVLJu9qqB3c8PwD12XL7lL4eY 519CfJYYUZwKHkjrOyXMnGulU79XGWx9eADuse/mPenZMI0oLTGiPpU9kNVx RBg4N8tunF1qYPfzA3CDfdduyckjn38VgVpiRNilEsjqOyhs22ulU79LAWx9 eAAuUbJzY26uwpPHPPxawrVE95hLIlCi48xPf5Thc7wzsn/AFQA4W/bFFXBn lZw55smDELH5RhSqPAKFOo6LEdOMXZyR/d3PD8DZ0ts27Oba7sABidtkI8pV /QPlOk4Mw+dmI9bZZFsfHoCzpfdszJ2145kDEr35ugdcEoFy00ZQ32MT0AHb Z+vDA3C29J6NtrBKThvtzGGJ3nzdY64LgEf6Dg3z507pKtol+1sfHoBTZZds wG213YEjE8b5ugdcBoGnOs4NI+hO6fdD/Ox/nnDTwwNwtpIlG2pbZQ9svT4l kpP1Dbj0AU9136EG0Z12z/vWhwfgPNkXWsAlVXjmaMeOTzAn6x5t6QOe6jv5 7ZE7bZ33rQ8PwHnSiynmktrxzLsQ0plGhFrugAp9x5FBdKERG22m3c8PwEnS Wyngbio5cMBjb0RUp+keZ7kD6vSdHqbQhXbfPrufH4BjpF9l0dZT4WnjHHhT AjtN91DLHVCn+1Y1i26z+wLq3gIAUCG9j6Itpr1OuzWxnaZ7qLUGUK3vADGO brN7xhPn3+UKAOwuvYyiLaa9Trs7sZ2mb6i1BtCi+wwxka6y+w7a/fwAHCC9 jEJtpY2OegYRnqN7PUsc0KL7nrWyr9J9qU2WPf8WtwBgX9mXWJBNVHLOOKc9 hjjP0TfOsga0675qjaar7JvrdOVvdBEAdrTXGtrrtMcQ6jn6xlnWgHbdt233 DySyfdOdPvlGFwFgRxttH7tyFdGeoG9V6xGgi+7DxHS6yr65ThfqdtcBYCO7 7B1bcjkBn6BvYWsToIvua9d0use+uU6X/aaXAmALu6wbm3E5YZ+gb3lrFqCL EfvXgLrEvonOlv2m9wIgsi0WjbUYh7CP1rG8dQrQV/epYkZdYut9lD781lcD IKAtVoxVGIf4T9A3wlIGdNR9ERtQlzhgGWWLf+vbARBH8OViCQYkBaP1jbB8 AX11nyrG1A1OynLiLmmrDw7ABuJvE1svIFkYqm+paxygu+6DxaS6wWEpThet kgagTvAlYtOFJR1D9Q2v9gG6G7GaDauzHZnfbCMceWsAxom8O+y44KRjqL7h lSxghO6r2bA63pEpTjdC1urjAxBF/MVhu8UnI+P0rXntA4zQfTt3/0BCOTi/ 6asVWn0JABYLvixstC3IyDgda14HAYOMGC/m1dkOzm+6HR5ZfRUAFoi8IB6t MItsrYD1c4a+vRmz04EzjBgvRtbBjl9J6Qs+8uGhC3CTkr0Q9mwRDsknqRmk b+XrI2CcEcva1DrYDZnNNsUjq28DwFiR14GFtSMJGqRv8esmYKgRQ8bUOtU9 mU33RYXVFwJgiJgrwIbalzQN0rEFNBQw2og5Y3Cd6ratlL7vU6tvA0BnYYe/ 3bQ1yequbwvoKWC0EXPG4DrVhVspfeWnPvxlNQBHKB/7zsZTUtZdx0bQVsAc I0aN8XWqOzOb3siPfPiFGoD9PRr7AU9lE4UlZSN0jKq2AiYYtMSNryNdvpiy zfLU6gsBUCnmhLd9ziBr3XVsB80FzDFi2phgR0qn9YbMZiNQbfXNACgVcLBb N8eQuxE6RlV/AXNkp03dzDHEjnR5WtPXb7T6cgDkRZvntsyRZLCjjk2hy4CZ Rgycks80zbZjMX3Jbuo6q68FQEq0YR7tPLSTxL469oUuA2YaMXOyn2ma7chu +pKu8EarLwfAd6Gmt51yMHnsq2N3aDRgsu5jJ/2BptmmJPSnklKvsPpaAPxH nNFtoZxNKvvq2B0aDZhp3H4f98ksIZu/ytZ5i9WXAyDWe8YSOZ5sdpTujvKo 6jVgvkGL3kA7jFQmlDRRi9X3A7hUqPlsa9xATjvq0iPaDVhi0Lo30A4joQkl TdRo9RUBrhNnONsX95DWjnp1inYD5hu38Ud8JqvIZlpJH7X78JdvA0xROJOD nGTmeRhKcnvp1S+aDlho0Agy1o5hSZVIR6mXD79WAzBS+TSOcIw5h2EO+e2l V7/oO2ChcSPIcDuGPBZK13xHqy8KcJpQEzjUYZhDinvp1S/6DlhrxBTyqDiG PD6VLv7uVl8XYHtxRq75fy1Z7qVX12g9YK1BzwDD7QwjauNsr39/NGmm1ZcG 2FjhmB09bI39m0l0L70aR/cBa417CZhvBxhUGzfIdlZ3q28MsJlQ0zXUYZhM urvo1Tt6EFhu3HvAfDuDPFbLNldfq68LsJM4o/XRnDftj2Szd9Grl9cOBIBP vWbanI9lJklslA7gIB+e8QA55RN1+RkmnIS15L2XLpGUDmC5ca+CcZ/MNDLY LtsIg6y+N0BcEaaoqc4Xee+lSySlA4hg3Ksg/clmXXzS11G2HUZYfWmAcJbP T5OcnxRAF+0x1IxAEENfCGbd1qSvo5JGG2T11QGiWD42TW9+pQzadQmgRABx jHsnDPpYppG+Lr7Cle21cd6PAXCh8mm5/AzG9W1UQrsuAZQIII5xT4Vxn8wc 0tddtimGWn17gGXWDkmzmjTF0KJLN2lJIJrsa6FuQKU/1tCLT/rGyXbHUKtv DzDP2qloRJOlGBp1CaAsANEMejO8/v0Kj7m3KYkbqqTvxvk6w9ogAAz1aCQu PMD7GUzmC00uy8N0ae0l8wEgrfzx0PFj+16B7qRvgmzrjfbhZwTAoQpn4NoD zDkJwSmJFl3aSm8CAY17PBh6W5O70bKtN83qSAB0tmr0Gb88pTZadImeFAAB DX1CeJlsSuKmyTZgYSKqP0eKgcMsHHSPJq15y4cXV4MuoVsyKABKlLwlRnxy xyvQnaxNk23Awly8Cv4+qLpPBtjFqilnxlJHkVTr0mJaFYhs3IvC6NuRnTVf tgcf5aLu0759slwDe2mcnKO/d9C3szWlUqdXl+lWILKhjwqjb0eJrMndONlO LOyjis8p/3CAgFbNNBOVaq/kb4JdfbrQevWa4APBjXtaeLHsSNYWSjfj06RU fJq8A3tZOMfKv9cg5Sc7t1qXThd/ILiSB0b3T+51eLqTtbXS/fg0KU8/TeqB jSwZXyYnXaicOl3ipnOBLYybVGbgdtKbS+ImyKbgaVIqPjD9RcoAWK59No77 3nHfzjEUT532oOlcYBfjhpUZuB2bK4jsK+JRXh59WvvXAYw2eViZk/Slcuq0 x03zArsYN6nMwO3YXHFkHxIVOar7TPUAxDF5QJmNjKB+6rQHTfMCuxj33jAJ tyNf0WTb82mmKj6w5esAOloyl0xFRlBFFdrDJebARoZuCsNwI94MMaXzUp6p b/9Pr+Q/BtrrSwF6mT+LzEAGUU4VGsMl4MBehm6K9IcbjKFIU1jZPvo1X48S 9/QrlAcw2cxZZAwylHJ6qj1cAg7sZfSmMBV3IVPBpVs1kbXCDD79fKUCTDNt +Jh4TKC0nmqMlVADOxq6KUzFjUhWcOlW7dLF1V/x9UVqBuio74jr8nVGHI1U 11Pt4RJwYDujB5fBuAVp2kUiU12S+Or3V9YMiwFwhZlz5tHo6/WlXEt1lWtv RtEGNjV0fJmNu5CpXaRfLH3zWP1dX9+ofoA6I2Za9Xd1/0aupcCeaoyYgAOb GvosMRu3MK4AGCHbs73y+Or0W2t6BwA42cypYpQxnwIr196POhrY1OhnifG4 BTnaTrZz+2az4utUFFBh2iQxuJhPmT3SGC59DWxt9PvEeIzPFttUtnl/zWZF Wp9+kYoC6kwYIKYWCymzco1dmf7hYg7EN/Rx4uUTnxxtLZG+v14m1cl99F0l hwH4NG1omFQspNIKtQdKqIHdjX6iGJLBWWS7y7Zw3+TWfZ0CA/4ybVyYTiyk 6sq1R0mcgd2N3hqGZHAStLtsCw/Kb933qjTg3YQp8fLPbROD2ivUHiVBBnY3 4cViVIblwXCMbCOPSHHdl/48g2KDa40eUyVf0fG7IEHtFWrsU3EGDjDh0WJU hjU69cyU7eWf+e2Y5affnig2tQeXGD2mqqcQjKACCzWGSJyBM4yeZkZlZLJz mHQ7D010xVf/dR7lB2f76vRx06li8sBQKrBEe5QEGTjG6IFmWoZll50n/cL5 K9cdM15xABUI9xg9AUwbYlKEhRpDJMjAMYYuDlspMqk5z+vJX5U5Lul1B1CE cLyh7W/UEJk6zGqMj/ACJxm9NQzMsKyzg6X7embe606iDuEwoxu/braYM0xj 32U1xkd4gcMMHWu2UljycqqvDKa7b2YBVJ/k5S+rgSMMGj51IwXmU5ZZjcER XuAkc94zZmZM1tnxsg0+rQaqT6IyYXeF3V3R42YIu1CWWY3xEV7gMBNeNXZT TJJyiVfV31cz7jAtBp0KGGdEa5sb7EV9prXHR3iB84x+3thNMUnKbdKdPrMS np5EfcKOBvW1ocF2lGhaY3zEFjjS6N1hN8UkKXdK9+PMMig/iVqFHXVvYSOC fanShMbgiC1wqtGPHPMzIEm5VrrfJ9fD08OoWIhvRPMaDmxNoSY0RkZUgVNN 2B12UzQycrl0108riVfVX5ujaCGsET37dFCMuRnUU7QJLWERUuBgExaHKRrK hIwTXLoGllTF0yOpW4hmRLcaBRxA9SZUR0MkgeNNGHQGaShWGx8P//+m59RG +ZEUMEQzokO1P2dQtL9qbGfTADjbhGePl1UcEsGndFeuLY+nZ1PGsFb39tT7 nETR/qqxnUUVONuEZ4+XVSgSwZdX4L/zofxUv55TScMcI6bHo2aHyFTvX1oi I6rA8eY8gYzTOCSCn7JzYGG1PD2bwoaZureh7uYkCvgvLWExGYAbTHgImaVx yAW/ys6BVaXy6vGvQc08MFxiRAPqaA6jkn/VGBZRBW4w5zlknAYhESRkp8Gq gnl0sMSB1Tn00n1WdP9AiEAl/9TS4IYDcI8JE89QDUIWSEu3aoSyeXrC5QeG w4zoOP3LqdTzTy0xMSKAq0yYeOZqEFJAWrpVgxRPxSGXnxnO0Le/9CxnU9K/ qg6LeAJXmTD0zNUIZIFCiVKJUz9PDxnk2LCvvm2lVTmewv5VXUxEErjNhCWS /goDdg7xp1y2Z3+W0KpCenrUIMeGvRQ2VK+P0qQcoL1ZzlMdE8EEbpN9II3+ ll5fQZYU8Eh6OMQppKfn/HlsXQAJfdv/UW/CvtT2T9UxEUzgQnNGn+m6lgVH hUTZ/FVLCyvq6Wm1AGT1bSJdyT1U+E/VARFG4EJz9ohVtZb489RXbaRHRLSK enraUIeHUDq2jB7kQur8m7poCCNwp2lPJjN2LfGnRXZQxCmqR0eNdngIole/ vP79Ljvdx22U+rvq3hdG4FpzXk3G7FriT6P0oAhYVI8OHPMKsEqvHtFxXEup v6trf0MDuNmct5Mxu5b40y47K34trbU19vTM386vQbjQowZv/xxdxpHU/Lu6 aBgdwM3mvKDM2LUEny5KxkXAMqs7dpDDwzQd+0J/geJ/N2KYTDg2wEIT3lFW 1VqCT1/ZoRGtzJ4eOOYtYJyO7aCt4MPT601LKIQRuNmER1T6KwzboYSdEbJN HbDYnp458l2go171r4/gk+L/Uh0HMQQuN2cMGrariDzjpKvrW6WFqrfyk2sc ztax7HUQfFH8n0bMkwnHBlhuzptq9OeTIOwMVThDYhZexeHfbxHqLvBUx7bt 9TlwBvX/qToOZgjAR4DfUdPrK/hJzBkqPT3+KrxQFfj0Cj9vFOo6UKiicwd9 CJxEF3xqCYIYAnzM+veeEl/U5cP5lTXHBCUzJHIF1p0/7HUg7VFV/1XbFQ2i TbiETfGpLgjZSQJwj8In1rhvaf9wfiXmTFMyRiKX3+vfTyTrrD4+FOlS0loD ErTDhz/uBNDDtJFo8E5m2TFTot52qcBHV9jlUvCpsZK//p90BCToiA+/SgPQ yZyHlsE7mWXHfOlh8q0Iw5Zi+S0SV9NrhFJevS0/XOVzOU3xMeBXaSacGSCg OW8tm2syAWeJ9Dz5VoeRq7H8IhqN4Foq9uW30EAxrVEdAaED+GbCi+uVfOZ1 +Qp+EnBWSU+VLarx62zld0lcMPJNOV5LJ1ZUO9zs8u6ong8GC8BPc95dxu9M c3IKf0lX4F7VWH6Xfe/IeV5lvw0m/QmKHB7RI91HzbSTA4Qy7ellCE8m2qyV nS0b1eSju2x3O87TWJwqHCpok7rrmzAAf5kwG03gyUSbCLKvr70q89F1Nr0j B2gsSCUNFS5vk+pZYcIA/GXOhDSEZxJqgkiPl03r89Gldrwgm2qsRvUMLS5v lrq7Xx40gIRpzzCjeBpxJo70hNm6RB9dbd9rsovGIlTD0OjafqmeFddGDKDE tJeYaTyHOBNQYs78LNQtyrX8RlqSCeoKT91CFze3TPXEuDloAFnT3mNG8Ry2 HjGlR82+5fr0XjvekeAqSk7RQl/XtkzdxDBnANKmzUnTeA5xJqz0tNm0Vl9l //DxMfcllIoyq6vYpbeE6G5un4qL3xwugHLTRqWZPJoIE1/6ebZ10ZZf7Yz7 slBdXSlOGOTO9qmbG6YNQIlp09JMnkCEiS89c/Yt4Ip7/bzmLpdluYr2eVqN QKE7Wyl961/vbuwAlJszLY3lCQSZXaSfartX76Pb7X5ZZqqrJXUIQ93ZR+kB 8tf1TR6AEjNfa8byaHYfeymZP/tWb/ntTro1Q1UUj8KD0e5spboxYvIAFJr2 YDOZRxNhtpOdPwdU8tM7vl9231vTV3WnVP9AoNCFDVU3RgwfgEemPdsM56GE lx1l588ZlfzomofdnS4elYoag2ku7KnqK18YK4Bq015uc77lWmLLvrJT6Ix6 fnTNXy++9fWpVlEnqgvmSLfVqSqunB1BALwrebzt+F23EVV2l50PB5R0+R3P uzt12mtGUcFQF3bW03liBAFUmDY8jeihLEF2l67hk6r66U2PuTjlGotEIcEc t/VXxUgxiAAqTHvImdLjCCxnyI6jk2r70WVPDQJ/6VIeagZGu63RKmaLiQRQ YeaLzpQeRGA5SXYonVTkTy97XgT4qUtVqBaY4LZee3pf4wigziv39w12/CKD ehCB5TzpiXFYnT+67F8ROCAOfPglGtjHVe1Wfdl7QgTQ18x3nVk9iKhynuxo Oq/an175yCDcrL0AVAXMdFXr1d3UgAKoM3N+GtSDCCynyg6on9V+QM0/vbWW P0Nj3tUDzHRV69Xd9KoQAfQ1eYQa1yOIJ2fLjqkjK//prc+LwFVa0q0MYJV7 erDimsYUQIuZI9S4HkE8OV7JY++8yn966yODcLZX7m+HUwAQ1j0NWHfNe+ID MMLkl56h3Z14coPspDq48h/d/eA4nKc6s7IPy93TgBXXNKAA2s0cpIZ2d+LJ JbKvvuOL/1EEvkXj1JhsrTqhJRkHRrukB+uueUlwAIZKz9K+E9Xc7i4RUlHl JOlSv6H4n0YgEZAj47OLxjwWphgY6pJOrLimMQXQxcxxam53ZA9ym3TN39MI FXH4GZNTgxNcY+6yaQXmuKQTn84cYwqgo2kT1ejuSzy5TfoFeE9HVMfhZ1jO C05kvRL3nsEPSYTpsl15hqfXLJlXABQqfAeO/q6O33IPweRC2ZF1Qzs8DcJt 8YmpY9becyeJMNkNE7XijiXzCoBC04Zq+osM8AoiybWy8+SSpngahwtDtNZr zD+6vfpacLUberPijjeEBWCmma9BA7wjkeRm6cF1VXdUhOLX4BwcooW6ZOdb poCFbmjPiil0Q1gAZpr5IDTDOxJJSI+v21rjUTSujdJMXTLylRcJgghumJ9P 75gdXwA8NXm0GuO9iCR8VXt6jl3VHeWhuDlKQ3VJgYxATMf3acUsOj4mAPNN fhzO/K6zCSN8yc6xbw1ydps8ikZ2kpwdq0F6peA9EUAQZ7dqxTgyvgBGmPk+ TH+XeV5OAOFddrb87JQb+uVpWNKxuiFijb4C1cvqCwHfHd+zT293cCgAFpr8 SjTM2x3/QoA62Wl2Yae8uv66werbbECo4WDHt+3TC54dDYCFJr8VJ3/dkQQQ /pKdMNe2zKvHL9esvkRojbEVatjC2W37dC6dHQ2AtSY/F430dmIICdmZpmUe heivoF0bvZ8a4/kztkBMZ/fvo6udHQqA5eY/Go30RtYiZGUn27fGua19HsXH tElrD6aowhbObt6n0+nsaAAsN/nRmP46sz1L3CArO2d00KeKQInbu/YAiiTs 4uwWfnS1g+MAEMTkpWOwtxNDKJEebtrny9NAid6nLnG7Nnqwo4O7+NHVDDSA CSYPW7O9hbjBI+mBo5W+PA3UzXFrjNW1cYPdndrIj8aUmQYwx/xnpPFeTdzg qeyI01BfKmJ1YfS6ROmGQMFJDm7nR8Pq4DgAhDL/JWnCtxA3qJAddBrq3dNw 3RPA9sgcHBw426lN/WhemW8A00x+VRrvLcQN6pQMum89dXlnPY3YDROpJSYH hwVucGpfl48sUw5gsskj13ivJm7QouSRqb++qQva66xf6aoOgiqCMxzZ3Y+m lkEHMN/MqWu8VxM3aFTyztRl717/fr2lxepLtLr8+sCRDf7oUmYdwHwzp64J X0fcoIuSp6b++qkibgfEsPHW+14ceHdkjz+aXWYdwHyTp645X0HQoKPsg1N/ /eVR6P4K5hZRbbzpFncEShzZ6Y9udGQEAIKbPHuN+gqCBt2l20qv/eXV/Meg Vt8gr+V2G10TKHFkpz+60XnXB4hv/vY5ct+Nlg6auEGdbGdptISn0XsPY8x4 vpp/DSrgpYAW5/X7oxsddneAXczfPulvNPZ/JWIwTnYoabe/PArdFiE96S5A F4e1/KMhdtjdATYy/805/xt3J2IwVLrFtFtaefSCh/SMWwB9Hdb4j0bZYXcH 2Mj8l+f8b9xaOlwiBl1kG03TZT2K4c+Qrg1sy8mBgx02AcrvctjFAfYy/xVq 7D8lYjBByTDUd1mPwhgksBsdFZjssCHw6DqH3R1gL0veoiZ/ufnZgTtlh+F7 3+m+hPJILp9sdWeTfbhEhDHVy6PZW/ifATDO/FFs8pezKGGO1/N/5Wf1kUN7 FMlVsQ17MCCCk6bBo7ucdHGATc0fxSZ/ObGCydIj8VsPasa08mDOmXLvHxvk SEBYJ02D8rtk/8vt7g6wqflr6JitN4FAwWTpkaglK9SFtHtsX89/x5T8ws2O mQnl880kBAhi/kC2AsqJEiyRHlP6scKjkI4IcvX3SjHcaehEmubRdC3/LwEY asnr1PwvZFfCWuknq8Z86mk8f4a3OsgtXwpc6IzJ8GjEnXFlgDPMH8hWQCFR grXST9Zfe1OHZj2NavsYnPMtwEnOGA6PrnDGlQHOMH8m2wKFhAgiSI8sTVqt IrAVER79+cCRzpgP5YPOSASIZv5MtghKCBHEkX7BatJqjwL7M87ZaNd9LMAB U6L8CqYiQDTzx3L6G62DT3YlhJJ+xOrTao8C+yjavT4HuNABg6J83BmMANHM n8zeyVniAzGlx5dubfEotr+G+v1/yBRQ7YBxUT70jEeAmJYMZ+sgwbqEsNIP Wt3aqDy8f8W84ocAfLP70CifeyYkQEzz57N1kCU+EFZ6ZmrYLsqD3GL1LYGg tp4b2bn3fgtDEiCmVe9YSyFBZCCy7NjUue2eBllSgF62nh6PDr/vNQHOtmoT 2QsJIgPxpYen5u3oUahlBGi09egon36GJEBkS16z9kKC4MAWssNT/3bxqvo7 Z2QBqLb1ACkcgOYkQGSr3rS2w19EBjaSHaHv/auLG5VH2wgF6mw9Q8pn4NbX BDjewmet7fArYYHtZAfpeyNr50bl0TY/gae2niSFw9DABIhv1ay2HX5lb8KO 0oP0Zy/r6GqPQi3OwFP7DpPCYWhmAsS38IlrQfwkJrCp7CzV0X0lYvv+P1Yf E9jMvnO7cOnYTQBbWDKu7YhfiQlsLTHZ9PUI4gn0tenELt84thLAFlb9VMKO +ElMYHfZiaq1AcLadFwX7horCWAjS4a2HfGTmMAZ0kNVgwPEtOmgLlkxlhHA dpYMbWviGwGBM7ze/oKUQquPDMCufyCocL9sejuAa62a25bFO9sTDpN+OX9r 8Je/8xZgqU1fYoXH3vR2ANdaNbcti3eJLFwbE9hduq81O0AoO07mkoVi7wBs Z9Xoti++SSfi2rDA1rJ9rdMBgthxLJdsE0sHYEerpnf6e29bHEIBp8rOum/N ruUB5tvuDVb4dPS8BNhR4ZCf/L237Q5xgLNlJ963rtf7ANPs+AwreUWX/DcA xLRqhlscX4QCjpeetHofYKHtpnHJBrFlAPa1aoDbHV/EAS6RnnvaH2CJvUZx 4QaxYgD2tWqG2x1fxAHukR59JgDAfNvN4UerZJdLAfBuyRi3O74IBdzGcxog lI0mcMnKsFYAdrdkkr+Svxtz0JfGZJPCndK9bw4ATLPRBC7ZF3YKwO4WTnLr 48MmhYul299AAJhjo6mbXRP2CMABFv68wBL5sEzhbtkJbCwAjLbLyC1ZEDYI wBkWznNLxCYF0kPYfAAYaqNhW7EvIl8HgIRV89wSsUmBj9qH9+pTA5xglzFb tynCXgeAtIXz3B6xTIFP3tsA8+0yZp/uiMh3ASDttfTPsdoml18feOfVDTDZ LjP26YKIfBcASiwc7Jdvk8uvD/zk7Q0wzS4DNnvIXS4CQKGFg/3ybWKfAj+l Z7KJAdDLLnM1fU5rAuA82ak+brZfvk0uvz6QUPLqNjQAWuwyV7OH3OUiABRa +1OAm3eKlQqkFc5nMwSgTvwpWnJC6wDgPAtn+807xUoFstKDImv18QFCiz8/ sye0BQCOlB3vQ4f8qu9dzlYFyqUnhmEC8NQWkzM74be4BQAVFj7y01998Iq5 89ZAi+zANEwAygUfniXj3QoAONXaCX/ncrFVgQrp0WGSABSKPz9LhnzwKwBQ bflT/8L9sjbgwKayz3LzBKBQ8Mn5aNTHvAIALRbO+Tv3i8UKtPBcB2gUfGw+ nfPRzg9Ao7Vz/sIVc+GVge4ePdeNF4B3wR9j5RM+7BUAaLRwzt+5Yi68MtCd RztAneDT8tF4j3kFABqtHfUXbpnb7gsM4tEO8FT8gVk+28NeAYBGy0f9VSvG SgX68mgHeCrstCwc6TEPD0BHawf+bYvmtvsCo3nDA5SLPCcfzfM4xwZghIUz /7Z1c9t9gQm85AHKhR2Sj4Z5qJMD0N3amX/VurnqssAcr3//nJPHPEBa5PH4 aIyHOjkA3a0d+1dtnEuuCaziPQ+QFnY2lg/wUMcGYJC1k/+epXPPTYGFPOwB /pIeiasGY/ncNswBLrF2+N+zdO65KbCWFz7AXwIOw6dDO8KZARhq+fBffoA5 jr8gEIpHPsBPAYdh+biOc2YARls7/y/ZOzYsMJmnPsA30cbgo0Ed4cAAzLF2 /l+yfexZYD4PfoB30Wbgoykd4cAAzLF8BdywgG64IxCTZz/Ap2jT79F8jnBg AOZYvgVuWEA33BEIy8sf4CPee+zRcA5yZgCmWbgCblhAN9wRCO7Ry990Ao4U 6jFWPpaDHBiAmRZugUvW0Nm3A7bgJwLA5eKMu4qBbDIDXGX5Ilh+gKHOvh2w Fz8dAK4VZ9Y9HcUmM8Btli+Cs9fQ2bcD9uKnA8C1ggy6ijlsJgPcZvk6OH4T HX9BYDt+UgDcJsiUezR+DWSAOy3fCMcvo4OvBuzLzwuAe8QZcY9mr2kMcK21 6+DsZWTbApE9+qmBkQXsK8h7rHzqrj0nAMst3wgH76ODrwacwU8TgOMFGWtP 563ZC3Ct5Xvh4JW0PLYAWQ9+nvBvar3/D9MMiG/5S+zRpF14TgCCWLsXDl5J di6whWc/WzDQgN0sH1wGLACPLF8Np26l5YEFKPTgZwtlVl8I4P8FGVbGKQCP LN8OR+6mIy8FnKrmJw/JKWfWAUFk59XaAyw/HgABLd8OR+6m824EnK3ypxA5 H37FBlgqPaCWnyE7QgG4UITVsPwA3Z13I+BU1T99eOrDr9gA02Xn0toDlExO AC60fDuct5jOuxFwnvqfNjRbfXXgFssHkVEJQIUIC2L5Afo66S7AkSp/ztBb 4ngzowGcqmL+TDtA3XgE4AbZHTFhU5y3pA67DrC793le8xOGwb5O9f4/ABql x87Cby+ZigBcK8KaOGxJLY8nwDfPfnrw2+Bq/ITq7wWotna8mH4A1AmyJpYf oKNjLgKcoeZnCLnx1f6ZjQcAKLFwqph4ALSIsCmWH6CXCMEE+Oj0aykzv6vw JOWnAi7XPtxGfHXhrAPgZulNMWdfnLSqTroLsKPqnx00DqvX9D8e9f69AN9k p8eSr154KgA2EmFlHLOtjrkIsJHX2y9ZNOp7qmk6Hhs4w8KJYY4B0CjCyjhm YR1zEWAXdT8dmDmdGk9Yd5E5VwPCWjj3ugwxAG4WYWucsbBsXmCmmp8GrJ5L r7l/MGrJHYEIFs4HwwqARkEWxwFra3kMgYO93n5942PPX6L5pvEKT+8b6u7A aNmZsOR7558HgE1FWBzLD9DFGbcAAqp59281iLpcsCQCweMAdJEdBUu+d/55 ANhUkMUR4QwtgoQRONLjR//mg6jLfbOh2DEyQIlVk7BlIgHAuwi7Y/kB2h1w BSCOmrf+WfOnVwRKQrR7rIB32Zaf/6XzzwPA1iLsjghnaLT14YFQah76p4+d xpiIIVxlfncbOAB0FGd3LD9Ao93PD6z16vSvIK2+xyi94lMd0oNjC4fJtvPM byycMADwLsjiiHCGFrufH1io5YV/7Zx5Tf91m9U3BorM72JTBYC+gqyP5Qdo ESGAwHYqn/UmzJvX6t9jkzgVsERd2w76xvmHAeAAQZbI8gO02PrwwHyPX/O/ zRYTJqE9wo9y8dcBJt8a+PCrNAAcIcgSiXCGCkGiBwT3NRCevuQNlmrtoX6a l9dblpdeHa6W7tOZX5cdGgDwlyAbJMIZKgSJHhBZ9TP+5XfOdNKSgpZ8yR1M lm7Pad+VHRQAkBBkj0Q4QwWLGEh79nY3QAb7CuzX/znBt68Gxsl24pzvmnYG AI4UZJssP0CdINEDAqp4wJseq7QkS2YhjpndZwIAME6EbRLhDHX2PTkwTsXr 3dyIoDpxLVZfGs4xs9c0OwDjBFkoyw9QIUjogCAqHu3GRSivFf/A9/tX//zf QLmSXpvwRRMOAMDxIiyUCGd4yjoG3vu9/K1uROylLr8tVt8YtjStrTQ1ABMs 3yk77jUbGS5X8VA3InbXmHRFAuNM6ya9DMAEETbL8gNU2PHMQLuKJ7rhcKqW YqgoHoUEf8m2z5wvGv3tAFwiyGZZfoCnIgQNmKnicW4sHO+14i+0+Vlaagyy bTL0KyZ8OwD3CLJWghyj3F6nBRrVPc7NhHu83n7BZLKvL10aAFgs3SBDvyLb oQDwSJDlsvwAj0SIGDDHs+e4OcCbuuJp936AhdeHmbLtMO4rCvsRAMoF2SwR zlAuSNCAQepe44YAf3kt+rNRX9+uMjlbtguGfkVJGwLAI0HWykYLbqOjAuWq H+Han3KNZdbu/SQL4wAdZat93FeUdxwAlAuyWYIco8Qu5wTKVb/A9T4tWgqv sWjf/0/YXaLUh35+SZcBwFPp/RLhJJOPkRUnYkC1V/MfQll9A47SXpBdfPh5 JRvKVvXQz098qW4CoM7o1dblJDOPkbXLOYG/VDy5NTvTtNdnu9UxgAdG17MO AmCyOFsmyDGydjkn8JeKJ7c2Z4lXgN9j8+G3BBBeuoDHffi4LwXgcnEWTYQz ZAWJFfBUxUtbdxPTa/qv3rx/3erbw3fp0h334eO+FIDLxVk0Ec5QIki4gBIV D2x9TXzvlfl6+3swpll0b/jFuFrVGgCsEmfXBDlGgtUMu3i1/X6D1ceHSo2V r1PYztD61BEArBJh3eyy9bY4JFzu6btaF3Ok6kZo6SCtxHyJghz0yeO+EQA+ Bdk1Wyy+LQ4Jd3r6nNa8nO319oehPqb/os3Hf/9kFgySLsJBnzzoGwHgS5yN E+QYCXFiBXx5/JLWuVzp9fbrNpOtvTgHG1d1ihyAheIsnTgn+Uv8E8KFnr2k 9Sy8eS36R6NW35tDpCtt0CeP+DoA+CbI3on/rosQJeDT0ye0hoW0lp7SjKwy qLpUMgBrxdk7cU6y4/HgBs/ezVoVnnut+A02UGFcUalhAJYLsneCb8DIZ4NT vbr+hHH1bWA/fXtQq9LRoBJSrgBEEGf7BDnGdmeDI716/PRw9SXgKI39qHnp a0TxKFQAIgi1gIIcY6ODwWFe/f7/7ldfBY711WJdWlVHU2dEtShLAIKIs4CC HGOjg8Exnr6NNSOE0t7CJT3+839wrXSp9P3Avl8EAFmhFlCQYxSeavnB4AAV D2NtCDG1t7MJQKERhaH2AIgjzgKKc5L4p4IDPH0Sa0DYS2OPGwj8ZUQxKDkA 4giygF65P+c+8zDfDhbtSLCp9655+h7Wd7Cv6n5vmRLGxcFKCqDjB/b6FgAo FGoHhTpM9khLzgObevwC1nRwnNeiv3nY9DhMSdI7fmCXrwCActHWUKjDpI+0 6jywhW898vQNrOPgeO1jwQy5Vt9EqyUAogm1ieKcJHukVeeBLTx99Go0uNNr +m+wMVgO0De/SgiAgEKtoVCHSZxnyWFgCxUvXv0FfCz6t6J+tToSZHTMndoA IKBQmyjUYRLnWXIYiO/pc1dbAQktI6Xd6tvzp44pUxIAxBRnGUXbjNHOA2E9 eujqJiDr53xomTPV08mMCiidsl4f1f7hAFAtzj6KtiLjnARievX4ayVWXwLY TOPMqZ5URlYQ6TR1+Zz2DweARqFWksPAFp6+bzUR0Ndrxd8/bI4t1zEjcg1A ZKG2UvyTWNbc7NGzVvsAc7SPppaBZrJNU5KO9s+p/lgA6CXUetriJDOPAau8 3n4C0sXa6wBX6TW46madiTdISfC7fE7FZwJAX6F2U5DDBDkGrPLoEZtoFi0D rPJa+gejVt/+QO0Bfz0sicEXAoA/JXbT/A0VZFdGOAPM9977jVZfBeD/vXr/ 5kDDcJX2OMsdALuIs6HSJ5l2njgBgQle/f5/nFdfBaBUl6H3aDb+/B88UhLk lk+o+EAYRBECoZZUhJNEOANM8Oi9qi+AU71W/PGo96/+8Es3OSXBbPyQig+E cdQhXC7UnopwkuUHgDnK36sRGhNgkNfSPxX1NUtN1ISSALZ/yKNPg6HUIRBq SUVYmnGiAYOUP1YjtCTANN+GW5dpWTdgjdl3JRFr/ITyj4Kh1CEQcE8tP0+o aEAX5a/TrNVXAZit4wg1byu8Cv5UWvYThJ1dqEPgI94v1Kw9TKhQQBePXqfq HyDhteif+f748XO32yZzNj7VP/bRR8FQ6hD4FHBbrT1MnDhAu0dPU2UP8Mhr 0V8+fOF8Tgek+sdWfBoMog6BLwG31drDhAoFVCt8jip1gC5apm71rP51aB85 xtNxqP6xTz8KBlGKwDfRttXaw0SLBpQrf4iqcIAJGsdy4eh+/fc32Jw30rMR aPnhjz4KBlGKwE/RFtbCw0QLBRQqf4Uqb4DJGkd03VR/H++7z/n0Tat/7NOP ghGUIvCraDtr4WHiBAEKFT4+1TbAco0T+9qB33KvG+LDvpQi8Jfszpo8Lhbu UIubXeQem3mrbwBwqfYB3svHJr/NJnuL6h9b/jkwglIE/hJwc606SZDrQ1pJ zypmgF20TPVeVscgo+7wx1yfU6lGICHa/lp1jAh3h1+9Ov2Tr6vvAcCf2od8 u4+Qv8Eme+a6H1j4ITCCUgSyom2uJYcJFQF4l+7QaP0LQItXp1+Zb/d+noXR KDlkxQ/MfgIMohqBEtGW15LDhIoAfPjFGYCLvf77rzW1bIQu1oai4lRbXI0L qUagUMBxMf8wAYPAnV7ND/LVNwBglJbt0O7bST6m/E6bwvPURWn04eEbBQmU izYx5p8k1PW5U7oNS6y+AQBjvd7+IFIoQ6/89HsjHBt+pSCBctEmxpLDxLk+ 93h1em+vvQUAa71vk6//Mc3X1w26WvqrH/332R8O4yhI4KloE2PyYaJdnxu8 evxtA6svAUBojVtm+WKq+K4l54QsBQk8FW1uTD5MqLtzg3THZa0+PgCbeU3/ i4g/3n5vT8uxE5//9IcUfgJ0pxSBCgFHx+TzhLo7R3p1eiGvvgcAJ2jfR3O2 2KOPGncMqKYagToBp8fk88S5OEfKtli0BgTgEo0bavSCe/TDe30pdKQagWrR Bsjk88S5OIdJV3LW6uMDcIvGhdXF+2FKTlV3hXkx5XqqEWgUbYDMHGuhLs4B Xs1/vunj7Y0KADO17K8uCo9Rd+zp4eRS6hBoF3CSTDtMqFtzgHQ3Za0+PgD8 z9dWatxrI/x12qc/CgZRisD/tXdvy43qSgBA9f8/zak5M+WNEWBAtwbWepjy OHaibrVatkKScgE7SbchhYqau9uv24ALDQD2pdlFniXbXHXzEZ56PDSlDoEq YjaTDkMKGDU3kvzxJgBepnzXK3dtSEPSxQupQ6CWgP2kz5BChcyN7NfnT6OH DwBFCvfBinvotWdBI+oQqCXg1tZnPKFCJr5PbfxcMuoKgAe7vA+WuzCSISni hdQhUFfArrI/niqjihYyke2vkZ9GDx8Aftt5oVW4D9YyH8/BUfVMIK+lDoHq AnaVDkOKFjIx/dx2FRIAt/PZpFY3r5K9r7V5CKceD+2oQ6C6gF2lz5BChUw0 Pzfcn0ZHAAD/pNnxyxT7HGZLHtGFZ0F1KhBoJGBvaT2kgCETxP5uu1856geA zla3nst7WWRnA+w1A7yXIgTaidlemg4pYLwM93OrVTYARJBue0nMNasZuPxc qEXtAU0FbDKtxxMtXgbar/+AqwOAdyrZsO6oMAmdZ4dXUX5AazE7TNNRxQyZ bn7urUeMDgKAh0v3/5Uyua0wV2+sPvjaV4GKVCDQVNgm03RU0YKlp581H3ZR APAMi60kff9+s/J9KpTqqev/RWFO+QF9xGw17YYULVI6+LmlBlwCADxAmh3C lGxGAU2zS32m3WtgKibzyKigncLyU6LAQWE3u0ZDihksLezX9s/KVxIAHJce dz3ManQDnR0zVFdSgeoTOC7sZtdoSDGDpbqf26hKAKDEfL8o2XQiGJjG4x4T CDdVWHtKFDgl7GbXYmA29zfYn2U1AMBB6XFXyHxMd/vm/sGgoIXC2lOiwFlh 97sWQ4oZKYV+bp0/jY4AgK7Sxk/0fDaF8p0llAEpru0lYRJQYe0pUeCamPtd iyHZ3J/nyNZp3gGYK987hpvudjFMiYMJgRYKa0+VAtfE3PhajCdgmJT4Wbrm GuCdUvbDStPND2eGpnMw+WGgksJTpcBlMXe9FqMKGCZHzCcoFb/SHhcHANXk LT1lJzN3N73pgpkdRxIFLZQUnkIFCgXc+Fpsx7b4m0pOZgDeJ32fuszvLN8X QlnEy8LxHEJdl6tOlQLlwm58dYcUM0Z+2q/PsNULwAV5Gy/ZBYabxzU5ijnv VJKhostVp1CBWva70KjGUn1H1jbvaH+XNKcAd5GyU4spu1TmGQYk96FkmyEu V51CBSoKu/3tj+rs2AIGyL79yjShAJHlu/aTTK6Nae/ILEB1l0tOrQIVhd0E 6w4sWnSs+jnpZhAgoPTEo5i/Rqf2vUwNQ1woObUKNBKwsdRtdwED5OPn7mbu ADqbd9p5y73csSObsot/JlfLjHZk1qCiyyWnVoFGAvaWnx3v1MCiRcdfR2bZ lAE0lffVa835RobkmeNMIv3tF9tWySlUoJ2YvaVi0wsY3cv93NRMGUAt6fuS mMWNZ8vzwC0cn1ao4kK9neo/AGeF7TC1RhUzutf6uamtTpPJAjgozX5s55Hm oQ3NNE0cKQCo6Fq9He9XANfEbC+1hhQwtFf5pPrgdmaOAHbMG+O1vno70+yK oGF5p5cj9QC1XKu3g40LoETMDlNrVDGje4kju9jW1Jgg4M3yHni5o97F5CIZ on7rkKe6UG8HuxlAobB9ptaoAob2Bkd2MVMDkFv0w5J2GtMnzKFpJqIjlQO1 nKq3sy0OoFDYJlOlAYaN7sGOb2QmBXih9NDjl7/mMcIpB6sLyp0ttgttEKBE 2D5TPqqYcT3Vqf3LdADPs+hmJV3xFkblmadScnRwtrmd7YcKFagl7IZYPrCY cT3AJ40HN6+tWTAXwK2Vd8KY5qFNejWNHaxJKHe20hQnMErYzlM+qphxPcCR PUvmgQdLTzmfmUcxOZBhkCOFCuUOdsWDj9yqTBULVBF2ZywZVcyIHuDgtiXt wANc7nhhjc4oLKlbOjjbJC93VBULVBF5cywZUsyI7iid3LAkHLiReYubnvJX lvK4ILKf9QzljvfPIw/e/xIdwwKe6VoXijC8Rk/kI9V4kzI6CID/zJvSp0cV drnOprUTmMX9cC8/ax7KHSmzU6145/P3jQx4prCbY+HAAkZ0L8e3KkkGwipp ZcONTh40ZwnQ2qlme6Ezq1ugkZhbZNr9LufP5+48UQvd93t/ilQnwJstGnve 6m9ndEahK8uB1o733oOP+fnJx8QJPE7k/fFnt7zwxG6Dv5dfW5NkAsN8Gs61 ThXEIpBPaAMTC2P9XDJQ6FRzPlKQPx8/MlrgWcLukpcHFjaiaPYTJY1Af4s+ U9KmhpicvcABR5YSlKjb2A9+5iGRAk8Vs9uc7ZlHnthz/GH9TOy1tAOckmZn GoV9aZTRKYQbs7Jop1GfP/VggEKRW82FZqh5bvm5uVzINsCOdP+jmNzopMIT WGK006Lbn308QKHI3eZCP9Q/Vx3ZXCQNOG7eHD63S1pNNHmYQBVHlh5c02IX OPV4gFrCdpsL/VDzXDi+ucgYsCPvDyXtJYjp+4KfybEMtPdzVcI1jfaI4w8G qChywznbFfXPv47vKVuJelW64IV21nj6fmk6PeJA5q9++QXWWKG002cfUb1A H5F7ztmuGDmWbo5uJ+/OEjzVkVWcvv889DT6xW07bXMNnGTN0kiHDUXRAj0F bz6nxhY2itZS2fe7Rw8fqGO+nOcL/HJzuItxKQdOsJZppMNGo2KBziK3oLMD CxhCO6f3ktdkBt5msairNIdoPpEOzTRw0ZE1boFzTfMdaKNiAdqJ3IVOjS1s FC0c3ULekQ14sPTcXxSzZR448AwHFz6c0n5HUqvAMJF70amxhY2iluSHm+CJ Fuv08hq/i0+Mn/AnxzLwdEc6A5zSdKtSpcBAwdvR8bFFjqKKE1vIE8OHx5gv yZJ1Hd/0fRoDvNORRjF6jNxP8z0sK1SAzsI2pVM9M2wUl6XZ95ovmLzygRHm q+/a4r2R0ckGRtpvAtoIjbTc1lQpEEXkvnRwbJFDuOAz7OPbxwOihvhWV1b5 ar2FnQwAj/FzjafvbyFNxd2veUg8TmHJqU/gFoI3qIMDizn4C65sIbcNFm4k X24lqzWaKfsVMfkNII5TCzNl39ha3Jg2Wlx+f4vmA6e0rknFCQQRtkEdbKGP 6bEndo7bxghhpe9zicvrMaYpO4cB7iWtHZ5MG2eqQ/rMWSOyyL0pTuA9Iveo g100cghbUqVLhSPHCAHN184jfcIcmmbghPnind/zbKOyzX0pS+A9gjerpzbb RwYF0SwWTlk7CecT4+IGEF/6/k7T9LgGtWNo4rkrlQm8Tdh+9bx+mwpeiU3e hcGu8o4RWR7skCTDa6WNjTitnbfkj0zfB6pj+kgMjSeKZ1KZwNtE7lcP67eP CQSiKewVQYzOIrAiZecqn/uPLOomzeK2Rk4kt6UsgXeK3Lhu3XWTP1UJZVaX QOGaGm4rLqCRIysurV0VQ7mD+YdVHerzwpCqhwmQq9u7uo2tUe+NMPJp9ioR Xqhw4fe3NezP/ZPXdVDJ6lKar7jFnYuVOL/dvje8wiLVSa+jktZ1WzKkupEC 5Fo0sW7DizbytP1+LfKwobPylTLW5CgVGsgXV347X4Odlv2j7U/K4jH7j4da RtX86kimrAUBtFariTXSof2OHWqQPENd6fv7qpdXx3CrcQFz88Wyv0YWH01O WtpoN9fQQailYX0BQ9RtZdV1a8KXxxZ8kNDavKTT445l4J3S2nHK/L87ayet /SBMfpt9eebTgQZ15DEQXOtlVTiMRlEDLFRsaJ3HNmTYl4cUIZ9wWXrQO6zR uYQmtmp7tfLT9x+Pnj/gc7vrsnyNU3MHb9Nz3V376k3DB/gI3ouaduNu44mQ SdiS1r5dm+78TfA8Lri1tPHbWec1nzYWb746Wi9APqaNUzIg124NVvy6XTIB 4JSm+WAipBF2XC7sUEZnEf6TDrw1WNTtahmPWk0vN2VHK4uP7s87cE2j5bzz 5S580V7JAN4ueC+q3pO7jSH5w5QMkmYvPBb3P8ygBMO6T1nOSzSv2K6LhMxn FhazBgzUdL3Pv8r8RvknBGgkfjsa2EIvfOkgSePBPjWWnn4Is2pQ1nmXvNLm 5bdVmf2WAd8mhy1wc9V7wrT7U6KFnxmgj+DtqHMLLWjegZLGY3yKqrwy45u+ r0OA/vJSZLidyepYGkArHXpFu08O0EjwjtSzixY07xC54i5SdiXMlJVffs9j 5BmADvKqW61M6ppc6wJsq9ttWnzy/jkBmML/dpqp2UHN/JGX+3aQFHEL5SV3 XwPTTnz7FZLWFs7iAWn3qDP/EMfladyass9HAX6q3qmqf+ZRmQH4K3iDqt5X U40X7V1C58Y+dVJYacGNTjNPkGZv/D9F9SmwgeX9EouJKJ9KgJ+q97G6nzDp ZsBowdtU9aZ6qVWHSAUxpdn7yum5byqnjXfTvMTqjKftay3ysqGDnckCiGN0 s1wxOiUAX+K3rLo9VuvmrLT2/f0p5GuMQnnI3EvhxC2ePi+MxY300CUwVp7S ktkEiGlIg903OiUAS/G71qkeuzrs6107TBLoKW28LX2MyTnM4+zM9ZSdK86f lf9LLZOFBpAZ3Zv/GZ0GgB+Cd7BrXbegbQeKnYpSdp3A4r+PMQ8wZaeXSW3f wWfK8olLVUu3/DO8zXwW5vcA8NPQ/v3P6BwAHBW8lXXr26Gipor0mveh83gp t5XJtHYOtvOUkTXBSQ3qCIA/Rjf4P0bnAOCc+A1N6+avdOzSginG64FGJt/E byN9V87iQ+npdfVCk6UE0MXwbg9wR8E7m9b9QmntQObxFiHTweg5p63R9QXw dnYBgGvi9zfd+9nazW9ko7P+EFuZTNvXxuQfZbjPvMzvWdxuV0UANNJ7O7FZ AE8Rv9Fp4HeX1n6E5D12UsEpafdvEq3eSSjzeTw16QDcUf8tBuAZbtHx9PB7 SS/7C79bgQ9K/3MsMjxqftnJ/88ZbFsiAATWc5MCeJhbtL7yBh4nlofJ01s4 WdFM2XHBTh7YkbITrcXt9Nwq6ulg9rYyDwDlOux0o0MEaOhnG4ygpI1TRfp+ Q5eefoXDsEQPdS3w9F0M+UdpbWcGk1ezAHTUf6cDeJ6DLTGCy/2cC9ITf2Rp mp0kpO3LCdLNiycdODZZPHJam/H8wfmHdpLMKauTmNbKMn8wAATRZ5cEeLwb tUSdvK7VjBVtolEdzEabNJd+0fTrBCm/c2iy327aOB87O+8AcC9N99bVL9c5 QICeznbFgW401GjSc69zmA68Lz6YopRdw1BL+r4oJb9nEcvO7a3w9x/GQXkO p7UCS8dOzADgDVrvy/mXuzbICqECdLHfGGNK2ZtT/mq3SwYxfb9lnt8uT93q 7cWdae0Fw+qd0/YJDMNVqRkAYIrxCmc+mK1B7j9m64kAQxzpeAyxPwU99ry+ 8qgXH9rKQJVkzm/kg9kZ8897qGJn4uaPSQdeqgEA5Ua9JGhqdFIB/tCmIsiz 3WsvGiMPeevOrcdvPevz+Cl7Cz//bI/P8GMUrSsAoJnRrxGaGJ1UgD+0qf7S aw4Kpl9HJYuETNkxy+K/i2fxMM3WHABQ2ehXDU2MTirAP5pVT322mCC2ov7c +drMPNt8TqftC6XarTIAoLWxLzYaGZ1UgH80q3IpO3n4ZK/1bhLczwxI0S0s SnpR5ADA2wx7UdLS6KQC/KNZndVnm4AqpjPnKun76pf9BwMArzXodU1bo5MK 8B/NKg+2y1YAF32qdFGuq7XdevkAAC807GVQM6MzCvDlhf0qZe9woZutgsw/ tPpgAIDhBr+cqm10OgG+PKlfbY057f7VIThrq5B6VjsAQDQp+5nraffXNq7e 2e6l2s7jAeK4actKG79AIzmQocCQYgYAeKStF1d1X3Ttfzav8YDbud071uQE hgPmRTLZoAEAALiJn+92h4znc3vavU6S95iXBAAAADzSwXfHdb9i/t/kHObp VmcfAAAA+Dj45rrbl+OOPpNbt1oAAADgVU69B5+/DU/f18BM2Y8mHfzk3E5e DAAAAEC5s2/MuaPFdOc10LXmAAAAgA1Dzw84IZ+1xfStTm6nMgIAAABqGHDi wP/lE7E6Nb0KAQAAABhs6EHF/axmbye3WzcAAAAAFgaeeISSZ2P6/g3JAAAA AK2NORZpb9o9YNn5EAAAAMAQo09TfpgPcvLbWgAAAIBHC3ICsxjS1lDb5gIA AABgqHaHMAAAAACcdeEymMVz8/sBAAAAuCy/GMbBCwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 0NP/ALqc38Y= "], {{0, 1482}, {1506, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{410.70000000000005`, Automatic}, ImageSizeRaw->{1506, 1482}, PlotRange->{{0, 1506}, {0, 1482}}]], "Input",ExpressionUUID->"8a3d5009-a17f-\ 4bd2-9989-425a678bce0b"], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"405.799`", ",", "20.1835`"}], "}"}], ",", RowBox[{"{", RowBox[{"1261.27`", ",", "76.588`"}], "}"}], ",", RowBox[{"{", RowBox[{"1480.62`", ",", "919.522`"}], "}"}], ",", RowBox[{"{", RowBox[{"750.493`", ",", "1389.56`"}], "}"}], ",", RowBox[{"{", RowBox[{"79.9064`", ",", "838.049`"}], "}"}], ",", RowBox[{"{", RowBox[{"446.536`", ",", "51.5194`"}], "}"}], ",", RowBox[{"{", RowBox[{"1258.13`", ",", "132.993`"}], "}"}], ",", RowBox[{"{", RowBox[{"1417.95`", ",", "925.789`"}], "}"}], ",", RowBox[{"{", RowBox[{"719.157`", ",", "1333.15`"}], "}"}], ",", RowBox[{"{", RowBox[{"114.376`", ",", "800.446`"}], "}"}], ",", RowBox[{"{", RowBox[{"418.333`", ",", "490.221`"}], "}"}], ",", RowBox[{"{", RowBox[{"828.833`", ",", "230.134`"}], "}"}], ",", RowBox[{"{", RowBox[{"1201.73`", ",", "549.759`"}], "}"}], ",", RowBox[{"{", RowBox[{"1010.58`", ",", "1010.4`"}], "}"}], ",", RowBox[{"{", RowBox[{"509.207`", ",", "975.926`"}], "}"}], ",", RowBox[{"{", RowBox[{"528.009`", ",", "903.854`"}], "}"}], ",", RowBox[{"{", RowBox[{"484.139`", ",", "465.152`"}], "}"}], ",", RowBox[{"{", RowBox[{"869.569`", ",", "289.672`"}], "}"}], ",", RowBox[{"{", RowBox[{"1167.26`", ",", "612.431`"}], "}"}], ",", RowBox[{"{", RowBox[{"944.775`", ",", "988.461`"}], "}"}]}], "}"}]}], ";"}]], "Input",\ ExpressionUUID->"f8c5089c-ecc5-45de-8b8f-4b6401f27fc7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "v", "]"}]], "Input",ExpressionUUID->"54a57b54-94ef-4d1b-8c2d-6a075f91d152"], Cell[BoxData["20"], "Output",ExpressionUUID->"2ea8716b-d48b-4aa2-9a07-7b4e4c0ec32e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", "5", "]"}], ",", "2", ",", "1", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Sequence", "@@", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"16", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", RowBox[{"List", "/@", "v"}]}], "]"}]}], ",", RowBox[{"VertexStyle", "\[Rule]", RowBox[{"Disk", "[", ".02", "]"}]}]}], "]"}]], "Input",ExpressionUUID->\ "7ef39f4e-390f-4663-9519-dfe311d3a8d1"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.2640412643754111, 0.}, {0.8498051781094215, 0.03862167235617571}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8498051781094215, 0.03862167235617571}, {1., 0.6158011662951455}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.6158011662951455}, {0.5000624813197974, 0.9376487782933391}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5000624813197974, 0.9376487782933391}, {0.04089386974373759, 0.5600144203462459}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.04089386974373759, 0.5600144203462459}, {0.2640412643754111, 0.}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3477217256621566, 0.6050728669134195}, {0.3176827612840408, 0.3046818536786776}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3176827612840408, 0.3046818536786776}, {0.5815970088394806, 0.18452599616621476`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5815970088394806, 0.18452599616621476`}, {0.7854340123654813, 0.4055277309215431}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7854340123654813, 0.4055277309215431}, {0.6330925719810483, 0.6630055466293812}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6330925719810483, 0.6630055466293812}, {0.3477217256621566, 0.6050728669134195}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2640412643754111, 0.}, {0.8476551359816057, 0.07724368707574758}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8476551359816057, 0.07724368707574758}, {0.8090365448959953, 0.3626145333946393}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8090365448959953, 0.3626145333946393}, {0.9570881719266809, 0.6200923491024773}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5000624813197974, 0.9376487782933391}, {0.06449612838353466, 0.5342666387754621}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47860588255634545`, 0.8990233399398059}, { 0.33484749251336854`, 0.654422496287925}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.33484749251336854`, 0.654422496287925}, {0.06449612838353466, 0.5342666387754621}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.06449612838353466, 0.5342666387754621}, {0.272623629990075, 0.32184726963479765`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.272623629990075, 0.32184726963479765`}, { 0.29193497971325705`, 0.02145653029077266}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.29193497971325705`, 0.02145653029077266}, {0.553703978228427, 0.14375873240637305`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.553703978228427, 0.14375873240637305`}, {0.8476551359816057, 0.07724368707574758}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.553703978228427, 0.14375873240637305`}, {0.3176827612840408, 0.3046818536786776}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5815970088394806, 0.18452599616621476`}, {0.8090365448959953, 0.3626145333946393}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6781510185482219, 0.6780277677256082}, {0.9570881719266809, 0.6200923491024773}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47860588255634545`, 0.8990233399398059}, {0.6781510185482219, 0.6780277677256082}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.33484749251336854`, 0.654422496287925}, {0.6330925719810483, 0.6630055466293812}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3477217256621566, 0.6050728669134195}, {0.272623629990075, 0.32184726963479765`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6781510185482219, 0.6780277677256082}, {0.7854340123654813, 0.4055277309215431}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8498051781094215, 0.03862167235617571}, {0.9570881719266809, 0.6200923491024773}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{1., 0.6158011662951455}, {0.47860588255634545`, 0.8990233399398059}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.04089386974373759, 0.5600144203462459}, { 0.29193497971325705`, 0.02145653029077266}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.2640412643754111, 0.}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.2640412643754111, 0.}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.8498051781094215, 0.03862167235617571}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.8498051781094215, 0.03862167235617571}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{1., 0.6158011662951455}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {1., 0.6158011662951455}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.5000624813197974, 0.9376487782933391}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.5000624813197974, 0.9376487782933391}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.04089386974373759, 0.5600144203462459}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.04089386974373759, 0.5600144203462459}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.29193497971325705`, 0.02145653029077266}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.29193497971325705, 0.02145653029077266}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.8476551359816057, 0.07724368707574758}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.8476551359816057, 0.07724368707574758}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.9570881719266809, 0.6200923491024773}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.9570881719266809, 0.6200923491024773}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.47860588255634545`, 0.8990233399398059}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.47860588255634545, 0.8990233399398059}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.06449612838353466, 0.5342666387754621}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.06449612838353466, 0.5342666387754621}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.272623629990075, 0.32184726963479765`}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.272623629990075, 0.32184726963479765}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.553703978228427, 0.14375873240637305`}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.553703978228427, 0.14375873240637305}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.8090365448959953, 0.3626145333946393}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.8090365448959953, 0.3626145333946393}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.6781510185482219, 0.6780277677256082}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.6781510185482219, 0.6780277677256082}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.33484749251336854`, 0.654422496287925}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0.33484749251336854, 0.654422496287925}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.3477217256621566, 0.6050728669134195}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0.3477217256621566, 0.6050728669134195}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.3176827612840408, 0.3046818536786776}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.3176827612840408, 0.3046818536786776}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.5815970088394806, 0.18452599616621476`}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.5815970088394806, 0.18452599616621476}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.7854340123654813, 0.4055277309215431}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.7854340123654813, 0.4055277309215431}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.02], PointBox[{0.6330925719810483, 0.6630055466293812}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.6330925719810483, 0.6630055466293812}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"cd361cb8-a5b6-45c1-b155-\ 8f773a3d9625"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Degrees", "[", "g", "]"}]], "Input",ExpressionUUID->"a11f76b2-9054-4b0a-8ceb-19cbbb58d0e9"], Cell[BoxData[ RowBox[{"{", RowBox[{ "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3"}], "}"}]], "Output",ExpressionU\ UID->"db7e9fbe-1704-4fc5-be68-4566046ed945"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"464089d0-4dc5-4f44-a689-a3f3891afee0"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",ExpressionUUID->"bcaead3b-601f-4c74-88d6-677cfc5e6608"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Theta]", "=", RowBox[{"ArcTan", "@@", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "]"}], "]"}]}]}]}]], "Input",Expression\ UUID->"851835b0-64e5-472d-8938-b462d45a236b"], Cell[BoxData["0.06583855826824746`"], "Output",ExpressionUUID->"b12b5334-8145-4131-bcaa-aa7b59b2de20"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"Vertices", "[", "g", "]"}]}], ";"}]], "Input",ExpressionUUID->\ "3d62074a-e44d-4f21-94cb-f0f8e3e93ee8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"s", "=", RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "]"}], "]"}]}], "]"}]}]], "Input",Expre\ ssionUUID->"46945d60-3755-4f1c-ade0-074b4a12db41"], Cell[BoxData["857.3284664941729`"], "Output",ExpressionUUID->"62b45bde-b1c8-4062-a0ed-fe0753fafdf1"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v2", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"RotationMatrix", "[", RowBox[{"-", "\[Theta]"}], "]"}], ".", "#"}], "&"}], "/@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ FractionBox["2", "s"], RowBox[{"(", RowBox[{"#", "-", RowBox[{"v", "[", RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "&"}], "/@", "v"}], ")"}]}]}]], "Input",ExpressionUUID->"f92bb9d4-0508-437c-b925-\ 40dd2ffa3ae9"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.639969967366229`", ",", "1.9284941441331052`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.0125403865895626`", ",", "3.134695583794902`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6330790309176831`"}], ",", "1.9538236903406385`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09963593232108546`", ",", "0.066690612604513`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.0013477788538805`", ",", "0.1317800126569297`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.495050229017602`", ",", "1.9527008389032203`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9309395064870957`", ",", "3.0081952779303434`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5586128696445305`"}], ",", "1.8610020440270505`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.10131725371607454`", ",", "1.0922173293574788`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.0169505298353347`", ",", "0.42379041935951406`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.9340262025937487`", ",", "1.110573262046055`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.5597709856624493`", ",", "2.212178901960677`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.387396950645044`", ",", "2.208881503519514`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.42010220985590596`", ",", "2.0382284670131225`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2506511769419012`", ",", "1.023762518764728`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.1209125674807146`", ",", "0.5561292984654467`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.8634066779219152`", ",", "1.2617499342878409`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.4032246443908711`", ",", "2.171209562387802`"}], "}"}]}], "}"}]], "Output",ExpressionUUID->"06407023-c123-41bd-be20-388f1553b56e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"c", "=", RowBox[{"Mean", "[", RowBox[{"Take", "[", RowBox[{"v2", ",", "5"}], "]"}], "]"}]}]], "Input",ExpressionUUID->\ "076410a5-30d4-46ec-a82d-522b28306ee4"], Cell[BoxData[ RowBox[{"{", RowBox[{"1.0038862646076216`", ",", "1.4034026836537292`"}], "}"}]], "Output",ExpressionUUID->"bd7adf36-d332-4163-bf79-a6735c66d175"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v3", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"#", "-", "c"}], ")"}], "&"}], "/@", "v2"}]}]], "Input",Expressio\ nUUID->"dde58f36-0fca-420d-930a-e80c9a1c8906"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.0038862646076216`"}], ",", RowBox[{"-", "1.4034026836537292`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9961137353923784`", ",", RowBox[{"-", "1.4034026836537292`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.6360837027586075`", ",", "0.5250914604793759`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.008654121981940932`", ",", "1.7312929001411728`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.6369652955253047`"}], ",", "0.5504210066869093`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9042503322865362`"}], ",", RowBox[{"-", "1.3367120710492162`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9974615142462588`", ",", RowBox[{"-", "1.2716226709967995`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.4911639644099806`", ",", "0.5492981552494911`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.07294675812052598`"}], ",", "1.6047925942766141`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.5624991342521521`"}], ",", "0.4575993603733213`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9025690108915471`"}], ",", RowBox[{"-", "0.3111853542962504`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.01306426522771309`", ",", RowBox[{"-", "0.9796122642942151`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.930139937986127`", ",", RowBox[{"-", "0.2928294216076741`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5558847210548277`", ",", "0.8087762183069478`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6164893139625777`"}], ",", "0.8054788198657847`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5837840547517157`"}], ",", "0.6348257833593933`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7532350876657204`"}], ",", RowBox[{"-", "0.3796401648890013`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.1170263028730929`", ",", RowBox[{"-", "0.8472733851882825`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8595204133142935`", ",", RowBox[{"-", "0.14165274936588834`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3993383797832495`", ",", "0.7678068787340726`"}], "}"}]}], "}"}]], "Output",ExpressionUUID->"5a9219fa-39b0-4c66-a7c5-913ed0d5a449"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphPlot", "[", RowBox[{ RowBox[{"g2", "=", RowBox[{"ChangeVertices", "[", RowBox[{"g", ",", "v3"}], "]"}]}], ",", RowBox[{"Method", "\[Rule]", "None"}], ",", RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}]], "Input",ExpressionUUID->\ "c266b839-359d-42ab-93e1-415eb3b29cab"], Cell[BoxData[ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHEs2C+sP8L8ZlVZfVnT2v8hpk+kp 4O8/GZVWX1Z09r9u3s0aZi36P5ZeRZuMzeA/ALAal0C5gT8LdB4vYLP7P5R9 j4UCMfq/tA3Ygwyd4T93K5Jknu/sv24yVTIsY/W/LJrWaDTr7z/liIwDkVj0 v0zVwb7O2/c/GpeRudmT4T/oFHqEo6yyvzN/1P86rfk/y0KaF///+L/sVN7T TkndP0ExBWjY4ey/lJTs+XXq078AwzH/b8GKP+buvNH7WO+/BFPL1LTD7T+8 I0edt73Sv6TZKMHOyeE/EibtqX7h6T8bsDnMR7rjvw43noR7xuk/cLfi5Vuu 4r8m9UUpflDkP7Mqd3iAGui/UJAcQwZM2L8AmpyPb/W9P9D0BBPdHOu/xrwt 9DCB6z/oHfVirSHCv1A6TZDCjtk/UtA5u9+R6D/4zbEB "], { {GrayLevel[0], LineBox[{{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHEs2C+sP8L8ZlVZfVnT2v8hpk+kp 4O8/GZVWX1Z09r9u3s0aZi36P5ZeRZuMzeA/ALAal0C5gT8LdB4vYLP7P5R9 j4UCMfq/tA3Ygwyd4T93K5Jknu/sv24yVTIsY/W/LJrWaDTr7z/liIwDkVj0 v0zVwb7O2/c/GpeRudmT4T/oFHqEo6yyvzN/1P86rfk/y0KaF///+L/sVN7T TkndP0ExBWjY4ey/lJTs+XXq078AwzH/b8GKP+buvNH7WO+/BFPL1LTD7T+8 I0edt73Sv6TZKMHOyeE/EibtqX7h6T8bsDnMR7rjvw43noR7xuk/cLfi5Vuu 4r8m9UUpflDkP7Mqd3iAGui/UJAcQwZM2L8AmpyPb/W9P9D0BBPdHOu/xrwt 9DCB6z/oHfVirSHCv1A6TZDCjtk/UtA5u9+R6D/4zbEB "]]& ], AspectRatio->Automatic, Axes->True, FrameTicks->None, ImageMargins->0., ImageSize->Automatic, ImageSizeRaw->Automatic, PlotRange->All, PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"9d09ad05-da6d-\ 4e5f-8293-853ecef463f6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Theta]", "=", RowBox[{"-", "1.8"}]}], ",", RowBox[{"\[Phi]", "=", ".03"}], ",", RowBox[{"\[Psi]", "=", RowBox[{"-", ".68"}]}], ",", "\[IndentingNewLine]", RowBox[{"r", "=", "1.1"}], ",", RowBox[{"R", "=", ".94"}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"ShowLabeledGraph", "[", RowBox[{ RowBox[{"g3", "=", RowBox[{"ChangeVertices", "[", RowBox[{"g2", ",", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "r", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "]"}]}], ",", RowBox[{"VertexStyle", "\[Rule]", RowBox[{"Disk", "[", ".01", "]"}]}]}], "]"}]}], "]"}]], "Input",Expressi\ onUUID->"1194a67c-adde-4d57-9665-d4ccaea24efc"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.18619207643071944`, 0.07280133647277626}, { 0.7887222926323639, 0.07280133647277626}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9749143690630834, 0.645841624856078}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9749143690630834, 0.645841624856078}, {0.4874571845315417, 0.9999999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4874571845315417, 0.9999999999999999}, {0., 0.645841624856078}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.645841624856078}, {0.18619207643071944`, 0.07280133647277626}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.319775408709856, 0.6812556790545112}, {0.25132734509140986`, 0.38786936726426213`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.25132734509140986`, 0.38786936726426213`}, { 0.5092026938211704, 0.2321100340719797}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5092026938211704, 0.2321100340719797}, {0.7370264878153406, 0.4292317838843786}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7370264878153406, 0.4292317838843786}, {0.6199539872199314, 0.7068190583825767}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6199539872199314, 0.7068190583825767}, {0.319775408709856, 0.6812556790545112}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.18619207643071944`, 0.07280133647277626}, { 0.7822105015628843, 0.1063504753798492}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7822105015628843, 0.1063504753798492}, {0.7507006262235426, 0.3866123430329741}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7507006262235426, 0.3866123430329741}, {0.9409949877851321, 0.6500157975956281}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4874571845315417, 0.9999999999999999}, { 0.024987838715717085`, 0.6225273360902602}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47300564509388066`, 0.9690306417208824}, { 0.33376387714759254`, 0.7237729878882025}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.33376387714759254`, 0.7237729878882025}, { 0.024987838715717085`, 0.6225273360902602}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.024987838715717085`, 0.6225273360902602}, { 0.21521365594233244`, 0.41431176230965927`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.21521365594233244`, 0.41431176230965927`}, { 0.21608694950009458`, 0.08936167187108845}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.21608694950009458`, 0.08936167187108845}, { 0.47289473803015586`, 0.20593502412029568`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47289473803015586`, 0.20593502412029568`}, { 0.7822105015628843, 0.1063504753798492}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47289473803015586`, 0.20593502412029568`}, { 0.25132734509140986`, 0.38786936726426213`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5092026938211704, 0.2321100340719797}, {0.7507006262235426, 0.3866123430329741}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6647130253140853, 0.7066538053065771}, {0.9409949877851321, 0.6500157975956281}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47300564509388066`, 0.9690306417208824}, {0.6647130253140853, 0.7066538053065771}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.33376387714759254`, 0.7237729878882025}, {0.6199539872199314, 0.7068190583825767}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.319775408709856, 0.6812556790545112}, {0.21521365594233244`, 0.41431176230965927`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6647130253140853, 0.7066538053065771}, {0.7370264878153406, 0.4292317838843786}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9409949877851321, 0.6500157975956281}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9749143690630834, 0.645841624856078}, {0.47300564509388066`, 0.9690306417208824}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.645841624856078}, {0.21608694950009458`, 0.08936167187108845}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.18619207643071944`, 0.07280133647277626}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.18619207643071944, 0.07280133647277626}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7887222926323639, 0.07280133647277626}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.7887222926323639, 0.07280133647277626}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.9749143690630834, 0.645841624856078}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.9749143690630834, 0.645841624856078}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.4874571845315417, 0.9999999999999999}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.4874571845315417, 0.9999999999999999}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0., 0.645841624856078}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0., 0.645841624856078}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.21608694950009458`, 0.08936167187108845}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.21608694950009458, 0.08936167187108845}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7822105015628843, 0.1063504753798492}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.7822105015628843, 0.1063504753798492}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.9409949877851321, 0.6500157975956281}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.9409949877851321, 0.6500157975956281}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.47300564509388066`, 0.9690306417208824}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.47300564509388066, 0.9690306417208824}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.024987838715717085`, 0.6225273360902602}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.024987838715717085, 0.6225273360902602}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.21521365594233244`, 0.41431176230965927`}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.21521365594233244, 0.41431176230965927}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.47289473803015586`, 0.20593502412029568`}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.47289473803015586, 0.20593502412029568}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7507006262235426, 0.3866123430329741}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.7507006262235426, 0.3866123430329741}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.6647130253140853, 0.7066538053065771}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.6647130253140853, 0.7066538053065771}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.33376387714759254`, 0.7237729878882025}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0.33376387714759254, 0.7237729878882025}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.319775408709856, 0.6812556790545112}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0.319775408709856, 0.6812556790545112}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.25132734509140986`, 0.38786936726426213`}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.25132734509140986, 0.38786936726426213}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.5092026938211704, 0.2321100340719797}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.5092026938211704, 0.2321100340719797}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7370264878153406, 0.4292317838843786}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.7370264878153406, 0.4292317838843786}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.6199539872199314, 0.7068190583825767}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.6199539872199314, 0.7068190583825767}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"0907969b-a907-4da3-bd68-\ fc3b72eaf1cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g3", "//", "InputForm"}]], "Input",ExpressionUUID->"c086a8bf-a17f-4a1f-a3ca-235944ab5b13"], Cell["\<\ Graph[{{{1, 2}}, {{2, 3}}, {{3, 4}}, {{4, 5}}, {{5, 1}}, {{16, 17}}, {{17, \ 18}}, {{18, 19}}, {{19, 20}}, {{20, 16}}, {{1, 7}}, {{7, 13}}, {{13, 8}}, {{4, 10}}, {{9, 15}}, {{15, \ 10}}, {{10, 11}}, {{11, 6}}, {{6, 12}}, {{12, 7}}, {{12, 17}}, {{18, 13}}, {{14, 8}}, {{9, 14}}, {{15, \ 20}}, {{16, 11}}, {{14, 19}}, {{2, 8}}, {{3, 9}}, {{5, 6}}}, {{{-1, (-1 - Sqrt[5])/(4*Sqrt[5/8 - \ Sqrt[5]/8])}}, {{1, (-1 - Sqrt[5])/(4*Sqrt[5/8 - Sqrt[5]/8])}}, {{Sqrt[(5/8 + Sqrt[5]/8)/(5/8 - Sqrt[5]/8)], (-1 + Sqrt[5])/(4*Sqrt[5/8 - \ Sqrt[5]/8])}}, {{0, 1/Sqrt[5/8 - Sqrt[5]/8]}}, {{-Sqrt[(5/8 + Sqrt[5]/8)/(5/8 - \ Sqrt[5]/8)], (-1 + Sqrt[5])/(4*Sqrt[5/8 - Sqrt[5]/8])}}, {{-0.9007688834002959, \ -1.321412609545296}}, {{0.9783851800477993, -1.265021069164605}}, {{1.5054441787590225, \ 0.5395865923168378}}, {{-0.047969509409050703, 1.5985039230901437}}, {{-1.5350909659974739, \ 0.448343163302919}}, {{-0.9036676378005895, -0.24279420435705867}}, {{-0.04833764717456861, \ -0.9344665307773743}}, {{0.8737933289105058, -0.33473787301255803}}, {{0.5883716235841774, \ 0.7275871479337672}}, {{-0.5101596675195248, 0.7844114602132242}}, {{-0.5565920888706728, \ 0.6432822431534698}}, {{-0.7837941835637598, -0.33056538772472527}}, {{0.07218064324379499, \ -0.8475828882716374}}, {{0.8284042744182557, -0.19326964550995132}}, {{0.4398013547723822, \ 0.7281356783528439}}}]\ \>", "Output",ExpressionUUID->"97ec1daf-cbb8-4156-984a-09eedaef9760"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"Vertices", "[", "g3", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "&"}], "/@", RowBox[{"Edges", "[", "g3", "]"}]}], "//", "FullSimplify"}]}], "Input",Expr\ essionUUID->"22931139-6d0c-4a31-8f1a-39abb8d43033"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.0000000000000002`", ",", "1.9815168835607953`", ",", "0.9361443694042034`", ",", "1.0786223003386715`", ",", "1.9815168835607953`", ",", "0.9361443694042034`", ",", "1.0786223003386717`", ",", "0.9361443694042034`", ",", "1.0786223003386726`", ",", "0.9361443694042029`", ",", "1.0786223003386717`", ",", "0.9516264537610764`", ",", "0.9516264537610764`", ",", "0.9361443694042033`", ",", "1.0786223003386717`", ",", "0.9516264537610766`", ",", "0.951626453761076`", ",", "0.9516264537610761`", ",", "1.9815168835607955`", ",", "1.981516883560795`", ",", "1.9815168835607961`"}], "}"}]], "Output",ExpressionUUID->"7eda413c-acb9-\ 4ebd-bfe6-aa438bc058b0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vv", "=", RowBox[{ RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "r", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}], "/.", RowBox[{"\[Phi]", "\[Rule]", RowBox[{"\[Pi]", "/", "100"}]}]}]}]], "Input", CellLabel-> "In[109]:=",ExpressionUUID->"5bcfd697-b47c-47f0-8b49-b1b480ca78a1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"19", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"19", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"21", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"21", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", FractionBox["\[Pi]", "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", FractionBox["\[Pi]", "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", "\[Psi]", "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", "\[Psi]", "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Sin", "[", "\[Theta]", "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[109]=",ExpressionUUID->"3a0be067-98ed-4500-a6f6-69dbb2e46758"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"n", "[", RowBox[{"x_", ",", "y_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"#", ".", "#"}], "&"}], "[", RowBox[{ RowBox[{"vv", "[", RowBox[{"[", "x", "]"}], "]"}], "-", RowBox[{"vv", "[", RowBox[{"[", "y", "]"}], "]"}]}], "]"}]}]], "Input", CellLabel-> "In[110]:=",ExpressionUUID->"3dbcd2c6-484b-4078-b89c-06dcc878ee8a"], Cell[CellGroupData[{ Cell["FindRoot", "Subsubsection",ExpressionUUID->"0664bf38-cd2c-4f4d-b135-f196827d448e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"soln", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{"n", "[", RowBox[{"9", ",", "14"}], "]"}], "\[Equal]", "1"}], ","}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"n", "[", RowBox[{"4", ",", "10"}], "]"}], "\[Equal]", RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}], " ", RowBox[{"(*", " ", "added", " ", "*)"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", RowBox[{"-", "1.8"}], ",", RowBox[{"-", "1.9"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Psi]", ",", RowBox[{"-", ".68"}], ",", RowBox[{"-", ".7"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"r", ",", "1.1", ",", "1.2"}], "}"}], ",", RowBox[{"{", RowBox[{"R", ",", ".94", ",", ".96"}], "}"}], ",", RowBox[{"MaxIterations", "\[Rule]", RowBox[{"10", "^", "4"}]}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "50"}]}], "]"}]}]], "Input",Express\ ionUUID->"5c2e3880-40f4-4950-b21c-9c30153793df"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{ "-", "1.705609787925779610386015961460837566712436505750338302568905712366\ 29180161806`50."}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{ "-", "0.596902604182060715307902242823105547997548505952966087340857290740\ 44126728344`50."}]}], ",", RowBox[{ "r", "\[Rule]", "1.20786944362003084727646891808969176051871599141625694902742932477722499\ 564001`50."}], ",", RowBox[{ "R", "\[Rule]", "0.95707815686611063222867711536412461546114343529004809765978406494528295\ 603317`50."}]}], "}"}]], "Output",ExpressionUUID->"51c5010f-f0d3-48e6-93af-\ 9ef722ee2f79"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"Edges", "[", "g3", "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{ RowBox[{"Vertices", "[", "g3", "]"}], "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "<", ".95"}], "&"}]}], "]"}]], "Input",ExpressionUUID->"c1bfc502-f84b-425e-8537-5eafdaaf5455"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"7", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "8"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "76365702-29a9-4a33-b128-f6d36db11e6e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"vnew", "=", RowBox[{"vv", "/.", "soln"}]}], ";"}]], "Input",ExpressionUUID->"6e59d20a-\ ca98-46b4-a77e-450060db1ed9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{ RowBox[{"g4", "=", RowBox[{"ChangeVertices", "[", RowBox[{"g3", ",", "vnew"}], "]"}]}], ",", RowBox[{"VertexStyle", "\[Rule]", RowBox[{"Disk", "[", ".01", "]"}]}]}], "]"}]], "Input",ExpressionUUID->\ "32dab07f-2a8a-46cb-a4b3-0bcefc22b8c1"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.18619207643071944`, 0.07280133647277626}, { 0.7887222926323639, 0.07280133647277626}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9749143690630834, 0.645841624856078}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9749143690630834, 0.645841624856078}, {0.4874571845315417, 0.9999999999999999}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4874571845315417, 0.9999999999999999}, {0., 0.645841624856078}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.645841624856078}, {0.18619207643071944`, 0.07280133647277626}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3022563057277473, 0.6645889685579716}, {0.26176462816667234`, 0.3660574134297238}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.26176462816667234`, 0.3660574134297238}, {0.5331723924939953, 0.23529621573773105`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5331723924939953, 0.23529621573773105`}, {0.7414032932199773, 0.45301290628268304`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7414032932199773, 0.45301290628268304`}, {0.5986893030493162, 0.718330418649599}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5986893030493162, 0.718330418649599}, {0.3022563057277473, 0.6645889685579716}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.18619207643071944`, 0.07280133647277626}, { 0.7881147761190571, 0.09985175302970946}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7881147761190571, 0.09985175302970946}, {0.7847087992702528, 0.4010976072430173}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7847087992702528, 0.4010976072430173}, {0.9490001612011386, 0.6536228807383545}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4874571845315417, 0.9999999999999999}, { 0.016391327104162065`, 0.6243144674036434}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47204883979463674`, 0.9777586640534737}, { 0.29773646252693636`, 0.7320436655485331}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.29773646252693636`, 0.7320436655485331}, { 0.016391327104162065`, 0.6243144674036434}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.016391327104162065`, 0.6243144674036434}, { 0.1962146906781231, 0.38260343482145626`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.1962146906781231, 0.38260343482145626`}, {0.2117308184387139, 0.08173815743252738}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2117308184387139, 0.08173815743252738}, { 0.49718014636645197`, 0.17806752234584314`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.49718014636645197`, 0.17806752234584314`}, { 0.7881147761190571, 0.09985175302970946}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.49718014636645197`, 0.17806752234584314`}, { 0.26176462816667234`, 0.3660574134297238}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5331723924939953, 0.23529621573773105`}, {0.7847087992702528, 0.4010976072430173}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6614458238159441, 0.7434736926988588}, {0.9490001612011386, 0.6536228807383545}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.47204883979463674`, 0.9777586640534737}, {0.6614458238159441, 0.7434736926988588}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.29773646252693636`, 0.7320436655485331}, {0.5986893030493162, 0.718330418649599}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3022563057277473, 0.6645889685579716}, {0.1962146906781231, 0.38260343482145626`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6614458238159441, 0.7434736926988588}, {0.7414032932199773, 0.45301290628268304`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9490001612011386, 0.6536228807383545}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9749143690630834, 0.645841624856078}, {0.47204883979463674`, 0.9777586640534737}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.645841624856078}, {0.2117308184387139, 0.08173815743252738}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.18619207643071944`, 0.07280133647277626}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.18619207643071944, 0.07280133647277626}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7887222926323639, 0.07280133647277626}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.7887222926323639, 0.07280133647277626}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.9749143690630834, 0.645841624856078}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.9749143690630834, 0.645841624856078}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.4874571845315417, 0.9999999999999999}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.4874571845315417, 0.9999999999999999}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0., 0.645841624856078}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0., 0.645841624856078}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.2117308184387139, 0.08173815743252738}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.2117308184387139, 0.08173815743252738}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7881147761190571, 0.09985175302970946}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.7881147761190571, 0.09985175302970946}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.9490001612011386, 0.6536228807383545}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.9490001612011386, 0.6536228807383545}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.47204883979463674`, 0.9777586640534737}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.47204883979463674, 0.9777586640534737}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.016391327104162065`, 0.6243144674036434}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.016391327104162065, 0.6243144674036434}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.1962146906781231, 0.38260343482145626`}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.1962146906781231, 0.38260343482145626}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.49718014636645197`, 0.17806752234584314`}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.49718014636645197, 0.17806752234584314}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7847087992702528, 0.4010976072430173}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.7847087992702528, 0.4010976072430173}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.6614458238159441, 0.7434736926988588}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.6614458238159441, 0.7434736926988588}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.29773646252693636`, 0.7320436655485331}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0.29773646252693636, 0.7320436655485331}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.3022563057277473, 0.6645889685579716}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0.3022563057277473, 0.6645889685579716}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.26176462816667234`, 0.3660574134297238}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.26176462816667234, 0.3660574134297238}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.5331723924939953, 0.23529621573773105`}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.5331723924939953, 0.23529621573773105}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.7414032932199773, 0.45301290628268304`}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.7414032932199773, 0.45301290628268304}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.01], PointBox[{0.5986893030493162, 0.718330418649599}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.5986893030493162, 0.718330418649599}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"935c5bd5-0322-4251-9764-\ 9a2d8853bce6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"s", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"vnew", "[", RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "&"}], "/@", RowBox[{"Edges", "[", "g4", "]"}]}], "//", "FullSimplify"}]}]], "Input",Ex\ pressionUUID->"8a74711c-fefd-4ae4-bd21-ce6b4166e25b"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999994\ 27097`48.90049584692159", ",", "1.000000000000000000000000000000000000000000000000000000000000000000000002\ 76921`49.450976942543186", ",", "1.000000000000000000000000000000000000000000000000000000000000000000000001\ 97217`49.62938136108419", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999998\ 54657`49.49882095254179", ",", "1.000000000000000000000000000000000000000000000000000000000000000000000002\ 44103`49.02650315576971", ",", "1.999999999999999999999999999999999999999999999999999605464176876616993916\ 8481`48.843784103141026", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210394\ 57346`47.71969098000218", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991078\ 64382`49.30694592638161", ",", "1.999999999999999999999999999999999999999999999999999605464176876616993916\ 8481`50.", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210390\ 99275`49.461967831420964", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991082\ 22452`49.338001562866204", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210396\ 53257`49.33844700995389", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991076\ 68471`48.39174874767445", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210395\ 67801`49.1258762312175", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 53926`49.04646333787108", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696171\ 28474`49.4289516178953", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696167\ 25783`49.509125790814416", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210394\ 53636`49.232506146165534", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991078\ 68091`49.44023750067347", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696163\ 81934`48.39871661976897", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696165\ 45169`49.2086071367097", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696164\ 98628`49.31677376225208", ",", "1.999999999999999999999999999999999999999999999999999605464137049319215605\ 54117`49.540661411733765", ",", "1.999999999999999999999999999999999999999999999999999605464216703914772228\ 15503`49.83056634403243", ",", "1.999999999999999999999999999999999999999999999999999605464216703914772228\ 15503`49.88530577914866"}], "}"}]], "Output",ExpressionUUID->"95ece37e-6420-\ 4a18-aded-d37fa5090a11"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ToCommonEdges", "[", RowBox[{"g4", ",", "\"\\""}], "]"}], "//", "N"}]], "Input",ExpressionUUID->"bc036703-687d-4946-8a51-55e5a77ff86d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3692167314661254`", ",", "0.7663457463543789`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.7013016167040798`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9866778685808916`", ",", RowBox[{"-", "0.2866564197657534`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6297467476423219`"}], ",", "0.811864615052392`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.8429323604360092`", ",", RowBox[{"-", "0.11433211919560039`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.618033988749895`", ",", "0.5257311121191336`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.532016035906606`", ",", "0.5515597118243223`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9152283443343608`"}], ",", RowBox[{"-", "1.3467176124599043`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.03227377340908787`", ",", RowBox[{"-", "1.0269681216523665`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.05114546730631786`"}], ",", "1.6274751583839118`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5775266853212051`", ",", "0.8498047111437738`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6147438711748009`"}], ",", "0.5879598375765124`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618033988749895`"}], ",", "0.5257311121191336`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9979834488064797`", ",", RowBox[{"-", "1.2865925096513835`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9667315796688627`"}], ",", RowBox[{"-", "0.34804478477804596`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.749149338227839`"}], ",", RowBox[{"-", "0.40296658271222663`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.563625673072407`"}], ",", "0.4542752519030536`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.15174411750050543`", ",", RowBox[{"-", "0.8370068820230643`"}]}], "}"}]}], "}"}]], "Output",Express\ ionUUID->"27426b80-e854-4681-9ab4-fc3fd387847a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Equations", "Subsubsection",ExpressionUUID->"4c0675a8-f3e7-4e7a-8740-437ee0d8ebc5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Phi]", "\[Rule]", RowBox[{"\[Pi]", "/", "100"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Theta]", "\[Rule]", RowBox[{ "-", "1.705609787925779610386015961460837566712436505750338302568905712366\ 29180161806`50."}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{ "-", "0.596902604182060715307902242823105547997548505952966087340857290740\ 44126728344`50."}]}], ",", RowBox[{ "r", "\[Rule]", "1.20786944362003084727646891808969176051871599141625694902742932477722499\ 564001`50."}], ",", RowBox[{ "R", "\[Rule]", "0.95707815686611063222867711536412461546114343529004809765978406494528295\ 603317`50."}]}], "}"}]], "Input",ExpressionUUID->"a9814760-64f0-4641-b5b8-\ e7918f15b290"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ "-", "1.7056097879257796103860159614608375667124365057503383025689057123662\ 9180161806`50."}], "]"}], "]"}]], "Input", CellLabel->"In[54]:=",ExpressionUUID->"a94495ba-d4f4-4f10-a47f-bb30189c919c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ "-", "0.1344054670530381808905445327012863268718426595377588876055107661231\ 0714382211`48.90049584692159"}], ",", RowBox[{ "-", "0.9909264202887390306794769363027335736894030068316024857521542169919\ 3074573881`50.63574479382874"}]}], "}"}]], "Output", CellLabel->"Out[54]=",ExpressionUUID->"7c96b766-9095-4290-a755-22cb3914def7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ "-", "0.5969026041820607153079022428231055479975485059529660873408572907404\ 4126728344`50"}], "]"}], "]"}]], "Input", CellLabel->"In[55]:=",ExpressionUUID->"23199edc-4f65-4e37-9c4c-d72a5bd74a41"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.8270805742745618249178521862153294255630511531603743373833344980095509886\ 7029`50.391843604621855", ",", RowBox[{ "-", "0.5620833778521306000972520013088883538430167152347721803756191820506\ 9794850781`50.05634944808423"}]}], "}"}]], "Output", CellLabel->"Out[55]=",ExpressionUUID->"94fa755a-ffcf-44e0-9ac6-afb207a69167"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqn", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"TrigExpand", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"n", "[", RowBox[{"4", ",", "10"}], "]"}], "\[Equal]", RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}], "\[IndentingNewLine]", "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "\[Theta]", "]"}], "\[Rule]", "u"}], ",", RowBox[{ RowBox[{"Sin", "[", "\[Theta]", "]"}], "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]]}]}], ",", RowBox[{ RowBox[{"Cos", "[", "\[Psi]", "]"}], "\[Rule]", "v"}], ",", RowBox[{ RowBox[{"Sin", "[", "\[Psi]", "]"}], "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}]}], "}"}]}], "]"}]}]], "Input", CellLabel-> "In[117]:=",ExpressionUUID->"b71b5d26-0feb-4fde-8446-212db02ecbb5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"2", " ", "R", " ", RowBox[{"(", RowBox[{"R", "-", RowBox[{"2", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}]}], ")"}]}]}], "\[Equal]", "3"}], ",", RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"u", " ", "v"}], "+", RowBox[{ SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]], " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}], "\[Equal]", "3"}], ",", RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"4", " ", "R", " ", "v", " ", RowBox[{"Cos", "[", FractionBox["\[Pi]", "100"], "]"}]}], "+", RowBox[{"4", " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]], " ", RowBox[{"Sin", "[", FractionBox["\[Pi]", "100"], "]"}]}]}], ")"}]}]}], "\[Equal]", "5"}], ",", RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"4", " ", "R", " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]], " ", RowBox[{"Cos", "[", FractionBox[ RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}], "+", RowBox[{"v", " ", RowBox[{"Sin", "[", FractionBox[ RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}]}], ")"}]}]}], ")"}]}]}], "\[Equal]", "5"}]}], "}"}]], "Output", CellLabel-> "Out[117]=",ExpressionUUID->"104ad5c4-3fbd-4f7a-9ad3-9f03ba721982"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["NSolve \[Pi]/100", "Subsubsection",ExpressionUUID->"d3f518c6-0465-4748-80c1-b20e9774163a"], Cell[BoxData[ RowBox[{"soln", "=", RowBox[{"NSolve", "[", RowBox[{"eqn", ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}], "]"}]}]], "Input", CellLabel-> "In[129]:=",ExpressionUUID->"d72ee1d1-bc82-4a60-b181-39276c92e1ee"], Cell[BoxData[ RowBox[{ RowBox[{"soln", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", RowBox[{"-", "0.3990959447876521`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8270805742745618`"}], ",", RowBox[{"r", "\[Rule]", "0.4321405727249934`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.7343747174881446`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", RowBox[{"-", "0.3990959447876521`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8270805742745606`"}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.7236421796023367`"}]}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.9922859882503167`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",", RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",", RowBox[{"r", "\[Rule]", "1.8893005317789116`"}], ",", RowBox[{"u", "\[Rule]", "0.39583991014193765`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",", RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",", RowBox[{"r", "\[Rule]", "1.8893005317789116`"}], ",", RowBox[{"u", "\[Rule]", "0.9995502986010655`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",", RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",", RowBox[{"r", "\[Rule]", "1.2078694436200312`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13440546705303744`"}]}]}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel-> "In[106]:=",ExpressionUUID->"582f63d8-850a-4457-a96b-d1a361542276"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]], "Input", CellLabel-> "In[107]:=",ExpressionUUID->"fd258edf-579f-4566-9d6a-2983e35bd1cb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",", RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",", RowBox[{"r", "\[Rule]", "1.2078694436200312`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13440546705303744`"}]}]}], "}"}]], "Output", CellLabel-> "Out[107]=",ExpressionUUID->"a575383c-442d-4d19-8ee5-6518f2e38282"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"ArcCos", "[", "u", "]"}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"ArcCos", "[", "v", "]"}]}]}], "}"}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}]], "Input", CellLabel-> "In[130]:=",ExpressionUUID->"4c23cf13-127b-41f8-901d-61d6fd7db98e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", "1.7056097879257788`"}], ",", RowBox[{"\[Psi]", "\[Rule]", "0.5969026041820603`"}]}], "}"}]], "Output", CellLabel-> "Out[130]=",ExpressionUUID->"35e78e4a-f466-4d62-a6e8-eb492f5160c9"] }, Open ]], Cell[BoxData[ RowBox[{"r", "=."}]], "Input", CellLabel-> "In[100]:=",ExpressionUUID->"9cdef98d-cf72-470b-968d-5a138e1af207"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"vv", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"ArcCos", "[", "u", "]"}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"ArcCos", "[", "v", "]"}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellLabel->"In[71]:=",ExpressionUUID->"3668651c-d780-4d71-875b-7940cce5e50c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3816448198698766`", ",", "0.5615732989526845`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.41615321019135937`"}], ",", "0.5365014858111187`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6388416482955158`"}], ",", RowBox[{"-", "0.22999714570659371`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.021327358115724296`", ",", RowBox[{"-", "0.6786475391732555`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.6520226805012744`", ",", RowBox[{"-", "0.1894300998839539`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.01154661788876847`"}], ",", RowBox[{"-", "0.36741933874168964`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3458684551679571`", ",", RowBox[{"-", "0.12452030591747103`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.22530507881898518`", ",", "0.2904615573951579`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2066222586198502`"}], ",", "0.304035420812907`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.35300465747832355`"}], ",", RowBox[{"-", "0.10255733354890419`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8342930247301567`", ",", "0.1660179105897467`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.09991830724201198`", ",", "0.8447621734120614`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7725401147562384`"}], ",", "0.35607382498914003`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5773743558341116`"}], ",", RowBox[{"-", "0.6246964470645912`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.4157031386181814`", ",", RowBox[{"-", "0.7421574619263569`"}]}], "}"}]}], "}"}]], "Output", CellLabel->"Out[71]=",ExpressionUUID->"cdb2730d-ac77-4bb7-96ee-f19ea0b4ac08"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{"Select", "[", RowBox[{ RowBox[{"Subsets", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"Round", "[", RowBox[{"d", "=", RowBox[{"EuclideanDistance", "@@", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"vv", "[", RowBox[{"[", "#", "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]}], "]"}], "-", "d"}], "]"}], "<=", "1*^-2"}], "&"}]}], "]"}]}]], "Input", CellLabel-> "In[102]:=",ExpressionUUID->"d0543d39-c043-4299-b4b9-7cefccc9d4c6"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\ \", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \ \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 22, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"8e7d2ed6-550c-4b35-8799-aeed9db953a6"], Cell[BoxData[ TemplateBox[{ "Norm", "nvm", "\"The first Norm argument should be a scalar, vector, or matrix.\"", 2, 102, 23, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"36a58c22-9d0a-4e79-acf3-5f5160214ae6"], Cell[BoxData[ TemplateBox[{ "Norm", "nvm", "\"The first Norm argument should be a scalar, vector, or matrix.\"", 2, 102, 24, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"9742aa88-97b6-4725-8687-f569828d76b4"], Cell[BoxData[ TemplateBox[{ "Norm", "nvm", "\"The first Norm argument should be a scalar, vector, or matrix.\"", 2, 102, 25, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"0b13745c-1ebe-4cf4-9e85-dd23eb9e24ea"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Norm\\\", \\\"::\\\", \ \\\"nvm\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 102, 26, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"1250e417-5959-40aa-b5fb-c2d047671ddd"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\ \", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \ \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 27, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"f1ac6358-a2c6-4a74-be49-d9e41da912f6"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{FractionBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \ \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], RowBox[{FractionBox[\\\"5\\\", \ \\\"8\\\"], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \ \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]], \\\"-\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 28, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"149114e2-0109-409c-9d3d-306e7ee4b12a"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 102, 29, 19400777345032151489, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[102]:=",ExpressionUUID->"07249812-f9d5-47dd-9ac0-51026a574348"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[102]=",ExpressionUUID->"e0ded6e3-6212-4e89-bf74-c8d385c80fd6"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"e2", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel-> "In[111]:=",ExpressionUUID->"2327551b-c16a-4f50-8ea7-b4c2a1937165"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vc", "=", RowBox[{"(", RowBox[{ RowBox[{"vv", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]], "Input", CellLabel-> "In[112]:=",ExpressionUUID->"3c070c64-e6ed-4325-a4c2-310b1aa606f0"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9152283443343608`"}], ",", RowBox[{"-", "1.3467176124599043`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9979834488064795`", ",", RowBox[{"-", "1.2865925096513835`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.532016035906606`", ",", "0.5515597118243223`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.05114546730631786`"}], ",", "1.627475158383912`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.563625673072407`"}], ",", "0.4542752519030537`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9667315796688629`"}], ",", RowBox[{"-", "0.3480447847780463`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.03227377340908827`", ",", RowBox[{"-", "1.0269681216523667`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.986677868580892`", ",", RowBox[{"-", "0.28665641976575307`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5775266853212049`", ",", "0.8498047111437742`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6297467476423224`"}], ",", "0.811864615052392`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6147438711748013`"}], ",", "0.5879598375765118`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7491493382278387`"}], ",", RowBox[{"-", "0.40296658271222724`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.1517441175005061`", ",", RowBox[{"-", "0.8370068820230641`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8429323604360092`", ",", RowBox[{"-", "0.11433211919559975`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.36921673146612466`", ",", "0.7663457463543791`"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[112]=",ExpressionUUID->"abb35988-2720-4dd8-a530-fe892328dbb5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e2"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[113]:=",ExpressionUUID->"d05e7261-6065-4b37-afe6-df1da2ff08ff"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, { 4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, { 8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, ( Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { 1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { 0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {-0.9152283443343608, -1.3467176124599043`}, { 0.9979834488064795, -1.2865925096513835`}, {1.532016035906606, 0.5515597118243223}, {-0.05114546730631786, 1.627475158383912}, {-1.563625673072407, 0.4542752519030537}, {-0.9667315796688629, -0.3480447847780463}, { 0.03227377340908827, -1.0269681216523667`}, { 0.986677868580892, -0.28665641976575307`}, {0.5775266853212049, 0.8498047111437742}, {-0.6297467476423224, 0.811864615052392}, {-0.6147438711748013, 0.5879598375765118}, {-0.7491493382278387, -0.40296658271222724`}, { 0.1517441175005061, -0.8370068820230641}, { 0.8429323604360092, -0.11433211919559975`}, {0.36921673146612466`, 0.7663457463543791}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8u/z8s6E/V+/f2VpuZ2R9N/YJhHlS/PZp+uPz2lUb2ys0/7F8U N/UmLHtoj109A8MTZjfuDovfGPIPVl2T2qu/ar/ub5cUZa5fuNTvx2Xez6YJ UXNYfu6/PXFy4w2huxjqz1u+/Nzj+XZ/bFr6EfWer/vR+XNYrwmUv3+3v3wC 16JYt2sY8hYM85UM2hbYP2zgUCjL+4ARXoTkT+5VL7876b19hCur9pSISxjh RUheYLODnWT1I/vPOt7LZhq+xggvQvJO0XuWPVJ7sn/Hft+G079eYoQXuv/R 5dH1o6s3n3447Pfqx/stRC3UJl54ZI8eHh1uBRwcP5/vNw7oiDQ5dRMjPBhM mV9H5hy2nyEjteLQiVf70f3zn1HK0/fnK/vkq5dX3HPZux/dPf9kNpnZL7xu r7rqQPPz1hf26O5Btx9dHl0/unp096Hz0d2Hzkc3HwCdld9o "], 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9152283443343608, -1.3467176124599043}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9979834488064795, -1.2865925096513835}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.0298922836873339, -1.254683674770529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05114546730631786, 1.627475158383912}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647665}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.563625673072407, 0.4542752519030537}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839082}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9667315796688629, -0.3480447847780463}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {-0.9348227447880084, -0.3161359498971918}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.03227377340908827, -1.0269681216523667}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {0.06418260828994277, -0.9950592867715122}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.986677868580892, -0.28665641976575307}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {1.0185867034617466, -0.25474758488489857}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5775266853212049, 0.8498047111437742}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6094355202020594, 0.8817135460246287}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6297467476423224, 0.811864615052392}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-0.5978379127614679, 0.8437734499332465}],\ ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6147438711748013, 0.5879598375765118}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5828350362939468, 0.6198686724573663}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7491493382278387, -0.40296658271222724}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7172405033469842, -0.37105774783137274}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.1517441175005061, -0.8370068820230641}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.1836529523813606, -0.8050980471422096}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8429323604360092, -0.11433211919559975}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8748411953168637, -0.08242328431474526}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.36921673146612466, 0.7663457463543791}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.40112556634697916, 0.7982545812352336}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[113]=",ExpressionUUID->"88ed1993-d82f-4945-b9db-a426a533a971"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel-> "In[114]:=",ExpressionUUID->"3077224a-8846-4774-8df3-f5a2301fa0b8"], Cell[CellGroupData[{ Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \ time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[114]:=",ExpressionUUID->"e893ed52-8fe8-4eea-81cb-87a80a8605cd"], Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \ cache (first time only)...\"\>"], "Print", CellLabel-> "During evaluation of \ In[114]:=",ExpressionUUID->"b1734736-54ed-432a-90a2-25288281fe68"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Building default Association of length \"\>", "\[InvisibleSpace]", "10589", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["Building default Association of length ", 10589, "..."], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[114]:=",ExpressionUUID->"ef181d1b-6ba0-4ebe-9c06-e394eddab374"] }, Open ]], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel-> "Out[114]=",ExpressionUUID->"c10f98c0-a1f4-4694-b099-9b4d5443691f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[116]:=",ExpressionUUID->"beef2994-3d5a-45d1-b955-0545c369d264"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "1.9999999999999998`", ",", "2", ",", "2.`", ",", "2", ",", "2.`", ",", "2", ",", "1.9999999999999998`", ",", "2.`", ",", "0.9999999999999996`", ",", "1.0000000000000002`", ",", "0.9999999999999994`", ",", "1.0000000000000004`", ",", "0.9999999999999994`", ",", "1.0000000000000002`", ",", "0.9999999999999996`", ",", "1.0000000000000004`", ",", "1.0000000000000002`", ",", "0.9999999999999994`", ",", "0.9999999999999998`", ",", "0.9999999999999998`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`"}], "}"}]], "Output", CellLabel-> "Out[116]=",ExpressionUUID->"6083cabf-4eb6-4d27-b073-e1ea3fd73481"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["NSolve ArcSin[1/32]", "Subsubsection",ExpressionUUID->"73a88d8f-41f3-4035-8525-fb4b798b0e54"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Pi]", "/", "100."}]], "Input", CellLabel-> "In[123]:=",ExpressionUUID->"52db371c-ea47-4206-a851-bd8cfb56737b"], Cell[BoxData["0.031415926535897934`"], "Output", CellLabel-> "Out[123]=",ExpressionUUID->"5fb09c79-f5e4-4c9a-ae9f-f6d5ba7fe845"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Convergents", "[", RowBox[{ RowBox[{"Sin", "[", FractionBox["\[Pi]", "100"], "]"}], ",", "5"}], "]"}]], "Input", CellLabel-> "In[141]:=",ExpressionUUID->"785d2cab-0215-4868-b8ab-0172fbe20853"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", FractionBox["1", "31"], ",", FractionBox["1", "32"], ",", FractionBox["6", "191"], ",", FractionBox["55", "1751"]}], "}"}]], "Output", CellLabel-> "Out[141]=",ExpressionUUID->"98706335-102e-4993-a14f-963e625d1434"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vv", "=", RowBox[{ RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "r", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}], "/.", RowBox[{"\[Phi]", "\[Rule]", RowBox[{"ArcSin", "[", RowBox[{"1", "/", "32"}], "]"}]}]}]}]], "Input", CellLabel-> "In[142]:=",ExpressionUUID->"e7a2bc47-32ac-4d30-8a90-25327c7875a1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["R", RowBox[{"32", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", RowBox[{ FractionBox["1", "32"], " ", SqrtBox[ FractionBox["1023", RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], " ", "R"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"R", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{"R", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", RowBox[{"ArcSin", "[", FractionBox["1", "32"], "]"}]}], "]"}]}], SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", "\[Psi]", "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", "\[Psi]", "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"r", " ", RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"r", " ", RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]], ",", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Sin", "[", "\[Theta]", "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"Cos", "[", "\[Theta]", "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[142]=",ExpressionUUID->"dc4f5eb3-26c7-4c56-8320-d655479c56ab"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqn", "=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"TrigExpand", "@", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"n", "[", RowBox[{"4", ",", "10"}], "]"}], "\[Equal]", RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "[", RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}], "\[IndentingNewLine]", "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "\[Theta]", "]"}], "\[Rule]", "u"}], ",", RowBox[{ RowBox[{"Sin", "[", "\[Theta]", "]"}], "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]]}]}], ",", RowBox[{ RowBox[{"Cos", "[", "\[Psi]", "]"}], "\[Rule]", "v"}], ",", RowBox[{ RowBox[{"Sin", "[", "\[Psi]", "]"}], "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}]}], "}"}]}], "]"}]}]], "Input", CellLabel-> "In[143]:=",ExpressionUUID->"2cce6c55-5384-4c8f-8bc1-0a588d8e86d0"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]", RowBox[{ RowBox[{"32", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"R", " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"64", " ", "R"}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"u", " ", "v"}], "+", RowBox[{ SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]], " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}], "\[Equal]", "3"}], ",", RowBox[{ RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], "\[Equal]", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}], "}"}]], "Output", CellLabel-> "Out[143]=",ExpressionUUID->"8e499586-5d18-4df8-9f92-36c56920c839"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"soln", "=", RowBox[{"NSolve", "[", RowBox[{"eqn", ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}], "]"}]}]], "Input", CellLabel-> "In[144]:=",ExpressionUUID->"c3f0ceb1-94ea-4348-b3ca-d5f9ccb19b59"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", RowBox[{"-", "0.3990050571652749`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903422`"}], ",", RowBox[{"r", "\[Rule]", "0.4323341311998854`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.7342785936266998`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", RowBox[{"-", "0.3990050571652749`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903411`"}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.7235416195529027`"}]}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.9922952710345903`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903416`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225496271`"}], ",", RowBox[{"u", "\[Rule]", "0.3952240572880047`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903416`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225496271`"}], ",", RowBox[{"u", "\[Rule]", "0.9995606988479289`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903418`"}], ",", RowBox[{"r", "\[Rule]", "1.2090696436948747`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.1337265555509568`"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[144]=",ExpressionUUID->"02c1ca94-dcfa-48e5-917b-c133c71da961"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vc", "=", RowBox[{"(", RowBox[{ RowBox[{"vv", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]], "Input", CellLabel-> "In[145]:=",ExpressionUUID->"c38ee6b7-9e88-49b4-b2ba-20724b5f20c1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9156534611226073`"}], ",", RowBox[{"-", "1.3468771209104056`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9980037820455707`", ",", RowBox[{"-", "1.2870461105649829`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.5324537193277121`", ",", "0.551438879492891`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.05089529731485315`"}], ",", "1.627854080809747`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.5639087429358225`"}], ",", "0.45463027117275046`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9677481949313415`"}], ",", RowBox[{"-", "0.34823497343745`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.03214050218009261`", ",", RowBox[{"-", "1.0279937517502054`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9876121176941289`", ",", RowBox[{"-", "0.2871001053666986`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5782373542561404`", ",", "0.8505561284599095`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6302417791990205`"}], ",", "0.8127727020944443`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6151465359789001`"}], ",", "0.587538540883182`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7488730915298569`"}], ",", RowBox[{"-", "0.40347972753596106`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15231751215323758`", ",", RowBox[{"-", "0.8369027262719528`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.843010491122383`", ",", RowBox[{"-", "0.11375460257755537`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.36869162423313656`", ",", "0.7665985155022872`"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[145]=",ExpressionUUID->"c0652752-e9be-452d-ae54-910b51b91cf5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e2"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[146]:=",ExpressionUUID->"47ee53f1-442a-4136-82f3-b3fc0756e9c0"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, { 4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, { 8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, ( Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { 1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { 0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {-0.9156534611226073, -1.3468771209104056`}, { 0.9980037820455707, -1.2870461105649829`}, {1.5324537193277121`, 0.551438879492891}, {-0.05089529731485315, 1.627854080809747}, {-1.5639087429358225`, 0.45463027117275046`}, {-0.9677481949313415, -0.34823497343745}, { 0.03214050218009261, -1.0279937517502054`}, { 0.9876121176941289, -0.2871001053666986}, {0.5782373542561404, 0.8505561284599095}, {-0.6302417791990205, 0.8127727020944443}, {-0.6151465359789001, 0.587538540883182}, {-0.7488730915298569, -0.40347972753596106`}, { 0.15231751215323758`, -0.8369027262719528}, { 0.843010491122383, -0.11375460257755537`}, {0.36869162423313656`, 0.7665985155022872}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8u/6Vg6YKl79/b6ytOXbl3+hcM86D67dH0w+Xjwz4ZvGv5YV/h pqqWvPShPXb1DAxPmN24Oyx+Y8hnzPh56hPfqv33zlXv2MD9C5f6/bjM25/e q3OU9ed+r8i5E1ZK3MVQv27L/hoO37f7bZcrsJ3v+bofnX/9+H/+09/f7e/S 7w+v9ryGIb9Npdp7R8kC+/NqLZNXFn3ACC9C8pNVQ3a1zHpvP2PmObmb8Zcw wouQ/PnE3fNfNzyyv7Ezpeag+WuM8CIkf63w+LkPWk/2h1ZcemrN9AojvND9 jy6Prh9d/Za7J066r3+837/YfYHs2Uf26OGRZzJ/85Fvz/fPy56+aM6lmxjh cc5o+TPl+sP2futeWL44/mo/un/eHTNU/vjzlX0I//VOVvm9+9Hdw/xX4uCS Gdftd1xSn/Oz/YU9unvQ7UeXR9ePrh7dfeh8dPeh89HNBwDJPQQl "], 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9156534611226073, -1.3468771209104056}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.8837446262417528, -1.314968286029551}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9980037820455707, -1.2870461105649829}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.0299126169264252, -1.2551372756841284}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.5324537193277121, 0.551438879492891}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5643625542085666, 0.5833477143737456}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05089529731485315, 1.627854080809747}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906015}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.5639087429358225, 0.45463027117275046}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.531999908054968, 0.48653910605360495}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9677481949313415, -0.34823497343745}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {-0.935839360050487, -0.3163261385565955}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.03214050218009261, -1.0279937517502054}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {0.0640493370609471, -0.9960849168693509}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9876121176941289, -0.2871001053666986}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {1.0195209525749833, -0.2551912704858441}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5782373542561404, 0.8505561284599095}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6101461891369949, 0.882464963340764}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6302417791990205, 0.8127727020944443}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-0.598332944318166, 0.8446815369752988}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6151465359789001, 0.587538540883182}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5832377010980456, 0.6194473757640365}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7488730915298569, -0.40347972753596106}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7169642566490024, -0.37157089265510657}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.15231751215323758, -0.8369027262719528}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.18422634703409208, -0.8049938913910983}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.843010491122383, -0.11375460257755537}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8749193260032375, -0.08184576769670088}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.36869162423313656, 0.7665985155022872}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.40060045911399106, 0.7985073503831417}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[146]=",ExpressionUUID->"aed4f17a-0cb1-472e-9b69-5b45488a5c0b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input", CellLabel-> "In[147]:=",ExpressionUUID->"02a5ae6a-c62c-4938-86da-9453073855b2"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel-> "Out[147]=",ExpressionUUID->"d62b09e0-6522-4e74-942b-947b875e0346"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[148]:=",ExpressionUUID->"4c77aa71-05ba-49ed-af8d-9b38f4c57cdb"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "1.9999999999999998`", ",", "2", ",", "2.`", ",", "2", ",", "2.`", ",", "2", ",", "2.`", ",", "2.`", ",", "0.9999999999999996`", ",", "1.`", ",", "0.9999999999999996`", ",", "1.`", ",", "0.9999999999999997`", ",", "1.0000000000000002`", ",", "0.9999999999999998`", ",", "1.0000000000000002`", ",", "1.`", ",", "0.9999999999999996`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`", ",", "1.`", ",", "0.9999999999999999`"}], "}"}]], "Output", CellLabel-> "Out[148]=",ExpressionUUID->"8c564fdd-ab26-4ea2-ae20-d6a34f1e7d75"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solve", "Subsubsection",ExpressionUUID->"31c33c49-79d4-4cc3-9514-c68dee7142ca"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"eqn", "//", "Column"}]], "Input", CellLabel-> "In[153]:=",ExpressionUUID->"f3013e0e-f940-4e02-a621-f92167e490c9"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]", RowBox[{ RowBox[{"32", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"R", " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"64", " ", "R"}]}], ")"}]}]}]}]}, { RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"u", " ", "v"}], "+", RowBox[{ SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]], " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}], "\[Equal]", "3"}]}, { RowBox[{ RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], "\[Equal]", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}]}, { RowBox[{ RowBox[{ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellLabel-> "Out[153]=",ExpressionUUID->"d381de93-d87c-4f23-bd27-530578a6ad15"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"soln", "=", RowBox[{"Solve", "[", RowBox[{"eqn", ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}], "]"}]}], ")"}], "//", "Timing"}]], "Input", CellLabel-> "In[149]:=",ExpressionUUID->"dcefabd4-7c56-49ce-b95a-d2b6a37270c3"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[149]=",ExpressionUUID->"e317a47d-16a1-4671-b8da-ae8061813f5d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]", RowBox[{ RowBox[{"32", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"R", " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"64", " ", "R"}]}], ")"}]}]}]}], ",", "R", ",", "Reals"}], "]"}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[151]:=",ExpressionUUID->"c31068e6-56c4-45e3-b4a2-514412dc388a"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"R", "\[Rule]", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"R", "\[Rule]", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[151]=",ExpressionUUID->"50d05d44-2823-453a-8c78-0af77ab94660"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[152]:=",ExpressionUUID->"1e301c4c-039f-4d56-8bd9-dad771073be6"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"R", "\[Rule]", RowBox[{"-", "0.39900505716527496`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], "}"}]}], "}"}]], "Output",\ CellLabel-> "Out[152]=",ExpressionUUID->"837362fe-18d3-4dae-91af-e0590a8b0064"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"eqn", "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[162]:=",ExpressionUUID->"20ec89ef-73e2-4ff5-b420-f1e1cd59eafb"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"u", "\[Rule]", "0.395224057288004`"}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903405`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225496251`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"u", "\[Rule]", RowBox[{"-", "0.1337265555509564`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903436`"}], ",", RowBox[{"r", "\[Rule]", "1.2090696436948791`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"u", "\[Rule]", "0.9995606988479302`"}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903439`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225496298`"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[162]=",ExpressionUUID->"778da5cb-4f77-4623-9844-8e97718d36ce"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{"Append", "[", RowBox[{"eqn", ",", RowBox[{"u", "<", "0"}]}], "]"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[167]:=",ExpressionUUID->"71224ffa-dd98-4c75-9d8a-a3a4f989d123"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"u", "\[Rule]", RowBox[{"-", "0.1337265555509564`"}]}], ",", RowBox[{"v", "\[Rule]", "0.8269901591903436`"}], ",", RowBox[{"r", "\[Rule]", "1.2090696436948791`"}]}], "}"}], "}"}]], "Output",\ CellLabel-> "Out[167]=",ExpressionUUID->"2e121f52-c7c7-4ae1-8874-bbb7d894a325"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"Append", "[", RowBox[{"eqn", ",", RowBox[{"u", "<", "0"}]}], "]"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[168]:=",ExpressionUUID->"3543dda5-bd43-482c-8377-b07a03708d80"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[168]=",ExpressionUUID->"2e3aa18a-7b12-4311-ae66-0cdcae603f1c"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]", RowBox[{ RowBox[{"32", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], "+", RowBox[{"R", " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"64", " ", "R"}]}], ")"}]}]}]}]}, { RowBox[{ RowBox[{ SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"u", " ", "v"}], "+", RowBox[{ SqrtBox[ RowBox[{"1", "-", SuperscriptBox["u", "2"]}]], " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}], "\[Equal]", "3"}]}, { RowBox[{ RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], "\[Equal]", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}]}, { RowBox[{ RowBox[{ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellLabel-> "Out[153]=",ExpressionUUID->"6dbf01d8-0b0e-4fd2-b7f7-9b8c8e474fd7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["u", "2"]}], " ", ")"}], RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"]}], RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+", RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-", RowBox[{"(", RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "+", RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[179]:=",ExpressionUUID->"3b44f48f-bfd6-4641-9df3-743d56dd4546"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",", RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",", RowBox[{"u", "\[Rule]", "0.5480927073836085`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",", RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",", RowBox[{"u", "\[Rule]", "0.9648503599623114`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",", RowBox[{"u", "\[Rule]", "0.39522405728759424`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",", RowBox[{"u", "\[Rule]", "0.999560698847948`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", "0.8723547586153894`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",", RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.23261572125066274`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",", RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",", RowBox[{"u", "\[Rule]", "0.853085613105143`"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[179]=",ExpressionUUID->"0a33f69f-ff58-4fa3-881d-80253f0a3e4b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["u", "2"]}], " ", ")"}], RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"]}], RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+", RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-", RowBox[{"(", RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "16"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", " ", RowBox[{"32", " ", "r"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]], ")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input", CellLabel-> "In[183]:=",ExpressionUUID->"254ed205-7d26-4c40-912c-5c9c72016684"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",", RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",", RowBox[{"u", "\[Rule]", "0.5480927073836085`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",", RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",", RowBox[{"u", "\[Rule]", "0.9648503599623114`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8090169943749828`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "2.055891422807146`"}]}], ",", RowBox[{"u", "\[Rule]", "0.5480927073827843`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8090169943749828`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "2.055891422807146`"}]}], ",", RowBox[{"u", "\[Rule]", "0.9648503599626433`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.826990159190304`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.8888058225500177`"}]}], ",", RowBox[{"u", "\[Rule]", "0.3952240572883131`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.826990159190304`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.8888058225500177`"}]}], ",", RowBox[{"u", "\[Rule]", "0.9995606988479147`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",", RowBox[{"u", "\[Rule]", "0.39522405728759424`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",", RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",", RowBox[{"u", "\[Rule]", "0.999560698847948`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", "0.8723547586153894`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8269901591903037`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.2090696436946151`"}]}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555120522`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8269901591903037`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.2090696436946151`"}]}], ",", RowBox[{"u", "\[Rule]", "0.8723547586152758`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8090169943749843`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.1108066104778467`"}]}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.23261572125031932`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8090169943749843`"}]}], ",", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.1108066104778467`"}]}], ",", RowBox[{"u", "\[Rule]", "0.8530856131052018`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",", RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.23261572125066274`"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",", RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",", RowBox[{"u", "\[Rule]", "0.853085613105143`"}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[183]=",ExpressionUUID->"24c0f343-be80-474a-917d-6b762149bcb6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "16"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", " ", RowBox[{"32", " ", "r"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]], ")"}], "2"], "]"}]], "Input", CellLabel-> "In[185]:=",ExpressionUUID->"c27e6f7c-3910-46c5-bebf-f64f731d6b9a"], Cell[BoxData[ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "+", FractionBox[ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], ")"}], "2"], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"]]], "Output", CellLabel-> "Out[185]=",ExpressionUUID->"65bc5d03-c2ee-4e77-b573-5b19506eaafa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["u", "2"]}], " ", ")"}], RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"]}], RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+", RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-", RowBox[{"(", RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "+", FractionBox[ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], ")"}], "2"], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"]]}], ",", "\[IndentingNewLine]", RowBox[{"v", ">", "0"}], ",", RowBox[{"u", "<", "0"}], ",", RowBox[{"r", ">", "1.2"}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[189]:=",ExpressionUUID->"068e2938-310c-4dbb-ac5c-7abd8c42776a"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[189]=",ExpressionUUID->"6737cf7f-d53b-4110-920a-a551c104a8d1"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903418`"}], ",", RowBox[{"r", "\[Rule]", "1.2090696436948747`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.1337265555509568`"}]}]}], "}"}], "}"}]], "Input",Expressi\ onUUID->"41f4e5a4-3326-4bed-8e46-1bc14d8bc49d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"{", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["u", "2"]}], " ", ")"}], RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"]}], RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+", RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-", RowBox[{"(", RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "+", FractionBox[ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{"v", ">", "0"}], ",", RowBox[{"u", "<", "0"}], ",", RowBox[{"r", ">", "1.2"}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[194]:=",ExpressionUUID->"9f7b0633-d7c7-48da-a47d-d6bcfb33533f"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[194]=",ExpressionUUID->"6c14e09e-e6d5-4ea7-893e-93341b5dbc2b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "@", RowBox[{"RootReduce", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["u", "2"]}], " ", ")"}], RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"3", "-", SqrtBox["5"]}], RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+", RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{"20", "+", RowBox[{ SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-", RowBox[{"(", RowBox[{ RowBox[{"8", " ", SuperscriptBox["r", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"], " ", SuperscriptBox["R", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "+", FractionBox[ RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", RowBox[{"8", " ", SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], ")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], "]"}]}]], "Input",\ ExpressionUUID->"52fbff18-1bdd-470e-88c0-053fceff4318"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["u", "2"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"], RowBox[{"16", " ", SuperscriptBox["r", "2"]}]]}], ",", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -18.2695822630310402701070415787398815155`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", "r"}], "+", FractionBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "r"], "+", RowBox[{"v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -41.48833803604578207568920333869755268097`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "}"}]], "Output",\ CellLabel-> "Out[198]=",ExpressionUUID->"ee0e553b-cb7d-4efa-a30f-5ce9b5f9d35e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"eqn3", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"16", " ", SuperscriptBox["r", "2"], RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["u", "2"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}], ",", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"v", " ", "r", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "}"}]}], ")"}], "//", "Column"}]], "Input", CellLabel-> "In[207]:=",ExpressionUUID->"14b7faf2-bfc5-4e87-b6de-ecf6b0c2492b"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{ RowBox[{"16", " ", SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["u", "2"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}]}, { RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -18.2695822630310402701070415787398815155`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}]}, { RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output", CellLabel-> "Out[207]=",ExpressionUUID->"c068362a-464e-4454-9dc2-86d29f0cf6f4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"eqn3", ",", RowBox[{"{", RowBox[{ RowBox[{"v", ">", "0"}], ",", RowBox[{"u", "<", "0"}], ",", RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\ CellLabel-> "In[208]:=",ExpressionUUID->"4de6b66f-a087-4e5d-98e3-eebf1c86f266"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[208]=",ExpressionUUID->"86f272f5-2902-4b32-b3be-50fad05b85b3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Take", "[", RowBox[{"eqn3", ",", RowBox[{"-", "2"}]}], "]"}]], "Input", CellLabel-> "In[211]:=",ExpressionUUID->"24b48e2f-213e-4c63-9424-fbb79b11e866"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -18.2695822630310402701070415787398815155`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -41.48833803604578207568920333869755268097`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "}"}]], "Output",\ CellLabel-> "Out[211]=",ExpressionUUID->"22bc0315-b10c-47dc-b665-bd4bf440daa5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"v", ">", "0"}], ",", RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "v"}], "}"}], ",", "Reals"}], "]"}]], "Input", CellLabel-> "In[224]:=",ExpressionUUID->"bc37ff55-b7ce-42d0-ba38-c71beebce6fa"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[224]=",ExpressionUUID->"61327f40-0131-4330-9929-a8bc3393653f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"gbr", "=", RowBox[{"GroebnerBasis", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "-", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "-", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", "r", "}"}], ",", RowBox[{"{", "v", "}"}], ",", RowBox[{"MonomialOrder", "\[Rule]", "EliminationOrder"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"6b4546f6-69df-4024-9f3f-64d08b3f7ae2"], Cell[BoxData[ InterpretationBox[ TagBox[ FrameBox[GridBox[{ { ItemBox[ TagBox[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "4"}], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "6"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "3"]}], "+", TemplateBox[{"48"}, "OutputSizeLimit`Skeleton"], "+", RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"256", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "3"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "2"]}], "+", TemplateBox[{"113"}, "OutputSizeLimit`Skeleton"], "+", RowBox[{"16", " ", TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["r", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "256"}], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "8"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}], "-", RowBox[{"5120", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "2"]}], "-", RowBox[{"256", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "6"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "3"]}], "+", TemplateBox[{"206"}, "OutputSizeLimit`Skeleton"], "+", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.91641594853224639383171279405360110104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]], "3"]}], "-", RowBox[{"16384", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], \ -13293.27670775912156386766582727432250976563`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.91641594853224639383171279405360110104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]], "3"]}], "+", RowBox[{"512", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "3"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], \ -13293.27670775912156386766582727432250976563`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.91641594853224639383171279405360110104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]], "3"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], \ -13293.27670775912156386766582727432250976563`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.91641594853224639383171279405360110104`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]], "3"]}]}], ")"}]}]}], "}"}], Short[#, 5]& ], BaseStyle->{Deployed -> False}, StripOnInput->False]}, {GridBox[{ { PaneBox[ TagBox[ TooltipBox[ StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource[ "FEStrings", "sizeBriefExplanation"], StandardForm], ImageSizeCache->{59., {1.85546875, 7.353515625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText", StripOnInput->False], StyleBox[ DynamicBox[ ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], StandardForm]], DynamicUpdating -> True, LineIndent -> 0, LinebreakAdjustments -> {1., 100, 0, 0, 0}, LineSpacing -> {1, 2}, StripOnInput -> False]], Annotation[#, Style[ Dynamic[ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]], DynamicUpdating -> True, LineIndent -> 0, LinebreakAdjustments -> {1., 100, 0, 0, 0}, LineSpacing -> {1, 2}], "Tooltip"]& ], Alignment->Center, BaselinePosition->Baseline, ImageSize->{Automatic, {25, Full}}], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], StandardForm], ImageSizeCache->{51., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 235, 19400777345032151489, 5/2], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], StandardForm], ImageSizeCache->{56., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 235, 19400777345032151489, 5 2], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], StandardForm], ImageSizeCache->{42., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 235, 19400777345032151489, Infinity], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], StandardForm], ImageSizeCache->{77., {0.1220703125, 7.7880859375}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>FrontEndExecute[{ FrontEnd`SetOptions[ FrontEnd`$FrontEnd, FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}], FrontEnd`FrontEndToken["PreferencesDialog"]}], Evaluator->None, Method->"Preemptive"]} }, AutoDelete->False, FrameStyle->GrayLevel[0.85], GridBoxDividers->{"Columns" -> {False, {True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], Offset[1.2], { Offset[0.4]}, Offset[0.2]}}], BaseStyle->"OutputSizeLimit", FrameMargins->{{12, 12}, {0, 15}}, FrameStyle->GrayLevel[0.85], RoundingRadius->5, StripOnInput->False], Deploy, DefaultBaseStyle->"Deploy"], If[19400777345032151489 === $SessionID, Out[235], Message[ MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"]; Null]]], "Output", CellLabel-> "Out[235]=",ExpressionUUID->"cb379063-04c1-496c-b0cf-ffb8853cc86f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "gbr", "]"}]], "Input", CellLabel-> "In[236]:=",ExpressionUUID->"3b8d99c9-ac73-44a2-b2eb-504ab3864cf0"], Cell[BoxData["1"], "Output", CellLabel-> "Out[236]=",ExpressionUUID->"8887832b-9193-476b-98da-6b068febc291"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"gbr", "[", RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "]"}]], "Input", CellLabel-> "In[237]:=",ExpressionUUID->"cf0978b5-b3d1-4e48-9623-71c442c49f5f"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"r", "\[Rule]", RowBox[{"-", "2.0558914228074445`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.888805822549639`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.2090696436948623`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", RowBox[{"-", "1.1108066104776904`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", "1.1108066104776912`"}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", "1.2090696436948596`"}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", "1.8888058225496358`"}], "}"}], ",", RowBox[{"{", RowBox[{"r", "\[Rule]", "2.05589142280744`"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[237]=",ExpressionUUID->"47ea35cf-35d2-48c8-a40c-e0299412c286"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"gbr", "[", RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "&&", RowBox[{ RowBox[{"12", "/", "10"}], "<", "r", "<", RowBox[{"13", "/", "10"}]}]}], "]"}]], "Input", CellLabel-> "In[238]:=",ExpressionUUID->"b17828b2-06b9-405d-939c-bee31a6bfb73"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"r", "\[Rule]", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + (((196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + (((8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + (((65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + (((4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + ((4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - (((4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + (((50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - (((201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "}"}], "}"}]], "Output", CellLabel-> "Out[238]=",ExpressionUUID->"0fc3edf8-20ad-45f1-b09a-f26a05bdbede"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%238", "]"}]], "Input", CellLabel-> "In[247]:=",ExpressionUUID->"3996824c-935e-4e40-a40b-ceb16506b1e2"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"r", "\[Rule]", "1.209069643694874`"}], "}"}], "}"}]], "Output", CellLabel-> "Out[247]=",ExpressionUUID->"d8590b29-22b8-4fa1-b5ab-68cd4d34196f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"gbv", "=", RowBox[{"GroebnerBasis", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91641594853224639383171279405360110104`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4294967296", "+", RowBox[{"77493960704", " ", "#1"}], "+", RowBox[{"486106071040", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1316531731456", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1807078258689", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"1316021862656", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"485599805440", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"77326188544", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], -0.9164159485322464}, "NumericalApproximation"], Root[ 4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "-", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "8"}], " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-18.3\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -18.2695822630310402701070415787398815155`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"23512593043456", "+", RowBox[{"11096713075712", " ", "#1"}], "-", RowBox[{"866613204800", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"594154633808", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5445419528", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"204128320", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"1704448", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -18.26958226303104}, "NumericalApproximation"], Root[ 23512593043456 + 11096713075712 # - 866613204800 #^2 - 594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"30.6\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 30.61851589069084766947526077274233102798`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"71776531109707776", "+", RowBox[{"4486033194356736", " ", "#1"}], "-", RowBox[{"492783949380096", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"13087004217408", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"1371707537409", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"12876492816", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"469565184", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"4190208", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 30.618515890690848`}, "NumericalApproximation"], Root[ 71776531109707776 + 4486033194356736 # - 492783949380096 #^2 - 13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 - 469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}], "2"]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.33\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]], "\"\[ThinSpace]\[Times]\[ThinSpace]\"", TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm -> SuperscriptBox]}, "RowDefault"], ShowStringCharacters -> False], -13293.27670775912156386766582727432250976563`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"3194814997072315910768797521339744256", "+", RowBox[{"4695788797132717630576692857667584", " ", "#1"}], "+", RowBox[{"2643725544601800570663830814720", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"731760025692743188537716736", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"108432958666577573375489", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8775149549656432576", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"379805682501120", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"8071921664", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -13293.276707759122`}, "NumericalApproximation"], Root[ 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 # + 2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 + 108432958666577573375489 #^4 + 8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}], "-", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["r", "2"]}], "+", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"73.1\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 73.07832905212416108042816631495952606201`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 73.07832905212416}, "NumericalApproximation"], Root[ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+", RowBox[{"r", " ", "v", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-41.5\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -41.48833803604578207568920333869755268097`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -41.48833803604578}, "NumericalApproximation"], Root[ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", "v", "}"}], ",", RowBox[{"{", "r", "}"}], ",", RowBox[{"MonomialOrder", "\[Rule]", "EliminationOrder"}]}], "]"}]}], ";"}]], "Input", CellLabel-> "In[239]:=",ExpressionUUID->"886f30c2-86fc-4d95-a4bb-f5452424f06c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{"gbv", "[", RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "]"}]], "Input", CellLabel-> "In[240]:=",ExpressionUUID->"4396c039-b119-482a-922b-23132126861c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"v", "\[Rule]", RowBox[{"-", "0.8269901591903422`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"v", "\[Rule]", RowBox[{"-", "0.809016994374948`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"v", "\[Rule]", "0.809016994374946`"}], "}"}], ",", RowBox[{"{", RowBox[{"v", "\[Rule]", "0.8269901591903417`"}], "}"}]}], "}"}]], "Output",\ CellLabel-> "Out[240]=",ExpressionUUID->"80fda36e-efd8-4a54-bd00-d266121e3ac0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"gbv", "[", RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "&&", RowBox[{"v", "<", RowBox[{ RowBox[{"-", "81"}], "/", "100"}]}]}], "]"}]], "Input", CellLabel-> "In[241]:=",ExpressionUUID->"972956ad-1e48-4d63-8245-1f7c90b9e710"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"v", "\[Rule]", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + (((262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + (((4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - (((((2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + (((4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - (((4096 #3^3) #4^2) #5) #7^4& }, { 5, 3, 5, 4, 4, 6, 1}]]}], "}"}], "}"}]], "Output", CellLabel-> "Out[241]=",ExpressionUUID->"170ead83-c62c-45a6-8704-55963308d474"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"16", " ", SuperscriptBox["r", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["u", "2"]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"], "+", RowBox[{"2", " ", "r", " ", RowBox[{"(", RowBox[{"r", "-", RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"r", "\[Rule]", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((196608 #^4) #2) #4^2) #6^3) #7^2 + ((((786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], ",", RowBox[{"v", "\[Rule]", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]}]}], "}"}]}], ",", "u"}], "]"}]], "Input", CellLabel-> "In[243]:=",ExpressionUUID->"ad18968b-347a-46ad-a7e6-5e62df535007"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], RowBox[{"(", RowBox[{ RowBox[{"24", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((( (512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "-", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "-", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - ((((2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[243]=",ExpressionUUID->"cdb70db9-485a-4b07-baad-ad08673046ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[244]:=",ExpressionUUID->"6842c3e4-09ff-48b9-8467-92095b72860b"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.8723547586153321`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"u", "\[Rule]", "0.13372655555095744`"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[244]=",ExpressionUUID->"d23fd462-c374-4928-9057-ef8ac7777fd8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + ((((24576 #^4) #2^3) #3^2) #5) #7^4 + ((((65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}], "}"}]], "Input", CellLabel-> "In[245]:=",ExpressionUUID->"062a2a6f-51ef-49a4-9a55-80e8ba62293f"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + ((((24576 #^4) #2^3) #3^2) #5) #7^4 + ((((65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[245]=",ExpressionUUID->"332a853b-9618-4ed4-bbe2-12a413efbbc8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.8269901591903416893103440088452771306`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + (( 65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + (( 128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - (( 2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + (( 4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - (((8388608 #^5) #2^2) #4^2) #7^6 + ((((5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], "]"}]], "Input", CellLabel-> "In[248]:=",ExpressionUUID->"3cc0f64e-74d2-432d-b8f3-e1a22f506ae9"], Cell[BoxData["$Aborted"], "Output", CellLabel-> "Out[248]=",ExpressionUUID->"d2cb65ba-8d9c-4339-bb61-b2739b1ed697"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[246]:=",ExpressionUUID->"fe67e0b4-5b26-45e7-a2fe-496d85728169"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555095744`"}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[246]=",ExpressionUUID->"1ed473e9-de7f-488c-a2b1-4a97522a8173"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"soln", "=", RowBox[{"NSolve", "[", RowBox[{ RowBox[{"Join", "[", RowBox[{"eqn3", ",", RowBox[{"{", RowBox[{ RowBox[{"v", ">", "0"}], ",", RowBox[{"u", "<", "0"}], ",", RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]}]], "Input", CellLabel-> "In[215]:=",ExpressionUUID->"ba1ee72e-0f2f-4d78-bca8-1ead61561590"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",", RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",", RowBox[{"u", "\[Rule]", RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[215]=",ExpressionUUID->"e83a74fb-ae6d-445d-88b6-a806a98bad46"] }, Open ]], Cell[BoxData[ RowBox[{"vc", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"vv", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], "//", "RootReduce"}], "//", "FullSimplify"}]}]], "Input", CellLabel-> "In[220]:=",ExpressionUUID->"16b43fc7-da2e-43e0-9899-104e47dfd51a"], Cell[BoxData[ RowBox[{ RowBox[{"vc", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.526\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.52573111211913359230862852200516499579`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.5257311121191336}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", SqrtBox[ RowBox[{"2", "+", FractionBox["2", SqrtBox["5"]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.526\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.52573111211913359230862852200516499579`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"5", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.5257311121191336}, "NumericalApproximation"], Root[1 - 5 #^2 + 5 #^4& , 3, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.916\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.91565346112261347677474532247288152575`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"106537612801", "-", RowBox[{"212240618245", " ", "#1"}], "-", RowBox[{"750776492795", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"640064865285", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"2147481021445", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"643399686400", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"753293721600", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"213909504000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"107374182400", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], -0.9156534611226135}, "NumericalApproximation"], Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.35\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.34687712091040556749987899820553138852`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"17598220999335736321", "-", RowBox[{"539111626071872353265", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6269521563436040371285", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"35734932813943308364825", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"108820923885449897484825", " ", SuperscriptBox["#1", "8"]}], "-", RowBox[{"180651487477897355264000", " ", SuperscriptBox["#1", "10"]}], "+", RowBox[{"159824446714883866624000", " ", SuperscriptBox["#1", "12"]}], "-", RowBox[{"69355434261505638400000", " ", SuperscriptBox["#1", "14"]}], "+", RowBox[{"11529215046068469760000", " ", SuperscriptBox["#1", "16"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -1.3468771209104056`}, "NumericalApproximation"], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.998\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.99800369375022601747815542694297619164`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"106537612801", "+", RowBox[{"215161907195", " ", "#1"}], "-", RowBox[{"754115575025", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"633789772815", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"2139107152645", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"645501747200", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"749941555200", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"215167795200", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"107374182400", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 0.998003693750226}, "NumericalApproximation"], Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.29\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.2870461105649828592589756226516328752`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"17598220999335736321", "-", RowBox[{"540528768140269969925", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"6269411700808243814485", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"35627336894415949311925", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"108386758107061028364825", " ", SuperscriptBox["#1", "8"]}], "-", RowBox[{"180110760013281099776000", " ", SuperscriptBox["#1", "10"]}], "+", RowBox[{"159827258715871903744000", " ", SuperscriptBox["#1", "12"]}], "-", RowBox[{"69535402324740014080000", " ", SuperscriptBox["#1", "14"]}], "+", RowBox[{"11529215046068469760000", " ", SuperscriptBox["#1", "16"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -1.2870461105649829`}, "NumericalApproximation"], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.53\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.53245371932602814091239906701957806945`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"106537612801", "+", RowBox[{"426150777605", " ", "#1"}], "+", RowBox[{"210571399695", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"858980052465", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"532674325755", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"860669542400", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"213072281600", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"429496729600", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"107374182400", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Short[#, 7]& ], 1.5324537193260281`}, "NumericalApproximation"], Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0]], ",", SqrtBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.304\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.30408483781637524190344379348971415311`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"17598220999335736321", "-", RowBox[{"1100703701881579435525", " ", "#1"}], "+", RowBox[{"21366179173843941862485", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"153773296557369462079925", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"500538150850720122380825", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"772147051737011732480000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"538130681574451052544000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"138170788411447705600000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"11529215046068469760000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Short[#, 7]& ], 0.30408483781637524`}, "NumericalApproximation"], Root[ 17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.0509\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -0.05089529731485314956174192957405466586`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"5", " ", "#1"}], "-", RowBox[{"3835", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8965", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"3927045", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"4915200", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"1258291200", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"419430400", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"107374182400", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], -0.05089529731485315}, "NumericalApproximation"], Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0]], ",", SqrtBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"2.65\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 2.64990890840894577351605221338104456663`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1199513305477529806561281", "-", RowBox[{"9022732048533325377799665", " ", "#1"}], "+", RowBox[{"25962141421217984341452885", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"36712060727845224685260825", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"27796592096551279797708825", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"11496063758699253989376000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"2543846604318770724864000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"276610913191235420160000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"11529215046068469760000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}], Short[#, 7]& ], 2.6499089084089458`}, "NumericalApproximation"], Root[ 1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]]]}], "}"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.56\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.56390874295035597896230683545581996441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"106537612801", "-", RowBox[{"426984732160", " ", "#1"}], "+", RowBox[{"212240940810", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"858988220160", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"532674325755", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"860661356800", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"211396198400", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"428657868800", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"107374182400", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], -1.563908742950356}, "NumericalApproximation"], Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0]], ",", SqrtBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"0.207\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 0.20668868346660859702801360526791540906`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"17598220999335736321", "-", RowBox[{"1075468191904076864020", " ", "#1"}], "+", RowBox[{"21281804568408463782510", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"155921619528698397990500", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"507419710433470154252825", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"778608770214113828864000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"540290301079358275584000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"138530724537916456960000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"11529215046068469760000", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}], Short[#, 7]& ], 0.2066886834666086}, "NumericalApproximation"], Root[ 17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9677481949315356`"}], ",", RowBox[{"-", "0.348234973437605`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.032140502180179956`", ",", RowBox[{"-", "1.0279937517504376`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.987612117694377`", ",", RowBox[{"-", "0.2871001053666874`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5782373542562063`", ",", "0.8505561284601488`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6302417791992277`"}], ",", "0.8127727020945811`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6151465359790604`"}], ",", "0.5875385408830143`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7488730915297469`"}], ",", RowBox[{"-", "0.40347972753616523`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15231751215346578`", ",", RowBox[{"-", "0.8369027262719113`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.843010491122414`", ",", RowBox[{"-", "0.11375460257732557`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.36869162423292756`", ",", "0.7665985155023878`"}], "}"}]}], "}"}]}], ";"}]], "Input", CellLabel-> "In[254]:=",ExpressionUUID->"d005a6f3-6db9-42a5-9a61-bf907a7ae841"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e2"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[255]:=",ExpressionUUID->"dc992a5d-8b3d-41d7-8eea-38b175abb9a8"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, { 4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, { 8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2]}, {1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { 0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[ 106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0], Root[ 17598220999335736321 - 539111626071872353265 #^2 + 6269521563436040371285 #^4 - 35734932813943308364825 #^6 + 108820923885449897484825 #^8 - 180651487477897355264000 #^10 + 159824446714883866624000 #^12 - 69355434261505638400000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0], Root[ 17598220999335736321 - 540528768140269969925 #^2 + 6269411700808243814485 #^4 - 35627336894415949311925 #^6 + 108386758107061028364825 #^8 - 180110760013281099776000 #^10 + 159827258715871903744000 #^12 - 69535402324740014080000 #^14 + 11529215046068469760000 #^16& , 2, 0]}, { Root[ 106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0], Root[17598220999335736321 - 1100703701881579435525 # + 21366179173843941862485 #^2 - 153773296557369462079925 #^3 + 500538150850720122380825 #^4 - 772147051737011732480000 #^5 + 538130681574451052544000 #^6 - 138170788411447705600000 #^7 + 11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, { Root[ 1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 - 1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0], Root[1199513305477529806561281 - 9022732048533325377799665 # + 25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 + 27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 + 2543846604318770724864000 #^6 - 276610913191235420160000 #^7 + 11529215046068469760000 #^8& , 5, 0]^Rational[1, 2]}, { Root[ 106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0], Root[17598220999335736321 - 1075468191904076864020 # + 21281804568408463782510 #^2 - 155921619528698397990500 #^3 + 507419710433470154252825 #^4 - 778608770214113828864000 #^5 + 540290301079358275584000 #^6 - 138530724537916456960000 #^7 + 11529215046068469760000 #^8& , 3, 0]^ Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, { 0.032140502180179956`, -1.0279937517504376`}, { 0.987612117694377, -0.2871001053666874}, {0.5782373542562063, 0.8505561284601488}, {-0.6302417791992277, 0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {-0.7488730915297469, -0.40347972753616523`}, { 0.15231751215346578`, -0.8369027262719113}, { 0.843010491122414, -0.11375460257732557`}, {0.36869162423292756`, 0.7665985155023878}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8uv9HCrnDp+/f2+opTV+6d/gXDPKh+ezT9cPn9Fp8M3rX8sK9w U1VLXvrQHrt6BoYnzG7cHRa/MeQzZvw89Ylv1f6756p3bOD+hUv9flzm5aT3 6Rxl/bnfK3LuhJUSdzHUP9uyv4bD9+1+2+UKbOd7vu5H568595//9Pd3+4us +sOrPa9hyD8KrfbeUbLA/qlWy+SVRR8wwouQvK9eyK6WWe/tz804J3cz/hJG eBGSV0jZPf91wyN7l0MpNQfNX2OEFyF5xcrj5z5oPdmvWnvpqTXTK4zwQvc/ ujy6fnT1EY9PnHRf/3h/Rq77Atmzj+zRw6PfYP7mI9+e7/9TOX3RnEs3McLj TdDyZ8r1h+1vrHlh+eL4q/3o/mE9Yaj88ecr+6XnrnWyyu/dj+4ev3cSB5fM uG7vdE19zs/2F/bo7kG3H10eXT+6enT3ofPR3YfORzcfAKRS/t8= "], 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9156534611226135, -1.3468771209104056}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.883744626241759, -1.314968286029551}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.998003693750226, -1.2870461105649829}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.0299125286310806, -1.2551372756841284}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.5324537193260281, 0.551438879492891}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5643625542068826, 0.5833477143737456}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05089529731485315, 1.6278540808097468}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906013}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.563908742950356, 0.45463027117275046}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.5319999080695015, 0.48653910605360495}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9677481949315356, -0.348234973437605}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {-0.9358393600506811, -0.3163261385567505}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.032140502180179956, -1.0279937517504376}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {0.06404933706103445, -0.9960849168695831}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.987612117694377, -0.2871001053666874}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {1.0195209525752316, -0.2551912704858329}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5782373542562063, 0.8505561284601488}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6101461891370608, 0.8824649633410033}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6302417791992277, 0.8127727020945811}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-0.5983329443183732, 0.8446815369754356}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6151465359790604, 0.5875385408830143}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5832377010982059, 0.6194473757638688}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7488730915297469, -0.40347972753616523}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7169642566488924, -0.37157089265531074}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.15231751215346578, -0.8369027262719113}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.18422634703432028, -0.8049938913910568}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.843010491122414, -0.11375460257732557}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8749193260032685, -0.08184576769647108}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.36869162423292756, 0.7665985155023878}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.40060045911378206, 0.7985073503832423}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[255]=",ExpressionUUID->"f1cd887d-2bf2-46c0-a25a-e0abb2cfa013"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "RootReduce"}]], "Input", CellLabel-> "In[256]:=",ExpressionUUID->"e9f14d96-f156-40f7-8ebd-3e8844195b30"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "0.9999999999998549`", ",", "1.0000000000000087`", ",", "0.9999999999998551`", ",", "1.0000000000000087`", ",", "0.9999999999998551`", ",", "1.0000000000000089`", ",", "0.9999999999998549`", ",", "1.0000000000000087`", ",", "1.0000000000000087`", ",", "0.999999999999855`", ",", "1.`", ",", "0.9999999999999998`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`"}], "}"}]], "Output", CellLabel-> "Out[256]=",ExpressionUUID->"e49d4012-a9d2-48f9-bea7-03d4c523c2a4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Max", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#", "-", RowBox[{"Round", "[", "#", "]"}]}], "]"}], "&"}], "/@", "%256"}], "]"}]], "Input", CellLabel-> "In[260]:=",ExpressionUUID->"3d8812e6-a7ac-4ba2-a2f6-a196cf89c3a1"], Cell[BoxData["1.4510614931850796`*^-13"], "Output", CellLabel-> "Out[260]=",ExpressionUUID->"77d753bc-dbb2-48eb-988c-62f8627e19c5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"vc", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"vv", "/.", RowBox[{"r", "->", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}], "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"8", " ", SqrtBox["5"], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", RowBox[{"16", " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}]}], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "14"}], "+", RowBox[{"6", " ", SqrtBox["5"]}], "+", RowBox[{"28", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SqrtBox["5"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"16", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "2"], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}], "-", RowBox[{"4", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], "]"}]}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"-", RowBox[{"ArcCos", "[", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], "]"}]}]}]}], "}"}]}], "/.", RowBox[{"soln", "[", RowBox[{"[", RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}], "/.", RowBox[{"R", "->", RowBox[{ FractionBox["1", "128"], " ", RowBox[{"(", RowBox[{ RowBox[{ SqrtBox["1023"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"7681", "-", RowBox[{"2559", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"2046", " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}]}]], "Input", CellLabel-> "In[250]:=",ExpressionUUID->"051fd746-f402-42dd-b359-5426a7186c9d"], Cell[BoxData[ InterpretationBox[ TagBox[ FrameBox[GridBox[{ { ItemBox[ TagBox[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]]}]]}], "}"}], ",", TemplateBox[{"14"}, "OutputSizeLimit`Skeleton"], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"Cos", "[", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "]"}], RowBox[{"2", " ", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}]], ",", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{"1", "-", FractionBox[ TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]]}]]]}]], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}], "2"], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}]]}], RowBox[{"64", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]], " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - ((((32768 #) #2^4) #3^3) #5) #7^4 + (((8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"Cos", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - ((((196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "+", SqrtBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}], "2"], "+", RowBox[{"64", " ", SuperscriptBox[ TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "2"], " ", RowBox[{"(", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}]}]]}], RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], "]"}]}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], ",", FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox["\[Pi]", "10"], "+", RowBox[{"ArcCos", "[", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "24"}], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-0.827\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], \ -0.8269901591903416893103440088452771306`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"6019223819124736", "-", RowBox[{"710189636845568", " ", "#1"}], "-", RowBox[{"13865811276800", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"2376618535232", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"12972975489", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1361354882", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"12758020", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"26632", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}], "+", RowBox[{"98048", " ", SuperscriptBox["#2", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#2", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}], ",", RowBox[{ RowBox[{"4294967296", "+", RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+", RowBox[{"4294967296", " ", SuperscriptBox["#6", "8"]}]}], "&"}], ",", RowBox[{ RowBox[{ RowBox[{"4096", " ", SuperscriptBox["#1", "4"], " ", "#2"}], "+", RowBox[{"16384", " ", SuperscriptBox["#1", "4"], " ", "#3"}], "+", RowBox[{"32768", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+", RowBox[{"131072", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+", RowBox[{"65536", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"262144", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", SuperscriptBox["#4", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+", RowBox[{"512", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ", "#5"}], "+", RowBox[{"2048", " ", SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ", "#5"}], "+", RowBox[{ SuperscriptBox["#1", "2"], " ", "#2", " ", SuperscriptBox["#5", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}], "+", RowBox[{"16384", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#6", " ", SuperscriptBox["#7", "2"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "5"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"512", " ", "#1", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"16", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"128", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "+", RowBox[{"512", " ", "#1", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"1024", " ", "#2", " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#4", "2"], " ", "#5", " ", SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3", ",", RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",", "6", ",", "1"}], "}"}]}], "]"}], Short[#, 7]& ], -0.8269901591903417}, "NumericalApproximation"], Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+", TemplateBox[{"2"}, "OutputSizeLimit`Skeleton"], "+", SqrtBox[ RowBox[{ SuperscriptBox[ TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "2"], "+", TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}]]}], RowBox[{"32", " ", SuperscriptBox[ InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.21\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.20906964369487401889102784480201080441`15.\ 954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"70380813052542976", "-", RowBox[{"6706695785938944", " ", "#1"}], "-", RowBox[{"57086057619456", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11464396046272", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"86904077569", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"2812789776", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3215264", " ", SuperscriptBox["#1", "6"]}], "+", RowBox[{"98048", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"256", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",", RowBox[{ RowBox[{ RowBox[{"1024", " ", SuperscriptBox["#1", "6"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"3072", " ", SuperscriptBox["#1", "4"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"8192", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "4"], " ", "#3", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"3072", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"4096", " ", "#1", " ", SuperscriptBox["#2", "4"], " ", SuperscriptBox["#3", "2"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"1024", " ", SuperscriptBox["#2", "3"], " ", SuperscriptBox["#3", "3"], " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "-", RowBox[{"4096", " ", SuperscriptBox["#1", "5"], " ", SuperscriptBox["#2", "2"], " ", "#4", " ", SuperscriptBox["#5", "2"], " ", SuperscriptBox["#6", "2"]}], "+", RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}], "+", RowBox[{"1610612736", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"6442450944", " ", SuperscriptBox["#1", "2"], " ", SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"805306368", " ", "#1", " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#3", "2"], " ", "#4", " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"3221225472", " ", SuperscriptBox["#1", "4"], " ", "#2", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "+", RowBox[{"12884901888", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#2", "2"], " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"3221225472", " ", SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ", SuperscriptBox["#4", "2"], " ", SuperscriptBox["#7", "8"]}], "-", RowBox[{"4294967296", " ", SuperscriptBox["#1", "3"], " ", SuperscriptBox["#4", "3"], " ", SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874}, "NumericalApproximation"], Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}], "]"}]}], "]"}], RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}], Short[#, 5]& ], BaseStyle->{Deployed -> False}, StripOnInput->False]}, {GridBox[{ { PaneBox[ TagBox[ TooltipBox[ StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource[ "FEStrings", "sizeBriefExplanation"], StandardForm], ImageSizeCache->{59., {1.85546875, 7.353515625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText", StripOnInput->False], StyleBox[ DynamicBox[ ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"], StandardForm]], DynamicUpdating -> True, LineIndent -> 0, LinebreakAdjustments -> {1., 100, 0, 0, 0}, LineSpacing -> {1, 2}, StripOnInput -> False]], Annotation[#, Style[ Dynamic[ FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]], DynamicUpdating -> True, LineIndent -> 0, LinebreakAdjustments -> {1., 100, 0, 0, 0}, LineSpacing -> {1, 2}], "Tooltip"]& ], Alignment->Center, BaselinePosition->Baseline, ImageSize->{Automatic, {25, Full}}], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], StandardForm], ImageSizeCache->{51., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 250, 19400777345032151489, 5/2], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], StandardForm], ImageSizeCache->{56., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 250, 19400777345032151489, 5 2], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], StandardForm], ImageSizeCache->{42., {0.1171875, 7.431640625}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>OutputSizeLimit`ButtonFunction[ OutputSizeLimit`Defer, 250, 19400777345032151489, Infinity], Enabled->True, Evaluator->Automatic, Method->"Queued"], ButtonBox[ PaneSelectorBox[{False-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], StandardForm], ImageSizeCache->{77., {0.1220703125, 7.7880859375}}], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl", StripOnInput->False], True-> StyleBox[ StyleBox[ DynamicBox[ToBoxes[ FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"], StandardForm]], StripOnInput->False, DynamicUpdating->True, LineSpacing->{1, 2}, LineIndent->0, LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive", StripOnInput->False]}, Dynamic[ CurrentValue["MouseOver"]], Alignment->Center, FrameMargins->0, ImageSize->{Automatic, {25, Full}}], Appearance->None, BaselinePosition->Baseline, ButtonFunction:>FrontEndExecute[{ FrontEnd`SetOptions[ FrontEnd`$FrontEnd, FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}], FrontEnd`FrontEndToken["PreferencesDialog"]}], Evaluator->None, Method->"Preemptive"]} }, AutoDelete->False, FrameStyle->GrayLevel[0.85], GridBoxDividers->{"Columns" -> {False, {True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], Offset[1.2], { Offset[0.4]}, Offset[0.2]}}], BaseStyle->"OutputSizeLimit", FrameMargins->{{12, 12}, {0, 15}}, FrameStyle->GrayLevel[0.85], RoundingRadius->5, StripOnInput->False], Deploy, DefaultBaseStyle->"Deploy"], If[19400777345032151489 === $SessionID, Out[250], Message[ MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"]; Null]]], "Output", CellLabel-> "Out[250]=",ExpressionUUID->"93d93b76-31f8-4fa3-a6fa-44534c81fddf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellLabel-> "In[251]:=",ExpressionUUID->"4007f90c-7d9a-4d07-9605-628a9960378d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.618033988749895`", ",", "0.5257311121191336`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.7013016167040798`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618033988749895`"}], ",", "0.5257311121191336`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9156534611226073`"}], ",", RowBox[{"-", "1.3468771209104056`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9980037820455706`", ",", RowBox[{"-", "1.2870461105649829`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.532453719327712`", ",", "0.551438879492891`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.05089529731485315`"}], ",", "1.627854080809747`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.5639087429358225`"}], ",", "0.4546302711727504`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.03214050218009269`", ",", "1.027993751750205`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9677481949313409`"}], ",", "0.3482349734374499`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6302417791990201`"}], ",", RowBox[{"-", "0.812772702094444`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5782373542561402`", ",", RowBox[{"-", "0.8505561284599089`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.9876121176941284`", ",", "0.28710010536669833`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6151465359789`"}], ",", "0.5875385408831822`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7488730915298573`"}], ",", RowBox[{"-", "0.40347972753596056`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.15231751215323702`", ",", RowBox[{"-", "0.836902726271953`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.8430104911223828`", ",", RowBox[{"-", "0.11375460257755592`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3686916242331369`", ",", "0.7665985155022871`"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[251]=",ExpressionUUID->"2035b795-9ef1-497e-ae15-83c692220769"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e2"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[252]:=",ExpressionUUID->"3e54ab1b-bae7-419a-88a1-f3c7e9b2be69"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, { 4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, { 8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, ( Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { 1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { 0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {(( Rational[-1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 5] Pi - ArcSin[ Rational[1, 32]]], (( Rational[-1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 5] Pi - ArcSin[ Rational[1, 32]]]}, {(( Rational[ 1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 5] Pi + ArcSin[ Rational[1, 32]]], (( Rational[-1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 5] Pi + ArcSin[ Rational[1, 32]]]}, {(( Rational[ 1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 10] Pi + ArcSin[ Rational[1, 32]]], (( Rational[ 1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 10] Pi + ArcSin[ Rational[1, 32]]]}, {( Rational[-1, 4096] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2]), ( Rational[ 1, 4096] (1023/(Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2]))^Rational[1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])}, {(( Rational[-1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 10] Pi - ArcSin[ Rational[1, 32]]], (( Rational[ 1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) ( 1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - ( 2 (5 + 5^Rational[1, 2]))^Rational[1, 2] + 2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^ Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 10] Pi - ArcSin[ Rational[1, 32]]]}, {(( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]) Sin[Rational[1, 5] Pi + ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]], (( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 5] Pi + ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {(( Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]) Sin[Rational[1, 5] Pi - ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]], (( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 5] Pi - ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {(( Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Cos[Rational[1, 10] Pi - ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]) Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], (( Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]) Sin[Rational[1, 10] Pi - ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]}, {( Rational[ 1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])/(1 - Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2))^ Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - (((6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], (( Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {(( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 10] Pi + ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], (( Rational[ 1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + ((((131072 #^3) #2^6) #3) #6) #7^4 - ((((32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]) Sin[Rational[1, 10] Pi + ArcCos[ Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]}, {( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Sin[Rational[1, 5] Pi + ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - (((((512 #) #2) #3^2) #4) #5) #7^2 + (((4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]], ( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 5] Pi + ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]]}, {( Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Sin[Rational[1, 5] Pi - ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]], ( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 5] Pi - ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]]}, {( Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Cos[Rational[1, 10] Pi - ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]], ( Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Sin[Rational[1, 10] Pi - ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]]}, { Rational[ 1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])/( 1 + (Rational[-1, 1024] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-4)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])^2))^ Rational[-1, 2], (( Rational[-1, 64] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + ((((131072 #^3) #2^6) #3) #6) #7^4 - ((((32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + ((((1024 #^5) #2^2) #3) #4^2) #7^4 + ((((256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])}, {( Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) Cos[Rational[1, 10] Pi + ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]], ( Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) Sin[Rational[1, 10] Pi + ArcCos[(Rational[-1, 32] Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^(-2)) (((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3 + ((((-24) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (( 8 5^Rational[1, 2]) Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5) #7^6 - (((201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ( 16 Root[{ 6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^3)^2 + (64 Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2) (-14 + 6 5^Rational[1, 2] + 28 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (4 5^Rational[1, 2]) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - (16 Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 + 11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #5 + 2643725544601800570663830814720 #5^2 + 731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 + 8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 + 1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 + 4294967296 #6^8& , (4096 #^4) #2 + ( 16384 #^4) #3 + ((32768 #^3) #2) #4 + (( 131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + (( 262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + (( 512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + ((( 2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + (( 4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - (( 8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - ((( 32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - ((( 128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + (( 1024 #^2) #3) #6^2 - (( 256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - ((( 1024 #^2) #2^3) #4) #7^2 + (((( 8192 #^2) #2^2) #3) #4) #7^2 - (((( 16384 #^2) #2) #3^2) #4) #7^2 + ((( 32768 #^2) #3^3) #4) #7^2 + (((( 32768 #) #2^2) #3) #4^2) #7^2 - (((( 98304 #) #2) #3^2) #4^2) #7^2 + ((( 262144 #) #3^3) #4^2) #7^2 - ((( 262144 #2) #3^2) #4^3) #7^2 + (( 524288 #3^3) #4^3) #7^2 + (((( 16 #^2) #2^2) #3) #5) #7^2 - ((((( 512 #) #2) #3^2) #4) #5) #7^2 + ((( 4096 #3^3) #4^2) #5) #7^2 + ((( 64 #^2) #2^3) #6) #7^2 - ((((( 2048 #) #2^2) #3) #4) #6) #7^2 + (((( 16384 #2) #3^2) #4^2) #6) #7^2 + (( 4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - (((( 128 #) #2^4) #3) #4) #7^4 - (((( 512 #) #2^3) #3^2) #4) #7^4 + ((( 1024 #2^3) #3^2) #4^2) #7^4 + ((( 4096 #2^2) #3^3) #4^2) #7^4 - ((( 4 #^2) #2^3) #5) #7^4 - (((( 16 #^2) #2^2) #3) #5) #7^4 + ((((( 128 #) #2^2) #3) #4) #5) #7^4 + ((((( 512 #) #2) #3^2) #4) #5) #7^4 - (((( 1024 #2) #3^2) #4^2) #5) #7^4 - ((( 4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2) Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 - 4 Root[{ 70380813052542976 - 6706695785938944 # - 57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 + 4695788797132717630576692857667584 #3 + 2643725544601800570663830814720 #3^2 + 731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 + 8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& , 23512593043456 + 11096713075712 #5 - 866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 + 16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + ((( 4096 #^5) #2^4) #5^2) #6^2 - (((( 3072 #^4) #2^3) #3) #5^2) #6^2 - (((( 8192 #^3) #2^4) #3) #5^2) #6^2 + (((( 3072 #^2) #2^3) #3^2) #5^2) #6^2 + (((( 4096 #) #2^4) #3^2) #5^2) #6^2 - ((( 1024 #2^3) #3^3) #5^2) #6^2 - (((( 4096 #^5) #2^2) #4) #5^2) #6^2 + ((((( 8192 #^3) #2^2) #3) #4) #5^2) #6^2 - ((((( 4096 #) #2^2) #3^2) #4) #5^2) #6^2 - ((( 2048 #^5) #2^4) #5) #6^3 - ((( 8192 #^4) #2^5) #5) #6^3 + (((( 4096 #^3) #2^4) #3) #5) #6^3 + (((( 8192 #^2) #2^5) #3) #5) #6^3 - (((( 2048 #) #2^4) #3^2) #5) #6^3 + (((( 2048 #^5) #2^2) #4) #5) #6^3 + (((( 16384 #^4) #2^3) #4) #5) #6^3 - ((((( 4096 #^3) #2^2) #3) #4) #5) #6^3 - ((((( 16384 #^2) #2^3) #3) #4) #5) #6^3 + ((((( 2048 #) #2^2) #3^2) #4) #5) #6^3 - (((( 8192 #^4) #2) #4^2) #5) #6^3 + ((((( 8192 #^2) #2) #3) #4^2) #5) #6^3 + (( 1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - ((( 1024 #^2) #2^5) #3) #6^4 - ((( 2048 #^4) #2^3) #4) #6^4 - ((( 12288 #^3) #2^4) #4) #6^4 + (((( 2048 #^2) #2^3) #3) #4) #6^4 + ((( 1024 #^4) #2) #4^2) #6^4 + ((( 12288 #^3) #2^2) #4^2) #6^4 - (((( 1024 #^2) #2) #3) #4^2) #6^4 - (( 4096 #^3) #4^3) #6^4 + (((( 1024 #^6) #2^3) #3) #5^2) #7^2 - (((( 3072 #^4) #2^3) #3^2) #5^2) #7^2 + (((( 3072 #^2) #2^3) #3^3) #5^2) #7^2 - ((( 1024 #2^3) #3^4) #5^2) #7^2 + (((( 4096 #^7) #2^2) #4) #5^2) #7^2 - ((((( 12288 #^5) #2^2) #3) #4) #5^2) #7^2 + ((((( 12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - ((((( 4096 #) #2^2) #3^3) #4) #5^2) #7^2 - ((( 65536 #^7) #2^2) #5^3) #7^2 + (((( 196608 #^5) #2^2) #3) #5^3) #7^2 - (((( 196608 #^3) #2^2) #3^2) #5^3) #7^2 + (((( 65536 #) #2^2) #3^3) #5^3) #7^2 - ((((( 2048 #^5) #2^4) #3) #5) #6) #7^2 + ((((( 4096 #^3) #2^4) #3^2) #5) #6) #7^2 - ((((( 2048 #) #2^4) #3^3) #5) #6) #7^2 - ((((( 8192 #^6) #2^3) #4) #5) #6) #7^2 + (((((( 2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + (((((( 16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - (((((( 4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - (((((( 8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + (((((( 2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + ((((( 8192 #^6) #2) #4^2) #5) #6) #7^2 - (((((( 16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + (((((( 8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + (((( 196608 #^6) #2^3) #5^2) #6) #7^2 - ((((( 458752 #^4) #2^3) #3) #5^2) #6) #7^2 + ((((( 327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - (((( 65536 #2^3) #3^3) #5^2) #6) #7^2 - ((((( 131072 #^6) #2) #4) #5^2) #6) #7^2 + (((((( 262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - (((((( 131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + (((( 1024 #^4) #2^5) #3) #6^2) #7^2 - (((( 1024 #^2) #2^5) #3^2) #6^2) #7^2 + (((( 4096 #^5) #2^4) #4) #6^2) #7^2 - ((((( 2048 #^4) #2^3) #3) #4) #6^2) #7^2 - ((((( 4096 #^3) #2^4) #3) #4) #6^2) #7^2 + ((((( 2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - (((( 8192 #^5) #2^2) #4^2) #6^2) #7^2 + ((((( 1024 #^4) #2) #3) #4^2) #6^2) #7^2 + ((((( 8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - ((((( 1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + ((( 4096 #^5) #4^3) #6^2) #7^2 - (((( 4096 #^3) #3) #4^3) #6^2) #7^2 - (((( 16384 #^6) #2^3) #5) #6^2) #7^2 - (((( 327680 #^5) #2^4) #5) #6^2) #7^2 - (((( 262144 #^4) #2^5) #5) #6^2) #7^2 + ((((( 49152 #^4) #2^3) #3) #5) #6^2) #7^2 + ((((( 589824 #^3) #2^4) #3) #5) #6^2) #7^2 + ((((( 262144 #^2) #2^5) #3) #5) #6^2) #7^2 - ((((( 49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - ((((( 262144 #) #2^4) #3^2) #5) #6^2) #7^2 + (((( 16384 #2^3) #3^3) #5) #6^2) #7^2 + ((((( 393216 #^5) #2^2) #4) #5) #6^2) #7^2 + ((((( 524288 #^4) #2^3) #4) #5) #6^2) #7^2 - (((((( 655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - (((((( 524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + (((((( 262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - (((( 65536 #^5) #4^2) #5) #6^2) #7^2 - ((((( 262144 #^4) #2) #4^2) #5) #6^2) #7^2 + ((((( 65536 #^3) #3) #4^2) #5) #6^2) #7^2 + (((((( 262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + ((( 16384 #^5) #2^4) #6^3) #7^2 + ((( 196608 #^4) #2^5) #6^3) #7^2 + ((( 262144 #^3) #2^6) #6^3) #7^2 - (((( 32768 #^3) #2^4) #3) #6^3) #7^2 - (((( 196608 #^2) #2^5) #3) #6^3) #7^2 + (((( 16384 #) #2^4) #3^2) #6^3) #7^2 - (((( 16384 #^5) #2^2) #4) #6^3) #7^2 - (((( 393216 #^4) #2^3) #4) #6^3) #7^2 - (((( 786432 #^3) #2^4) #4) #6^3) #7^2 + ((((( 32768 #^3) #2^2) #3) #4) #6^3) #7^2 + ((((( 393216 #^2) #2^3) #3) #4) #6^3) #7^2 - ((((( 16384 #) #2^2) #3^2) #4) #6^3) #7^2 + (((( 196608 #^4) #2) #4^2) #6^3) #7^2 + (((( 786432 #^3) #2^2) #4^2) #6^3) #7^2 - ((((( 196608 #^2) #2) #3) #4^2) #6^3) #7^2 - ((( 262144 #^3) #4^3) #6^3) #7^2 + ((( 256 #^4) #2^5) #3^2) #7^4 + ((( 1024 #^3) #2^6) #3^2) #7^4 - ((( 512 #^2) #2^5) #3^3) #7^4 - ((( 1024 #) #2^6) #3^3) #7^4 + (( 256 #2^5) #3^4) #7^4 - (((( 512 #^6) #2^3) #3) #4) #7^4 - (((( 2048 #^5) #2^4) #3) #4) #7^4 + (((( 1024 #^4) #2^3) #3^2) #4) #7^4 + (((( 1024 #^3) #2^4) #3^2) #4) #7^4 - (((( 512 #^2) #2^3) #3^3) #4) #7^4 + (((( 1024 #) #2^4) #3^3) #4) #7^4 - (( 70380813052542976 #2) #4^2) #7^4 + ((( 6706695785938944 #) #2) #4^2) #7^4 + ((( 57086057619456 #^2) #2) #4^2) #7^4 - ((( 11464396046272 #^3) #2) #4^2) #7^4 - ((( 86904077569 #^4) #2) #4^2) #7^4 + ((( 2812789776 #^5) #2) #4^2) #7^4 + ((( 3215264 #^6) #2) #4^2) #7^4 - ((( 98048 #^7) #2) #4^2) #7^4 + ((( 1024 #^7) #2^2) #4^2) #7^4 - (((( 512 #^6) #2) #3) #4^2) #7^4 + (((( 1024 #^5) #2^2) #3) #4^2) #7^4 + (((( 256 #^4) #2) #3^2) #4^2) #7^4 - (((( 2048 #^3) #2^2) #3^2) #4^2) #7^4 - (( 1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - (((( 8192 #^6) #2^3) #3) #5) #7^4 - (((( 32768 #^5) #2^4) #3) #5) #7^4 + (((( 24576 #^4) #2^3) #3^2) #5) #7^4 + (((( 65536 #^3) #2^4) #3^2) #5) #7^4 - (((( 24576 #^2) #2^3) #3^3) #5) #7^4 - (((( 32768 #) #2^4) #3^3) #5) #7^4 + ((( 8192 #2^3) #3^4) #5) #7^4 + ((( 2252186017681375232 #2) #4) #5) #7^4 - (((( 214614265150046208 #) #2) #4) #5) #7^4 - (((( 1826753843822592 #^2) #2) #4) #5) #7^4 + (((( 366860673480704 #^3) #2) #4) #5) #7^4 + (((( 2780930482208 #^4) #2) #4) #5) #7^4 - (((( 90009272832 #^5) #2) #4) #5) #7^4 - (((( 102888448 #^6) #2) #4) #5) #7^4 + (((( 3137536 #^7) #2) #4) #5) #7^4 - (((( 98304 #^7) #2^2) #4) #5) #7^4 - (((( 262144 #^6) #2^3) #4) #5) #7^4 + ((((( 24576 #^6) #2) #3) #4) #5) #7^4 + ((((( 294912 #^5) #2^2) #3) #4) #5) #7^4 + ((((( 524288 #^4) #2^3) #3) #4) #5) #7^4 - ((((( 24576 #^4) #2) #3^2) #4) #5) #7^4 - ((((( 294912 #^3) #2^2) #3^2) #4) #5) #7^4 - ((((( 262144 #^2) #2^3) #3^2) #4) #5) #7^4 + ((((( 8192 #^2) #2) #3^3) #4) #5) #7^4 + ((((( 98304 #) #2^2) #3^3) #4) #5) #7^4 + ((( 32768 #^7) #4^2) #5) #7^4 + (((( 262144 #^6) #2) #4^2) #5) #7^4 - (((( 65536 #^5) #3) #4^2) #5) #7^4 - ((((( 524288 #^4) #2) #3) #4^2) #5) #7^4 + (((( 32768 #^3) #3^2) #4^2) #5) #7^4 + ((((( 262144 #^2) #2) #3^2) #4^2) #5) #7^4 - (( 18017488141451001856 #2) #5^2) #7^4 + ((( 1716914121200369664 #) #2) #5^2) #7^4 + ((( 14614030750580736 #^2) #2) #5^2) #7^4 - ((( 2934885387845632 #^3) #2) #5^2) #7^4 - ((( 22247443857664 #^4) #2) #5^2) #7^4 + ((( 720074182656 #^5) #2) #5^2) #7^4 + ((( 823107584 #^6) #2) #5^2) #7^4 - ((( 25100288 #^7) #2) #5^2) #7^4 + ((( 1310720 #^7) #2^2) #5^2) #7^4 + ((( 5242880 #^6) #2^3) #5^2) #7^4 + ((( 4194304 #^5) #2^4) #5^2) #7^4 - (((( 262144 #^6) #2) #3) #5^2) #7^4 - (((( 3932160 #^5) #2^2) #3) #5^2) #7^4 - (((( 11534336 #^4) #2^3) #3) #5^2) #7^4 - (((( 8388608 #^3) #2^4) #3) #5^2) #7^4 + (((( 393216 #^4) #2) #3^2) #5^2) #7^4 + (((( 3932160 #^3) #2^2) #3^2) #5^2) #7^4 + (((( 7340032 #^2) #2^3) #3^2) #5^2) #7^4 + (((( 4194304 #) #2^4) #3^2) #5^2) #7^4 - (((( 262144 #^2) #2) #3^3) #5^2) #7^4 - (((( 1310720 #) #2^2) #3^3) #5^2) #7^4 - ((( 1048576 #2^3) #3^3) #5^2) #7^4 + ((( 65536 #2) #3^4) #5^2) #7^4 - ((( 262144 #^7) #4) #5^2) #7^4 - (((( 4194304 #^6) #2) #4) #5^2) #7^4 - (((( 4194304 #^5) #2^2) #4) #5^2) #7^4 + (((( 786432 #^5) #3) #4) #5^2) #7^4 + ((((( 8388608 #^4) #2) #3) #4) #5^2) #7^4 + ((((( 8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - (((( 786432 #^3) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - ((((( 4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + (((( 262144 #) #3^3) #4) #5^2) #7^4 + (((( 16384 #^5) #2^4) #3) #6) #7^4 + (((( 98304 #^4) #2^5) #3) #6) #7^4 + (((( 131072 #^3) #2^6) #3) #6) #7^4 - (((( 32768 #^3) #2^4) #3^2) #6) #7^4 - (((( 131072 #^2) #2^5) #3^2) #6) #7^4 - (((( 131072 #) #2^6) #3^2) #6) #7^4 + (((( 16384 #) #2^4) #3^3) #6) #7^4 + ((( 32768 #2^5) #3^3) #6) #7^4 + (((( 32768 #^6) #2^3) #4) #6) #7^4 + (((( 131072 #^5) #2^4) #4) #6) #7^4 - ((((( 16384 #^5) #2^2) #3) #4) #6) #7^4 - ((((( 229376 #^4) #2^3) #3) #4) #6) #7^4 - ((((( 393216 #^3) #2^4) #3) #4) #6) #7^4 + ((((( 32768 #^3) #2^2) #3^2) #4) #6) #7^4 + ((((( 229376 #^2) #2^3) #3^2) #4) #6) #7^4 + ((((( 262144 #) #2^4) #3^2) #4) #6) #7^4 - ((((( 16384 #) #2^2) #3^3) #4) #6) #7^4 - (((( 32768 #2^3) #3^3) #4) #6) #7^4 - (((( 32768 #^6) #2) #4^2) #6) #7^4 - (((( 262144 #^5) #2^2) #4^2) #6) #7^4 + ((((( 131072 #^4) #2) #3) #4^2) #6) #7^4 + ((((( 393216 #^3) #2^2) #3) #4^2) #6) #7^4 - ((((( 98304 #^2) #2) #3^2) #4^2) #6) #7^4 - ((((( 131072 #) #2^2) #3^2) #4^2) #6) #7^4 + ((( 131072 #^5) #4^3) #6) #7^4 - (((( 131072 #^3) #3) #4^3) #6) #7^4 - (((( 1572864 #^6) #2^3) #5) #6) #7^4 - (((( 8388608 #^5) #2^4) #5) #6) #7^4 - (((( 8388608 #^4) #2^5) #5) #6) #7^4 + ((((( 3670016 #^4) #2^3) #3) #5) #6) #7^4 + ((((( 12582912 #^3) #2^4) #3) #5) #6) #7^4 + ((((( 8388608 #^2) #2^5) #3) #5) #6) #7^4 - ((((( 2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - ((((( 4194304 #) #2^4) #3^2) #5) #6) #7^4 + (((( 524288 #2^3) #3^3) #5) #6) #7^4 + ((((( 524288 #^6) #2) #4) #5) #6) #7^4 + ((((( 10485760 #^5) #2^2) #4) #5) #6) #7^4 + ((((( 16777216 #^4) #2^3) #4) #5) #6) #7^4 - (((((( 524288 #^4) #2) #3) #4) #5) #6) #7^4 - (((((( 12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - (((((( 16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - (((((( 524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + (((((( 2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + ((((( 524288 #2) #3^3) #4) #5) #6) #7^4 - (((( 2097152 #^5) #4^2) #5) #6) #7^4 - ((((( 8388608 #^4) #2) #4^2) #5) #6) #7^4 + (((((( 8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + ((((( 2097152 #) #3^2) #4^2) #5) #6) #7^4 + ((( 65536 #^6) #2^3) #6^2) #7^4 + ((( 1835008 #^5) #2^4) #6^2) #7^4 + ((( 9437184 #^4) #2^5) #6^2) #7^4 + ((( 12582912 #^3) #2^6) #6^2) #7^4 - (((( 196608 #^4) #2^3) #3) #6^2) #7^4 - (((( 3670016 #^3) #2^4) #3) #6^2) #7^4 - (((( 10485760 #^2) #2^5) #3) #6^2) #7^4 - (((( 4194304 #) #2^6) #3) #6^2) #7^4 + (((( 196608 #^2) #2^3) #3^2) #6^2) #7^4 + (((( 1835008 #) #2^4) #3^2) #6^2) #7^4 + ((( 1048576 #2^5) #3^2) #6^2) #7^4 - ((( 65536 #2^3) #3^3) #6^2) #7^4 - (((( 1835008 #^5) #2^2) #4) #6^2) #7^4 - (((( 18874368 #^4) #2^3) #4) #6^2) #7^4 - (((( 37748736 #^3) #2^4) #4) #6^2) #7^4 + ((((( 3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + ((((( 20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + ((((( 12582912 #) #2^4) #3) #4) #6^2) #7^4 - ((((( 1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - (((( 2097152 #2^3) #3^2) #4) #6^2) #7^4 + (((( 9437184 #^4) #2) #4^2) #6^2) #7^4 + (((( 37748736 #^3) #2^2) #4^2) #6^2) #7^4 - ((((( 10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - ((((( 12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + (((( 1048576 #2) #3^2) #4^2) #6^2) #7^4 - ((( 12582912 #^3) #4^3) #6^2) #7^4 + (((( 4194304 #) #3) #4^3) #6^2) #7^4 + ((( 65536 #^6) #2^3) #3) #7^6 + ((( 524288 #^5) #2^4) #3) #7^6 + ((( 1048576 #^4) #2^5) #3) #7^6 - ((( 196608 #^4) #2^3) #3^2) #7^6 - ((( 1048576 #^3) #2^4) #3^2) #7^6 - ((( 1048576 #^2) #2^5) #3^2) #7^6 + ((( 196608 #^2) #2^3) #3^3) #7^6 + ((( 524288 #) #2^4) #3^3) #7^6 - (( 65536 #2^3) #3^4) #7^6 + ((( 262144 #^7) #2^2) #4) #7^6 + ((( 2097152 #^6) #2^3) #4) #7^6 + ((( 4194304 #^5) #2^4) #4) #7^6 - (((( 1310720 #^5) #2^2) #3) #4) #7^6 - (((( 6291456 #^4) #2^3) #3) #4) #7^6 - (((( 4194304 #^3) #2^4) #3) #4) #7^6 + (((( 1835008 #^3) #2^2) #3^2) #4) #7^6 + (((( 4194304 #^2) #2^3) #3^2) #4) #7^6 - (((( 786432 #) #2^2) #3^3) #4) #7^6 - ((( 2097152 #^6) #2) #4^2) #7^6 - ((( 8388608 #^5) #2^2) #4^2) #7^6 + (((( 5242880 #^4) #2) #3) #4^2) #7^6 + (((( 8388608 #^3) #2^2) #3) #4^2) #7^6 - (((( 3145728 #^2) #2) #3^2) #4^2) #7^6 + (( 4194304 #^5) #4^3) #7^6 - ((( 4194304 #^3) #3) #4^3) #7^6 - ((( 4194304 #^7) #2^2) #5) #7^6 - ((( 50331648 #^6) #2^3) #5) #7^6 - ((( 201326592 #^5) #2^4) #5) #7^6 - ((( 268435456 #^4) #2^5) #5) #7^6 + (((( 12582912 #^5) #2^2) #3) #5) #7^6 + (((( 117440512 #^4) #2^3) #3) #5) #7^6 + (((( 335544320 #^3) #2^4) #3) #5) #7^6 + (((( 268435456 #^2) #2^5) #3) #5) #7^6 - (((( 12582912 #^3) #2^2) #3^2) #5) #7^6 - (((( 83886080 #^2) #2^3) #3^2) #5) #7^6 - (((( 134217728 #) #2^4) #3^2) #5) #7^6 + (((( 4194304 #) #2^2) #3^3) #5) #7^6 + ((( 16777216 #2^3) #3^3) #5) #7^6 + (((( 33554432 #^6) #2) #4) #5) #7^6 + (((( 268435456 #^5) #2^2) #4) #5) #7^6 + (((( 536870912 #^4) #2^3) #4) #5) #7^6 - ((((( 67108864 #^4) #2) #3) #4) #5) #7^6 - ((((( 402653184 #^3) #2^2) #3) #4) #5) #7^6 - ((((( 536870912 #^2) #2^3) #3) #4) #5) #7^6 + ((((( 33554432 #^2) #2) #3^2) #4) #5) #7^6 + ((((( 134217728 #) #2^2) #3^2) #4) #5) #7^6 - ((( 67108864 #^5) #4^2) #5) #7^6 - (((( 268435456 #^4) #2) #4^2) #5) #7^6 + (((( 67108864 #^3) #3) #4^2) #5) #7^6 + ((((( 268435456 #^2) #2) #3) #4^2) #5) #7^6 + ((( 4194304 #^6) #2^3) #6) #7^6 + ((( 50331648 #^5) #2^4) #6) #7^6 + ((( 201326592 #^4) #2^5) #6) #7^6 + ((( 268435456 #^3) #2^6) #6) #7^6 - (((( 12582912 #^4) #2^3) #3) #6) #7^6 - (((( 100663296 #^3) #2^4) #3) #6) #7^6 - (((( 201326592 #^2) #2^5) #3) #6) #7^6 + (((( 12582912 #^2) #2^3) #3^2) #6) #7^6 + (((( 50331648 #) #2^4) #3^2) #6) #7^6 - ((( 4194304 #2^3) #3^3) #6) #7^6 - (((( 50331648 #^5) #2^2) #4) #6) #7^6 - (((( 402653184 #^4) #2^3) #4) #6) #7^6 - (((( 805306368 #^3) #2^4) #4) #6) #7^6 + ((((( 100663296 #^3) #2^2) #3) #4) #6) #7^6 + ((((( 402653184 #^2) #2^3) #3) #4) #6) #7^6 - ((((( 50331648 #) #2^2) #3^2) #4) #6) #7^6 + (((( 201326592 #^4) #2) #4^2) #6) #7^6 + (((( 805306368 #^3) #2^2) #4^2) #6) #7^6 - ((((( 201326592 #^2) #2) #3) #4^2) #6) #7^6 - ((( 268435456 #^3) #4^3) #6) #7^6 + (( 67108864 #^6) #2^3) #7^8 + (( 805306368 #^5) #2^4) #7^8 + (( 3221225472 #^4) #2^5) #7^8 + (( 4294967296 #^3) #2^6) #7^8 - ((( 201326592 #^4) #2^3) #3) #7^8 - ((( 1610612736 #^3) #2^4) #3) #7^8 - ((( 3221225472 #^2) #2^5) #3) #7^8 + ((( 201326592 #^2) #2^3) #3^2) #7^8 + ((( 805306368 #) #2^4) #3^2) #7^8 - (( 67108864 #2^3) #3^3) #7^8 - ((( 805306368 #^5) #2^2) #4) #7^8 - ((( 6442450944 #^4) #2^3) #4) #7^8 - ((( 12884901888 #^3) #2^4) #4) #7^8 + (((( 1610612736 #^3) #2^2) #3) #4) #7^8 + (((( 6442450944 #^2) #2^3) #3) #4) #7^8 - (((( 805306368 #) #2^2) #3^2) #4) #7^8 + ((( 3221225472 #^4) #2) #4^2) #7^8 + ((( 12884901888 #^3) #2^2) #4^2) #7^8 - (((( 3221225472 #^2) #2) #3) #4^2) #7^8 - (( 4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^ Rational[1, 2])]]}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.], ArrowBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8u/7lg6YKl79/b6ytOXbl3+hcM86D67dH0w+Xjwj4ZvGv5YV/h pqqWvPShPXb1DAxPmN24Oyx+Y8hnzPh56hPfqv33zlXv2MD9C5f6/bjM25/e q3OU9ed+z8i5E1ZK3MVQv27L/hoO37f7bZcrsJ3v+bofnX9Ipdp7R8kC+7Nq LZNXFn3AUH/p+H/+09/f7e/Q7w+v9rxmjx5ehOQvFx4/90Hryf6giktPrZle YYQXIfmzibvnv254ZH95Z0rNQfPX+9HDi5B8n2rIrpZZ7+0nzzwndzP+EkZ4 ofsfXR5dP7r6zXdPnHRf/3h/YLH7Atmzj+zRw6PQZP7mI9+e75+aPX3RnEs3 McJjl9HyZ8r1h+39172wfHH81X50/7w5Zqj88ecr+2r+652s8nv3o7uH86/E wSUzrttvv6Q+52f7Cwz3oNuPLo+uH109uvvQ+ejuQ+ejmw8Ahm4Clg== "], 0.0319088348808545]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9156534611226073, -1.3468771209104056}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.8837446262417528, -1.314968286029551}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9980037820455706, -1.2870461105649829}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.029912616926425, -1.2551372756841284}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.532453719327712, 0.551438879492891}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5643625542085664, 0.5833477143737456}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05089529731485315, 1.627854080809747}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906015}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.5639087429358225, 0.4546302711727504}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.531999908054968, 0.4865391060536049}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.03214050218009269, 1.027993751750205}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {0.06404933706094719, 1.0599025866310594}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9677481949313409, 0.3482349734374499}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {-0.9358393600504864, 0.3801438083183044}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6302417791990201, -0.812772702094444}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {-0.5983329443181656, -0.7808638672135895}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5782373542561402, -0.8505561284599089}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6101461891369947, -0.8186472935790544}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9876121176941284, 0.28710010536669833}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {1.0195209525749829, 0.31900894024755283}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6151465359789, 0.5875385408831822}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5832377010980455, 0.6194473757640367}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.7488730915298573, -0.40347972753596056}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7169642566490028, -0.37157089265510607}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.15231751215323702, -0.836902726271953}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.18422634703409152, -0.8049938913910984}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8430104911223828, -0.11375460257755592}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8749193260032373, -0.08184576769670142}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.3686916242331369, 0.7665985155022871}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.4006004591139914, 0.7985073503831416}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[252]=",ExpressionUUID->"552b3d37-5ecc-4b9e-9b66-14e6aaf778c6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Redo", "Subsubsection",ExpressionUUID->"f6b883e6-2c26-48e5-9e1b-8ccd359f7b72"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{ RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"outer", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"tilted", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"middle", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], "r", " ", RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"inner", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{"Csc", "[", FractionBox["\[Pi]", "5"], "]"}], RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ RowBox[{"2", "\[Pi]", " ", RowBox[{ RowBox[{"(", RowBox[{"k", "+", RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+", RowBox[{"4", RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}], "/.", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Phi]", "\[Rule]", RowBox[{"\[Pi]", "/", "100"}]}], ",", "\[IndentingNewLine]", RowBox[{"\[Theta]", "\[Rule]", RowBox[{ "-", "1.7056097879257796103860159614608375667124365057503383025689057123\ 6629180161806`50."}]}], ",", RowBox[{"\[Psi]", "\[Rule]", RowBox[{ "-", "0.5969026041820607153079022428231055479975485059529660873408572907\ 4044126728344`50."}]}], ",", RowBox[{ "r", "\[Rule]", "1.207869443620030847276468918089691760518715991416256949027429324777224\ 99564001`50."}], ",", RowBox[{ "R", "\[Rule]", "0.957078156866110632228677115364124615461143435290048097659784064945282\ 95603317`50."}]}], "}"}]}]}]], "Input",ExpressionUUID->"c712a265-fda5-4561-\ 94e2-cc9cb4db0ec7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.91522834433436088899628632593610441365088079663510765221311779592\ 971495978054`50."}], ",", RowBox[{ "-", "1.34671761245990437672058843171766847533528173567877755312864332701\ 993227447781`50."}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.99798344880647971716432220148780709075249481746115222083703710485295848\ 464194`50.", ",", RowBox[{ "-", "1.28659250965138341711464357808887931779079019904372493820619883511\ 791028132225`50."}]}], "}"}], ",", RowBox[{"{", RowBox[{ "1.53201603590660603568988959089719530538853547940359772775090719963910396\ 388124`50.", ",", "0.5515597118243222989979752187177844870156171336577166614539789307036117\ 6889588`50."}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.05114546730631786068885222003284634003239933825034348820104298739\ 613377954244`50."}], ",", "1.6274751583839118693359564349540628079631245134794070104673627567864222\ 2796831`50."}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "1.56362567307240700316907324641605164245775016197929880817378352116\ 621370920017`50."}], ",", "0.4542752519030536255013003561347004981473302875853788194135004746478085\ 5893574`50."}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.96673157966886271397079215140850599498226089788796505597763881075\ 525807241156`49.91546012542344"}], ",", RowBox[{ "-", "0.34804478477804593599623901932230359160139441615822266999822240328\ 226658471331`49.57545143418664"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.03227377340908787579516253991210688823064421415478318183831150793960474\ 989473`48.69910576778562", ",", RowBox[{ "-", "1.02696812165236649330863870005780123797238328553920605450791754005\ 752547286071`49.9919287887921"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.98667786858089158570252231063145007369814772708347050936216477854440766\ 740624`49.93054790644644", ",", RowBox[{ "-", "0.28665641976575338119832530866881297351420646532767370195745843350\ 356149116655`49.51505244306258"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.57752668532120510199850407842289466146781846403707858142156155322330991\ 887057`49.726231455349186", ",", "0.8498047111437737329150435337502165498867539030056059087950132795778899\ 540874`49.85212138464394"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.62974674764232184952539677755794562841434950738736721664439902895\ 206426376`49.75214398432924"}], ",", "0.8118646150523920775881594942987012532012302640194965176685850972654635\ 9465321`49.83475415394873"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.61474387117480085404273121868960484186077753243554802912202418579\ 16344096504`49.7874668667571"}], ",", "0.5879598375765123816963422320207561615986538900695118899545809552153485\ 5074278`49.74877377399323"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.74914933822783903493327575139089116873262019197330691672753495191\ 474155347254`50.03741968820854"}], ",", RowBox[{ "-", "0.40296658271222664898313470428197741209074911676209059579757326177\ 658219499599`49.49882095254179"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.15174411750050541338791545810889400350396063363061054216319489299436607\ 049211`49.02650315576971", ",", RowBox[{ "-", "0.83700688202306423830177140624233801776305006722725447706537479828\ 089070005651`50.50973748498062"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.84293236043600911954397822850152172490578745652751470663842546821368448\ 454529`50.63574479382874", ",", RowBox[{ "-", "0.11433211919560039893557170319323734264084692226444038913001666889\ 064408457733`48.90049584692159"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.36921673146612535604411328347008028218364963425072969704793877649832540\ 808549`49.45097694254319", ",", "0.7663457463543789045241355816967966108959922161842735720383837737327684\ 2888711`50.085263698207136"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[238]=",ExpressionUUID->"4a36d3f6-6a97-4715-9ed3-63b552484d2f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e", "=", RowBox[{"Select", "[", RowBox[{ RowBox[{"Subsets", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"Round", "[", RowBox[{"d", "=", RowBox[{"EuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}], "-", "d"}], "]"}], "<=", RowBox[{"10", "^", RowBox[{"-", "2"}]}]}], "&"}]}], "]"}]}]], "Input", CellLabel-> "In[240]:=",ExpressionUUID->"fdaaa393-22af-4a76-8e6d-9483e931323f"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\ \", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \ \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 43, 19082697425266532698, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[240]:=",ExpressionUUID->"0c250869-e24d-4dda-883e-a1e745fcec3b"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ \\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \ RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ \\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\ \", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \ \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 44, 19082697425266532698, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[240]:=",ExpressionUUID->"54dd3ab2-9b25-4854-b429-7e354969c6d9"], Cell[BoxData[ TemplateBox[{ "N", "meprec", "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ \\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \ SqrtBox[RowBox[{FractionBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \ \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \ RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], RowBox[{FractionBox[\\\"5\\\", \ \\\"8\\\"], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \ \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \ SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]], \\\"-\\\", \ RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \ \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ \"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\ \[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \ \\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 45, 19082697425266532698, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[240]:=",ExpressionUUID->"dadbe2bd-7c24-4607-b48c-6738c40177cb"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 240, 46, 19082697425266532698, "Local"}, "MessageTemplate"]], "Message", "MSG", CellLabel-> "During evaluation of \ In[240]:=",ExpressionUUID->"ba4bd48e-1777-4b36-ae3b-c733b7467a10"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[240]=",ExpressionUUID->"c5f8d93e-4939-4127-9ee6-280ad62c56ea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g0", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[262]:=",ExpressionUUID->"ca82e210-7a1e-4784-81c4-15b065cf9023"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {1, 16}, {1, 17}, {2, 3}, {2, 8}, {2, 17}, {2, 18}, {3, 4}, {3, 9}, {3, 18}, {3, 19}, {4, 5}, {4, 10}, {4, 19}, {4, 20}, {5, 6}, {5, 16}, {5, 20}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, { 11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, { 17, 18}, {18, 19}, {19, 20}}}, { VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, ( Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { 1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { 0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}, \ {-0.91522834433436088899628632593610441365088079663510765221311779592971495978\ 054`50., -1.\ 34671761245990437672058843171766847533528173567877755312864332701993227447781`\ 50.}, {0.997983448806479717164322201487807090752494817461152220837037104852958\ 48464194`50., \ -1.286592509651383417114643578088879317790790199043724938206198835117910281322\ 25`50.}, { 1.5320160359066060356898895908971953053885354794035977277509071996391\ 0396388124`50., 0.551559711824322298997975218717784487015617133657716661453978930703\ 61176889588`50.}, \ {-0.05114546730631786068885222003284634003239933825034348820104298739613377954\ 244`50., 1.\ 62747515838391186933595643495406280796312451347940701046736275678642222796831`\ 50.}, {-1.\ 56362567307240700316907324641605164245775016197929880817378352116621370920017`\ 50., 0.45427525190305362550130035613470049814733028758537881941350047464780855\ 893574`50.}, \ {-0.96673157966886271397079215140850599498226089788796505597763881075525807241\ 156`49.91546012542344, \ -0.348044784778045935996239019322303591601394416158222669998222403282266584713\ 31`49.57545143418664}, { 0.0322737734090878757951625399121068882306442141547831818383115079396\ 0474989473`48.69910576778562, \ -1.026968121652366493308638700057801237972383285539206054507917540057525472860\ 71`49.9919287887921}, { 0.9866778685808915857025223106314500736981477270834705093621647785444\ 0766740624`49.93054790644644, \ -0.286656419765753381198325308668812973514206465327673701957458433503561491166\ 55`49.51505244306258}, { 0.5775266853212051019985040784228946614678184640370785814215615532233\ 0991887057`49.726231455349186, 0.849804711143773732915043533750216549886753903005605908795013279577\ 8899540874`49.85212138464394}, \ {-0.62974674764232184952539677755794562841434950738736721664439902895206426376\ `49.75214398432924, 0.811864615052392077588159494298701253201230264019496517668585097265\ 46359465321`49.83475415394873}, \ {-0.61474387117480085404273121868960484186077753243554802912202418579163440965\ 04`49.7874668667571, 0.587959837576512381696342232020756161598653890069511889954580955215\ 34855074278`49.74877377399323}, \ {-0.74914933822783903493327575139089116873262019197330691672753495191474155347\ 254`50.03741968820854, \ -0.402966582712226648983134704281977412090749116762090595797573261776582194995\ 99`49.49882095254179}, { 0.1517441175005054133879154581088940035039606336306105421631948929943\ 6607049211`49.02650315576971, \ -0.837006882023064238301771406242338017763050067227254477065374798280890700056\ 51`50.50973748498062}, { 0.8429323604360091195439782285015217249057874565275147066384254682136\ 8448454529`50.63574479382874, \ -0.114332119195600398935571703193237342640846922264440389130016668890644084577\ 33`48.90049584692159}, { 0.3692167314661253560441132834700802821836496342507296970479387764983\ 2540808549`49.45097694254319, 0.766345746354378904524135581696796610895992216184273572038383773732\ 76842888711`50.085263698207136}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], LineBox[CompressedData[" 1:eJxTTMoPSmVmYGDQAGImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8uzxge9Kfq/Xt7q83M7I+mfsHQbzz9cNjv1Y/324paqE288AhD f7dbAQfHz+f7NQI6Ik1O3cRwD9R+ezT74fLbVxrZKzf/sH9R3NSbsOwhhjwh 81+YML+OzDlsP0tGasWhE69w2MfA8ITZjbvD4rc9uvyDVdek9uqv2q/z2yVF mesXhjwh8/8zSnn6/nxlP/Hq5RX3XPbux2Hfflzu+dk0IWoOy8/9tyZObrwh dBdDnpD53LKbzOwXXrdXXnWg+XnrCwz7zlu+/Nzj+XZ/bFr6EfWerxjpAT1+ 0eXRzUc3bxbrNYHy9+/2F07gWhTrdm0/uvz///OUDNoW2D9o4FAoy/uAkd4I yR/dq15+d9J7+zhXVu0pEZcw0gsheaHNDnaS1Y/s3+t4L5tp+BojvgnJ20bv WfZI7cn+Hft9G07/eokRX+j+R5dH14+uHj380cMDPf2j+xc9faL7Bz39oLsH PX7R3YNuP7o8un509ejuQ+ejuw+dj24+AI/Wdz0= "]]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9152283443343608, -1.3467176124599043}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9979834488064797, -1.2865925096513835}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.0298922836873343, -1.254683674770529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05114546730631786, 1.6274751583839118}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647663}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.563625673072407, 0.4542752519030536}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839081}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9667315796688627, -0.34804478477804596}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {-0.9348227447880082, -0.31613594989719146}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.03227377340908787, -1.0269681216523665}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {0.06418260828994238, -0.995059286771512}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9866778685808916, -0.2866564197657534}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {1.0185867034617462, -0.2547475848848989}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5775266853212051, 0.8498047111437738}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6094355202020596, 0.8817135460246283}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6297467476423219, 0.811864615052392}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-0.5978379127614674, 0.8437734499332465}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6147438711748009, 0.5879598375765124}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5828350362939464, 0.6198686724573669}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.749149338227839, -0.40296658271222663}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7172405033469845, -0.37105774783137213}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.15174411750050543, -0.8370068820230643}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.18365295238135992, -0.8050980471422098}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8429323604360092, -0.11433211919560039}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8748411953168637, -0.0824232843147459}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.3692167314661254, 0.7663457463543789}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.4011255663469799, 0.7982545812352334}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[262]=",ExpressionUUID->"ba6f11c4-04ed-4136-ac67-2d66c60e1d84"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g0", "]"}]], "Input", CellLabel-> "In[264]:=",ExpressionUUID->"37fe6db0-c3a3-420d-8852-f4b274ddf12e"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[264]=",ExpressionUUID->"c9ba7b42-9eaa-43da-9875-6b86c0d61780"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"VertexDegree", "[", "g0", "]"}]], "Input", CellLabel-> "In[265]:=",ExpressionUUID->"ca8cac7a-ba0a-495a-9f8f-cb53bade24d8"], Cell[BoxData[ RowBox[{"{", RowBox[{ "5", ",", "5", ",", "5", ",", "5", ",", "5", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "5", ",", "5", ",", "5", ",", "5", ",", "5"}], "}"}]], "Output", CellLabel-> "Out[265]=",ExpressionUUID->"f6545ffc-d860-43e2-8c9e-6127d47bda36"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"e2", "=", RowBox[{"Complement", "[", RowBox[{"e", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "20"}], "}"}]}], "}"}]}], "]"}]}]], "Input", CellLabel-> "In[259]:=",ExpressionUUID->"b95a683d-a389-43cf-957c-2a13303d28e8"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "16"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"17", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "19"}], "}"}], ",", RowBox[{"{", RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[259]=",ExpressionUUID->"3e244091-4f99-46c7-a6c3-665f0555404a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"EuclideanDistance", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"4", ",", "5"}], "}"}], "]"}], "]"}]}], "//", "FullSimplify"}]], "Input", CellLabel-> "In[256]:=",ExpressionUUID->"f5482682-7208-4899-bb12-8b6b70eeb205"], Cell[BoxData["2"], "Output", CellLabel-> "Out[256]=",ExpressionUUID->"98c68064-120a-4158-83f2-ebb1b9472f15"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], ",", RowBox[{"UndirectedEdge", "@@@", "e2"}], ",", RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",", RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellLabel-> "In[260]:=",ExpressionUUID->"0f98e7c2-b2df-479a-a736-6662fb052bb4"], Cell[BoxData[ GraphicsBox[ NamespaceBox["NetworkGraphics", DynamicModuleBox[{Typeset`graph = HoldComplete[ Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, { 4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, { 8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19, 20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{-1, ( Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, { 1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, { 0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) ( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^ Rational[1, 2], ( Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^ Rational[-1, 2]) (-1 + 5^Rational[ 1, 2])}, \ {-0.91522834433436088899628632593610441365088079663510765221311779592971495978\ 054`50., -1.\ 34671761245990437672058843171766847533528173567877755312864332701993227447781`\ 50.}, {0.997983448806479717164322201487807090752494817461152220837037104852958\ 48464194`50., \ -1.286592509651383417114643578088879317790790199043724938206198835117910281322\ 25`50.}, { 1.5320160359066060356898895908971953053885354794035977277509071996391\ 0396388124`50., 0.551559711824322298997975218717784487015617133657716661453978930703\ 61176889588`50.}, \ {-0.05114546730631786068885222003284634003239933825034348820104298739613377954\ 244`50., 1.\ 62747515838391186933595643495406280796312451347940701046736275678642222796831`\ 50.}, {-1.\ 56362567307240700316907324641605164245775016197929880817378352116621370920017`\ 50., 0.45427525190305362550130035613470049814733028758537881941350047464780855\ 893574`50.}, \ {-0.96673157966886271397079215140850599498226089788796505597763881075525807241\ 156`49.91546012542344, \ -0.348044784778045935996239019322303591601394416158222669998222403282266584713\ 31`49.57545143418664}, { 0.0322737734090878757951625399121068882306442141547831818383115079396\ 0474989473`48.69910576778562, \ -1.026968121652366493308638700057801237972383285539206054507917540057525472860\ 71`49.9919287887921}, { 0.9866778685808915857025223106314500736981477270834705093621647785444\ 0766740624`49.93054790644644, \ -0.286656419765753381198325308668812973514206465327673701957458433503561491166\ 55`49.51505244306258}, { 0.5775266853212051019985040784228946614678184640370785814215615532233\ 0991887057`49.726231455349186, 0.849804711143773732915043533750216549886753903005605908795013279577\ 8899540874`49.85212138464394}, \ {-0.62974674764232184952539677755794562841434950738736721664439902895206426376\ `49.75214398432924, 0.811864615052392077588159494298701253201230264019496517668585097265\ 46359465321`49.83475415394873}, \ {-0.61474387117480085404273121868960484186077753243554802912202418579163440965\ 04`49.7874668667571, 0.587959837576512381696342232020756161598653890069511889954580955215\ 34855074278`49.74877377399323}, \ {-0.74914933822783903493327575139089116873262019197330691672753495191474155347\ 254`50.03741968820854, \ -0.402966582712226648983134704281977412090749116762090595797573261776582194995\ 99`49.49882095254179}, { 0.1517441175005054133879154581088940035039606336306105421631948929943\ 6607049211`49.02650315576971, \ -0.837006882023064238301771406242338017763050067227254477065374798280890700056\ 51`50.50973748498062}, { 0.8429323604360091195439782285015217249057874565275147066384254682136\ 8448454529`50.63574479382874, \ -0.114332119195600398935571703193237342640846922264440389130016668890644084577\ 33`48.90049584692159}, { 0.3692167314661253560441132834700802821836496342507296970479387764983\ 2540808549`49.45097694254319, 0.766345746354378904524135581696796610895992216184273572038383773732\ 76842888711`50.085263698207136}}}]]}, TagBox[GraphicsGroupBox[{ {Hue[0.6, 0.7, 0.5], Opacity[0.7], LineBox[CompressedData[" 1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28 wQt5T116YI8uzxge9Kfq/Xt7q83M7I+mfsEwD6rfHk0/XH77SiN75eYf9i+K m3oTlj20x66egeEJsxt3h8VvDPkHq65J7dVftV/nt0uKMtcvXOr34zLvZ9OE qDksP/ffmji58YbQXQz15y1ffu7xfLs/Ni39iHrP1/3o/Fms1wTK37/bXziB a1Gs2zUM+f//5ykZtC2wf9DAoVCW9wEjvAjJH92rXn530nv7OFdW7SkRlzDC i5C80GYHO8nqR/bvdbyXzTR8jRFehORto/cse6T2ZP+O/b4Np3+9xAgvdP+j y6PrR1dvPP1w2O/Vj/fbilqoTbzwyB49PLrdCjg4fj7frxHQEWly6iZGeLww YX4dmXPYfpaM1IpDJ17tR/fPf0YpT9+fr+wnXr284p7L3v3o7uGW3WRmv/C6 vfKqA83PW1/Yo7sH3X50eXT96OrR3YfOR3cfOh/dfADpoeHk "]]}, {Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[ 0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545], InsetBox["1", Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1., -1.3763819204711736}, 0.0319088348808545], InsetBox["2", Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["3", Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0., 1.7013016167040798}, 0.0319088348808545], InsetBox["4", Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.618033988749895, 0.5257311121191336}, 0.0319088348808545], InsetBox["5", Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9152283443343608, -1.3467176124599043}, 0.0319088348808545], InsetBox["6", Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9979834488064797, -1.2865925096513835}, 0.0319088348808545], InsetBox["7", Offset[{2, 2}, {1.0298922836873343, -1.254683674770529}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545], InsetBox["8", Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.05114546730631786, 1.6274751583839118}, 0.0319088348808545], InsetBox["9", Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647663}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-1.563625673072407, 0.4542752519030536}, 0.0319088348808545], InsetBox["10", Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839081}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.9667315796688627, -0.34804478477804596}, 0.0319088348808545], InsetBox["11", Offset[{2, 2}, {-0.9348227447880082, -0.31613594989719146}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.03227377340908787, -1.0269681216523665}, 0.0319088348808545], InsetBox["12", Offset[{2, 2}, {0.06418260828994238, -0.995059286771512}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.9866778685808916, -0.2866564197657534}, 0.0319088348808545], InsetBox["13", Offset[{2, 2}, {1.0185867034617462, -0.2547475848848989}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.5775266853212051, 0.8498047111437738}, 0.0319088348808545], InsetBox["14", Offset[{2, 2}, {0.6094355202020596, 0.8817135460246283}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6297467476423219, 0.811864615052392}, 0.0319088348808545], InsetBox["15", Offset[{2, 2}, {-0.5978379127614674, 0.8437734499332465}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.6147438711748009, 0.5879598375765124}, 0.0319088348808545], InsetBox["16", Offset[{2, 2}, {-0.5828350362939464, 0.6198686724573669}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{-0.749149338227839, -0.40296658271222663}, 0.0319088348808545], InsetBox["17", Offset[{2, 2}, {-0.7172405033469845, -0.37105774783137213}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.15174411750050543, -0.8370068820230643}, 0.0319088348808545], InsetBox["18", Offset[{2, 2}, {0.18365295238135992, -0.8050980471422098}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.8429323604360092, -0.11433211919560039}, 0.0319088348808545], InsetBox["19", Offset[{2, 2}, {0.8748411953168637, -0.0824232843147459}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}, { DiskBox[{0.3692167314661254, 0.7663457463543789}, 0.0319088348808545], InsetBox["20", Offset[{2, 2}, {0.4011255663469799, 0.7982545812352334}], ImageScaled[{0, 0}], BaseStyle->"Graphics"]}}}], MouseAppearanceTag["NetworkGraphics"]], AllowKernelInitialization->False]], DefaultBaseStyle->{ "NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]}, FormatType->TraditionalForm, FrameTicks->None]], "Output", CellLabel-> "Out[260]=",ExpressionUUID->"78ea2c7b-85fd-4f96-b091-04d0973b0f5b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"r", "=", RowBox[{"RecognizeGraph", "[", "g", "]"}]}]], "Input", CellLabel-> "In[266]:=",ExpressionUUID->"4c085f10-e05a-434d-907c-90c5fb628851"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output", CellLabel-> "Out[266]=",ExpressionUUID->"6de90f61-2952-42fa-a747-f2679d4b7af2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphEdgeLengths", "[", "g", "]"}]], "Input", CellLabel-> "In[251]:=",ExpressionUUID->"9b638cca-9062-4cbe-bd66-a2dcf5eb0e3d"], Cell[BoxData[ RowBox[{"{", RowBox[{ "2", ",", "2", ",", "1.999999999999999999999999999999999999999999999999999605464204236327609885\ 68972`48.84378410314104", ",", "2", ",", "1.999999999999999999999999999999999999999999999999999605464204236327609885\ 68969`49.540661411733765", ",", "2", ",", "1.999999999999999999999999999999999999999999999999999605464204236327609885\ 68977`49.83056634403243", ",", "2", ",", "1.999999999999999999999999999999999999999999999999999605464204236327609885\ 68979`50.", ",", "1.999999999999999999999999999999999999999999999999999605464204236327609885\ 68979`49.88530577914866", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 91665`48.39174874767445", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210395\ 30058`49.1258762312175", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 91659`49.04646333787108", ",", "0.9999999999999999999999999999999999999996954685150602805006`47.\ 71969098000217", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 9165`49.30694592638161", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210395\ 30069`49.232506146165534", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 9166`49.44023750067347", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210395\ 30068`49.461967831420964", ",", "0.999999999999999999999999999999999999999695468515060280500767444863210395\ 30059`49.33844700995389", ",", "0.999999999999999999999999999999999999999865238342173912657007802410991077\ 9166`49.338001562866204", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696166\ 68023`49.20860713670971", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696166\ 6803`49.4289516178953", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696166\ 68033`49.50912579081441", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696166\ 68028`49.316773762252076", ",", "1.000000000000000000000000000000000000000018906767139441233939702478696166\ 68026`48.39871661976897", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999999\ 99995`48.900495846921594", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999999\ 99998`49.02650315576971", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999999\ 99999`49.450976942543186", ",", "1.000000000000000000000000000000000000000000000000000000000000000000000000\ 00002`49.62938136108419", ",", "0.999999999999999999999999999999999999999999999999999999999999999999999999\ 99999`49.498820952541806"}], "}"}]], "Output", CellLabel-> "Out[251]=",ExpressionUUID->"3c29ed3b-7d82-45a3-bf87-552bd6fc7bbe"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"l", "=", RowBox[{"{", RowBox[{"{", RowBox[{"r", ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"ReplacePart", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"r", ",", "\"\\""}], "]"}], ",", RowBox[{"10", "\[Rule]", RowBox[{"ToCommonEdges", "[", RowBox[{"g", ",", RowBox[{"GraphData", "[", "r", "]"}]}], "]"}]}]}], "]"}]}], "}"}]}], "}"}], "}"}]}]], "Input", CellLabel-> "In[267]:=",ExpressionUUID->"cf7ece9b-94e7-4108-88b8-9b35bc2771c1"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\<\"DodecahedralGraph\"\>", ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.548`", ",", "0.503`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.134`"}], ",", RowBox[{"-", "0.368`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.628`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.957`", ",", RowBox[{"-", "1.317`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.548`"}], ",", "0.503`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.957`"}], ",", RowBox[{"-", "1.317`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "2.466`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.449`", ",", RowBox[{"-", "1.995`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.302`", ",", "0.416`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.489`", ",", RowBox[{"-", "0.159`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.345`"}], ",", "0.762`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.45`"}], ",", RowBox[{"-", "1.995`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.489`"}], ",", RowBox[{"-", "0.159`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.7`", ",", "0.965`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.133`", ",", RowBox[{"-", "0.369`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.345`", ",", "0.762`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.302`"}], ",", "0.416`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.514`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7`"}], ",", "0.965`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.192`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.3`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3527`"}], ",", "0.4854`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5878`", ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2853`"}], ",", RowBox[{"-", "0.0927`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.6`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5706`"}], ",", "0.1854`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5878`"}], ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3527`", ",", "0.4854`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5706`", ",", "0.1854`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5706`"}], ",", RowBox[{"-", "0.1854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3527`"}], ",", RowBox[{"-", "0.4854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2853`", ",", RowBox[{"-", "0.0927`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.6`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9511`", ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9511`"}], ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.1763`", ",", "0.2427`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5706`", ",", RowBox[{"-", "0.1854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1763`"}], ",", "0.2427`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3527`", ",", RowBox[{"-", "0.4854`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.588`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.466`", ",", "1.76`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.002`", ",", "1.086`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.4`", ",", "2.55`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.669`", ",", "1.72`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.085`", ",", "2.762`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.948`", ",", "2.186`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.117`", ",", "3.295`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.278`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.489`", ",", "0.77`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.978`", ",", "2.579`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.187`", ",", "3.348`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.186`", ",", "0.724`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.381`", ",", "0.586`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.798`", ",", "1.628`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.281`", ",", "2.623`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.35`", ",", "0.053`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.518`", ",", "1.161`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.066`", ",", "0.798`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.464`", ",", "2.262`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["5"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["5"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], "2"]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.618`"}], ",", "1.902`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.618`"}], ",", RowBox[{"-", "1.902`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.354`"}], ",", RowBox[{"-", "0.354`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618`"}], ",", "1.176`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.618`", ",", "1.176`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618`"}], ",", RowBox[{"-", "1.176`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.354`", ",", RowBox[{"-", "0.354`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.618`", ",", "1.902`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.354`"}], ",", "0.354`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.618`", ",", RowBox[{"-", "1.176`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.354`", ",", "0.354`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.618`", ",", RowBox[{"-", "1.902`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.951`", ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.951`"}], ",", RowBox[{"-", "0.309`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.588`", ",", "0.809`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.809`", ",", RowBox[{"-", "0.588`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.809`"}], ",", RowBox[{"-", "0.588`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.588`"}], ",", "0.809`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.309`", ",", "0.951`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.951`", ",", RowBox[{"-", "0.309`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.309`", ",", RowBox[{"-", "0.951`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.309`"}], ",", "0.951`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.809`", ",", "0.588`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.588`", ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.309`"}], ",", RowBox[{"-", "0.951`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.951`"}], ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.588`"}], ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.809`"}], ",", "0.588`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.034`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.249`", ",", "1.921`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.626`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.535`", ",", "2.867`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.25`", ",", "1.036`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.712`", ",", "2.868`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.625`", ",", "1.056`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.091`", ",", "2.659`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.092`", ",", "0.296`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.724`", ",", "1.249`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.526`", ",", "1.706`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.156`", ",", "2.66`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.526`", ",", "1.251`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.537`", ",", "0.087`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.919`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.723`", ",", "1.705`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.159`", ",", "0.297`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.624`", ",", "1.9`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.714`", ",", "0.088`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.623`", ",", "2.957`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.1928`"}], ",", RowBox[{"-", "0.1065`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.6314`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4662`", ",", RowBox[{"-", "0.4662`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.309`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.0583`", ",", RowBox[{"-", "3.0583`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.6314`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.8999`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.309`"}], ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.4662`", ",", "0.4662`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.8999`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "2.3999`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0583`"}], ",", RowBox[{"-", "3.0583`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3.0583`", ",", "3.0583`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2461`", ",", "0.1065`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4662`"}], ",", "0.4662`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4662`"}], ",", RowBox[{"-", "0.4662`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.309`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "2.3999`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.309`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0583`"}], ",", "3.0583`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.3692167314661253560441132834700802821836496342507296970479387764\ 9832540808549`49.45097694254319", ",", "0.766345746354378904524135581696796610895992216184273572038383773\ 73276842888711`50.085263698207136"}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.0322737734090878757951625399121068882306442141547831818383115079\ 3960474989473`48.69910576778562", ",", RowBox[{ "-", "1.0269681216523664933086387000578012379723832855392060545079\ 1754005752547286071`49.9919287887921"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.6297467476423218495253967775579456284143495073873672166443\ 9902895206426376`49.75214398432924"}], ",", "0.811864615052392077588159494298701253201230264019496517668585097\ 26546359465321`49.83475415394873"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.6147438711748008540427312186896048418607775324355480291220\ 241857916344096504`49.7874668667571"}], ",", "0.587959837576512381696342232020756161598653890069511889954580955\ 21534855074278`49.74877377399323"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", FractionBox["1", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.9152283443343608889962863259361044136508807966351076522131\ 1779592971495978054`50."}], ",", RowBox[{ "-", "1.3467176124599043767205884317176684753352817356787775531286\ 4332701993227447781`50."}]}], "}"}], ",", RowBox[{"{", RowBox[{ "1.5320160359066060356898895908971953053885354794035977277509071996\ 3910396388124`50.", ",", "0.551559711824322298997975218717784487015617133657716661453978930\ 70361176889588`50."}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9866778685808915857025223106314500736981477270834705093621647785\ 4440766740624`49.93054790644644", ",", RowBox[{ "-", "0.2866564197657533811983253086688129735142064653276737019574\ 5843350356149116655`49.51505244306258"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "1.5636256730724070031690732464160516424577501619792988081737\ 8352116621370920017`50."}], ",", "0.454275251903053625501300356134700498147330287585378819413500474\ 64780855893574`50."}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.9667315796688627139707921514085059949822608978879650559776\ 3881075525807241156`49.91546012542344"}], ",", RowBox[{ "-", "0.3480447847780459359962390193223035916013944161582226699982\ 2240328226658471331`49.57545143418664"}]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.8429323604360091195439782285015217249057874565275147066384254682\ 1368448454529`50.63574479382874", ",", RowBox[{ "-", "0.1143321191956003989355717031932373426408469222644403891300\ 1666889064408457733`48.90049584692159"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9979834488064797171643222014878070907524948174611522208370371048\ 5295848464194`50.", ",", RowBox[{ "-", "1.2865925096513834171146435780888793177907901990437249382061\ 9883511791028132225`50."}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox[ FractionBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}], RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]]}], ",", FractionBox[ RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], RowBox[{"4", " ", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ "0.5775266853212051019985040784228946614678184640370785814215615532\ 2330991887057`49.726231455349186", ",", "0.849804711143773732915043533750216549886753903005605908795013279\ 5778899540874`49.85212138464394"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.1517441175005054133879154581088940035039606336306105421631948929\ 9436607049211`49.02650315576971", ",", RowBox[{ "-", "0.8370068820230642383017714062423380177630500672272544770653\ 7479828089070005651`50.50973748498062"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.0511454673063178606888522200328463400323993382503434882010\ 4298739613377954244`50."}], ",", "1.627475158383911869335956434954062807963124513479407010467362756\ 78642222796831`50."}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ "-", "0.7491493382278390349332757513908911687326201919733069167275\ 3495191474155347254`50.03741968820854"}], ",", RowBox[{ "-", "0.4029665827122266489831347042819774120907491167620905957975\ 7326177658219499599`49.49882095254179"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "-", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["2", RowBox[{"1", "+", SqrtBox["5"]}]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["2", RowBox[{"1", "+", SqrtBox["5"]}]]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ FractionBox["1", SqrtBox["5"]], "-", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{"2", "+", SqrtBox[ RowBox[{"10", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"], "-", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"3", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"], "+", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", RowBox[{"3", " ", SqrtBox["5"]}], "-", SqrtBox[ RowBox[{"10", " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "20"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"], "-", SqrtBox[ RowBox[{"50", "-", RowBox[{"10", " ", SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["5"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "-", SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["5"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", "+", SqrtBox[ RowBox[{"10", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "2"}], "+", SqrtBox[ RowBox[{"10", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], RowBox[{"4", " ", SqrtBox["5"]}]], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "+", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "-", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{"5", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}], "}"}]], "Output", CellLabel-> "Out[267]=",ExpressionUUID->"b7b19763-9dea-45ab-a815-8dfcdf8fbd34"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PropertyReplace", "[", RowBox[{"l", ",", "\"\\"", ",", "\"\<12.1\>\""}], "]"}]], "Input", CellLabel-> "In[268]:=",ExpressionUUID->"de9b8c52-714f-4f64-a829-f03e500e8e43"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"12.1/GraphData34.m\"\>", "\[InvisibleSpace]", "\<\"...\"\>"}], SequenceForm["12.1/GraphData34.m", "..."], Editable->False]], "Print", CellLabel-> "During evaluation of \ In[268]:=",ExpressionUUID->"a09edcc4-5e71-43e8-a0bc-611040cc0f34"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "\<\"GraphData34-2.m\"\>", "}"}], "}"}]], "Output", CellLabel-> "Out[268]=",ExpressionUUID->"c71077e1-b961-49c1-b960-dca3073b2bb6"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RenameGraphFiles", "[", "]"}]], "Input", CellLabel-> "In[269]:=",ExpressionUUID->"8c735f44-1fc3-4d9d-9e5b-f3aac69c30e7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"f135ad35-99c8-43b1-9bd9-43cd8cff38b6"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"61dbc858-b061-46db-b8c2-2b6624abbd11"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"f8f15bd2-1fe4-4ae7-8fdf-eef916296cfd"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"7b52a3e0-e23b-49c1-995c-98406e8945b5"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"39265c73-8e0d-4a0d-bd8d-c31cf87079b8"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"ac3aca45-0000-4efc-97a4-a258a647275f"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"2c75c398-7564-4ff1-9995-98e1565d6593"], Cell[BoxData[ RowBox[{"{", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"5dad46c1-fe3c-4d23-816f-f9ec8378dd6a"], Cell[BoxData[ RowBox[{"{", "\<\"12.1/GraphData34-2.m\"\>", "}"}]], "Print", CellLabel-> "During evaluation of \ In[269]:=",ExpressionUUID->"ab4fc304-60b3-4534-b24f-8609b8593cf6"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{"{", "}"}], ",", RowBox[{ "{", "\<\"/Users/eww/Documents/Mathematica/Paclets/GraphData/Paclet/12.1/\ GraphData34.m\"\>", "}"}]}], "}"}]], "Output", CellLabel-> "Out[269]=",ExpressionUUID->"6fa06227-82a1-4acf-8724-4b841e05c160"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["UnitDistance", "Subsection",ExpressionUUID->"5f20e4f8-29c7-4f98-9430-671089063ea2"], Cell[BoxData[{ RowBox[{ RowBox[{"r", "=", RowBox[{"FullSimplify", "[", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"n", "+", "1", "-", RowBox[{"2", "k"}]}], RowBox[{"2", RowBox[{"(", RowBox[{"n", "+", "1"}], ")"}]}]], "\[Pi]"}], "]"}], RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"2", "k"}], RowBox[{"n", "+", "1"}]], "\[Pi]"}], "]"}]], "/.", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Rule]", "9"}], ",", RowBox[{"k", "\[Rule]", "2"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"R", "=", RowBox[{"FullSimplify", "[", RowBox[{ FractionBox[ RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"n", "+", "1", "-", RowBox[{"2", "k"}]}], RowBox[{"2", RowBox[{"(", RowBox[{"n", "+", "1"}], ")"}]}]], "\[Pi]"}], "]"}], RowBox[{"Sin", "[", RowBox[{ FractionBox[ RowBox[{"2", "k"}], RowBox[{"n", "+", "1"}]], "\[Pi]"}], "]"}]], "/.", RowBox[{"{", RowBox[{ RowBox[{"n", "\[Rule]", "9"}], ",", RowBox[{"k", "\[Rule]", "1"}]}], "}"}]}], "]"}]}], ";"}]}], "Input",Exp\ ressionUUID->"74102536-27d6-47b4-9fd7-537303cb1b2c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ",", RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"r", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"f96cfff6-9c85-\ 458f-97cd-75fd29d24b5d"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.7126627020880099, 0.6545084971874736}, {0.4187700759417734, 0.75}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4187700759417734, 0.75}, {0.2371344439404332, 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.2371344439404332, 0.49999999999999994`}, {0.4187700759417734, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.4187700759417734, 0.25}, {0.7126627020880099, 0.3454915028125263}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7126627020880099, 0.3454915028125263}, {0.7126627020880099, 0.6545084971874736}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5812299240582265, 0.75}, {0.28733729791199, 0.6545084971874736}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28733729791199, 0.6545084971874736}, {0.28733729791199, 0.3454915028125263}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28733729791199, 0.3454915028125263}, {0.5812299240582265, 0.25}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5812299240582265, 0.25}, {0.7628655560595667, 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7628655560595667, 0.49999999999999994`}, {0.5812299240582265, 0.75}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7126627020880099, 0.6545084971874736}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.7126627020880099, 0.6545084971874736}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5812299240582265, 0.75}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.5812299240582265, 0.75}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.4187700759417734, 0.75}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.4187700759417734, 0.75}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.28733729791199, 0.6545084971874736}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.28733729791199, 0.6545084971874736}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.2371344439404332, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.2371344439404332, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.28733729791199, 0.3454915028125263}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.28733729791199, 0.3454915028125263}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.4187700759417734, 0.25}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.4187700759417734, 0.25}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5812299240582265, 0.25}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.5812299240582265, 0.25}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7126627020880099, 0.3454915028125263}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.7126627020880099, 0.3454915028125263}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7628655560595667, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.7628655560595667, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9045084971874736, 0.7938926261462366}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.7938926261462366}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6545084971874736, 0.9755282581475768}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.9755282581475768}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3454915028125263, 0.9755282581475768}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.9755282581475768}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.09549150281252629, 0.7938926261462366}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.7938926261462366}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0., 0.49999999999999994}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.09549150281252629, 0.2061073738537634}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.2061073738537634}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3454915028125263, 0.024471741852423203`}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.024471741852423203}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6545084971874736, 0.024471741852423203`}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.024471741852423203}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9045084971874736, 0.2061073738537634}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.2061073738537634}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9999999999999999, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"353fbe1e-9a12-4264-988a-\ b0c21913cfac"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], "]"}], "]"}]}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->"fa36c9b7-dc8d-4f4f-94b3-\ 8ee0796a574c"], Cell[BoxData["1"], "Output",ExpressionUUID->"b427258c-a166-406f-9062-74596d1b01be"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"12", ",", "13"}], "}"}], "]"}], "]"}]}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->"b72a157c-94ff-4acc-8f7d-\ cb820ebc6060"], Cell[BoxData["1"], "Output",ExpressionUUID->"660816c1-58b0-4c51-9523-52f60ea5781f"], Cell[BoxData["\<\"Rehashing named triangle objects...\"\>"], "Print",ExpressionUUID->"fdf5a1c8-e024-45f6-9412-189cb37f1c5f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"Combinatorica`Vertices", "[", "g", "]"}]}], ";"}]], "Input",Expres\ sionUUID->"5254fba3-aa81-45b2-9f8e-b269ee38109f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{ RowBox[{ RowBox[{"Intersections", "[", RowBox[{ RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "R"}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"3", ",", "5"}], "}"}], "]"}], "]"}], "]"}]}], "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], "//", "FullSimplify"}]}]], "Input",\ ExpressionUUID->"c11aa6bc-58a4-43ca-b1f3-f51617d22dd1"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "8"], " ", RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"34", "+", RowBox[{"6", " ", SqrtBox["5"]}]}]], "+", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"16", "-", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"5", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], ")"}]}], ",", FractionBox[ RowBox[{ SqrtBox["5"], "+", SqrtBox[ RowBox[{"25", "+", RowBox[{"8", " ", SqrtBox["5"]}]}]]}], RowBox[{"10", "-", RowBox[{"2", " ", SqrtBox["5"]}]}]]}], "}"}]], "Output",ExpressionUUID->"8203959f-0dad-\ 4608-ace3-51c7d673e4c9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "//", "N"}]], "Input",ExpressionUUID->"dafd4dae-f201-4f5a-8dc5-6cb308822c61"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.3039864796368392`", ",", "1.589221887889761`"}], "}"}]], "Output",\ ExpressionUUID->"a52a426e-6a86-4f0e-9e3a-e7732e817015"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"Norm", "[", RowBox[{ RowBox[{"R", RowBox[{"{", RowBox[{ RowBox[{"Cos", "[", "a", "]"}], ",", RowBox[{"Sin", "[", "a", "]"}]}], "}"}]}], "-", RowBox[{"v", "[", RowBox[{"[", "3", "]"}], "]"}]}], "]"}], "\[Equal]", "1"}], ",", "a"}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->"11338d97-\ 25ec-4842-a6fe-50414beda70a"], Cell[BoxData[ RowBox[{ RowBox[{"Solve", "::", "\<\"ifun\"\>"}], ":", " ", "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Inverse functions are being used by \ \\\\\\\"\\\", \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\(Solve\\), \ \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\", so some solutions may \ not be found; use Reduce for complete solution information.\\\\\\\"\\\", \ \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/Solve/ifun\\\", ButtonNote -> \ \\\"Solve::ifun\\\"]\\)\"\>"}]], "Message", \ "MSG",ExpressionUUID->"43dbc7f7-e30a-4481-9ef3-5e9dac1369e5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"a", "\[Rule]", RowBox[{"ArcSec", "[", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"80", "+", RowBox[{"160", " ", "#1"}], "+", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"20", " ", SuperscriptBox["#1", "3"]}], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"a", "\[Rule]", RowBox[{"ArcSec", "[", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"80", "-", RowBox[{"160", " ", "#1"}], "+", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"20", " ", SuperscriptBox["#1", "3"]}], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"6b8c6bea-c6fb-486c-8ba7-\ 2503f4498623"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input",ExpressionUUID->"a16df880-f9b7-4958-88e9-ea7cbe033c04"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"a", "\[Rule]", "2.438529951050921`"}], "}"}], ",", RowBox[{"{", RowBox[{"a", "\[Rule]", "1.3313812332568307`"}], "}"}]}], "}"}]], "Output",\ ExpressionUUID->"464b162c-dcce-442e-98fb-ada3a6baca77"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"ang", "=", RowBox[{ RowBox[{"3", RowBox[{"(", RowBox[{"2", RowBox[{"\[Pi]", "/", "10"}]}], ")"}]}], "-", RowBox[{"ArcSec", "[", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"80", "-", RowBox[{"160", " ", "#1"}], "+", RowBox[{"100", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"20", " ", SuperscriptBox["#1", "3"]}], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}]}], ";"}]], "Input",ExpressionUUID->"8f984807-abc3-42df-a364-e8c9e9074c7e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"#", "+", "10"}]}], "}"}], "&"}], "/@", RowBox[{"Range", "[", "10", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"11", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ",", RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"r", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "ang"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"884d0158-a7a9-\ 4906-bf91-0564dd058bb7"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.7132581284623493, 0.6549410997707272}, {0.41854264330457386`, 0.7506999656833253}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.41854264330457386`, 0.7506999656833253}, { 0.23639845646615348`, 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.23639845646615348`, 0.49999999999999994`}, { 0.41854264330457386`, 0.24930003431667466`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.41854264330457386`, 0.24930003431667466`}, { 0.7132581284623493, 0.34505890022927266`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7132581284623493, 0.34505890022927266`}, {0.7132581284623493, 0.6549410997707272}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5814573566954261, 0.7506999656833253}, {0.28674187153765057`, 0.6549410997707272}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28674187153765057`, 0.6549410997707272}, { 0.28674187153765057`, 0.34505890022927266`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28674187153765057`, 0.34505890022927266`}, { 0.5814573566954261, 0.24930003431667466`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5814573566954261, 0.24930003431667466`}, {0.7636015435338465, 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7636015435338465, 0.49999999999999994`}, {0.5814573566954261, 0.7506999656833253}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7132581284623493, 0.6549410997707272}, {0.9999999999999999, 0.5374418372209759}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5814573566954261, 0.7506999656833253}, {0.8825007374502486, 0.8241837087586266}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.41854264330457386`, 0.7506999656833253}, {0.618899193916402, 0.9870984221494786}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28674187153765057`, 0.6549410997707272}, {0.3098821995414547, 0.9639580941456747}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.23639845646615348`, 0.49999999999999994`}, { 0.07348374307530123, 0.7636015435338465}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.28674187153765057`, 0.34505890022927266`}, {0., 0.46255816277902406`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.41854264330457386`, 0.24930003431667466`}, { 0.11749926254975138`, 0.1758162912413734}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5814573566954261, 0.24930003431667466`}, { 0.38110080608359787`, 0.012901577850521227`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7132581284623493, 0.34505890022927266`}, {0.6901178004585453, 0.03604190585432529}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7636015435338465, 0.49999999999999994`}, {0.9265162569246987, 0.2363984564661534}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9999999999999999, 0.5374418372209759}, {0.8825007374502486, 0.8241837087586266}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.8825007374502486, 0.8241837087586266}, {0.618899193916402, 0.9870984221494786}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.618899193916402, 0.9870984221494786}, {0.3098821995414547, 0.9639580941456747}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3098821995414547, 0.9639580941456747}, {0.07348374307530123, 0.7636015435338465}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.07348374307530123, 0.7636015435338465}, {0., 0.46255816277902406`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.46255816277902406`}, {0.11749926254975138`, 0.1758162912413734}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.11749926254975138`, 0.1758162912413734}, { 0.38110080608359787`, 0.012901577850521227`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.38110080608359787`, 0.012901577850521227`}, { 0.6901178004585453, 0.03604190585432529}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6901178004585453, 0.03604190585432529}, {0.9265162569246987, 0.2363984564661534}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9265162569246987, 0.2363984564661534}, {0.9999999999999999, 0.5374418372209759}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7132581284623493, 0.6549410997707272}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.7132581284623493, 0.6549410997707272}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5814573566954261, 0.7506999656833253}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.5814573566954261, 0.7506999656833253}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.41854264330457386`, 0.7506999656833253}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.41854264330457386, 0.7506999656833253}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.28674187153765057`, 0.6549410997707272}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.28674187153765057, 0.6549410997707272}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.23639845646615348`, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.23639845646615348, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.28674187153765057`, 0.34505890022927266`}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.28674187153765057, 0.34505890022927266}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.41854264330457386`, 0.24930003431667466`}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.41854264330457386, 0.24930003431667466}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5814573566954261, 0.24930003431667466`}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.5814573566954261, 0.24930003431667466}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7132581284623493, 0.34505890022927266`}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.7132581284623493, 0.34505890022927266}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7636015435338465, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.7636015435338465, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9999999999999999, 0.5374418372209759}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.5374418372209759}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.8825007374502486, 0.8241837087586266}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.8825007374502486, 0.8241837087586266}], {1, 0}] }, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.618899193916402, 0.9870984221494786}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.618899193916402, 0.9870984221494786}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3098821995414547, 0.9639580941456747}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.3098821995414547, 0.9639580941456747}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.07348374307530123, 0.7636015435338465}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0.07348374307530123, 0.7636015435338465}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.46255816277902406`}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0., 0.46255816277902406}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.11749926254975138`, 0.1758162912413734}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.11749926254975138, 0.1758162912413734}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.38110080608359787`, 0.012901577850521227`}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.38110080608359787, 0.012901577850521227}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6901178004585453, 0.03604190585432529}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.6901178004585453, 0.03604190585432529}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9265162569246987, 0.2363984564661534}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.9265162569246987, 0.2363984564661534}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"6988da54-92df-4b14-826b-\ 26d38eec7068"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"Combinatorica`Vertices", "[", "g", "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"Norm", "[", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"3", ",", "13"}], "}"}], "]"}], "]"}]}], "]"}], "//", "FullSimplify"}]}], "Input",ExpressionUUID->"62a061bf-d1ef-4e73-ad67-\ 816439554d9b"], Cell[BoxData["1"], "Output",ExpressionUUID->"89f98185-69a3-4e5c-9dbf-c0247f67ccaa"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"bd57a2af-89cc-4062-a634-a5f3980b00c2"], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Getting index for \"\>", "\[InvisibleSpace]", "\<\"CanonicalForm\"\>", "\[InvisibleSpace]", "\<\" (first time only)...\"\>"}], SequenceForm["Getting index for ", "CanonicalForm", " (first time only)..."], Editable->False]], "Print",ExpressionUUID->"086c0593-7bcb-4d3f-93ed-\ 94416fc8d2ce"], Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",ExpressionUUID->"1447def7-ece0-47f7-86c1-59bd97ea69dc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"tilt", "=", RowBox[{ RowBox[{"ArcTan", "@@", RowBox[{"Subtract", "@@", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"19", ",", "18"}], "}"}], "]"}], "]"}]}]}], "//", "FullSimplify"}]}]], "Input",ExpressionUUID->"1c65a81a-76d0-4acb-b9a8-\ b05b903408b6"], Cell[BoxData[ RowBox[{"ArcTan", "[", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"8", " ", "#1"}], "+", RowBox[{"66", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"72", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"19", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}], "]"}]], "Output",ExpressionUUID->"865d7075-b031-4a2f-80e0-da3ad9eb92fb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ShowLabeledGraph", "[", RowBox[{"g", "=", RowBox[{"Graph", "[", RowBox[{ RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"#", "+", "10"}]}], "}"}], "&"}], "/@", RowBox[{"Range", "[", "10", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"Partition", "[", RowBox[{ RowBox[{"Range", "[", RowBox[{"11", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ",", RowBox[{"List", "/@", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"r", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "tilt"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"R", " ", RowBox[{"Through", "[", RowBox[{ RowBox[{"{", RowBox[{"Cos", ",", "Sin"}], "}"}], "[", RowBox[{ FractionBox[ RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "ang", "-", "tilt"}], "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"c8fd2aa7-2b50-\ 4a25-bb19-f4669bee1a84"], Cell[BoxData[ GraphicsBox[{{ {GrayLevel[0], Thickness[0.005], LineBox[{{0.7236067977499789, 0.6381966011250104}, {0.43766552253272184`, 0.7553678004004941}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.43766552253272184`, 0.7553678004004941}, { 0.23786837650427867`, 0.5196293791547939}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.23786837650427867`, 0.5196293791547939}, { 0.40032822462073187`, 0.2567638230952271}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.40032822462073187`, 0.2567638230952271}, {0.7005310785922886, 0.33004239622447423`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7005310785922886, 0.33004239622447423`}, {0.7236067977499789, 0.6381966011250104}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5996717753792681, 0.7432361769047728}, {0.29946892140771136`, 0.6699576037755257}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.29946892140771136`, 0.6699576037755257}, {0.276393202250021, 0.36180339887498947`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.276393202250021, 0.36180339887498947`}, {0.5623344774672782, 0.2446321995995058}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5623344774672782, 0.2446321995995058}, {0.7621316234957213, 0.48037062084520604`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7621316234957213, 0.48037062084520604`}, {0.5996717753792681, 0.7432361769047728}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7236067977499789, 0.6381966011250104}, {0.9999999999999999, 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5996717753792681, 0.7432361769047728}, {0.9045084971874736, 0.7938926261462366}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.43766552253272184`, 0.7553678004004941}, {0.6545084971874736, 0.9755282581475768}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.29946892140771136`, 0.6699576037755257}, {0.3454915028125263, 0.9755282581475768}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.23786837650427867`, 0.5196293791547939}, { 0.09549150281252636, 0.7938926261462366}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.276393202250021, 0.36180339887498947`}, {0., 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.40032822462073187`, 0.2567638230952271}, { 0.09549150281252629, 0.2061073738537634}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.5623344774672782, 0.2446321995995058}, {0.3454915028125263, 0.024471741852423203`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7005310785922886, 0.33004239622447423`}, {0.6545084971874736, 0.024471741852423203`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.7621316234957213, 0.48037062084520604`}, {0.9045084971874736, 0.20610737385376338`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9999999999999999, 0.49999999999999994`}, {0.9045084971874736, 0.7938926261462366}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9045084971874736, 0.7938926261462366}, {0.6545084971874736, 0.9755282581475768}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6545084971874736, 0.9755282581475768}, {0.3454915028125263, 0.9755282581475768}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3454915028125263, 0.9755282581475768}, {0.09549150281252636, 0.7938926261462366}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.09549150281252636, 0.7938926261462366}, {0., 0.49999999999999994`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0., 0.49999999999999994`}, {0.09549150281252629, 0.2061073738537634}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.09549150281252629, 0.2061073738537634}, {0.3454915028125263, 0.024471741852423203`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.3454915028125263, 0.024471741852423203`}, { 0.6545084971874736, 0.024471741852423203`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.6545084971874736, 0.024471741852423203`}, { 0.9045084971874736, 0.20610737385376338`}}], {GrayLevel[0]}}, {GrayLevel[0], Thickness[0.005], LineBox[{{0.9045084971874736, 0.20610737385376338`}, {0.9999999999999999, 0.49999999999999994`}}], {GrayLevel[0]}}}, { {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7236067977499789, 0.6381966011250104}]}, {GrayLevel[0], InsetBox["1", Scaled[{-0.02, -0.02}, {0.7236067977499789, 0.6381966011250104}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5996717753792681, 0.7432361769047728}]}, {GrayLevel[0], InsetBox["2", Scaled[{-0.02, -0.02}, {0.5996717753792681, 0.7432361769047728}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.43766552253272184`, 0.7553678004004941}]}, {GrayLevel[0], InsetBox["3", Scaled[{-0.02, -0.02}, {0.43766552253272184, 0.7553678004004941}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.29946892140771136`, 0.6699576037755257}]}, {GrayLevel[0], InsetBox["4", Scaled[{-0.02, -0.02}, {0.29946892140771136, 0.6699576037755257}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.23786837650427867`, 0.5196293791547939}]}, {GrayLevel[0], InsetBox["5", Scaled[{-0.02, -0.02}, {0.23786837650427867, 0.5196293791547939}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.276393202250021, 0.36180339887498947`}]}, {GrayLevel[0], InsetBox["6", Scaled[{-0.02, -0.02}, {0.276393202250021, 0.36180339887498947}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.40032822462073187`, 0.2567638230952271}]}, {GrayLevel[0], InsetBox["7", Scaled[{-0.02, -0.02}, {0.40032822462073187, 0.2567638230952271}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.5623344774672782, 0.2446321995995058}]}, {GrayLevel[0], InsetBox["8", Scaled[{-0.02, -0.02}, {0.5623344774672782, 0.2446321995995058}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7005310785922886, 0.33004239622447423`}]}, {GrayLevel[0], InsetBox["9", Scaled[{-0.02, -0.02}, {0.7005310785922886, 0.33004239622447423}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.7621316234957213, 0.48037062084520604`}]}, {GrayLevel[0], InsetBox["10", Scaled[{-0.02, -0.02}, {0.7621316234957213, 0.48037062084520604}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9999999999999999, 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["11", Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.49999999999999994}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9045084971874736, 0.7938926261462366}]}, {GrayLevel[0], InsetBox["12", Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.7938926261462366}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6545084971874736, 0.9755282581475768}]}, {GrayLevel[0], InsetBox["13", Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.9755282581475768}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3454915028125263, 0.9755282581475768}]}, {GrayLevel[0], InsetBox["14", Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.9755282581475768}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.09549150281252636, 0.7938926261462366}]}, {GrayLevel[0], InsetBox["15", Scaled[{-0.02, -0.02}, {0.09549150281252636, 0.7938926261462366}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0., 0.49999999999999994`}]}, {GrayLevel[0], InsetBox["16", Scaled[{-0.02, -0.02}, {0., 0.49999999999999994}], {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.09549150281252629, 0.2061073738537634}]}, {GrayLevel[0], InsetBox["17", Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.2061073738537634}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.3454915028125263, 0.024471741852423203`}]}, {GrayLevel[0], InsetBox["18", Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.024471741852423203}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.6545084971874736, 0.024471741852423203`}]}, {GrayLevel[0], InsetBox["19", Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.024471741852423203}], \ {1, 0}]}, {GrayLevel[0]}}, {RGBColor[1, 0, 0], {PointSize[0.05], PointBox[{0.9045084971874736, 0.20610737385376338`}]}, {GrayLevel[0], InsetBox["20", Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.20610737385376338}], \ {1, 0}]}, {GrayLevel[0]}}}}, AlignmentPoint->Center, AspectRatio->Automatic, Axes->False, AxesLabel->None, AxesOrigin->Automatic, AxesStyle->{}, Background->None, BaseStyle->{}, BaselinePosition->Automatic, ColorOutput->Automatic, ContentSelectable->Automatic, CoordinatesToolOptions:>Automatic, DisplayFunction:>$DisplayFunction, Epilog->{}, FormatType:>TraditionalForm, Frame->False, FrameLabel->None, FrameStyle->{}, FrameTicks->Automatic, FrameTicksStyle->{}, GridLines->None, GridLinesStyle->{}, ImageMargins->0., ImagePadding->All, ImageSize->Automatic, ImageSizeRaw->Automatic, LabelStyle->{}, Method->Automatic, PlotLabel->None, PlotRange->All, PlotRangeClipping->False, PlotRangePadding->Automatic, PlotRegion->Automatic, PreserveImageOptions->Automatic, Prolog->{}, RotateLabel->True, Ticks->Automatic, TicksStyle->{}]], "Output",ExpressionUUID->"884425db-68f6-4127-85a7-\ 8bed3b59f82e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphPlot", "[", RowBox[{"g", ",", RowBox[{"Method", "\[Rule]", "None"}], ",", RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input",ExpressionUUID->\ "9c41ca90-610d-4e3e-92f7-50c0c0f8eaf0"], Cell[BoxData[ GraphicsBox[ TagBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXfY7v/Ck+nP7G2/3H1Wdf8c+dP46t0lLrtiv/R+1 T8Pgpf0HyTMBry6e3L937e7gI4Wv7DP+CpXzHnmy32Sl9tHemQ/tdyz6YSCs +nr/TsWI9F9OG+yh5u2Hmrcfat5+qHn7oebZQ83bDzXPHmrefqh59jsg5u1f 8WX67PLHP+2bzijebembsyfk1+mzuz9+sWcIdRHmy39nz8gAAg/s11+/0y0x /4f9v/8gcH8/jB8MUb+fEaoeat5+qHk2UPP2Q83bDzUPpn8/1DyY+fuh5tlD zdsPAH6TufE= "], { {GrayLevel[0], LineBox[{{1, 3}, {1, 9}, {1, 11}, {2, 4}, {2, 10}, {2, 12}, {3, 5}, {3, 13}, {4, 6}, {4, 14}, {5, 7}, {5, 15}, {6, 8}, {6, 16}, {7, 9}, {7, 17}, {8, 10}, {8, 18}, {9, 19}, {10, 20}, {11, 12}, {11, 20}, {12, 13}, {13, 14}, {14, 15}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}}]}, {RGBColor[1, 0, 0], AbsolutePointSize[5], TagBox[ TooltipBox[PointBox[1], "1"], Annotation[#, 1, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[2], "2"], Annotation[#, 2, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[3], "3"], Annotation[#, 3, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[4], "4"], Annotation[#, 4, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[5], "5"], Annotation[#, 5, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[6], "6"], Annotation[#, 6, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[7], "7"], Annotation[#, 7, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[8], "8"], Annotation[#, 8, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[9], "9"], Annotation[#, 9, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[10], "10"], Annotation[#, 10, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[11], "11"], Annotation[#, 11, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[12], "12"], Annotation[#, 12, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[13], "13"], Annotation[#, 13, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[14], "14"], Annotation[#, 14, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[15], "15"], Annotation[#, 15, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[16], "16"], Annotation[#, 16, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[17], "17"], Annotation[#, 17, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[18], "18"], Annotation[#, 18, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[19], "19"], Annotation[#, 19, "Tooltip"]& ], TagBox[ TooltipBox[PointBox[20], "20"], Annotation[#, 20, "Tooltip"]& ]}}], Annotation[#, VertexCoordinateRules -> CompressedData[" 1:eJxTTMoPSmViYGAQAWIQXfY7v/Ck+nP7G2/3H1Wdf8c+dP46t0lLrtiv/R+1 T8Pgpf0HyTMBry6e3L937e7gI4Wv7DP+CpXzHnmy32Sl9tHemQ/tdyz6YSCs +nr/TsWI9F9OG+yh5u2Hmrcfat5+qHn7oebZQ83bDzXPHmrefqh59jsg5u1f 8WX67PLHP+2bzijebembsyfk1+mzuz9+sWcIdRHmy39nz8gAAg/s11+/0y0x /4f9v/8gcH8/jB8MUb+fEaoeat5+qHk2UPP2Q83bDzUPpn8/1DyY+fuh5tlD zdsPAH6TufE= "]]& ], AspectRatio->Automatic, FrameTicks->None, ImageSize->200, PlotRange->All, PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"28b48b50-2567-\ 444c-bcb6-86409ec37bad"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"v", "=", RowBox[{ RowBox[{ RowBox[{"Combinatorica`Vertices", "[", "g", "]"}], "//", "FullSimplify"}], "//", "ToRadicals"}]}]], "Input",ExpressionUUID->"afd79d3b-3f6a-4ad4-b835-\ 12587d02188d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["5"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], "+", FractionBox["3", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["5"]]}], "-", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["3", SqrtBox["5"]], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["5"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["3", SqrtBox["5"]], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["5"]]}], "+", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], "+", FractionBox["3", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "820b9e93-ba8a-45b9-8e96-68c15a135357"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"<<", "Utilities`Simplify`"}]], "Input",ExpressionUUID->"5580b1e5-4866-4588-ab1c-ba091b29b8ca"], Cell[BoxData[ RowBox[{ RowBox[{"General", "::", "\<\"obspkg\"\>"}], ":", " ", "\<\"\[NoBreak]\\!\\(\\*StyleBox[\\!\\(\\\"NumberTheory`Recognize`\\\"\ \\), \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\" is now obsolete. \ The legacy version being loaded may conflict with current Mathematica \ functionality. See the Compatibility Guide for updating \ information.\\\\\\\"\\\", \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\ \[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:Compatibility/Tutorials/NumberTheory/Recognize\\\", \ ButtonNote -> \\\"General::obspkg\\\"]\\)\"\>"}]], "Message", \ "MSG",ExpressionUUID->"91601e04-3d80-4d3e-aa99-098056799160"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"SymbolicUnion", "[", RowBox[{"Norm", "/@", RowBox[{"Subtract", "@@@", RowBox[{"(", RowBox[{ RowBox[{"Edges", "[", "g", "]"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "v"}], "]"}]}], ")"}]}]}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->\ "a051ba8d-075c-44fd-8ac9-612b6a70789a"], Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Output",ExpressionUUID->"afe8b871-3161-496a-aaca-b12236487cea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Insert", "[", RowBox[{ RowBox[{"GraphData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{"ToCommonEdges", "[", RowBox[{ RowBox[{"ChangeVertices", "[", RowBox[{"g", ",", "v"}], "]"}], ",", "\"\\""}], "]"}], ",", "4"}], "]"}]], "Input",ExpressionUUID->"d75710fa-6913-4110-\ b5d3-11d289813fee"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.548`", ",", "0.503`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.134`"}], ",", RowBox[{"-", "0.368`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.628`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.957`", ",", RowBox[{"-", "1.317`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.548`"}], ",", "0.503`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.957`"}], ",", RowBox[{"-", "1.317`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "2.466`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.449`", ",", RowBox[{"-", "1.995`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.302`", ",", "0.416`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.489`", ",", RowBox[{"-", "0.159`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.345`"}], ",", "0.762`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.45`"}], ",", RowBox[{"-", "1.995`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.489`"}], ",", RowBox[{"-", "0.159`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.7`", ",", "0.965`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.133`", ",", RowBox[{"-", "0.369`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.345`", ",", "0.762`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.302`"}], ",", "0.416`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.514`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.7`"}], ",", "0.965`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.192`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.3`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3527`"}], ",", "0.4854`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5878`", ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.2853`"}], ",", RowBox[{"-", "0.0927`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.6`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5706`"}], ",", "0.1854`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5878`"}], ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.3527`", ",", "0.4854`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5706`", ",", "0.1854`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5706`"}], ",", RowBox[{"-", "0.1854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.3527`"}], ",", RowBox[{"-", "0.4854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.2853`", ",", RowBox[{"-", "0.0927`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.6`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9511`", ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.9511`"}], ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.1763`", ",", "0.2427`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.5706`", ",", RowBox[{"-", "0.1854`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.1763`"}], ",", "0.2427`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.3527`", ",", RowBox[{"-", "0.4854`"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.588`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.466`", ",", "1.76`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.002`", ",", "1.086`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.4`", ",", "2.55`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.669`", ",", "1.72`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.085`", ",", "2.762`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.948`", ",", "2.186`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.117`", ",", "3.295`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.278`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.489`", ",", "0.77`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.978`", ",", "2.579`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.187`", ",", "3.348`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.186`", ",", "0.724`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.381`", ",", "0.586`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.798`", ",", "1.628`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.281`", ",", "2.623`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.35`", ",", "0.053`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.518`", ",", "1.161`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.066`", ",", "0.798`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.464`", ",", "2.262`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}], ",", FractionBox["1", SqrtBox["5"]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "-", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", FractionBox["1", SqrtBox["5"]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", "2"], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["5"]]}], "-", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["5"]]}], "+", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", "4"]}], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["3", SqrtBox["5"]], "-", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["3", SqrtBox["5"]], "+", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], "+", FractionBox["3", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], "+", FractionBox["3", RowBox[{"4", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]]}], ")"}]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], "+", FractionBox["1", RowBox[{"4", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "-", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]], "-", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]], "+", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ FractionBox["1", "2"], "+", FractionBox["1", RowBox[{"2", " ", SqrtBox["5"]}]]}]]}]}], ",", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox["1", SqrtBox["5"]], "-", RowBox[{"2", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "-", SqrtBox["5"]}], ")"}]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", FractionBox["1", "8"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}], "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "8"], "+", FractionBox[ SqrtBox["5"], "8"]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox["5", "4"], "+", FractionBox[ SqrtBox["5"], "2"]}]]}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.5`", ",", RowBox[{"-", "0.866`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.618`"}], ",", "1.902`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.618`"}], ",", RowBox[{"-", "1.902`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.354`"}], ",", RowBox[{"-", "0.354`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618`"}], ",", "1.176`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.618`", ",", "1.176`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.618`"}], ",", RowBox[{"-", "1.176`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.354`", ",", RowBox[{"-", "0.354`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.618`", ",", "1.902`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.354`"}], ",", "0.354`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.618`", ",", RowBox[{"-", "1.176`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.354`", ",", "0.354`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.618`", ",", RowBox[{"-", "1.902`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.951`", ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.951`"}], ",", RowBox[{"-", "0.309`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.588`", ",", "0.809`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.809`", ",", RowBox[{"-", "0.588`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.809`"}], ",", RowBox[{"-", "0.588`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.588`"}], ",", "0.809`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.309`", ",", "0.951`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.951`", ",", RowBox[{"-", "0.309`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "1.`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.309`", ",", RowBox[{"-", "0.951`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.309`"}], ",", "0.951`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.809`", ",", "0.588`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.588`", ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.309`"}], ",", RowBox[{"-", "0.951`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.951`"}], ",", "0.309`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.588`"}], ",", RowBox[{"-", "0.809`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.809`"}], ",", "0.588`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0.`", ",", "1.034`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.249`", ",", "1.921`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.626`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.535`", ",", "2.867`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.25`", ",", "1.036`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.712`", ",", "2.868`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.625`", ",", "1.056`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.091`", ",", "2.659`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.092`", ",", "0.296`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.724`", ",", "1.249`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.526`", ",", "1.706`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.156`", ",", "2.66`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.526`", ",", "1.251`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.537`", ",", "0.087`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "1.919`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.723`", ",", "1.705`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.159`", ",", "0.297`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.624`", ",", "1.9`"}], "}"}], ",", RowBox[{"{", RowBox[{"2.714`", ",", "0.088`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.623`", ",", "2.957`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "0.1928`"}], ",", RowBox[{"-", "0.1065`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.6314`"}], ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.4662`", ",", RowBox[{"-", "0.4662`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.309`"}], ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"3.0583`", ",", RowBox[{"-", "3.0583`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"2.6314`", ",", "0.`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "0.8999`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.309`"}], ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0.4662`", ",", "0.4662`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "0.8999`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", RowBox[{"-", "2.3999`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0583`"}], ",", RowBox[{"-", "3.0583`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"3.0583`", ",", "3.0583`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.2461`", ",", "0.1065`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4662`"}], ",", "0.4662`"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.4662`"}], ",", RowBox[{"-", "0.4662`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1.309`", ",", "0.5`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.`", ",", "2.3999`"}], "}"}], ",", RowBox[{"{", RowBox[{"1.309`", ",", RowBox[{"-", "0.5`"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.0583`"}], ",", "3.0583`"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUU\ ID->"e11e0f55-c161-4ea1-9cf2-62dfbdaccd5a"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["GraphData", "Section",ExpressionUUID->"fdf185ec-6996-4ebc-b834-e09a59240e23"], Cell[CellGroupData[{ Cell["GraphClassString", "Subsection",ExpressionUUID->"be7b8408-b3af-4123-831d-d51a72d40479"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphClassString", "[", "\"\\"", "]"}]], "Input",\ ExpressionUUID->"73eacaae-f18c-4dfe-af0e-c5d4b3a7e569"], Cell[BoxData["\<\"\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Biconnected Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Bridgeless \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Class 1 Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Completely Regular \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Connected Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Cubic Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Cyclic \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Determined by Spectrum Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Distance-Regular \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Edge-Transitive Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Generalized Petersen \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Hamiltonian Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:LCF Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Noneulerian \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Planar Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Platonic Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Polyhedral \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Regular Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Square-Free Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Symmetric \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Traceable Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \ Theory:Simple Graphs:Triangle-Free Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Unitransitive \ Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \ Graphs:Vertex-Transitive Graphs}\\n\\\\subj{Mathematics:Discrete \ Mathematics:Graph Theory:Simple Graphs:Weakly Regular Graphs}\"\>"], "Output",\ ExpressionUUID->"8d280a76-c4f9-420b-8da7-15c217afba5e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] }, WindowSize->{1143, 819}, WindowMargins->{{Automatic, 107}, {Automatic, 57}}, ShowSelection->True, FrontEndVersion->"13.4 for Mac OS X ARM (64-bit) (June 20, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"5cf10c05-ae21-4ede-bde3-1850f4026aa6" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{ "ewwwin (4)"->{ Cell[1008007, 18494, 90276, 1601, 1967, "Output",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5", CellTags->"ewwwin (4)"]} } *) (*CellTagsIndex CellTagsIndex->{ {"ewwwin (4)", 8806578, 162192} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 90, 0, 98, "Title",ExpressionUUID->"a719feb7-6218-48af-b5e8-21f1220eac5f"], Cell[CellGroupData[{ Cell[695, 26, 83, 0, 54, "Subsection",ExpressionUUID->"f72a88d6-f7e7-4f57-b144-1a8e1bc4e1bd"], Cell[781, 28, 110, 3, 58, "Text",ExpressionUUID->"fa961551-c271-4c7b-83ef-08279d067795"], Cell[894, 33, 346, 9, 35, "Text",ExpressionUUID->"24ffcfd0-f681-421a-a813-4fc79abacb4a"], Cell[1243, 44, 364, 10, 35, "Text",ExpressionUUID->"1dfde49c-c2c1-49b9-842c-06de76e1f4f0"], Cell[1610, 56, 154, 2, 35, "Text",ExpressionUUID->"c3418fa4-d105-40ff-98dc-b8aed831e346"] }, Open ]], Cell[CellGroupData[{ Cell[1801, 63, 84, 0, 67, "Section",ExpressionUUID->"24231fdd-d4bd-490f-8510-54130413d4a0"], Cell[1888, 65, 167, 3, 46, "Input",ExpressionUUID->"6829a3f3-589f-4628-a602-7ee3267aef9c", InitializationCell->True], Cell[CellGroupData[{ Cell[2080, 72, 85, 0, 45, "Subsubsection",ExpressionUUID->"6485c1e4-179b-4603-9511-2debe3310c9a"], Cell[CellGroupData[{ Cell[2190, 76, 214, 5, 30, "Input",ExpressionUUID->"3846e362-6f7f-476d-b901-8ef8f4f026a5"], Cell[2407, 83, 135, 2, 34, "Output",ExpressionUUID->"e1514d7b-c035-4b90-b0f4-437a572a6e75"] }, Open ]], Cell[CellGroupData[{ Cell[2579, 90, 210, 4, 30, "Input",ExpressionUUID->"c14a0012-a7bf-4d66-8056-562b63b5b5ad"], Cell[2792, 96, 1644, 44, 77, "Output",ExpressionUUID->"1694eadc-a4ab-4d53-a8fa-e0abfde9c8b0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[4485, 146, 87, 0, 45, "Subsubsection",ExpressionUUID->"fcf7cb8b-a55e-4b17-aeb5-698c2bb792b7"], Cell[CellGroupData[{ Cell[4597, 150, 314, 8, 30, "Input",ExpressionUUID->"1aede9d9-f9f7-4bd1-ae12-82d78b0f7984"], Cell[4914, 160, 3242, 58, 189, "Output",ExpressionUUID->"9702c973-6331-4ccd-ba39-1987c8b1c2dd"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[8205, 224, 113, 0, 45, "Subsubsection",ExpressionUUID->"33041918-817b-423b-81bb-81828335e9a4"], Cell[8321, 226, 126410, 2076, 360, "Input",ExpressionUUID->"35a42c58-aba7-4263-80f5-0316ba66e920"], Cell[134734, 2304, 65715, 1081, 203, "Input",ExpressionUUID->"6a55b2ac-cfff-4a65-a5f9-b8486e87b5c9"], Cell[CellGroupData[{ Cell[200474, 3389, 2168, 62, 136, "Input",ExpressionUUID->"d0e406fd-bdee-4a34-8397-f730a6da77b7"], Cell[202645, 3453, 9945, 201, 367, "Output",ExpressionUUID->"512a5081-3e74-433a-9dc1-d0df3860c10a"] }, Open ]], Cell[CellGroupData[{ Cell[212627, 3659, 141, 2, 30, "Input",ExpressionUUID->"77ca0b0f-6250-48b9-9b0a-b1b50158c6a0"], Cell[CellGroupData[{ Cell[212793, 3665, 214, 4, 24, "Print",ExpressionUUID->"bc120d34-edbc-4c3b-b951-73b91c97a3ea"], Cell[213010, 3671, 224, 4, 24, "Print",ExpressionUUID->"737d2373-8ab9-450b-ba84-d5f8032574e8"], Cell[213237, 3677, 374, 8, 24, "Print",ExpressionUUID->"8b2f3ba9-f045-4cf4-a6ec-f1c52ca2f47d"] }, Open ]], Cell[213626, 3688, 131, 1, 34, "Output",ExpressionUUID->"67b71a61-faf3-41b5-9e89-afb5cb80c1e4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[213806, 3695, 83, 0, 45, "Subsubsection",ExpressionUUID->"99dc9a1f-6677-443b-a40f-4dc3008776eb"], Cell[CellGroupData[{ Cell[213914, 3699, 263, 6, 30, "Input",ExpressionUUID->"4fb6db46-aa12-4631-9e90-aa8297ef9833"], Cell[214180, 3707, 123360, 2193, 1269, "Output",ExpressionUUID->"b3a3fdf7-f777-4739-82c5-4aa7aa531c4d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[337589, 5906, 87, 0, 45, "Subsubsection",ExpressionUUID->"42ca6f6b-8aa2-4475-9f15-30dc033ae241"], Cell[CellGroupData[{ Cell[337701, 5910, 557, 16, 30, "Input",ExpressionUUID->"1fe60508-c88b-4a93-bcde-32f1df616dfa"], Cell[338261, 5928, 36806, 626, 412, "Output",ExpressionUUID->"d180ff1a-2ad4-4f38-a6e5-4eb8184f5f2d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[375116, 6560, 95, 0, 45, "Subsubsection",ExpressionUUID->"10029b6f-dd88-4dbb-88d1-a23d7f426fe6"], Cell[CellGroupData[{ Cell[375236, 6564, 257, 6, 30, "Input",ExpressionUUID->"9845f8e1-6b8c-4095-b4bc-3455ea219da2"], Cell[375496, 6572, 40859, 770, 701, "Output",ExpressionUUID->"73e77f01-9592-4c45-a3d0-5df8f2006dcb"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[416404, 7348, 97, 0, 37, "Subsubsection",ExpressionUUID->"ce415c54-1933-47fa-bd4d-310fe8d96dae"], Cell[CellGroupData[{ Cell[416526, 7352, 240, 6, 30, "Input",ExpressionUUID->"faf94607-dcf0-4929-8292-8493117db0a9"], Cell[416769, 7360, 1905, 31, 345, "Output",ExpressionUUID->"b03b9712-39b8-4b3b-9e83-91b23617dd06"] }, Open ]], Cell[418689, 7394, 499, 13, 52, "Input",ExpressionUUID->"549ab679-60f0-4eaa-be2d-b62e39876ae2"], Cell[419191, 7409, 150, 3, 30, "Input",ExpressionUUID->"622071e2-8b9f-4aed-82c1-dde3957bf88a"], Cell[419344, 7414, 3011, 52, 356, "Input",ExpressionUUID->"15d45042-c1bf-4a9e-a80e-002135bb4d19"], Cell[CellGroupData[{ Cell[422380, 7470, 1976, 57, 115, "Input",ExpressionUUID->"9612ae56-7004-42c1-855f-894dc93883c5"], Cell[424359, 7529, 9344, 188, 367, "Output",ExpressionUUID->"dcaecd19-f03f-4f5b-b8df-2da51347baa3"] }, Open ]], Cell[CellGroupData[{ Cell[433740, 7722, 146, 2, 30, "Input",ExpressionUUID->"853ee9d2-2e8f-4295-a778-451de8f984e7"], Cell[433889, 7726, 131, 1, 34, "Output",ExpressionUUID->"db918082-ec36-4ef1-885b-34a30adb2c3f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[434069, 7733, 90, 0, 45, "Subsubsection",ExpressionUUID->"05a4b6fc-bbcc-4f97-9c21-efa80de85f9f"], Cell[CellGroupData[{ Cell[434184, 7737, 271, 6, 30, "Input",ExpressionUUID->"69a228bf-34f5-4594-b28e-d855859d6967"], Cell[434458, 7745, 33201, 621, 204, "Output",ExpressionUUID->"273334b7-a07d-4ae8-8a90-d144f6774965"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[467708, 8372, 89, 0, 37, "Subsubsection",ExpressionUUID->"11f68b86-6819-4502-ac72-73629a85d1e5"], Cell[CellGroupData[{ Cell[467822, 8376, 269, 6, 30, "Input",ExpressionUUID->"2b2cc173-03d3-4a4a-9ea7-f28632aabea8"], Cell[468094, 8384, 46450, 820, 420, "Output",ExpressionUUID->"2bac46a8-e2ff-4f28-b046-42ed914e146b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[514593, 9210, 99, 0, 45, "Subsubsection",ExpressionUUID->"5ba8f7d4-b117-478b-b597-31ecbe308535"], Cell[CellGroupData[{ Cell[514717, 9214, 255, 6, 30, "Input",ExpressionUUID->"88054afc-1d53-4388-8d6e-5214c8f6255b"], Cell[514975, 9222, 157, 4, 34, "Output",ExpressionUUID->"bee96356-f190-47e9-b8bf-bf43d0b60856"] }, Open ]], Cell[CellGroupData[{ Cell[515169, 9231, 279, 6, 30, "Input",ExpressionUUID->"fd954b66-6b6f-480a-b4b1-0dffd74e9b41"], Cell[515451, 9239, 123, 2, 34, "Output",ExpressionUUID->"84bc0978-5a6b-465c-8149-eecaa03d3202"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[515623, 9247, 98, 0, 45, "Subsubsection",ExpressionUUID->"2994d932-2236-42a5-bd96-339becf954fa"], Cell[CellGroupData[{ Cell[515746, 9251, 279, 6, 30, "Input",ExpressionUUID->"eed3e15e-9f4f-40c6-9be3-8778de8b3d9a"], Cell[516028, 9259, 2957, 49, 144, "Output",ExpressionUUID->"0491aaa8-2131-40b5-9970-081a8d1eda59"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[519034, 9314, 88, 0, 37, "Subsubsection",ExpressionUUID->"5829c57d-da56-4119-8132-31b11beec275"], Cell[CellGroupData[{ Cell[519147, 9318, 269, 6, 30, "Input",ExpressionUUID->"be3f2e8b-86c0-486a-a8c1-27fbf42699c5"], Cell[519419, 9326, 19130, 339, 192, "Output",ExpressionUUID->"ba70ecbc-2c32-46dd-b3f8-06ed3db46184"] }, Open ]], Cell[CellGroupData[{ Cell[538586, 9670, 311, 7, 30, "Input",ExpressionUUID->"98f8815a-8964-42ae-a81a-1cf37783b792"], Cell[538900, 9679, 78222, 1438, 192, "Output",ExpressionUUID->"b0c537ec-50c0-4f49-8ce2-aa7e25d11e9a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[617171, 11123, 86, 0, 37, "Subsubsection",ExpressionUUID->"1e04846a-ca31-4c7f-aedb-c57ba4f8c70b"], Cell[CellGroupData[{ Cell[617282, 11127, 242, 6, 30, "Input",ExpressionUUID->"3803e134-dd2d-47a4-8431-b7d92a7a5f7a"], Cell[617527, 11135, 167, 4, 34, "Output",ExpressionUUID->"66a3c90f-7ac6-4a4e-b216-44b24a949017"] }, Open ]], Cell[CellGroupData[{ Cell[617731, 11144, 266, 6, 30, "Input",ExpressionUUID->"3a3b45b0-a78a-4504-ba33-04c5cc86e6f2"], Cell[618000, 11152, 18620, 330, 194, "Output",ExpressionUUID->"e41a355d-19f5-4e8f-a877-608715087e43"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[636669, 11488, 88, 0, 37, "Subsubsection",ExpressionUUID->"6a198bb2-a69f-4490-8f66-a524a74f29bc"], Cell[CellGroupData[{ Cell[636782, 11492, 269, 6, 30, "Input",ExpressionUUID->"d5794f9b-5a18-4c50-887c-b90030af168e"], Cell[637054, 11500, 4141, 76, 200, "Output",ExpressionUUID->"a1bbe989-425c-4b1e-855d-93cd58129174"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[641244, 11582, 86, 0, 37, "Subsubsection",ExpressionUUID->"787cdfd2-064b-48d3-b032-1eb5d86bb9e4"], Cell[CellGroupData[{ Cell[641355, 11586, 208, 5, 30, "Input",ExpressionUUID->"737a7248-2894-47c0-ae6c-d728eca79c2a"], Cell[641566, 11593, 114, 2, 34, "Output",ExpressionUUID->"4c4a204b-a2c0-477d-9ac7-744793136e19"] }, Open ]], Cell[CellGroupData[{ Cell[641717, 11600, 270, 7, 30, "Input",ExpressionUUID->"79e9a92e-e973-406c-b2f7-43c8ab65322f"], Cell[641990, 11609, 13299, 230, 192, "Output",ExpressionUUID->"fa7f5635-527b-42e1-9715-b285f1729971"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[655338, 11845, 96, 0, 37, "Subsubsection",ExpressionUUID->"a1dc7eff-6a41-46b8-843e-0877d9ace473"], Cell[CellGroupData[{ Cell[655459, 11849, 290, 7, 30, "Input",ExpressionUUID->"8c20b6ec-46ee-4fcc-bee9-ade6f3d5877a"], Cell[655752, 11858, 216, 6, 34, "Output",ExpressionUUID->"2d43832e-2d15-48da-bd3b-8be9f75519ec"] }, Open ]], Cell[CellGroupData[{ Cell[656005, 11869, 213, 5, 30, "Input",ExpressionUUID->"3d3faf88-f6b4-45e9-aaf6-d417c9211c25"], Cell[656221, 11876, 180, 5, 34, "Output",ExpressionUUID->"b1a91e56-0e3f-4a0d-aed5-54b0c4d908bd"] }, Open ]], Cell[CellGroupData[{ Cell[656438, 11886, 330, 9, 30, "Input",ExpressionUUID->"11912f5a-bfa6-4dcb-8a39-82ffafe003a8"], Cell[656771, 11897, 3287, 61, 190, "Output",ExpressionUUID->"31b4492e-2d7d-46b6-8e89-4a98b485a65d"] }, Open ]], Cell[CellGroupData[{ Cell[660095, 11963, 398, 12, 30, "Input",ExpressionUUID->"920e6827-848d-4e71-b342-73d65792670e"], Cell[660496, 11977, 128, 3, 34, "Output",ExpressionUUID->"e76b0052-c200-4377-af06-0be33ab05bf9"] }, Open ]], Cell[660639, 11983, 119, 1, 30, "Input",ExpressionUUID->"84346213-9d36-416e-b47f-386e63e1d99c"] }, Closed]], Cell[CellGroupData[{ Cell[660795, 11989, 95, 0, 37, "Subsubsection",ExpressionUUID->"74fd435e-2046-4023-b2ec-04d2d3a4954c"], Cell[CellGroupData[{ Cell[660915, 11993, 256, 5, 30, "Input",ExpressionUUID->"9699808a-8b75-4e9b-bc81-05f95871883e"], Cell[661174, 12000, 152, 3, 34, "Output",ExpressionUUID->"a898329d-0681-4cd1-b17f-f831454d083c"] }, Open ]], Cell[CellGroupData[{ Cell[661363, 12008, 276, 6, 30, "Input",ExpressionUUID->"bd7f5768-1b6c-49ca-9c0b-d5b859a7099b"], Cell[661642, 12016, 13295, 229, 192, "Output",ExpressionUUID->"bf43147e-773f-44c1-a979-333fcf9c925a"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[674986, 12251, 95, 0, 37, "Subsubsection",ExpressionUUID->"5525967c-2e88-47dc-8007-b1a2db96a83e"], Cell[CellGroupData[{ Cell[675106, 12255, 276, 6, 30, "Input",ExpressionUUID->"d821c3f0-dd8b-4f1e-a5b7-ecedf6e9ad8c"], Cell[675385, 12263, 12172, 222, 192, "Output",ExpressionUUID->"8f950747-9dce-4eb4-901d-e15eba5188ff"] }, Open ]], Cell[CellGroupData[{ Cell[687594, 12490, 318, 7, 30, "Input",ExpressionUUID->"81c30224-37e7-4a46-9382-efd774429692"], Cell[687915, 12499, 50798, 940, 192, "Output",ExpressionUUID->"b7cf392b-5178-4191-a0fe-7b5d8960eaee"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[738762, 13445, 101, 0, 37, "Subsubsection",ExpressionUUID->"ac93d627-0451-4c27-908a-785f50630a27"], Cell[CellGroupData[{ Cell[738888, 13449, 327, 8, 30, "Input",ExpressionUUID->"a0c5ff72-2f86-4402-82d2-566215e717e6"], Cell[739218, 13459, 27001, 495, 192, "Output",ExpressionUUID->"8dabffce-229c-4f7c-a6fb-a9584d50f537"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[766268, 13960, 89, 0, 37, "Subsubsection",ExpressionUUID->"451f4e4b-88c7-4117-a304-c05606209c00"], Cell[CellGroupData[{ Cell[766382, 13964, 206, 4, 30, "Input",ExpressionUUID->"9a4c91e2-ba13-449b-974f-cfdad45bdcfb"], Cell[766591, 13970, 110, 1, 34, "Output",ExpressionUUID->"7e05193a-49eb-4ee4-8966-966edc62fd88"] }, Open ]], Cell[CellGroupData[{ Cell[766738, 13976, 269, 6, 30, "Input",ExpressionUUID->"0217e9bd-dbd8-4f12-9ab3-68e2b7f13305"], Cell[767010, 13984, 123, 2, 34, "Output",ExpressionUUID->"62665c00-aa61-4bfa-bf31-7b0100c22594"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[767182, 13992, 85, 0, 37, "Subsubsection",ExpressionUUID->"c61aca9c-f6a0-481d-801a-24b5c30742c0"], Cell[CellGroupData[{ Cell[767292, 13996, 201, 4, 30, "Input",ExpressionUUID->"a3f731b7-fea3-43d3-9f47-dc037a7eca9a"], Cell[767496, 14002, 110, 1, 34, "Output",ExpressionUUID->"3ff1636f-5f81-4c4f-957d-5d486bd11728"] }, Open ]], Cell[CellGroupData[{ Cell[767643, 14008, 265, 6, 30, "Input",ExpressionUUID->"79143728-c29b-4ca6-b1f1-e7a9c60e5a23"], Cell[767911, 14016, 124, 2, 34, "Output",ExpressionUUID->"75af72d6-4da8-4e9b-8637-b5f2014c08b9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[768084, 14024, 83, 0, 37, "Subsubsection",ExpressionUUID->"94a8e40c-195c-4d28-bd2c-d7b8bce59cd1"], Cell[CellGroupData[{ Cell[768192, 14028, 198, 3, 30, "Input",ExpressionUUID->"46089590-a5dd-45a0-9497-bcf21c76c02a"], Cell[768393, 14033, 110, 1, 34, "Output",ExpressionUUID->"6b7e4cdf-1964-492a-89d5-9fa7fa8da618"] }, Open ]], Cell[CellGroupData[{ Cell[768540, 14039, 219, 4, 30, "Input",ExpressionUUID->"e9ade6fb-032d-4c22-a9ef-5f9a1aa0ca29"], Cell[768762, 14045, 108, 1, 34, "Output",ExpressionUUID->"333da5e2-1c10-4a0c-ae5d-107941880283"] }, Open ]], Cell[CellGroupData[{ Cell[768907, 14051, 210, 4, 30, "Input",ExpressionUUID->"867bf96c-1bee-4e28-96cc-92e3abdf7540"], Cell[769120, 14057, 176, 4, 34, "Output",ExpressionUUID->"13e8d7aa-371c-4aeb-a1bf-536ab3b2cd0e"] }, Open ]], Cell[CellGroupData[{ Cell[769333, 14066, 263, 6, 30, "Input",ExpressionUUID->"31a6ad5b-7397-4db0-b337-b9f8b1d8ff56"], Cell[769599, 14074, 4141, 76, 200, "Output",ExpressionUUID->"749f138f-7c3d-434b-8800-e6fed358da32"] }, Open ]], Cell[CellGroupData[{ Cell[773777, 14155, 282, 7, 30, "Input",ExpressionUUID->"bd0a5c4d-13bd-4b9a-a767-b95e06878eb0"], Cell[774062, 14164, 176, 4, 34, "Output",ExpressionUUID->"64f48760-4974-46a4-8714-aefd8fa45ee3"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[774287, 14174, 91, 0, 37, "Subsubsection",ExpressionUUID->"0f59d380-1dc6-4198-b941-a401158b595e"], Cell[CellGroupData[{ Cell[774403, 14178, 411, 11, 30, "Input",ExpressionUUID->"de92e3d0-310a-4c4f-9e71-017d45b50089"], Cell[774817, 14191, 161, 3, 34, "Output",ExpressionUUID->"3916dbc6-b2b6-4019-ab83-7a429adf9e1b"] }, Open ]], Cell[CellGroupData[{ Cell[775015, 14199, 442, 13, 30, "Input",ExpressionUUID->"c1f97f9a-1f88-4d92-b3c0-6898d0cce313"], Cell[775460, 14214, 234, 6, 34, "Output",ExpressionUUID->"ccdd64ee-f450-4168-8188-59760475a9cf"] }, Open ]], Cell[CellGroupData[{ Cell[775731, 14225, 172, 3, 30, "Input",ExpressionUUID->"63905200-494a-4826-880b-92cffa70b78c"], Cell[775906, 14230, 3884, 70, 200, "Output",ExpressionUUID->"485cc936-f57f-418b-bf4b-56995d91f40a"] }, Open ]], Cell[CellGroupData[{ Cell[779827, 14305, 2319, 65, 136, "Input",ExpressionUUID->"4ced435d-99b4-485e-ad67-f57134cd1885"], Cell[782149, 14372, 3689, 63, 200, "Output",ExpressionUUID->"3716d496-ad91-4c66-8fa2-d850251cac25"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[785887, 14441, 91, 0, 37, "Subsubsection",ExpressionUUID->"d44c7d2f-a5f3-4262-9181-b7d3e1d9096b"], Cell[CellGroupData[{ Cell[786003, 14445, 271, 6, 30, "Input",ExpressionUUID->"a8a9f883-78ca-4cef-927a-3f6394caebc3"], Cell[786277, 14453, 45247, 822, 420, "Output",ExpressionUUID->"6e09960d-9813-43a5-9b97-eaacf9b7f1cb"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[831573, 15281, 92, 0, 37, "Subsubsection",ExpressionUUID->"76e1f70f-a12a-4637-88f7-190cd792c722"], Cell[CellGroupData[{ Cell[831690, 15285, 214, 5, 30, "Input",ExpressionUUID->"5de9c8f4-df04-4a60-9dcd-188c7f456afd"], Cell[831907, 15292, 114, 2, 34, "Output",ExpressionUUID->"1fd2bd9c-d999-47ef-ae17-bd8b52bdeedc"] }, Open ]], Cell[CellGroupData[{ Cell[832058, 15299, 302, 7, 30, "Input",ExpressionUUID->"92c48c81-9270-430e-8f93-835df9d7a393"], Cell[CellGroupData[{ Cell[832385, 15310, 183, 3, 24, "Print",ExpressionUUID->"2e008220-2f9b-4263-a6aa-0e6ec15fae46"], Cell[832571, 15315, 196, 4, 24, "Print",ExpressionUUID->"74da8381-df03-4c13-bab8-0ccaf4fd7b0c"], Cell[832770, 15321, 548, 11, 24, "Print",ExpressionUUID->"2b51dfd8-e175-4893-9a37-37954461bc99"], Cell[833321, 15334, 211, 4, 24, "Print",ExpressionUUID->"390420dc-cd09-4eb1-94d1-3ba6c9401acf"], Cell[833535, 15340, 238, 4, 24, "Print",ExpressionUUID->"fe3313c0-5bb0-4f9e-a328-cd8c78cb302c"] }, Open ]], Cell[833788, 15347, 170, 4, 34, "Output",ExpressionUUID->"6da59cd2-99a2-4c20-ab67-5c2bc01b97dd"] }, Open ]], Cell[CellGroupData[{ Cell[833995, 15356, 277, 7, 30, "Input",ExpressionUUID->"e019868d-d4e0-4fb0-b388-b5b72a62503d"], Cell[834275, 15365, 29416, 515, 400, "Output",ExpressionUUID->"076b5209-b4bc-4974-b540-74de99e80bfe"] }, Open ]], Cell[CellGroupData[{ Cell[863728, 15885, 356, 11, 30, "Input",ExpressionUUID->"104b91d1-3f3b-4862-b3a5-8cb0392c7ce6"], Cell[864087, 15898, 17556, 301, 194, "Output",ExpressionUUID->"c170660f-0740-4391-9ab6-4d4c8740a56e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[881692, 16205, 106, 0, 37, "Subsubsection",ExpressionUUID->"b6649de6-e28f-41cb-ab19-46f3c4aa6322"], Cell[CellGroupData[{ Cell[881823, 16209, 436, 11, 30, "Input",ExpressionUUID->"59465ab2-7193-42ec-a7b1-f20950059c2f"], Cell[882262, 16222, 3144, 53, 366, "Output",ExpressionUUID->"585ed9a2-2683-4631-8518-ee4051eae404"] }, Open ]], Cell[CellGroupData[{ Cell[885443, 16280, 163, 3, 30, "Input",ExpressionUUID->"a2ff7ddc-05a1-4b98-b90e-507ac06feb6e"], Cell[885609, 16285, 114, 2, 34, "Output",ExpressionUUID->"c10d05b3-8cfe-465c-906c-bcc38990573f"] }, Open ]], Cell[CellGroupData[{ Cell[885760, 16292, 715, 21, 52, "Input",ExpressionUUID->"dad7bc69-939d-4305-97d3-7e8af13a5b32"], Cell[886478, 16315, 56461, 994, 978, "Output",ExpressionUUID->"5cc8663b-e7b6-43c9-9cc2-4cdb8db5d864"] }, Open ]], Cell[CellGroupData[{ Cell[942976, 17314, 191, 4, 30, "Input",ExpressionUUID->"5cc40b95-385f-4b9b-a4e6-69543c88a179"], Cell[943170, 17320, 56461, 994, 978, "Output",ExpressionUUID->"18805099-ebc7-40ec-9b5a-690973fc6ab9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[999680, 18320, 121, 0, 37, "Subsubsection",ExpressionUUID->"4849a62c-2d86-457d-9c8d-ac5a3d7164b1"], Cell[CellGroupData[{ Cell[999826, 18324, 383, 9, 30, "Input",ExpressionUUID->"ebbf0780-56ad-487b-a8b3-14db11c991aa"], Cell[1000212, 18335, 3288, 57, 178, "Output",ExpressionUUID->"eb3092d6-f261-493d-8046-d6c1ff847a4b"] }, Open ]], Cell[CellGroupData[{ Cell[1003537, 18397, 423, 10, 30, "Input",ExpressionUUID->"06d84af0-d50d-449b-8345-6fb843b8b308"], Cell[1003963, 18409, 3370, 62, 174, "Output",ExpressionUUID->"246c8a06-f822-481b-8633-9af6f47bf599"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1007382, 18477, 129, 0, 37, "Subsubsection",ExpressionUUID->"7dd8109a-647f-426d-a3a5-d68ecf6d8363"], Cell[CellGroupData[{ Cell[1007536, 18481, 468, 11, 52, "Input",ExpressionUUID->"5ef270fe-df9a-4c09-984c-149aa5af5ab5"], Cell[1008007, 18494, 90276, 1601, 1967, "Output",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5", CellTags->"ewwwin (4)"] }, Closed]], Cell[CellGroupData[{ Cell[1098320, 20100, 385, 10, 26, "Input",ExpressionUUID->"1400e62e-a2ef-4a51-8822-369a7deb2916"], Cell[1098708, 20112, 68140, 1185, 245, "Output",ExpressionUUID->"5be09209-cd4a-4c69-8ecd-a22d5d5dbefc"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1166897, 21303, 90, 0, 37, "Subsubsection",ExpressionUUID->"2b5e045b-b9ac-438b-a83f-469092230192"], Cell[CellGroupData[{ Cell[1167012, 21307, 212, 5, 30, "Input",ExpressionUUID->"ec4589ff-c1a9-4c9a-8b6c-3f50068a8bde"], Cell[1167227, 21314, 115, 2, 34, "Output",ExpressionUUID->"b4e2c91f-33e5-48e8-ab24-da71e927c16e"] }, Open ]], Cell[CellGroupData[{ Cell[1167379, 21321, 275, 7, 30, "Input",ExpressionUUID->"4cf46922-ed30-40b0-969a-60c2b6725144"], Cell[1167657, 21330, 128, 3, 34, "Output",ExpressionUUID->"f052d6c3-6323-43f0-870c-8c16b39c299f"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1167834, 21339, 90, 0, 37, "Subsubsection",ExpressionUUID->"2fe9222b-fe63-463a-8d45-7d27ed22b1af"], Cell[CellGroupData[{ Cell[1167949, 21343, 242, 6, 30, "Input",ExpressionUUID->"75395905-d1a4-437a-9f59-78f66595df99"], Cell[1168194, 21351, 3157, 59, 410, "Output",ExpressionUUID->"fc61cbab-6965-4e6c-bc56-91ee9f5b2e54"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1171400, 21416, 86, 0, 37, "Subsubsection",ExpressionUUID->"62dbb921-cc4c-40c6-b11f-8c92dd50d1f2"], Cell[CellGroupData[{ Cell[1171511, 21420, 282, 6, 30, "Input",ExpressionUUID->"6a2d026d-0f8d-4e70-861b-1aba37e84c58"], Cell[1171796, 21428, 23021, 450, 216, "Output",ExpressionUUID->"909e5147-b1e3-4b51-8a8c-a6a5412cdf43"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1194866, 21884, 95, 0, 37, "Subsubsection",ExpressionUUID->"6dc555d2-6057-47a8-b561-239a9bf6c23d"], Cell[CellGroupData[{ Cell[1194986, 21888, 294, 7, 30, "Input",ExpressionUUID->"af5395e5-e01a-4884-acdf-f975b09dfe3a"], Cell[1195283, 21897, 17428, 339, 216, "Output",ExpressionUUID->"9d3a01df-5eed-4bc4-89f1-5894b0745160"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1212760, 22242, 93, 0, 37, "Subsubsection",ExpressionUUID->"95c1d4f7-fa4d-410f-b298-c8888353e44b"], Cell[CellGroupData[{ Cell[1212878, 22246, 212, 5, 30, "Input",ExpressionUUID->"76206053-d8b3-48ac-b4c6-388db81195cd"], Cell[1213093, 22253, 114, 2, 34, "Output",ExpressionUUID->"a0cd78d3-4ee9-46d7-88f2-916a316c3df3"] }, Open ]], Cell[CellGroupData[{ Cell[1213244, 22260, 292, 7, 30, "Input",ExpressionUUID->"44f5e6c6-5c35-4a06-9cd4-7611975801eb"], Cell[1213539, 22269, 23021, 450, 216, "Output",ExpressionUUID->"8bc08d98-4990-4354-8382-38ccbee68a95"] }, Open ]], Cell[CellGroupData[{ Cell[1236597, 22724, 373, 10, 30, "Input",ExpressionUUID->"220e9a0a-47d3-4c75-8611-5a899d089108"], Cell[1236973, 22736, 3958, 73, 378, "Output",ExpressionUUID->"f656b054-9f22-4f97-a235-3cbba1b0f1a0"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1240980, 22815, 92, 0, 37, "Subsubsection",ExpressionUUID->"d0b1f09b-c8ad-48d7-bfd5-e87bb21a5f99"], Cell[CellGroupData[{ Cell[1241097, 22819, 290, 7, 30, "Input",ExpressionUUID->"a1fa4da1-e161-40b7-83a3-09a6c6ce8f46"], Cell[1241390, 22828, 5610, 114, 204, "Output",ExpressionUUID->"67188992-8845-4ec2-89d3-42f11839e135"] }, Open ]], Cell[CellGroupData[{ Cell[1247037, 22947, 441, 11, 30, "Input",ExpressionUUID->"85b970bd-4370-442b-8820-fdb87e448f98"], Cell[1247481, 22960, 3985, 73, 400, "Output",ExpressionUUID->"bee9a666-bd4c-49d4-b9ec-7967b13505ab"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1251515, 23039, 105, 0, 37, "Subsubsection",ExpressionUUID->"22115181-0253-4838-a9c0-1233f52ee399"], Cell[CellGroupData[{ Cell[1251645, 23043, 450, 12, 30, "Input",ExpressionUUID->"1df6e35b-48a6-4bc4-acf9-45f09f834136"], Cell[1252098, 23057, 1168, 21, 389, "Output",ExpressionUUID->"3c76a681-4ea7-4a8c-8c4b-310743c2a2de"] }, Open ]], Cell[CellGroupData[{ Cell[1253303, 23083, 702, 17, 52, "Input",ExpressionUUID->"e9b04051-436c-42a7-ba5a-9751d4417478"], Cell[CellGroupData[{ Cell[1254030, 23104, 817, 18, 39, "Print",ExpressionUUID->"770699f0-640d-4c6f-9146-65117752c57c"], Cell[1254850, 23124, 841, 22, 24, "Print",ExpressionUUID->"41192d31-f3c8-4059-80e3-3a2f8cc333c5"], Cell[1255694, 23148, 821, 21, 24, "Print",ExpressionUUID->"63e315c8-dfa3-4939-99d4-3e05bb93c453"], Cell[1256518, 23171, 804, 20, 24, "Print",ExpressionUUID->"7bcadedd-ee5b-47ba-8e59-0ba43f7cb122"] }, Open ]], Cell[1257337, 23194, 21075, 411, 61, "Output",ExpressionUUID->"5856ab11-f1ab-4081-8601-4e342d3ee7e7"] }, Open ]], Cell[CellGroupData[{ Cell[1278449, 23610, 304, 8, 30, "Input",ExpressionUUID->"78f5799d-496a-4fb2-99dc-390a9afef4fa"], Cell[1278756, 23620, 1001, 18, 402, "Output",ExpressionUUID->"e8631154-9a7d-4613-8fd9-cf8c5f887ee2"] }, Open ]], Cell[CellGroupData[{ Cell[1279794, 23643, 501, 15, 30, "Input",ExpressionUUID->"8911d37f-34df-40a4-afd3-ca8e63226e43"], Cell[1280298, 23660, 151, 3, 34, "Output",ExpressionUUID->"a28c3e3d-053f-467c-ae04-8bf33cb6f27f"] }, Open ]], Cell[1280464, 23666, 201, 5, 30, "Input",ExpressionUUID->"5944530c-cf90-4dd2-a5fd-7c0219fb6320"], Cell[CellGroupData[{ Cell[1280690, 23675, 499, 15, 30, "Input",ExpressionUUID->"318f6c4f-7708-4a9f-a3ac-7bd48d6b3c42"], Cell[1281192, 23692, 196, 5, 34, "Output",ExpressionUUID->"e9c3d6a5-e82f-4632-ac9a-07a7f8cb9e8d"] }, Open ]], Cell[CellGroupData[{ Cell[1281425, 23702, 766, 21, 52, "Input",ExpressionUUID->"accccc50-a1dd-49dd-a406-9b973c85ab5d"], Cell[1282194, 23725, 5859, 122, 380, "Output",ExpressionUUID->"98f06e3b-fbd7-4d80-8fed-24afa478718e"] }, Open ]], Cell[CellGroupData[{ Cell[1288090, 23852, 176, 4, 30, "Input",ExpressionUUID->"83c5fa11-ddeb-4787-a7dc-a8ac56a4f58d"], Cell[1288269, 23858, 8479, 162, 382, "Output",ExpressionUUID->"207e38cc-c5f8-44a4-ac82-fe0d9c25a9b9"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[1296809, 24027, 85, 0, 67, "Section",ExpressionUUID->"188557dc-2d4c-4abe-9380-3f4444f88a9c"], Cell[CellGroupData[{ Cell[1296919, 24031, 677, 19, 30, "Input",ExpressionUUID->"6d921bf1-a537-41f3-b7d2-f2014d783862"], Cell[1297599, 24052, 1929, 42, 665, "Output",ExpressionUUID->"8130b679-29eb-4af1-ab0a-988ca2c7d189"] }, Open ]], Cell[CellGroupData[{ Cell[1299565, 24099, 86, 0, 54, "Subsection",ExpressionUUID->"acebe07c-4761-4d7a-ad97-a47939132b4e"], Cell[CellGroupData[{ Cell[1299676, 24103, 483, 11, 30, "Input",ExpressionUUID->"cbbef6d3-ebf8-48c4-b55f-5da1b70a19c2"], Cell[1300162, 24116, 6609, 145, 329, "Output",ExpressionUUID->"8232163e-8eb0-4cba-900e-5a6a7a02ba60"] }, Open ]], Cell[CellGroupData[{ Cell[1306808, 24266, 444, 9, 30, "Input",ExpressionUUID->"bbcf51e0-9d6b-4930-b57c-4d8d9e5d8be4"], Cell[1307255, 24277, 25116, 478, 64, "Output",ExpressionUUID->"61c0f29b-e278-4177-bad6-dec70e9273b0"] }, Open ]], Cell[1332386, 24758, 261, 7, 30, "Input",ExpressionUUID->"320bd543-282e-4207-b1f6-de43095fc926"], Cell[CellGroupData[{ Cell[1332672, 24769, 295, 7, 30, "Input",ExpressionUUID->"523e6aa8-3e7c-492f-956d-394d6bb853cf"], Cell[1332970, 24778, 16860, 491, 211, "Output",ExpressionUUID->"385ea12a-a94a-404d-826b-9660996492b8"] }, Open ]], Cell[CellGroupData[{ Cell[1349867, 25274, 214, 4, 30, "Input",ExpressionUUID->"8969a307-6b74-4b5d-89c4-ca84067de464"], Cell[1350084, 25280, 8185, 176, 329, "Output",ExpressionUUID->"d95d02aa-e9df-4cce-a753-e5e96ab7421b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1358318, 25462, 277, 6, 54, "Subsection",ExpressionUUID->"969aad1f-1120-4550-a0c5-5d570009f6ad"], Cell[CellGroupData[{ Cell[1358620, 25472, 271, 7, 30, "Input",ExpressionUUID->"c493e9e1-9518-4614-a05c-582bc8c73392"], Cell[1358894, 25481, 1092, 32, 60, "Output",ExpressionUUID->"e768b64f-6462-4925-92a6-76b8a884f384"] }, Open ]], Cell[CellGroupData[{ Cell[1360023, 25518, 277, 9, 63, "Input",ExpressionUUID->"da1123b5-8b76-4357-95ae-d667bc5b4f5c"], Cell[1360303, 25529, 299, 10, 49, "Output",ExpressionUUID->"cac3f34c-6b34-4ef7-b2e2-4397e3ab419d"] }, Open ]], Cell[CellGroupData[{ Cell[1360639, 25544, 137, 3, 30, "Input",ExpressionUUID->"0f7f8886-efbb-4406-8359-566c093d1b19"], Cell[1360779, 25549, 211, 6, 34, "Output",ExpressionUUID->"931e897a-a4fe-4edb-9ef5-ee3d1cba931e"] }, Open ]], Cell[CellGroupData[{ Cell[1361027, 25560, 163, 4, 30, "Input",ExpressionUUID->"77b693f1-debc-4f34-88a4-9fac90a76dde"], Cell[1361193, 25566, 130, 2, 34, "Output",ExpressionUUID->"e83266bf-789c-46fd-9ff3-2a1b33eced24"] }, Open ]], Cell[CellGroupData[{ Cell[1361360, 25573, 506, 11, 30, "Input",ExpressionUUID->"31b5bcb9-72a9-408f-8f1f-904e3616ec87"], Cell[1361869, 25586, 34808, 652, 357, "Output",ExpressionUUID->"e9015a6c-0815-467f-9ce5-5eb88b3f2877"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1396726, 26244, 82, 0, 54, "Subsection",ExpressionUUID->"3024dc8c-b30d-416d-b860-e23fec438550"], Cell[CellGroupData[{ Cell[1396833, 26248, 443, 13, 30, "Input",ExpressionUUID->"3dbe8aef-d531-44eb-bd78-c8de0ead7c0b"], Cell[1397279, 26263, 1284, 40, 50, "Output",ExpressionUUID->"82aa19b4-0194-4065-a0e9-e73948e9b8cc"] }, Open ]], Cell[CellGroupData[{ Cell[1398600, 26308, 1635, 45, 88, "Input",ExpressionUUID->"48563c9c-ed47-45df-88d6-5643d4d2c343"], Cell[1400238, 26355, 288963, 4750, 370, "Output",ExpressionUUID->"7d39f62e-c7f8-41d4-b5b0-f0c2ca1ef90e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1689250, 31111, 86, 0, 54, "Subsection",ExpressionUUID->"cf3eb0c3-a1f4-4dda-bcb4-878347f2955a"], Cell[1689339, 31113, 144, 3, 30, "Input",ExpressionUUID->"bbcbaad9-4f9f-46d9-9225-f93f89cd5013"], Cell[CellGroupData[{ Cell[1689508, 31120, 470, 11, 30, "Input",ExpressionUUID->"7d521d82-7847-41c2-856d-9f83cfa62171"], Cell[1689981, 31133, 13626, 278, 379, "Output",ExpressionUUID->"1f7fb817-acb5-4f3b-8beb-da6307532064"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1703656, 31417, 86, 0, 54, "Subsection",ExpressionUUID->"953ec095-87c6-46f2-99b4-7f2cd7dea229"], Cell[CellGroupData[{ Cell[1703767, 31421, 408, 9, 30, "Input",ExpressionUUID->"c4e333e2-2a54-4639-8900-ff19220c622c"], Cell[1704178, 31432, 8358, 178, 367, "Output",ExpressionUUID->"de3f19cf-a75b-431e-b269-2583eb97f58a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1712585, 31616, 86, 0, 54, "Subsection",ExpressionUUID->"3fd9f6cf-6ab4-4d21-a2fa-65e0d970cb66"], Cell[CellGroupData[{ Cell[1712696, 31620, 408, 9, 30, "Input",ExpressionUUID->"d74853fe-7fcc-49be-aeea-c54071215886"], Cell[1713107, 31631, 10525, 221, 360, "Output",ExpressionUUID->"3ef5dd85-16d4-4e93-82b4-baa763202dfa"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1723681, 31858, 87, 0, 54, "Subsection",ExpressionUUID->"bc8f9aef-6c65-471c-a5d8-611edbb0b949"], Cell[CellGroupData[{ Cell[1723793, 31862, 429, 10, 30, "Input",ExpressionUUID->"63e8e1ec-b968-4463-a427-c424c368edcf"], Cell[1724225, 31874, 10513, 222, 388, "Output",ExpressionUUID->"4c23f1fc-b918-4f6a-8472-6d6f36b0e1d8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1734787, 32102, 98, 0, 54, "Subsection",ExpressionUUID->"8e7630aa-33de-41f7-89e5-67211777b543"], Cell[CellGroupData[{ Cell[1734910, 32106, 519, 12, 30, "Input",ExpressionUUID->"96d0d904-4944-4e45-b9b5-c2196ef40be3"], Cell[1735432, 32120, 7173, 158, 364, "Output",ExpressionUUID->"fcf387ae-b103-4296-87f1-14351fa49c16"] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1742666, 32285, 98, 0, 53, "Section",ExpressionUUID->"16039d06-ccd4-4310-a720-aafa21f8cb02"], Cell[CellGroupData[{ Cell[1742789, 32289, 186, 3, 30, "Input",ExpressionUUID->"927f151d-e8eb-4ffe-9e2e-079776adaa6d"], Cell[1742978, 32294, 168, 3, 34, "Output",ExpressionUUID->"84e2db5a-415b-48ff-b410-af29b8fd7b3e"] }, Open ]], Cell[CellGroupData[{ Cell[1743183, 32302, 631, 17, 30, "Input",ExpressionUUID->"4111de57-9857-4f1e-bda9-3e9b8c6c0e82"], Cell[1743817, 32321, 43632, 1381, 733, "Output",ExpressionUUID->"def94d1d-b8e4-4da4-8937-b41b86308424"] }, Closed]], Cell[CellGroupData[{ Cell[1787486, 33707, 596, 17, 26, "Input",ExpressionUUID->"95edaba2-bd35-4c29-b487-ebd3f62e713d"], Cell[1788085, 33726, 64295, 2017, 950, "Output",ExpressionUUID->"16c0681c-8337-46a6-ba11-f4b5f86ecfc9"] }, Closed]], Cell[CellGroupData[{ Cell[1852417, 35748, 631, 17, 26, "Input",ExpressionUUID->"78a751de-431d-4448-89fc-af1caef794f0"], Cell[1853051, 35767, 48352, 1487, 652, "Output",ExpressionUUID->"944adf27-c5f6-4100-875d-1d0e26b59c6c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1901452, 37260, 84, 0, 53, "Section",ExpressionUUID->"83b5fe29-9f96-4dcf-a9fb-36e65102afcd"], Cell[CellGroupData[{ Cell[1901561, 37264, 84, 0, 54, "Subsection",ExpressionUUID->"8b730682-5e81-41e1-a487-581abd20811f"], Cell[CellGroupData[{ Cell[1901670, 37268, 181, 3, 30, "Input",ExpressionUUID->"8dfb3551-9dd3-44ae-bab3-d2f91bd24059"], Cell[1901854, 37273, 823, 13, 77, "Output",ExpressionUUID->"e7cc43e7-bc53-4b61-9daa-80e9fe10d3a6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1902726, 37292, 85, 0, 54, "Subsection",ExpressionUUID->"fc440145-9aa5-44c8-a3e8-b8efcd991d3d"], Cell[CellGroupData[{ Cell[1902836, 37296, 253, 6, 30, "Input",ExpressionUUID->"b7326196-fac2-42d1-a7ea-61dcc1e428c3"], Cell[1903092, 37304, 5489, 114, 208, "Output",ExpressionUUID->"b4385df9-37bc-40ad-8288-fd0c2db99ff0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1908630, 37424, 87, 0, 54, "Subsection",ExpressionUUID->"e77a0d4d-7216-4d05-8893-611d3947da39"], Cell[CellGroupData[{ Cell[1908742, 37428, 317, 8, 30, "Input",ExpressionUUID->"5db89822-e1cb-4c40-9ea9-4bd3852d4ee8"], Cell[1909062, 37438, 244, 5, 21, "Message",ExpressionUUID->"36ae7f36-2ce6-4a1f-9d13-48632ef85e3e"], Cell[1909309, 37445, 7425, 201, 750, "Output",ExpressionUUID->"8ad34215-0530-433d-b2de-78839e4786e6"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1916795, 37653, 92, 0, 67, "Section",ExpressionUUID->"7e6802a5-1c3c-42c3-9b80-595f5898e3b7"], Cell[CellGroupData[{ Cell[1916912, 37657, 210, 5, 30, "Input",ExpressionUUID->"d7480361-7534-4df3-a485-240d88ccfe47"], Cell[1917125, 37664, 114, 2, 34, "Output",ExpressionUUID->"b10900cb-510c-46ed-baa1-fbb284f2f7ed"] }, Open ]], Cell[CellGroupData[{ Cell[1917276, 37671, 214, 4, 30, "Input",ExpressionUUID->"3e7fb1c9-9f23-444c-94a7-12f2c13edeac"], Cell[1917493, 37677, 438, 9, 34, "Output",ExpressionUUID->"0b78b421-80ad-45ea-a688-ad31fc657e8b"] }, Open ]], Cell[CellGroupData[{ Cell[1917968, 37691, 181, 4, 30, "Input",ExpressionUUID->"0f964443-e679-498e-a856-12eca09d8673"], Cell[1918152, 37697, 357, 7, 34, "Output",ExpressionUUID->"b0f97601-0f57-4ba2-819a-961d15389e97"] }, Open ]], Cell[CellGroupData[{ Cell[1918546, 37709, 376, 9, 30, "Input",ExpressionUUID->"7ea3f009-dfc5-4034-89b4-a502517626fd"], Cell[1918925, 37720, 6678, 141, 362, "Output",ExpressionUUID->"0634ede0-3202-43d4-a9e1-d152a80128d0"] }, Open ]], Cell[CellGroupData[{ Cell[1925640, 37866, 155, 2, 30, "Input",ExpressionUUID->"91133d85-4205-465e-887d-bda94012de9f"], Cell[1925798, 37870, 110, 1, 34, "Output",ExpressionUUID->"355d5388-c9c8-408b-9ea7-407c99074eb9"] }, Open ]], Cell[CellGroupData[{ Cell[1925945, 37876, 95, 0, 54, "Subsection",ExpressionUUID->"2a897ff8-6b5f-4c86-b9c8-94e10e8d1152"], Cell[1926043, 37878, 98, 0, 35, "Text",ExpressionUUID->"404aea2f-6f88-4db8-87c8-e93fed9d091c"], Cell[1926144, 37880, 212, 3, 35, "Text",ExpressionUUID->"f50ff6d5-2d1f-4972-b0f4-65532c9f0e60"], Cell[1926359, 37885, 1740, 48, 73, "Input",ExpressionUUID->"87918fa1-9ee8-474f-9d5e-e50cfb87f191"], Cell[CellGroupData[{ Cell[1928124, 37937, 272, 7, 30, "Input",ExpressionUUID->"942c5efd-f6a1-4390-858d-dd8490085201"], Cell[1928399, 37946, 135, 2, 34, "Output",ExpressionUUID->"a6cbc13c-bd80-4522-8893-caa862c5dbe9"] }, Open ]], Cell[CellGroupData[{ Cell[1928571, 37953, 302, 8, 30, "Input",ExpressionUUID->"9a957ae8-67c4-4e4c-aed4-d819de287701"], Cell[1928876, 37963, 993, 24, 56, "Output",ExpressionUUID->"4753f43a-c89c-411a-9799-581c6ce2f69a"] }, Open ]], Cell[CellGroupData[{ Cell[1929906, 37992, 252, 7, 30, "Input",ExpressionUUID->"600b8144-165e-4469-9b80-7ab84bbb31ee"], Cell[1930161, 38001, 361, 8, 34, "Output",ExpressionUUID->"681ba0ee-cf39-43b6-91ce-4b8f0ea33f15"] }, Open ]], Cell[CellGroupData[{ Cell[1930559, 38014, 454, 11, 30, "Input",ExpressionUUID->"8fa186f2-09ac-41e4-a73f-b57b654851d1"], Cell[1931016, 38027, 362, 8, 34, "Output",ExpressionUUID->"93d2c122-a462-480c-9d6b-0a254dbfb52a"] }, Open ]], Cell[CellGroupData[{ Cell[1931415, 38040, 391, 11, 30, "Input",ExpressionUUID->"dcae9c4f-3022-4b4e-8021-95816da05133"], Cell[1931809, 38053, 6683, 142, 362, "Output",ExpressionUUID->"95af7c10-d189-40a0-a8ce-450652f4e937"] }, Open ]], Cell[CellGroupData[{ Cell[1938529, 38200, 162, 3, 30, "Input",ExpressionUUID->"2cbbc6fe-8f61-454d-82eb-38d8e66e3f71"], Cell[1938694, 38205, 114, 2, 34, "Output",ExpressionUUID->"23378912-f4bc-4056-9210-02ffae610868"] }, Open ]], Cell[CellGroupData[{ Cell[1938845, 38212, 96, 0, 45, "Subsubsection",ExpressionUUID->"105591d8-e1a7-4797-96ad-debb455290c1"], Cell[1938944, 38214, 416, 10, 173, "Text",ExpressionUUID->"4fdbf445-4269-4121-a87c-1dcc4b4691bb"], Cell[CellGroupData[{ Cell[1939385, 38228, 239, 6, 30, "Input",ExpressionUUID->"82656cf4-5dfd-4ad8-be89-ddad69d29e32"], Cell[1939627, 38236, 113, 2, 34, "Output",ExpressionUUID->"5ffb2a7b-ee2e-468a-81c8-c284e745fa19"] }, Open ]] }, Open ]] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1939813, 38246, 86, 0, 53, "Section",ExpressionUUID->"0b2d5c90-e928-4e33-abd5-88e2eebbbab8"], Cell[CellGroupData[{ Cell[1939924, 38250, 96, 0, 54, "Subsection",ExpressionUUID->"82b341c1-e7a1-49cf-91f8-6c8eaeff028f"], Cell[CellGroupData[{ Cell[1940045, 38254, 253, 7, 30, "Input",ExpressionUUID->"deacf966-44c3-43ea-b661-4414e3a3dc01"], Cell[1940301, 38263, 2890, 50, 363, "Output",ExpressionUUID->"18fa493d-646c-41f7-a4f4-c761a25d015d"] }, Open ]], Cell[CellGroupData[{ Cell[1943228, 38318, 144, 3, 30, "Input",ExpressionUUID->"a346918b-79dd-4d71-9de3-21679b99dbe8"], Cell[1943375, 38323, 327, 7, 43, "Output",ExpressionUUID->"166cb3ab-0bd1-4ff0-b4ca-9ebf53e4f20b"] }, Open ]], Cell[CellGroupData[{ Cell[1943739, 38335, 147, 3, 30, "Input",ExpressionUUID->"8b8ae36d-252c-4be9-aad4-bb129949a6c6"], Cell[1943889, 38340, 112, 2, 34, "Output",ExpressionUUID->"deae0efb-f102-4e68-87f7-091f8fbfacfe"] }, Open ]], Cell[CellGroupData[{ Cell[1944038, 38347, 178, 4, 30, "Input",ExpressionUUID->"72fe1085-33a6-40ef-a820-578bd2cf6a95"], Cell[1944219, 38353, 164, 4, 34, "Output",ExpressionUUID->"e99e24f4-0801-488c-bb3a-bc0b1223110f"] }, Open ]], Cell[CellGroupData[{ Cell[1944420, 38362, 182, 4, 30, "Input",ExpressionUUID->"8e9d4fe8-1597-4406-b2b2-b3d52378b7ae"], Cell[1944605, 38368, 339, 10, 34, "Output",ExpressionUUID->"0dd0d847-0683-40a3-8093-9360e69b4597"] }, Open ]], Cell[CellGroupData[{ Cell[1944981, 38383, 188, 5, 30, "Input",ExpressionUUID->"474c91b2-0b9d-4784-8d85-2a3b37609c2b"], Cell[1945172, 38390, 167, 4, 34, "Output",ExpressionUUID->"77a94d54-ed3d-4579-a5f5-e354367b87f4"] }, Open ]], Cell[CellGroupData[{ Cell[1945376, 38399, 182, 4, 30, "Input",ExpressionUUID->"2badbb65-2bae-4481-b877-09da698b9695"], Cell[1945561, 38405, 382, 11, 34, "Output",ExpressionUUID->"84daac03-a3f7-4d54-b30b-7bc13f27e985"] }, Open ]], Cell[CellGroupData[{ Cell[1945980, 38421, 188, 5, 30, "Input",ExpressionUUID->"ea1be9a2-ee95-4b80-8a22-be209f7b61b4"], Cell[1946171, 38428, 636, 29, 39, "Output",ExpressionUUID->"4aa48be7-b355-449f-8eee-f09970cb5988"] }, Open ]], Cell[CellGroupData[{ Cell[1946844, 38462, 195, 4, 30, "Input",ExpressionUUID->"989f74d1-bd67-4d6d-b96d-5c57147c0fb0"], Cell[1947042, 38468, 113, 2, 34, "Output",ExpressionUUID->"654e9ef8-f250-4986-8b27-3d9adaf9eb48"] }, Open ]], Cell[CellGroupData[{ Cell[1947192, 38475, 153, 3, 30, "Input",ExpressionUUID->"0f0b755b-637e-4064-842e-601558288657"], Cell[1947348, 38480, 114, 2, 34, "Output",ExpressionUUID->"f13fe61f-9fb5-4b12-8a3c-effb9bced661"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[1947511, 38488, 104, 0, 38, "Subsection",ExpressionUUID->"dc779de8-88c6-4d15-9d85-c74ea57b5a5b"], Cell[1947618, 38490, 62860, 1035, 417, "Input",ExpressionUUID->"8a3d5009-a17f-4bd2-9989-425a678bce0b"], Cell[2010481, 39527, 1691, 45, 94, "Input",ExpressionUUID->"f8c5089c-ecc5-45de-8b8f-4b6401f27fc7"], Cell[CellGroupData[{ Cell[2012197, 39576, 114, 1, 30, "Input",ExpressionUUID->"54a57b54-94ef-4d1b-8c2d-6a075f91d152"], Cell[2012314, 39579, 84, 0, 34, "Output",ExpressionUUID->"2ea8716b-d48b-4aa2-9a07-7b4e4c0ec32e"] }, Open ]], Cell[CellGroupData[{ Cell[2012435, 39584, 2381, 64, 136, "Input",ExpressionUUID->"7ef39f4e-390f-4663-9519-dfe311d3a8d1"], Cell[2014819, 39650, 11032, 300, 369, "Output",ExpressionUUID->"cd361cb8-a5b6-45c1-b155-8f773a3d9625"] }, Open ]], Cell[CellGroupData[{ Cell[2025888, 39955, 115, 1, 30, "Input",ExpressionUUID->"a11f76b2-9054-4b0a-8ceb-19cbbb58d0e9"], Cell[2026006, 39958, 321, 6, 34, "Output",ExpressionUUID->"db7e9fbe-1704-4fc5-be68-4566046ed945"] }, Open ]], Cell[CellGroupData[{ Cell[2026364, 39969, 122, 1, 30, "Input",ExpressionUUID->"464089d0-4dc5-4f44-a689-a3f3891afee0"], Cell[2026489, 39972, 107, 0, 34, "Output",ExpressionUUID->"bcaead3b-601f-4c74-88d6-677cfc5e6608"] }, Open ]], Cell[CellGroupData[{ Cell[2026633, 39977, 285, 8, 30, "Input",ExpressionUUID->"851835b0-64e5-472d-8938-b462d45a236b"], Cell[2026921, 39987, 102, 0, 34, "Output",ExpressionUUID->"b12b5334-8145-4131-bcaa-aa7b59b2de20"] }, Open ]], Cell[2027038, 39990, 160, 4, 30, "Input",ExpressionUUID->"3d62074a-e44d-4f21-94cb-f0f8e3e93ee8"], Cell[CellGroupData[{ Cell[2027223, 39998, 280, 8, 30, "Input",ExpressionUUID->"46945d60-3755-4f1c-ade0-074b4a12db41"], Cell[2027506, 40008, 100, 0, 34, "Output",ExpressionUUID->"62b45bde-b1c8-4062-a0ed-fe0753fafdf1"] }, Open ]], Cell[CellGroupData[{ Cell[2027643, 40013, 495, 17, 48, "Input",ExpressionUUID->"f92bb9d4-0508-437c-b925-40dd2ffa3ae9"], Cell[2028141, 40032, 2005, 50, 98, "Output",ExpressionUUID->"06407023-c123-41bd-be20-388f1553b56e"] }, Open ]], Cell[CellGroupData[{ Cell[2030183, 40087, 195, 5, 30, "Input",ExpressionUUID->"076410a5-30d4-46ec-a82d-522b28306ee4"], Cell[2030381, 40094, 167, 3, 34, "Output",ExpressionUUID->"bd7adf36-d332-4163-bf79-a6735c66d175"] }, Open ]], Cell[CellGroupData[{ Cell[2030585, 40102, 202, 6, 30, "Input",ExpressionUUID->"dde58f36-0fca-420d-930a-e80c9a1c8906"], Cell[2030790, 40110, 2439, 67, 98, "Output",ExpressionUUID->"5a9219fa-39b0-4c66-a7c5-913ed0d5a449"] }, Open ]], Cell[CellGroupData[{ Cell[2033266, 40182, 321, 8, 30, "Input",ExpressionUUID->"c266b839-359d-42ab-93e1-415eb3b29cab"], Cell[2033590, 40192, 3761, 117, 360, "Output",ExpressionUUID->"9d09ad05-da6d-4e5f-8293-853ecef463f6"] }, Open ]], Cell[CellGroupData[{ Cell[2037388, 40314, 4073, 106, 315, "Input",ExpressionUUID->"1194a67c-adde-4d57-9665-d4ccaea24efc"], Cell[2041464, 40422, 11167, 303, 360, "Output",ExpressionUUID->"0907969b-a907-4da3-bd68-fc3b72eaf1cf"] }, Open ]], Cell[CellGroupData[{ Cell[2052668, 40730, 114, 1, 30, "Input",ExpressionUUID->"c086a8bf-a17f-4a1f-a3ca-235944ab5b13"], Cell[2052785, 40733, 1486, 30, 286, "Output",ExpressionUUID->"97ec1daf-cbb8-4156-984a-09eedaef9760"] }, Open ]], Cell[CellGroupData[{ Cell[2054308, 40768, 429, 12, 52, "Input",ExpressionUUID->"22931139-6d0c-4a31-8f1a-39abb8d43033"], Cell[2054740, 40782, 893, 16, 56, "Output",ExpressionUUID->"7eda413c-acb9-4ebd-bfe6-aa438bc058b0"] }, Open ]], Cell[CellGroupData[{ Cell[2055670, 40803, 3079, 90, 217, "Input",ExpressionUUID->"5bcfd697-b47c-47f0-8b49-b1b480ca78a1"], Cell[2058752, 40895, 11532, 427, 338, "Output",ExpressionUUID->"3a0be067-98ed-4500-a6f6-69dbb2e46758"] }, Open ]], Cell[2070299, 41325, 397, 13, 30, "Input",ExpressionUUID->"3dbcd2c6-484b-4078-b89c-06dcc878ee8a"], Cell[CellGroupData[{ Cell[2070721, 41342, 88, 0, 45, "Subsubsection",ExpressionUUID->"0664bf38-cd2c-4f4d-b135-f196827d448e"], Cell[CellGroupData[{ Cell[2070834, 41346, 1576, 44, 178, "Input",ExpressionUUID->"5c2e3880-40f4-4950-b21c-9c30153793df"], Cell[2072413, 41392, 686, 19, 56, "Output",ExpressionUUID->"51c5010f-f0d3-48e6-93af-9ef722ee2f79"] }, Open ]], Cell[CellGroupData[{ Cell[2073136, 41416, 393, 11, 30, "Input",ExpressionUUID->"c1bfc502-f84b-425e-8537-5eafdaaf5455"], Cell[2073532, 41429, 411, 13, 34, "Output",ExpressionUUID->"76365702-29a9-4a33-b128-f6d36db11e6e"] }, Open ]], Cell[2073958, 41445, 156, 4, 30, "Input",ExpressionUUID->"6e59d20a-ca98-46b4-a77e-450060db1ed9"], Cell[CellGroupData[{ Cell[2074139, 41453, 322, 8, 30, "Input",ExpressionUUID->"32dab07f-2a8a-46cb-a4b3-0bcefc22b8c1"], Cell[2074464, 41463, 11177, 305, 360, "Output",ExpressionUUID->"935c5bd5-0322-4251-9764-9a2d8853bce6"] }, Open ]], Cell[CellGroupData[{ Cell[2085678, 41773, 355, 10, 30, "Input",ExpressionUUID->"8a74711c-fefd-4ae4-bd21-ce6b4166e25b"], Cell[2086036, 41785, 2951, 54, 287, "Output",ExpressionUUID->"95ece37e-6420-4a18-aded-d37fa5090a11"] }, Open ]], Cell[CellGroupData[{ Cell[2089024, 41844, 197, 4, 30, "Input",ExpressionUUID->"bc036703-687d-4946-8a51-55e5a77ff86d"], Cell[2089224, 41850, 2383, 67, 98, "Output",ExpressionUUID->"27426b80-e854-4681-9ab4-fc3fd387847a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2091656, 41923, 89, 0, 45, "Subsubsection",ExpressionUUID->"4c0675a8-f3e7-4e7a-8740-437ee0d8ebc5"], Cell[2091748, 41925, 784, 21, 115, "Input",ExpressionUUID->"a9814760-64f0-4641-b5b8-e7918f15b290"], Cell[CellGroupData[{ Cell[2092557, 41950, 327, 8, 30, "Input",ExpressionUUID->"a94495ba-d4f4-4f10-a47f-bb30189c919c"], Cell[2092887, 41960, 394, 9, 34, "Output",ExpressionUUID->"7c96b766-9095-4290-a755-22cb3914def7"] }, Open ]], Cell[CellGroupData[{ Cell[2093318, 41974, 326, 8, 30, "Input",ExpressionUUID->"23199edc-4f65-4e37-9c4c-d72a5bd74a41"], Cell[2093647, 41984, 375, 8, 34, "Output",ExpressionUUID->"94fa755a-ffcf-44e0-9ac6-afb207a69167"] }, Open ]], Cell[CellGroupData[{ Cell[2094059, 41997, 1447, 42, 152, "Input",ExpressionUUID->"b71b5d26-0feb-4fde-8446-212db02ecbb5"], Cell[2095509, 42041, 2265, 74, 90, "Output",ExpressionUUID->"104ad5c4-3fbd-4f7a-9ad3-9f03ba721982"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2097823, 42121, 96, 0, 45, "Subsubsection",ExpressionUUID->"d3f518c6-0465-4748-80c1-b20e9774163a"], Cell[2097922, 42123, 283, 8, 30, "Input",ExpressionUUID->"d72ee1d1-bc82-4a60-b181-39276c92e1ee"], Cell[2098208, 42133, 1783, 43, 115, "Input",ExpressionUUID->"582f63d8-850a-4457-a96b-d1a361542276"], Cell[CellGroupData[{ Cell[2100016, 42180, 182, 5, 30, "Input",ExpressionUUID->"fd258edf-579f-4566-9d6a-2983e35bd1cb"], Cell[2100201, 42187, 388, 9, 34, "Output",ExpressionUUID->"a575383c-442d-4d19-8ee5-6518f2e38282"] }, Open ]], Cell[CellGroupData[{ Cell[2100626, 42201, 401, 12, 30, "Input",ExpressionUUID->"4c23cf13-127b-41f8-901d-61d6fd7db98e"], Cell[2101030, 42215, 264, 6, 34, "Output",ExpressionUUID->"35e78e4a-f466-4d62-a6e8-eb492f5160c9"] }, Open ]], Cell[2101309, 42224, 128, 3, 30, "Input",ExpressionUUID->"9cdef98d-cf72-470b-968d-5a138e1af207"], Cell[CellGroupData[{ Cell[2101462, 42231, 408, 11, 30, "Input",ExpressionUUID->"3668651c-d780-4d71-875b-7940cce5e50c"], Cell[2101873, 42244, 3837, 131, 154, "Output",ExpressionUUID->"cdb2730d-ac77-4bb7-96ee-f19ea0b4ac08"] }, Open ]], Cell[CellGroupData[{ Cell[2105747, 42380, 1172, 33, 52, "Input",ExpressionUUID->"d0543d39-c043-4299-b4b9-7cefccc9d4c6"], Cell[2106922, 42415, 1410, 23, 46, "Message",ExpressionUUID->"8e7d2ed6-550c-4b35-8799-aeed9db953a6"], Cell[2108335, 42440, 314, 8, 24, "Message",ExpressionUUID->"36a58c22-9d0a-4e79-acf3-5f5160214ae6"], Cell[2108652, 42450, 314, 8, 24, "Message",ExpressionUUID->"9742aa88-97b6-4725-8687-f569828d76b4"], Cell[2108969, 42460, 314, 8, 24, "Message",ExpressionUUID->"0b13745c-1ebe-4cf4-9e85-dd23eb9e24ea"], Cell[2109286, 42470, 408, 9, 24, "Message",ExpressionUUID->"1250e417-5959-40aa-b5fb-c2d047671ddd"], Cell[2109697, 42481, 1410, 23, 46, "Message",ExpressionUUID->"f1ac6358-a2c6-4a74-be49-d9e41da912f6"], Cell[2111110, 42506, 1415, 23, 68, "Message",ExpressionUUID->"149114e2-0109-409c-9d3d-306e7ee4b12a"], Cell[2112528, 42531, 408, 9, 24, "Message",ExpressionUUID->"07249812-f9d5-47dd-9ac0-51026a574348"], Cell[2112939, 42542, 1632, 54, 56, "Output",ExpressionUUID->"e0ded6e3-6212-4e89-bf74-c8d385c80fd6"] }, Open ]], Cell[2114586, 42599, 2103, 66, 73, "Input",ExpressionUUID->"2327551b-c16a-4f50-8ea7-b4c2a1937165"], Cell[CellGroupData[{ Cell[2116714, 42669, 550, 17, 30, "Input",ExpressionUUID->"3c070c64-e6ed-4325-a4c2-310b1aa606f0"], Cell[2117267, 42688, 3830, 132, 154, "Output",ExpressionUUID->"abb35988-2720-4dd8-a530-fe892328dbb5"] }, Open ]], Cell[CellGroupData[{ Cell[2121134, 42825, 385, 9, 30, "Input",ExpressionUUID->"d05e7261-6065-4b37-afe6-df1da2ff08ff"], Cell[2121522, 42836, 8453, 177, 367, "Output",ExpressionUUID->"88ed1993-d82f-4945-b9db-a426a533a971"] }, Open ]], Cell[CellGroupData[{ Cell[2130012, 43018, 150, 3, 30, "Input",ExpressionUUID->"3077224a-8846-4774-8df3-f5a2301fa0b8"], Cell[CellGroupData[{ Cell[2130187, 43025, 215, 4, 24, "Print",ExpressionUUID->"e893ed52-8fe8-4eea-81cb-87a80a8605cd"], Cell[2130405, 43031, 225, 4, 24, "Print",ExpressionUUID->"b1734736-54ed-432a-90a2-25288281fe68"], Cell[2130633, 43037, 375, 8, 24, "Print",ExpressionUUID->"ef181d1b-6ba0-4ebe-9c06-e394eddab374"] }, Open ]], Cell[2131023, 43048, 135, 2, 34, "Output",ExpressionUUID->"c10f98c0-a1f4-4694-b099-9b4d5443691f"] }, Open ]], Cell[CellGroupData[{ Cell[2131195, 43055, 182, 4, 30, "Input",ExpressionUUID->"beef2994-3d5a-45d1-b955-0545c369d264"], Cell[2131380, 43061, 833, 15, 34, "Output",ExpressionUUID->"6083cabf-4eb6-4d27-b073-e1ea3fd73481"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2132262, 43082, 99, 0, 45, "Subsubsection",ExpressionUUID->"73a88d8f-41f3-4035-8525-fb4b798b0e54"], Cell[CellGroupData[{ Cell[2132386, 43086, 139, 3, 30, "Input",ExpressionUUID->"52db371c-ea47-4206-a851-bd8cfb56737b"], Cell[2132528, 43091, 131, 2, 34, "Output",ExpressionUUID->"5fb09c79-f5e4-4c9a-ae9f-f6d5ba7fe845"] }, Open ]], Cell[CellGroupData[{ Cell[2132696, 43098, 230, 6, 45, "Input",ExpressionUUID->"785d2cab-0215-4868-b8ab-0172fbe20853"], Cell[2132929, 43106, 282, 8, 51, "Output",ExpressionUUID->"98706335-102e-4993-a14f-963e625d1434"] }, Open ]], Cell[CellGroupData[{ Cell[2133248, 43119, 3110, 91, 217, "Input",ExpressionUUID->"e7a2bc47-32ac-4d30-8a90-25327c7875a1"], Cell[2136361, 43212, 11994, 440, 403, "Output",ExpressionUUID->"dc4f5eb3-26c7-4c56-8320-d655479c56ab"] }, Open ]], Cell[CellGroupData[{ Cell[2148392, 43657, 1447, 42, 152, "Input",ExpressionUUID->"2cce6c55-5384-4c8f-8bc1-0a588d8e86d0"], Cell[2149842, 43701, 2923, 102, 100, "Output",ExpressionUUID->"8e499586-5d18-4df8-9f92-36c56920c839"] }, Open ]], Cell[CellGroupData[{ Cell[2152802, 43808, 283, 8, 30, "Input",ExpressionUUID->"c3f0ceb1-94ea-4348-b3ca-d5f9ccb19b59"], Cell[2153088, 43818, 1663, 40, 77, "Output",ExpressionUUID->"02c1ca94-dcfa-48e5-917b-c133c71da961"] }, Open ]], Cell[CellGroupData[{ Cell[2154788, 43863, 550, 17, 30, "Input",ExpressionUUID->"c38ee6b7-9e88-49b4-b2ba-20724b5f20c1"], Cell[2155341, 43882, 3831, 132, 154, "Output",ExpressionUUID->"c0652752-e9be-452d-ae54-910b51b91cf5"] }, Open ]], Cell[CellGroupData[{ Cell[2159209, 44019, 385, 9, 30, "Input",ExpressionUUID->"47ee53f1-442a-4136-82f3-b3fc0756e9c0"], Cell[2159597, 44030, 8476, 178, 367, "Output",ExpressionUUID->"aed4f17a-0cb1-472e-9b69-5b45488a5c0b"] }, Open ]], Cell[CellGroupData[{ Cell[2168110, 44213, 150, 3, 30, "Input",ExpressionUUID->"02a5ae6a-c62c-4938-86da-9453073855b2"], Cell[2168263, 44218, 135, 2, 34, "Output",ExpressionUUID->"d62b09e0-6522-4e74-942b-947b875e0346"] }, Open ]], Cell[CellGroupData[{ Cell[2168435, 44225, 182, 4, 30, "Input",ExpressionUUID->"4c77aa71-05ba-49ed-af8d-9b38f4c57cdb"], Cell[2168620, 44231, 729, 13, 34, "Output",ExpressionUUID->"8c564fdd-ab26-4ea2-ae20-d6a34f1e7d75"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2169398, 44250, 85, 0, 45, "Subsubsection",ExpressionUUID->"31c33c49-79d4-4cc3-9514-c68dee7142ca"], Cell[CellGroupData[{ Cell[2169508, 44254, 140, 3, 30, "Input",ExpressionUUID->"f3013e0e-f940-4e02-a621-f92167e490c9"], Cell[2169651, 44259, 3278, 109, 125, "Output",ExpressionUUID->"d381de93-d87c-4f23-bd27-530578a6ad15"] }, Open ]], Cell[CellGroupData[{ Cell[2172966, 44373, 345, 10, 30, "Input",ExpressionUUID->"dcefabd4-7c56-49ce-b95a-d2b6a37270c3"], Cell[2173314, 44385, 118, 2, 34, "Output",ExpressionUUID->"e317a47d-16a1-4671-b8da-ae8061813f5d"] }, Open ]], Cell[CellGroupData[{ Cell[2173469, 44392, 810, 28, 44, "Input",ExpressionUUID->"c31068e6-56c4-45e3-b4a2-514412dc388a"], Cell[2174282, 44422, 1691, 59, 90, "Output",ExpressionUUID->"50d05d44-2823-453a-8c78-0af77ab94660"] }, Open ]], Cell[CellGroupData[{ Cell[2176010, 44486, 137, 3, 30, "Input",ExpressionUUID->"1e301c4c-039f-4d56-8bd9-dad771073be6"], Cell[2176150, 44491, 326, 10, 34, "Output",ExpressionUUID->"837362fe-18d3-4dae-91af-e0590a8b0064"] }, Open ]], Cell[CellGroupData[{ Cell[2176513, 44506, 1004, 34, 52, "Input",ExpressionUUID->"20ec89ef-73e2-4ff5-b420-f1e1cd59eafb"], Cell[2177520, 44542, 817, 21, 34, "Output",ExpressionUUID->"778da5cb-4f77-4623-9844-8e97718d36ce"] }, Open ]], Cell[CellGroupData[{ Cell[2178374, 44568, 1092, 37, 83, "Input",ExpressionUUID->"71224ffa-dd98-4c75-9d8a-a3a4f989d123"], Cell[2179469, 44607, 360, 10, 34, "Output",ExpressionUUID->"2e121f52-c7c7-4ae1-8874-bbb7d894a325"] }, Open ]], Cell[CellGroupData[{ Cell[2179866, 44622, 1091, 37, 83, "Input",ExpressionUUID->"3543dda5-bd43-482c-8377-b07a03708d80"], Cell[2180960, 44661, 118, 2, 34, "Output",ExpressionUUID->"2e3aa18a-7b12-4311-ae66-0cdcae603f1c"], Cell[2181081, 44665, 3278, 109, 125, "Output",ExpressionUUID->"6dbf01d8-0b0e-4fd2-b7f7-9b8c8e474fd7"] }, Open ]], Cell[CellGroupData[{ Cell[2184396, 44779, 3838, 122, 203, "Input",ExpressionUUID->"3b44f48f-bfd6-4641-9df3-743d56dd4546"], Cell[2188237, 44903, 1934, 47, 77, "Output",ExpressionUUID->"0a33f69f-ff58-4fa3-881d-80253f0a3e4b"] }, Open ]], Cell[CellGroupData[{ Cell[2190208, 44955, 3917, 123, 254, "Input",ExpressionUUID->"254ed205-7d26-4c40-912c-5c9c72016684"], Cell[2194128, 45080, 4080, 105, 140, "Output",ExpressionUUID->"24c0f343-be80-474a-917d-6b762149bcb6"] }, Open ]], Cell[CellGroupData[{ Cell[2198245, 45190, 1177, 40, 84, "Input",ExpressionUUID->"c27e6f7c-3910-46c5-bebf-f64f731d6b9a"], Cell[2199425, 45232, 1073, 39, 83, "Output",ExpressionUUID->"65bc5d03-c2ee-4e77-b573-5b19506eaafa"] }, Open ]], Cell[CellGroupData[{ Cell[2200535, 45276, 4027, 127, 280, "Input",ExpressionUUID->"068e2938-310c-4dbb-ac5c-7abd8c42776a"], Cell[2204565, 45405, 358, 9, 34, "Output",ExpressionUUID->"6737cf7f-d53b-4110-920a-a551c104a8d1"] }, Open ]], Cell[2204938, 45417, 326, 8, 30, "Input",ExpressionUUID->"41f4e5a4-3326-4bed-8e46-1bc14d8bc49d"], Cell[CellGroupData[{ Cell[2205289, 45429, 3971, 125, 253, "Input",ExpressionUUID->"9f7b0633-d7c7-48da-a47d-d6bcfb33533f"], Cell[2209263, 45556, 118, 2, 34, "Output",ExpressionUUID->"6c14e09e-e6d5-4ea7-893e-93341b5dbc2b"] }, Open ]], Cell[CellGroupData[{ Cell[2209418, 45563, 3750, 118, 231, "Input",ExpressionUUID->"52fbff18-1bdd-470e-88c0-053fceff4318"], Cell[2213171, 45683, 11975, 283, 120, "Output",ExpressionUUID->"ee0e553b-cb7d-4efa-a30f-5ce9b5f9d35e"] }, Open ]], Cell[CellGroupData[{ Cell[2225183, 45971, 12700, 288, 69, "Input",ExpressionUUID->"14b7faf2-bfc5-4e87-b6de-ecf6b0c2492b"], Cell[2237886, 46261, 12564, 289, 97, "Output",ExpressionUUID->"c068362a-464e-4454-9dc2-86d29f0cf6f4"] }, Open ]], Cell[CellGroupData[{ Cell[2250487, 46555, 449, 14, 30, "Input",ExpressionUUID->"4de6b66f-a087-4e5d-98e3-eebf1c86f266"], Cell[2250939, 46571, 358, 9, 34, "Output",ExpressionUUID->"86f272f5-2902-4b32-b3be-50fad05b85b3"] }, Open ]], Cell[CellGroupData[{ Cell[2251334, 46585, 185, 5, 30, "Input",ExpressionUUID->"24b48e2f-213e-4c63-9424-fbb79b11e866"], Cell[2251522, 46592, 11366, 262, 43, "Output",ExpressionUUID->"22bc0315-b10c-47dc-b665-bd4bf440daa5"] }, Open ]], Cell[CellGroupData[{ Cell[2262925, 46859, 12517, 274, 154, "Input",ExpressionUUID->"bc37ff55-b7ce-42d0-ba38-c71beebce6fa"], Cell[2275445, 47135, 118, 2, 34, "Output",ExpressionUUID->"61327f40-0131-4330-9929-a8bc3393653f"] }, Open ]], Cell[CellGroupData[{ Cell[2275600, 47142, 12409, 270, 126, "Input",ExpressionUUID->"6b4546f6-69df-4024-9f3f-64d08b3f7ae2"], Cell[2288012, 47414, 66208, 1404, 192, "Output",ExpressionUUID->"cb379063-04c1-496c-b0cf-ffb8853cc86f"] }, Open ]], Cell[CellGroupData[{ Cell[2354257, 48823, 144, 3, 30, "Input",ExpressionUUID->"3b8d99c9-ac73-44a2-b2eb-504ab3864cf0"], Cell[2354404, 48828, 111, 2, 34, "Output",ExpressionUUID->"8887832b-9193-476b-98da-6b068febc291"] }, Open ]], Cell[CellGroupData[{ Cell[2354552, 48835, 228, 6, 30, "Input",ExpressionUUID->"cf0978b5-b3d1-4e48-9623-71c442c49f5f"], Cell[2354783, 48843, 881, 24, 34, "Output",ExpressionUUID->"47ea35cf-35d2-48c8-a40c-e0299412c286"] }, Open ]], Cell[CellGroupData[{ Cell[2355701, 48872, 342, 10, 30, "Input",ExpressionUUID->"b17828b2-06b9-405d-939c-bee31a6bfb73"], Cell[2356046, 48884, 25403, 476, 42, "Output",ExpressionUUID->"0fc3edf8-20ad-45f1-b09a-f26a05bdbede"] }, Open ]], Cell[CellGroupData[{ Cell[2381486, 49365, 140, 3, 30, "Input",ExpressionUUID->"3996824c-935e-4e40-a40b-ceb16506b1e2"], Cell[2381629, 49370, 203, 5, 34, "Output",ExpressionUUID->"d8590b29-22b8-4fa1-b5ab-68cd4d34196f"] }, Open ]], Cell[2381847, 49378, 12437, 272, 126, "Input",ExpressionUUID->"886f30c2-86fc-4d95-a4bb-f5452424f06c"], Cell[CellGroupData[{ Cell[2394309, 49654, 228, 6, 30, "Input",ExpressionUUID->"4396c039-b119-482a-922b-23132126861c"], Cell[2394540, 49662, 510, 15, 34, "Output",ExpressionUUID->"80fda36e-efd8-4a54-bd00-d266121e3ac0"] }, Open ]], Cell[CellGroupData[{ Cell[2395087, 49682, 327, 10, 30, "Input",ExpressionUUID->"972956ad-1e48-4d63-8245-1f7c90b9e710"], Cell[2395417, 49694, 10327, 199, 42, "Output",ExpressionUUID->"170ead83-c62c-45a6-8704-55963308d474"] }, Open ]], Cell[CellGroupData[{ Cell[2405781, 49898, 37937, 711, 39, "Input",ExpressionUUID->"ad18968b-347a-46ad-a7e6-5e62df535007"], Cell[2443721, 50611, 843122, 14903, 236, "Output",ExpressionUUID->"cdb70db9-485a-4b07-baad-ad08673046ee"] }, Open ]], Cell[CellGroupData[{ Cell[3286880, 65519, 137, 3, 30, "Input",ExpressionUUID->"6842c3e4-09ff-48b9-8467-92095b72860b"], Cell[3287020, 65524, 327, 10, 34, "Output",ExpressionUUID->"d23fd462-c374-4928-9057-ef8ac7777fd8"] }, Open ]], Cell[CellGroupData[{ Cell[3287384, 65539, 418950, 7428, 152, "Input",ExpressionUUID->"062a2a6f-51ef-49a4-9a55-80e8ba62293f"], Cell[3706337, 72969, 418951, 7428, 123, "Output",ExpressionUUID->"332a853b-9618-4ed4-bbe2-12a413efbbc8"] }, Open ]], Cell[CellGroupData[{ Cell[4125325, 80402, 411817, 7365, 182, "Input",ExpressionUUID->"3cc0f64e-74d2-432d-b8f3-e1a22f506ae9"], Cell[4537145, 87769, 118, 2, 34, "Output",ExpressionUUID->"d2cb65ba-8d9c-4339-bb61-b2739b1ed697"] }, Open ]], Cell[CellGroupData[{ Cell[4537300, 87776, 137, 3, 30, "Input",ExpressionUUID->"fe67e0b4-5b26-45e7-a2fe-496d85728169"], Cell[4537440, 87781, 225, 6, 34, "Output",ExpressionUUID->"1ed473e9-de7f-488c-a2b1-4a97522a8173"] }, Open ]], Cell[CellGroupData[{ Cell[4537702, 87792, 487, 15, 30, "Input",ExpressionUUID->"ba1ee72e-0f2f-4d78-bca8-1ead61561590"], Cell[4538192, 87809, 358, 9, 34, "Output",ExpressionUUID->"e83a74fb-ae6d-445d-88b6-a806a98bad46"] }, Open ]], Cell[4538565, 87821, 1455, 47, 97, "Input",ExpressionUUID->"16b43fc7-da2e-43e0-9899-104e47dfd51a"], Cell[4540023, 87870, 22768, 515, 226, "Input",ExpressionUUID->"d005a6f3-6db9-42a5-9a61-bf907a7ae841"], Cell[CellGroupData[{ Cell[4562816, 88389, 385, 9, 30, "Input",ExpressionUUID->"dc992a5d-8b3d-41d7-8eea-38b175abb9a8"], Cell[4563204, 88400, 10443, 209, 367, "Output",ExpressionUUID->"f1cd887d-2bf2-46c0-a25a-e0abb2cfa013"] }, Open ]], Cell[CellGroupData[{ Cell[4573684, 88614, 180, 4, 30, "Input",ExpressionUUID->"e9f14d96-f156-40f7-8ebd-3e8844195b30"], Cell[4573867, 88620, 769, 14, 34, "Output",ExpressionUUID->"e49d4012-a9d2-48f9-bea7-03d4c523c2a4"] }, Open ]], Cell[CellGroupData[{ Cell[4574673, 88639, 282, 9, 30, "Input",ExpressionUUID->"3d8812e6-a7ac-4ba2-a2f6-a196cf89c3a1"], Cell[4574958, 88650, 134, 2, 34, "Output",ExpressionUUID->"77d753bc-dbb2-48eb-988c-62f8627e19c5"] }, Open ]], Cell[CellGroupData[{ Cell[4575129, 88657, 469167, 8240, 296, "Input",ExpressionUUID->"051fd746-f402-42dd-b359-5426a7186c9d"], Cell[5044299, 96899, 223405, 4015, 314, "Output",ExpressionUUID->"93d93b76-31f8-4fa3-a6fa-44534c81fddf"] }, Open ]], Cell[CellGroupData[{ Cell[5267741, 100919, 137, 3, 30, "Input",ExpressionUUID->"4007f90c-7d9a-4d07-9605-628a9960378d"], Cell[5267881, 100924, 2391, 69, 98, "Output",ExpressionUUID->"2035b795-9ef1-497e-ae15-83c692220769"] }, Open ]], Cell[CellGroupData[{ Cell[5270309, 100998, 385, 9, 30, "Input",ExpressionUUID->"3e54ab1b-bae7-419a-88a1-f3c7e9b2be69"], Cell[5270697, 101009, 3328459, 55117, 367, "Output",ExpressionUUID->"552b3d37-5ecc-4b9e-9b66-14e6aaf778c6"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[8599205, 156132, 84, 0, 45, "Subsubsection",ExpressionUUID->"f6b883e6-2c26-48e5-9e1b-8ccd359f7b72"], Cell[CellGroupData[{ Cell[8599314, 156136, 4250, 119, 469, "Input",ExpressionUUID->"c712a265-fda5-4561-94e2-cc9cb4db0ec7"], Cell[8603567, 156257, 6235, 187, 406, "Output",ExpressionUUID->"4a36d3f6-6a97-4715-9ed3-63b552484d2f"] }, Open ]], Cell[CellGroupData[{ Cell[8609839, 156449, 661, 20, 30, "Input",ExpressionUUID->"fdaaa393-22af-4a76-8e6d-9483e931323f"], Cell[8610503, 156471, 1410, 23, 46, "Message",ExpressionUUID->"0c250869-e24d-4dda-883e-a1e745fcec3b"], Cell[8611916, 156496, 1410, 23, 46, "Message",ExpressionUUID->"54dd3ab2-9b25-4854-b429-7e354969c6d9"], Cell[8613329, 156521, 1415, 23, 68, "Message",ExpressionUUID->"dadbe2bd-7c24-4607-b48c-6738c40177cb"], Cell[8614747, 156546, 408, 9, 24, "Message",ExpressionUUID->"ba4bd48e-1777-4b36-ae3b-c733b7467a10"], Cell[8615158, 156557, 2539, 84, 77, "Output",ExpressionUUID->"c5f8d93e-4939-4127-9ee6-280ad62c56ea"] }, Open ]], Cell[CellGroupData[{ Cell[8617734, 156646, 384, 9, 30, "Input",ExpressionUUID->"ca82e210-7a1e-4784-81c4-15b065cf9023"], Cell[8618121, 156657, 10902, 226, 367, "Output",ExpressionUUID->"ba6f11c4-04ed-4136-ac67-2d66c60e1d84"] }, Open ]], Cell[CellGroupData[{ Cell[8629060, 156888, 151, 3, 30, "Input",ExpressionUUID->"37fe6db0-c3a3-420d-8852-f4b274ddf12e"], Cell[8629214, 156893, 128, 3, 34, "Output",ExpressionUUID->"c9ba7b42-9eaa-43da-9875-6b86c0d61780"] }, Open ]], Cell[CellGroupData[{ Cell[8629379, 156901, 149, 3, 30, "Input",ExpressionUUID->"ca8cac7a-ba0a-495a-9f8f-cb53bade24d8"], Cell[8629531, 156906, 347, 7, 34, "Output",ExpressionUUID->"f6545ffc-d860-43e2-8c9e-6127d47bda36"] }, Open ]], Cell[CellGroupData[{ Cell[8629915, 156918, 885, 27, 30, "Input",ExpressionUUID->"b95a683d-a389-43cf-957c-2a13303d28e8"], Cell[8630803, 156947, 1939, 64, 77, "Output",ExpressionUUID->"3e244091-4f99-46c7-a6c3-665f0555404a"] }, Open ]], Cell[CellGroupData[{ Cell[8632779, 157016, 294, 9, 30, "Input",ExpressionUUID->"f5482682-7208-4899-bb12-8b6b70eeb205"], Cell[8633076, 157027, 111, 2, 34, "Output",ExpressionUUID->"98c68064-120a-4158-83f2-ebb1b9472f15"] }, Open ]], Cell[CellGroupData[{ Cell[8633224, 157034, 384, 9, 30, "Input",ExpressionUUID->"0f98e7c2-b2df-479a-a736-6662fb052bb4"], Cell[8633611, 157045, 10744, 223, 367, "Output",ExpressionUUID->"78ea2c7b-85fd-4f96-b091-04d0973b0f5b"] }, Open ]], Cell[CellGroupData[{ Cell[8644392, 157273, 173, 4, 30, "Input",ExpressionUUID->"4c085f10-e05a-434d-907c-90c5fb628851"], Cell[8644568, 157279, 135, 2, 34, "Output",ExpressionUUID->"6de90f61-2952-42fa-a747-f2679d4b7af2"] }, Open ]], Cell[CellGroupData[{ Cell[8644740, 157286, 152, 3, 30, "Input",ExpressionUUID->"9b638cca-9062-4cbe-bd66-a2dcf5eb0e3d"], Cell[8644895, 157291, 2958, 55, 287, "Output",ExpressionUUID->"3c29ed3b-7d82-45a3-bf87-552bd6fc7bbe"] }, Open ]], Cell[CellGroupData[{ Cell[8647890, 157351, 590, 17, 30, "Input",ExpressionUUID->"cf7ece9b-94e7-4108-88b8-9b35bc2771c1"], Cell[8648483, 157370, 67709, 1984, 2417, "Output",ExpressionUUID->"b7b19763-9dea-45ab-a815-8dfcdf8fbd34"] }, Open ]], Cell[CellGroupData[{ Cell[8716229, 159359, 215, 5, 30, "Input",ExpressionUUID->"de9b8c52-714f-4f64-a829-f03e500e8e43"], Cell[8716447, 159366, 292, 7, 24, "Print",ExpressionUUID->"a09edcc4-5e71-43e8-a0bc-611040cc0f34"], Cell[8716742, 159375, 178, 4, 34, "Output",ExpressionUUID->"c71077e1-b961-49c1-b960-dca3073b2bb6"] }, Open ]], Cell[CellGroupData[{ Cell[8716957, 159384, 147, 3, 30, "Input",ExpressionUUID->"8c735f44-1fc3-4d9d-9e5b-f3aac69c30e7"], Cell[CellGroupData[{ Cell[8717129, 159391, 150, 4, 24, "Print",ExpressionUUID->"f135ad35-99c8-43b1-9bd9-43cd8cff38b6"], Cell[8717282, 159397, 150, 4, 24, "Print",ExpressionUUID->"61dbc858-b061-46db-b8c2-2b6624abbd11"], Cell[8717435, 159403, 150, 4, 24, "Print",ExpressionUUID->"f8f15bd2-1fe4-4ae7-8fdf-eef916296cfd"], Cell[8717588, 159409, 150, 4, 24, "Print",ExpressionUUID->"7b52a3e0-e23b-49c1-995c-98406e8945b5"], Cell[8717741, 159415, 150, 4, 24, "Print",ExpressionUUID->"39265c73-8e0d-4a0d-bd8d-c31cf87079b8"], Cell[8717894, 159421, 150, 4, 24, "Print",ExpressionUUID->"ac3aca45-0000-4efc-97a4-a258a647275f"], Cell[8718047, 159427, 150, 4, 24, "Print",ExpressionUUID->"2c75c398-7564-4ff1-9995-98e1565d6593"], Cell[8718200, 159433, 150, 4, 24, "Print",ExpressionUUID->"5dad46c1-fe3c-4d23-816f-f9ec8378dd6a"], Cell[8718353, 159439, 182, 4, 24, "Print",ExpressionUUID->"ab4fc304-60b3-4534-b24f-8609b8593cf6"] }, Open ]], Cell[8718550, 159446, 491, 15, 34, "Output",ExpressionUUID->"6fa06227-82a1-4acf-8724-4b841e05c160"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[8719102, 159468, 89, 0, 54, "Subsection",ExpressionUUID->"5f20e4f8-29c7-4f98-9430-671089063ea2"], Cell[8719194, 159470, 1389, 46, 132, "Input",ExpressionUUID->"74102536-27d6-47b4-9fd7-537303cb1b2c"], Cell[CellGroupData[{ Cell[8720608, 159520, 1707, 45, 214, "Input",ExpressionUUID->"f96cfff6-9c85-458f-97cd-75fd29d24b5d"], Cell[8722318, 159567, 7511, 218, 354, "Output",ExpressionUUID->"353fbe1e-9a12-4264-988a-b0c21913cfac"] }, Open ]], Cell[CellGroupData[{ Cell[8729866, 159790, 295, 9, 29, "Input",ExpressionUUID->"fa36c9b7-dc8d-4f4f-94b3-8ee0796a574c"], Cell[8730164, 159801, 83, 0, 33, "Output",ExpressionUUID->"b427258c-a166-406f-9062-74596d1b01be"] }, Open ]], Cell[CellGroupData[{ Cell[8730284, 159806, 297, 9, 29, "Input",ExpressionUUID->"b72a157c-94ff-4acc-8f7d-cb820ebc6060"], Cell[8730584, 159817, 83, 0, 33, "Output",ExpressionUUID->"660816c1-58b0-4c51-9523-52f60ea5781f"], Cell[8730670, 159819, 124, 0, 23, "Print",ExpressionUUID->"fdf5a1c8-e024-45f6-9412-189cb37f1c5f"] }, Open ]], Cell[8730809, 159822, 174, 4, 29, "Input",ExpressionUUID->"5254fba3-aa81-45b2-9f8e-b269ee38109f"], Cell[CellGroupData[{ Cell[8731008, 159830, 571, 17, 29, "Input",ExpressionUUID->"c11aa6bc-58a4-43ca-b1f3-f51617d22dd1"], Cell[8731582, 159849, 804, 30, 59, "Output",ExpressionUUID->"8203959f-0dad-4608-ace3-51c7d673e4c9"] }, Open ]], Cell[CellGroupData[{ Cell[8732423, 159884, 105, 1, 29, "Input",ExpressionUUID->"dafd4dae-f201-4f5a-8dc5-6cb308822c61"], Cell[8732531, 159887, 165, 3, 33, "Output",ExpressionUUID->"a52a426e-6a86-4f0e-9e3a-e7732e817015"] }, Open ]], Cell[CellGroupData[{ Cell[8732733, 159895, 492, 15, 29, "Input",ExpressionUUID->"11338d97-25ec-4842-a6fe-50414beda70a"], Cell[8733228, 159912, 666, 11, 24, "Message",ExpressionUUID->"43dbc7f7-e30a-4481-9ef3-5e9dac1369e5"], Cell[8733897, 159925, 1018, 31, 58, "Output",ExpressionUUID->"6b8c6bea-c6fb-486c-8ba7-2503f4498623"] }, Open ]], Cell[CellGroupData[{ Cell[8734952, 159961, 109, 1, 29, "Input",ExpressionUUID->"a16df880-f9b7-4958-88e9-ea7cbe033c04"], Cell[8735064, 159964, 275, 7, 33, "Output",ExpressionUUID->"464b162c-dcce-442e-98fb-ada3a6baca77"] }, Open ]], Cell[8735354, 159974, 625, 19, 32, "Input",ExpressionUUID->"8f984807-abc3-42df-a364-e8c9e9074c7e"], Cell[CellGroupData[{ Cell[8736004, 159997, 2192, 58, 255, "Input",ExpressionUUID->"884d0158-a7a9-4906-bf91-0564dd058bb7"], Cell[8738199, 160057, 11257, 309, 362, "Output",ExpressionUUID->"6988da54-92df-4b14-826b-26d38eec7068"] }, Open ]], Cell[CellGroupData[{ Cell[8749493, 160371, 399, 12, 50, "Input",ExpressionUUID->"62a061bf-d1ef-4e73-ad67-816439554d9b"], Cell[8749895, 160385, 83, 0, 33, "Output",ExpressionUUID->"89f98185-69a3-4e5c-9dbf-c0247f67ccaa"] }, Open ]], Cell[CellGroupData[{ Cell[8750015, 160390, 122, 1, 29, "Input",ExpressionUUID->"bd57a2af-89cc-4062-a634-a5f3980b00c2"], Cell[8750140, 160393, 350, 7, 23, "Print",ExpressionUUID->"086c0593-7bcb-4d3f-93ed-94416fc8d2ce"], Cell[8750493, 160402, 107, 0, 33, "Output",ExpressionUUID->"1447def7-ece0-47f7-86c1-59bd97ea69dc"] }, Open ]], Cell[CellGroupData[{ Cell[8750637, 160407, 328, 10, 29, "Input",ExpressionUUID->"1c65a81a-76d0-4acb-b9a8-b05b903408b6"], Cell[8750968, 160419, 473, 14, 35, "Output",ExpressionUUID->"865d7075-b031-4a2f-80e0-da3ad9eb92fb"] }, Open ]], Cell[CellGroupData[{ Cell[8751478, 160438, 2259, 60, 255, "Input",ExpressionUUID->"c8fd2aa7-2b50-4a25-bb19-f4669bee1a84"], Cell[8753740, 160500, 11215, 307, 354, "Output",ExpressionUUID->"884425db-68f6-4127-85a7-8bed3b59f82e"] }, Open ]], Cell[CellGroupData[{ Cell[8764992, 160812, 230, 5, 29, "Input",ExpressionUUID->"9c41ca90-610d-4e3e-92f7-50c0c0f8eaf0"], Cell[8765225, 160819, 3386, 110, 207, "Output",ExpressionUUID->"28b48b50-2567-444c-bcb6-86409ec37bad"] }, Open ]], Cell[CellGroupData[{ Cell[8768648, 160934, 230, 6, 29, "Input",ExpressionUUID->"afd79d3b-3f6a-4ad4-b835-12587d02188d"], Cell[8768881, 160942, 9013, 347, 352, "Output",ExpressionUUID->"820b9e93-ba8a-45b9-8e96-68c15a135357"] }, Open ]], Cell[CellGroupData[{ Cell[8777931, 161294, 118, 1, 29, "Input",ExpressionUUID->"5580b1e5-4866-4588-ab1c-ba091b29b8ca"], Cell[8778052, 161297, 703, 11, 40, "Message",ExpressionUUID->"91601e04-3d80-4d3e-aa99-098056799160"] }, Open ]], Cell[CellGroupData[{ Cell[8778792, 161313, 431, 12, 29, "Input",ExpressionUUID->"a051ba8d-075c-44fd-8ac9-612b6a70789a"], Cell[8779226, 161327, 105, 1, 33, "Output",ExpressionUUID->"afe8b871-3161-496a-aaca-b12236487cea"] }, Open ]], Cell[CellGroupData[{ Cell[8779368, 161333, 422, 11, 50, "Input",ExpressionUUID->"d75710fa-6913-4110-b5d3-11d289813fee"], Cell[8779793, 161346, 23487, 774, 1094, "Output",ExpressionUUID->"e11e0f55-c161-4ea1-9cf2-62dfbdaccd5a"] }, Open ]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[8803341, 162127, 83, 0, 53, "Section",ExpressionUUID->"fdf185ec-6996-4ebc-b834-e09a59240e23"], Cell[CellGroupData[{ Cell[8803449, 162131, 93, 0, 54, "Subsection",ExpressionUUID->"be7b8408-b3af-4123-831d-d51a72d40479"], Cell[CellGroupData[{ Cell[8803567, 162135, 150, 2, 30, "Input",ExpressionUUID->"73eacaae-f18c-4dfe-af0e-c5d4b3a7e569"], Cell[8803720, 162139, 2438, 35, 539, "Output",ExpressionUUID->"8d280a76-c4f9-420b-8da7-15c217afba5e"] }, Open ]] }, Open ]] }, Closed]] }, Open ]] } ] *)