(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 8876383, 163398]
NotebookOptionsPosition[ 8806210, 162180]
NotebookOutlinePosition[ 8806815, 162203]
CellTagsIndexPosition[ 8806737, 162198]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Dodecahedral Graph", "Title",ExpressionUUID->"a719feb7-6218-48af-b5e8-21f1220eac5f"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"f72a88d6-f7e7-4f57-b144-1a8e1bc4e1bd"],
Cell["\<\
Eric W. Weisstein
June 21, 2023\
\>", "Text",ExpressionUUID->"fa961551-c271-4c7b-83ef-08279d067795"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/GraphTheory/\
DodecahedralGraph.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/GraphTheory/DodecahedralGraph.\
nb"], None}],
"."
}], "Text",ExpressionUUID->"24ffcfd0-f681-421a-a813-4fc79abacb4a"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/DodecahedralGraph.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/DodecahedralGraph.html"], None}],
"."
}], "Text",ExpressionUUID->"1dfde49c-c2c1-49b9-842c-06de76e1f4f0"],
Cell["\<\
\[Copyright]2023 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"c3418fa4-d105-40ff-98dc-b8aed831e346"]
}, Open ]],
Cell[CellGroupData[{
Cell["Embeddings", "Section",ExpressionUUID->"24231fdd-d4bd-490f-8510-54130413d4a0"],
Cell[BoxData[
RowBox[{"<<", "MathWorld`Graphs`"}]], "Input",
InitializationCell->True,
CellLabel->"In[11]:=",ExpressionUUID->"6829a3f3-589f-4628-a602-7ee3267aef9c"],
Cell[CellGroupData[{
Cell["Names", "Subsubsection",ExpressionUUID->"6485c1e4-179b-4603-9511-2debe3310c9a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[126]:=",ExpressionUUID->"3846e362-6f7f-476d-b901-8ef8f4f026a5"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->
"Out[126]=",ExpressionUUID->"e1514d7b-c035-4b90-b0f4-437a572a6e75"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"c14a0012-a7bf-4d66-8056-562b63b5b5ad"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"ArcTransitive\"\>", ",",
RowBox[{"{",
RowBox[{"20", ",", "6"}], "}"}]}], "}"}], ",", "\<\"Ct27\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"CubicTransitive\"\>", ",", "27"}], "}"}],
",", "\<\"DodecahedralGraph\"\>", ",", "\<\"DodecahedronGraph\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"EdgeTransitive\"\>", ",",
RowBox[{"{",
RowBox[{"20", ",", "5"}], "}"}]}], "}"}], ",", "\<\"F020A\"\>",
",", "\<\"Foster020A\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"Fullerene\"\>", ",",
RowBox[{"{",
RowBox[{"20", ",", "1"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"GeneralizedPetersen\"\>", ",",
RowBox[{"{",
RowBox[{"10", ",", "2"}], "}"}]}], "}"}], ",", "\<\"Gp10,2\"\>",
",", "\<\"GP10,2\"\>", ",", "\<\"Gp8\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"IGraph\"\>", ",",
RowBox[{"{",
RowBox[{"10", ",", "1", ",", "2"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"IGraph\"\>", ",",
RowBox[{"{",
RowBox[{"10", ",", "2", ",", "1"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"IGraph\"\>", ",",
RowBox[{"{",
RowBox[{"10", ",", "3", ",", "4"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"IGraph\"\>", ",",
RowBox[{"{",
RowBox[{"10", ",", "4", ",", "3"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"VertexTransitive\"\>", ",",
RowBox[{"{",
RowBox[{"20", ",", "9"}], "}"}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[3]=",ExpressionUUID->"1694eadc-a4ab-4d53-a8fa-e0abfde9c8b0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Primary", "Subsubsection",ExpressionUUID->"fcf7cb8b-a55e-4b17-aeb5-698c2bb792b7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], "//",
RowBox[{
RowBox[{"StyleGraphs", "[",
RowBox[{"#", ",",
RowBox[{"ImageSize", "->", "Small"}]}], "]"}], "&"}]}]], "Input",
CellLabel->
"In[127]:=",ExpressionUUID->"1aede9d9-f9f7-4bd1-ae12-82d78b0f7984"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, {
16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {
12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, {
17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, ImageSize -> Small,
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17,
19}, {18, 20}}, 0.09709139882090483]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483],
DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483],
DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483],
DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483],
DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483],
DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483],
DiskBox[13, 0.09709139882090483], DiskBox[14, 0.09709139882090483],
DiskBox[15, 0.09709139882090483], DiskBox[16, 0.09709139882090483],
DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483],
DiskBox[19, 0.09709139882090483],
DiskBox[20, 0.09709139882090483]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Small]], "Output",
CellLabel->
"Out[127]=",ExpressionUUID->"9702c973-6331-4ccd-ba39-1987c8b1c2dd"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Construction from Read and Wilson", "Subsubsection",ExpressionUUID->"33041918-817b-423b-81bb-81828335e9a4"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJycvVfQLUlxhatrHu7jfdSDAgRCIJAAIbwdvEDIYQRCmMF7O3h7cAIGEN67
wQkPg/cwgPBeCCcQwnt57/dldcT645tvsvo/uieiz/537+rqqqzMlSuzqqvP
c6u7X+92/+fP/MzP3Ov/+el/17vl/a5y2mm3fMD1/9+ffvm9u93rjre/221v
c+273fu2t7/taZe51f/105M3+T9+5mdu89Pj//7p3//xH/9xyPGf//mfh3//
938/fPe73z1c//rXPzz0oQ89/MM//MN2fjpS9t/+7d8O//zP/7yVy/GP//iP
h3/91389+i31/td//dfRNfne3/K9v+V7j/zO8tM9ez6fvDZt+ad/+qfDv/zL
v2ztYFv6PUfum2vzd8r2urQ/f7d9bS/bke///d//vR1tf9uRuv7+7//+8Dd/
8zfbZ46/+7u/O5JLj7a339uGlEs7cq737H16sO/9m7/n8DW8rr+zTOtifzxm
HZf+3e+tp/1JXyr/nOP4T23tvVMPdcLtYft7jmPAtrSdvB/7kXZVzm1n78fD
ep5rclRH2i7qZO9J3dzTaeoVdaSHbah9rF66z9P9et7trDzYd17L+1KOPs97
rfo36YDtyLaUg/o+ja3v2795WI97Pn+njre97W2H613veodPfOITR/e33U/9
op6w/hzVl2JQ+hL7JjbRXqpjbFvOfetb3zr8zu/8zuGBD3zghisp0/JsS68r
Bv3t3/7thslpw6SHvpZ6y6Ny4Cft3zZTHWL/iq21nZxrGbaN9mlMbJ9Zhrbr
caksarP9u74qMqrP4pF75mDbO4bts3HXNsR2FNdY/n/+53/Opsu1Y+O2MXHC
zepN22zZVI6VuXWV96F/3Tt6H19Lm5nu4T5XBzhO9H3sO+3WvqY2xf65DuM6
+zP9zvGzXRhf2capnslXT76UMiSW874ng0vWJf7NceY4Vo/5fYXfHIPj/Bn7
kL9rZ9Uzj2PaGjz+zd/8zcPHPvaxs7WLtk3Z2S9M49d6qmu1f/pyypP1E3O+
/e1vH37rt37r8IAHPGDjdrU79rM213Ppb/C4vJC2av5AWyeHsE0RD1NXbZyY
2t9tL7U1c+XiSI7JRs1NyCsmHGfbIgPLq+OQ8xyP3Ct/14exXfR//aRN0n/b
Xia+Y30y37Xtr3hHz9HPG5vySV/G3yxLnlvZvvs7cTviB/WEesWxqr8lz2Ws
MvEAcrZeu/LLq1iFWFz8mrghx3LFZclXWO/EC1d8bvITK3zw+NgvTveyP7EP
mHDfcYrbQzye/LZ9y8RBqYcZx9znLW95y+EGN7jB4dOf/vTZfEw+J92jrH2O
+k1OFlsPBuQ7fSr7mM+UC14ES//6r//68Jd/+Zcbd7/f/e53+MEPfnD0ez7z
e46f/OQnh7/6q7/a7lP7TJn+3pi91+R7yhR72saeK161HcSulCGm5ZN8M0fu
8cMf/vDonu17zrP95PDlpsVG4jdjjdo48wrN0TQn0b/bNtfD+KGY1XbnGpc3
RpvXT7zNHISc1dynOOkYwD5qws62f+XreM5tZl7JPp421XLsl+3S7a4+T/2q
/ufvjgd9MttmGbZM+1gc730mX+Y8DPtlH2t/Y39fLKlsiS2M6+0DGcfwfpaL
78Xxnca4Omx59f693nk56pBjq8iNZSYeRD2n/61szHs5brQFyix9Sbk3vOEN
h9///d8/fOYznzmbT7AtWCf6G32NZV9sLAbk+4THrftZz3rW4WlPe9rhj/7o
jw7PeMYzDg972MMOl7zkJQ+//du/fXjyk598eN7znnd4znOes5XL96c85SmH
5z//+YcXvvCFh1e/+tWHN77xjYczzzzz8MpXvvLw2te+djte+tKXHs4444zD
i170orOdT7mWf9WrXrUd+T2fqet1r3vddrz5zW8+vP3tbz86Iq9ck/PvfOc7
D+94xzu2enL+TW9603bk99e85jVbXbnXBz/4wa1crsln6v3oRz+65Yje8573
bD4xdX3gAx84vO9979uOj3zkI9vx/ve///Dud797i18++clPbtfk2nzPZ8rk
XL7n+NM//dPD5z//+e3zs5/97Daun/vc5w6f+tSntr/z+fGPf3yrKz445/LZ
c/k9R65NvTn3hS98YSuTer/0pS8d/vzP//zw5S9/+eh7/s79cv4rX/nKduRc
jpz72te+dvjqV7+6/f3FL35x87Nf//rXt3P5zPmc++Y3v7nlqHr8xV/8xeHP
/uzPtnukjpTJ+e985ztb2W984xvb9T2fI+cSV+Vvls9cxPe+973tM99zxG/m
+P73v7/9Fp/fo+Xymd9//OMfH/n//P2jH/1o+2z5/N0j/KBl8nf5RY585/nG
cvXTqZ++vOdzjrFAfyc+1R/Xx5MHER9qm6mz9yYnIKYS0+nPc03xqzyI/oF4
yVyZYy/6F8YTva7nWD/7Zs5BfGWsSb/B2GPKlRCTOA80+SPHxsRg4rrjCOJx
25y2BC9+4zd+Y7Nlc2IezjPYtxFfnSOufpTjM+Zi2692tasdrnCFKxyufvWr
H65znescrnzlKx/Od77zHS584QsfrnGNaxx+/dd//XDNa15zO9Lm5Fmufe1r
b+VSPt9z7SmnnHK41rWuteH4Va961cPlL3/57TPn8pnf+z315PO6173u4Xd/
93e3+1zpSlfaPpMrSf469aTu/J02XOUqV9mub9krXvGK27l8T1vyPedzLn/n
XNqQz7Qv/Ux7U2/+bn/zd8rks9eljstd7nLbubQ15dLe9CFHyuRom9POyCdy
YVtzj/yeo+1KmXzP32lfPi972cseLnOZyxzJsDKq3Nqv1JfPtKv13eQmNzmc
euqp2zX5Pf3LNfktsrvFLW6x/X7729/+cOtb3/pwm9vcZuMCOXL+0pe+9Hak
vlx7u9vdbiuXz7QzbcvvN7/5zQ93uMMdtutve9vbbr/nmrQ7/jv3zHhGbimf
77k27bjlLW95+L3f+71Nz9rvlMtn5o5TZ37L9ak7R9p+97vf/XCXu9zlcOc7
33m7X+rJ/VJ/6o7u3OlOd9r6nfaddtpph3ve857b573uda/DXe961+36nMvf
OfJ36rvRjW50uOlNb7r9fsc73vHoyG93u9vdNnnle2SSWDZtyzhHbje72c22
9v3BH/zBdq98VpdTPp/pV/qc33Kv/J16cv6GN7zhdu+0Ob/nyDjmuPGNb3wk
//T3Vre61VYu59Ke9KFjmc/0P+3NbzmXMeI45VzrS9n2L/XkXD7Th/wW2UQe
kXvOp2y+57d8j0zvcY97bLnM/N16cuR8rr///e+/rQVImcTY973vfbf67n3v
ex8e/OAHb/NSOZfPcL9HPOIRhxMnTmzX5FzKPPKRjzy6Pufye8rltyc84Qkb
d3zc4x63ccMnPelJh8c85jGHP/zDP9zOPfrRj97qfexjH7udz5Fy4ZrPfvaz
D09/+tOPrstnOGbkEL3KfZ773OcenvjEJ27lUj5c9OUvf/nGMcNNc6TMC17w
go1zhk++4hWv2MqE873+9a/fuGUwPnwxfDB/v+QlLzm8+MUv3jhq6nrZy162
8a76hfrO8LL4hfKud73rXRumZDw//OEPH3G+8L3wppTL9/DEXBsOl+vL9col
w0/DI1NH+Oh73/vejYOeddZZ22d4aa7JtfkeDpvPlM+1+TvXhavme67L9/DW
cOa0M/w2f7/1rW/d+G7+zu/9O5/5LXWnbK/vudwj5fJ3jvwd3h25RpYtl3rC
wfOZOlKunLxHrsnvmRuI/DNO5ev5zLl8pkzGKOOWMhnHjE3jiZTPb6k/12Ss
M74Zz5Tt2Od7dKLxS/7O9fn+zGc+c9O/xDTRnehdjpzPkXgovz31qU/d9Ds6
m8/oaPU0ZaLfp59++uHxj3/8pqMpn7/zW8o/6lGP2q7tZ8rHrmIPKRfbyG+1
pfz2kIc8ZLOz2Fu+P/zhD99sJ2XyW2w1n7ku9cRGYpMPetCDtuM+97nPZts5
cj51pEx+y3W1+RzBjNwr53K/XFNMKc7n9+J+8CXYlCPnikcpn7+Defkt32Mf
wZ+0O3WmXDE8f9evpVx8YrA2uBsfGDzvJ/E4OB08z9/B4WB/8DvnkkMMnudc
sD3ng/P5XszP7/3M7/ktdeba+JL4+JzL99wjfQx2517pS9oeXxLfEjmnz6mn
/jA+KNwkMsjvuTZYkc+MW3xM+EbK9EjdkVful9/KWcpLymPStnzPZ+4fzlEO
V78aOeSz4x/fVW6Xe6Wt9B89WjbjW38VGaa9OVefl/6nrRmbtinX5Yh8Um98
ZHll2h7+GBlnDCrbnMu14QntczhVjvQr/Q+HSVsTczb+aSxXbA5vzu8Zu+hz
c5uMq/q9OWHmxrlWrLFEYx7HKuTsjRE639JrHC+1HY1J+lvzN627uWnmH5sv
cszQtjBf3Hqa3+baI8/bMP/Tfkzz2VOujvGXc3Kcp/E8KOU7HfyNcZpzdsxB
N37l9Y27nD/mJ+M439f5QudNnSv2Wjnn7VrXNPc6rXOg/BoPVl8at0/1Nlan
zKqbnn9grtAyoV5yjoixfH+rrTC3Tbk0N8L1N4ztHRszf9l2t+4pD95cR8t3
/iX40COY0ZyP56k5p9/cSudXWk/nV9qW5m5ab/NR+UxOK5/JJTXH1VwV/05e
q7mrlm2eLLmvfDanlXLJqzVH13xd83f57G/NvyW/lxxgz6dM8njJ6zVvlyP5
wuYOkx8Mb82Rv8Njm5PMueQiwzXiP8J3nWPuuOTIPYPH4R35nTbOOUTm/2mD
05zG9JvXYnXew3OirIM2Vf/huZzVfBFtzvmh1st5jGletFjOeXnaFDHOeEL8
bnzC+RLaBHFxWlfDHFj9ItfHcj6FWEIbtH/g3A9xseX6fco5EhvoM2n3bWfL
53rO27L9PcexbpnmdrlmkHNPzuVVflzLWB9LX+n5UeZP2dfiHcc/34tB7B/l
5HUuzpOy7p4jL5nWSXL9isfN+U/2wWPKPGgP+i7Kx2szOb9N7sU6PKfog3bI
eunfOD7Uq8qBfzNvTr01t2z9lHv7Vl/Cc2wbeR3XyE3rOMgvyh2SC0m8Eayu
/+tBmcWnJOZJPqaYxxw213Cwre0jsaM6uOKWXPPjde7WJ/fNa46cI/dvlNW0
/sf8kjZFH8H51Gmdk/Wm1/M+/c1z7Tzfe3h9Ktc2GoM550E/RV2wn1rJuP30
utC203KwvMgbJ7ykT5nWi7cer3MhRnqeqrJcrVEvD2Fc12s8Z0Sb89wM9cBY
QP2hXXke3TrQuosljEMpH6/joV9xzMV1Ap7HMvab1/Q8x5ftZPuJx46RJ7th
HOPnqlKuvtv2at7kmIp47PjdbXTszDijZcl12hbWQ7xwbGaZ2Q6Sn05eI3lg
6przAMHj5FKS/+OYd2wZt3EellzHelCfwHWX4cU9/DxCruNYs/6OE3MVuY76
SKwmzhDnjceUJW14krk5MZ/BYJ8dl1PP2T76Deqvcyr2c5S99Ya6Ty5Cn0bs
5pgRBykbrhkrx2T/Jjshh61vTz3E6wkLGT/0Hoy/J544xSKe8yY21L7Ny+hH
nKvjvZwLIWa3rcQ6lqv8yS8cj7EtXh/a/neMGne1HmLaCje5bpSxKLm5821t
s30oOStzd47XbHccn9pO6zVX6Rik/43vKSPGVMRXc0nqGmMy2lHHj3Kn7dKO
aB/EMOIB8TjfM+eTXH3wOOU6BulXcjdpS+pPTiQ8OnMkXrtDrKed2SaYdyBf
JS6QHxP3zL3JrRl3V9dWOQfH+45PjcHmiszzOXZne6d1r457a5OOe8zhnePg
seIp9I3OC9L/V88mXCZ3mbCRbSX/Iqenb2fOsmNJX8E2Md/gZxYn7CROcj6g
7XKOrDrFteLMB1nuxGz6ndZTHGt+gvET8bj2TV10H3ptdcC/t4zzAs3ZcO2Z
67Uutj9T3pc8m/54mrPhb33mgHlh+8hiRWVO/aYNse/MV032RJ/P/BZzCeRu
jm38TEMxns9M5Oh6R+eD2P7Jn0w+rLLK/fI98+mZ+2v+uHpMv1A8Dm5nTrpj
Pq2TnPzj5Hf6N23ezxXSJhinMWapnjCWs/31etoI7aBjU9/tOMO8lmNAf7TS
K3IjYwbnaqbYl77OsiIHJQ5SH4l/OSZsMYd2rmfKt7RexnfEHvNJcknicdtB
nmb75X4fLO++8lmcruUlfpmHTmPT/ti/mRe0Pvo05iHIfYxDrMN2QRus7OsP
mVdhHyqjYmnnz7hfCnWN9kd95LNU9NPED/sM9pV8jDjGe/aaCV8dNzKOIyat
cqLUCeaK2+8+e0U9alvo/zlm9XN8dqz9Ig5Rn6bYzHyt5Vp3+5P1UFm3kbk9
4pb9a+YKw4+zjmfyoVNuxfpOO52wLLIvNza/pN47t0X+xnEnL55kbV0iZ5+4
C3m9x4++hXjt2JIHeQ59hK+l/IiXxlbf13kC8mWPHfV5ytUzn7byHfTF5ri0
YbbRPofX8vlG4g3jS44z9a+YwHtO/oeYTnmxXfyNcqtMOI7MRUy8PUfm+7NG
wP6CdTGvxHinfoZ8rHZdjMhn1w70Hn4ufyX3+jI/b0eO7JwQbYg4QF9APWwd
3BegMmNc69z3ZMscT/on50sYlxA/6mOdP3M8wj7V11S/bOfUK97HPqD43lgi
v2cdatbcZf3FFOs1/gp/ztr8rOdMm6JT/a0cvvGJ+2UbnPi8n99nfpe4m/O2
GeosY07qIa+ZchmMvyrTlrMfsY9jfz2X49wN9YR820fHcBWfs+2UsXn6pKOV
S58bp8zIH+nXLS9jIW2UfsI4Zm7Y+pk78DPs1HX6zY7FHtfrPXKdORK5YNvH
OIKcnZyKvJjP4ddvuA3cV4DP/bOffPaP8VJ1INd2vVdsr88O2o+QD9JvWD+Y
96f/4JwMdY4+mX6y7afedjy4PwLzurZL8hHqDe2K3Lt6QHxc4Q39aceSsRY5
MHWm58nxmS9YxbKOrx2nM76oHKh/eT4g66zDj8nzGx+07XkmJOuYw487ZuTJ
rL82w/wXOSXxddpjxWsbGKev5meJgdW3jmF+q68gh2VMU5zu/Tgfzz5QR60j
1EfnbIhH9CNeQ7E6z34x/5ljhbmOKdn3tr+caoXB9o/kKxMemncxv9Qxs/9K
eepU7dd6Tt+c81znR/uvDVUGxt7aEvOFnAszn7PNVT4p15wieSjX57bu3Ltl
qy/F5LaP81GVGfsVDC6md90vY4k+C05scRxrWTIXQX/JuTzzlpUf6z0amxCz
mU/mOLVc728/xViHsmlbWxf1htfVZ1afGKd6HXQO5nLz2TH0HANtlDGjbZft
oLzIq8l/g8fJQ+TZuZTrGmzmylIu64/Do/N8FP1cfyePyLXku5xzYyzGnLHz
FOTNxBBikWNDxtqc46qfIW7af1Qe01yZ87Sc1yNvnvg0+UvHv+NGf8SciP0r
OSvxuHjC2NVzcvbXXudXOdLn8RkTxyy9hr6JukA9K/euXLt+gmNH/WUutPbD
dk/rEb3eibZOHkWOS/+U89F38s3K22uweLSdziO237Xr1FesL8+qDdBmPB9X
uRHbeA/2tb6gdbBOciVyCcuuZdqGyt/6Zl/lWJ8clPyX/JLznsZbxhW1ySnP
R99BXCdeM1bgODW/Q+7LNlR3iof0LeR1U/xuuZp7c40MZdc6sv44zxTmOeXm
tmpH1aFcl/VueX4wz4izj8010Ud2HLmnYPU39XKeYrIvrjWb9lBfxdQdP+KW
+SF5Ytqa/tIGyQ29bom5Pd6v2NQ+51rG1+aKvU/xzm1n/obzOSt+TGxs/4yv
1BuvX6sPbfv5LA7XIbZf1HvGJuRi9nXkssUZyoz7NDo35Hhowsj2p3pJu+R8
f/WPMTxtk3kkx2/2ZcwLMB9Fvs0+1OapA+1L5UoO2Lxg8hSVNeNv2nrbTT9B
TDVWOA9BmZsX7OXCyQu511F5WvWZcRRxg7na9tl5L+Z/qqv06x0D5lrI+6hT
7VPHz3Gs9ZbxwrQOh1jBOfYp90996DiV25ezZO+BPDedPSVyPa+pfqeuPAeY
dRidz6uON25ynpAcuXhQORPraut8/sMHbc65MOb+idPOMRJLve6CnInXmG92
/ByXtCz9BeXPfBSxj77HeWv6stqZ8dj5wGI78xsTt6OOuk32fRwXxgi12/at
tsBYo/Jqn+gHHN85J09McNuJj85vFfMYtxVvmZcxrjK/QzumzZEvF8e9tq32
S8xlfox47PEolhtfyn+pk9VH7jfn+II5H/Nic422sbnqcsSWpx9gbsnYxLwH
7Y0HY4bWyzy8MZxxvec6WJf1xjlvYml1hbmN6obzfpwH6HhPnI86YsxiPfRV
zFml3uwBk3xF9vvpdcSv6mrwOPt2BI/bLus970k84FgX/+hTyD2I0+wT9bby
oh7Zr9O+aSP1E4y9mVMjLjoXSt22jjKnRCyin+U52nltkeU5tvQF5ByOB/ys
yoT7zjWT47AeXkcspf9Z8RfHoM5LOK7g+NGWKdM9HCamM04zPnX8iZHk++R5
jFOoh+SAxRDmwY2pxenmMciHHI+ljNfpeR6J5fN7czO9V/vD57QnO7Isa1u5
T/PQxUbrzJRnnsbRWF3ZOZaq7nBu0Lk/xvqUQ7GW9yL2s8yKd5tLOrZlG+lL
ySN4v+qCc+/maM7t5Lfw4+w5lD3VmKskR86RfTSyV1H277KemDNxrJg3N56Q
4/fwc5LtEzktZTXdm1yn+F+MIM5RLtWp9p3xsstQ1szN2W8zn1Bbrc6Re5HT
EhMYw5O3U8/I3Ry703ewLraPcqz8J1/INcjMmxXTPH/DWIxYQs7jWMTtmvSc
seDE+ZnTpC6yHc5X1y4b2xuniFeUL8eX+fGJixU7u0+XY5f65MquOlc5VmfM
b9p26nvjgeL0hMfM2/nZcfp++l2ODeU25QJqE7Q3tnvKbTGfyTwbc0C0Nfqf
nOf4sK+VEzkwc+XUE57jfdhXcmPHHH6+kLKmn2J+hvqQfRSzbqL5itoI/Vnq
yh5FKZe9C5kft88mTrVv3fuJvp/5U+aIm7tgrEGuxVw/+0vd7FgzH1dZ2m8y
b0b509c61qPf8zg7h+u8dHWRPpn5hSln2bFk/eaX9Gm8v/Ge+TrH1dQrYjLx
mJjMtpB/MD9DTmMOO7WH48dYZsIU8z3nLIopE8aXNzvudtxp2+61nEcq/7fe
F0MpI3MYx7OM26tbxYmUYbxU3GWMWh7etYxTTEBb5VizHYx9aV/OM/c53nKd
yp9+ipyqOVA+U9F6OAdYvXD+1XE38djxHf1m8wIt2/GrzypW8nk56zLXkJBP
el0Y/+ZcOMetescYMuWzf0XyENmvmPM+tu/gcfb1zPqK1mlfxpwvOR39D/l+
rykGO5dMvuPcjfm1MYh+mrboNWw+HOfzHOUx5csYU5D/kSdUtyc/MPko+lfX
zXy5c92Oh+17zE2NvR4Xy5pxA/OnU06WOtX+s/1tL3M65LKTj2AehXJyzEN5
UO7EM+YqGE8QR8x7phiDcTWfmyb3Iicxp+1zHHznWfPUmddrfc0b8x7kGOVA
xDv60CmPzDHgWtaOT/MYxBJiWvHLPIg8kxzGa9eYk2YszbL0O8xBESdpy5Wt
21NfzGefOU5e47LCY9qo81qOfWgz7St1oZiYfEXWV2QPztRp/9Mj+30mr5G9
xdvOjiv3AOK7iO2niE30Lbw+h31c9cw8zvKY8p7EggnrXNc0l2Wc8m/O2U7c
lWPjw5hjWZqr8X6uixjXet2+iR+xz/4+4TL9rflj7Yv20XbUZvew0n7Mvt5c
xGvxnHfmvRknTzki9pt1WF+sWz3HeRS/46lxIufnik99xqPrm+rfiwVez0yu
R+5ZrGZd9E2WC+dSiMfkx8WQtL37Cbc9WfvBd2E6juU4tx3Mqfj9kc4vEbcq
l/aR92VukblC5gSYHynupg7Gq72++RfHbvSjU+xc2yB3Y46ntpk2TfqQ9WvZ
0z7zeamvfaOup/6uP87+bql74sSTHRMXnQuZ9nQztq/8DnGp9Rk3mHMx3kzH
dP9V3yac5pqIKZY2pjKemfwCsXDVntV103f7WLaB+aKOm8ehfZpksfJlxYl8
Uh9W/IH4N/mDKZ7y75S3z9kH5qgtG+OnsZ+Oib8711F9dOzpXNAUpzD3z1iQ
uV/ahP9e6f10LWMs1u+4kHMh5GbmXuwf82aev3bMVx/tefFyec8hM8fNWIS5
H+bDOY/r+QzG2IznOD9lHGs/uS9lsdh5J+b3vZ45+Jr9NvMuzepMdZNjlndT
Zt/6zOelLbY926jnYuoTm7smjuzhYPWF9j1x4QlXjdHHHcafFS9bcWb/Vhvy
b8VG4vHqemPTVHbiuFM7J5ufMG7lg1h2apM55uSL3KfVcdwYOH5Y+TG2Y6Uz
xC3XMcUG7veExx4D35tymXw6ZWB8Z2yz8g/Efv690qNJ746LO4tJjvF8va8l
j1rdj/0oPyfmu54pZ8c4foovmQMsBjOmXcm+91npLPkg122Qe9OXEN/z/rPg
cfanoB/2uGV9Rd4DlfLE4xVeOWfYWMb58AmPV7pZHGOfjWt7/HYPZ467xr9Z
f5xnnDgQ8XhqT+udbH0Puz0OtuMJa3jPqY/GA9+HmGxdZBuZg62+W78mOUw4
MOHWZC8rTJ/6T7unrZIrsB29znt000esZNnxPQ4D3Y/KzX1knXuYSKxivebn
Lm8uMPmUCQcmO5t8s213de3KjvzJfjpn52tZxvNRx/nH1eG212dxPSVzweTe
zUlk/+O85zDvB+nY0156r+zvlnxF1iv32hVvIH7kk1zfa+F5nZ8Lcb3H5RNs
A7zHcTxnxc33cGPSTdrIFHtP/Z7aMuHuZLPH4fGK901tnHBxJZsJoz1G9ikr
bF/hJPVoahdt7WT8FHGTbSwHm+Y1V+Oyhx+TLlo33F76rY6L8xseL+Z/2F+e
83h7Ljb1ezwn7Jyw0Pda2QLrb38so5X+Oo/VNk12MenYyj56j+LiKu7ek8Nk
T8ZAcmLOV5DLc+1K3r+U5/Oyn5DrpP/vfvRZH8e8UMeDnMKYSj1zLDDp+3FY
aJmu/CzHivZ3srhLW7ee2DeufEHrcazlsbaN+ZjwYaX7/n2F4VM/VvXbd6x0
d8LkPdxa4egeHlPvprHnfacxnO45xbSO8VcYMMnFMluNfcsQo93mVd0T55va
Tw7stUKWt693DnqyW/+9wriTsefV+BS32HbrH+/vNRDMu6/sbxojjj9z6Lxu
T6e47njKkTOf0fm8rHfLu1J7T/vvfA8/zj5wxWPnA9v3CSdOFl/oAyY7Mm8k
ruzZrc/v6fm0VmTKQ6zaTZ02FhIjjON7vGyFNdM8117+eyUHY+iUi9izlamN
x+V3VrlZ/822HCebSTcmXKytGK9Wh3VyVedUxjg52cC0LmkP051T6T3c3j37
m2TlsdrjyXs64fPGzGnMT2aeh/L0moapn1PZFa4chy2rPky2SR2LzDrPyPlA
zkfyWaWnPOUp23ujw4+NH713vudd1te+9rWP1ruZR0+2vuoj6/3/4zcnuXIc
qrOTH9/T9T0bnuzoOIzrOa/lq4/f02fHxhPGmfPn33Fx8l59e/3J354jojyO
w8pJvhNmWfaM4+n/p7EnZzEP5ByO87DU95WPsd6t9GPC46nsSh9tg1M7zauJ
HdPczyqn7nL0D1Peifyaa3PMMVf1rs7v2ad/n3TK48eDPHllFx4f6knr5hqh
6Rr20fkl5iW4LxHXcYcrp77ut/nZz352tI2UyffkK7L+OOsr3Mc9O5z63ONk
ckkna7fT94lz8r7Up4nj8JzjFuMB9eJk/O+Eve73lF84Gf+14jO2c/bNbd4b
0z17mTjchDd7vmLyRyv9YWw84eBkK3s+Yo/Hkfes1it4/Phspcvv4fseP5j6
NZWzPIgRx+Gi+2mbsL5Tx2yjq3EmxtP3rHjb5MsmmU3rHyYs2sOqSd+oU453
9uqirDiHSM5QmWW9W96Ll/3mraOUYZ4HCT9uvmI1jivexfIuM/3tHGD7PuUM
V3J3PtC27fo5plyDOdl0vu/FOMbb/00eYeUTVoe51LTOdZU7XsUSllPbMY3Z
hMfW2cm3TcdKTtOYsb6VT2G/Vrn5XsvYdspJrex0bxzdtpY/jp8fVy/56apN
U0wx4aHLTPrj3A7HYWrfNH57voNlp3h78gG0XfPzlX/n35N+7fmn4+zR9VDG
e7kx1hu+2/wx15pRX/KZ/d3Cj5/85CefI1dP2Z1MHHwcHtN+2hbmwM01iPGr
fq50Y0+GE//Z46gTNhoDJzs3zrj/k5yMJ8Thlb6cbI7BuNBryatWeDxhA/XR
PmTVVrfvOB65wvCpn86TT5jZv6f5BPZl8gPTWPrcJB+vvyI+TlhI+3CedDWO
e2O1yovwd2Ji9ckYuTomXZuwem+OhFyp+ki7cpuNOczpOd9r/TsZbDsZW5rG
3b6j4/yYxzxm471cX8G2VM7B6+Q1st6t+WOOvXF0wtxV/nOVr9rDrRXmH7d2
YmWTvn6Po9hXGven85Pu2bevsGZPFiw71TPZi3OA1pEVnkxlVnZl++EzQCt/
OV1vfNyTo/1p62UMMMmUbTR3N/fy2ji3t/G3n6U+Wf1gmx2j0Tc6RzPJZS/X
NWHunnwmPTeWFx/tg9le81hjjvkIfc7kI6bxnmzV/Kj+K2XqCydZ+NmRqQ8r
vd2zD9tsjvQ183lZNxG8dV6V12Y/oe5fwb3tVv5gwsuTxVDWw+/TWgTzgT0c
tRwoC8trpeOr39jmyW58OCa0nUy5u0nPJrxlm7g2YIo9j4tnKfcJ+yYf5bGi
rVQmU0xcnVyN3TQWvn7lH1d8b7JTP+vltYpcP8qYgWW8t8heLDBhKOuiXls/
pnGzzCwTt6VlpjWZHHfyYdscYwbjH+VITJlw17prPfJaOst00gHrvceVOn0y
x8lijGVj27OvTJvyvF32NU5+ePJzLRs8znN83b+CsZVtZfIJE+4ay/Z0a8J6
jwfxvWsZJjvm2JKPGMNW9rLHO1YYbjuauNiEL7x+snv3fY/3EB/s940f7N+q
T3t43Gunus2Xracr7CV/dN/6G3njHk57LCoHrt33Hlau1zH6pM+rsVzJkOdW
dVS3V/5mqsftos88DnMs69Xcits9zWHs2faEwy7DvA79odvIsfLcnu2R/V35
q4kLrsbb+LuyLV6Tv9On008//QiPvY6F5TPfl/02i8cr2a4wd5VPLwYZLya8
sy736FqSxh/W70k3j9NbY7Yxjf75OB/S36pLtXdyq8kGJh9HeVHPV7ZjTOKe
YtzHapLVZOcr3uFxal8rq44R1793vKzXe8dxmGO8Ndfl81LeV857LdLuO/a0
kWkNtXMJK5nt6cyeT6LNUO72tSv/OLXL8ZjHY8qzTrbUMed+p9R34wv1mevL
zL8qV+75w32JuLd5r3dcOI2FfTnlYZ+y50N7jZ97nOKj6k2u7TXUl6yXuMlN
brLN17F+61jyGclXhE9zX3eOyXT9hNNTjt5YRxnYj034aD9izr2K023LxiLy
OY6R5zIoC7afmEVM8D4nE+ZxvDp+vH+x1TZlufFZfsbc3Dtr4uq0PdqisaXX
cn2b+8xnQtn3Cav2+NPks/x75WYO29+9JyP3MW47+7wUsY04Y8yzPKjL1CHb
32TXloF5iLHBYzbh7MRV3RbXQRmv9HPi5bw39Yz7bZvPTdjX+3OfNPpS7gHX
PRzsh9x2cvtJZtYjrlec+s4x9d6xjD07ppWJ18a33+G72Zci/JgyqU21HX1/
Xp7nK/4biye8tF3t8egpZzdxxCluMI56P6O2l3JzHyadI+ehLzWWGMtazuPl
Z9gnG5uw3HbesaJ+OR/GfQyNgfm73MLvwLGfmOTC+7M9K5unrnLvX2OeZcl7
cQ/9xhbTWHDM6TsnrJjeJcC9IKlDxG76N8cXtJ22g/povO5YGY9s+xMHXmEo
7WnlI7iHJWVT32//Qr2c2jDhm+OxydcQb8wLUkeu9/usaVfc95q+z1y/dZE3
TH6FfW7c1Pqpy86b9LvfM1GdJ3fy2LWOrHcLHuf5u2kdWT/zvHTWKed9IpWB
9bE24/mayVfZ73Ps3AbK1M+CTtyCmGObbx1cW+HY2pzSvIVcmuNnPkPd5RjV
3rlfoePpCRf9yfqNn7RzyoDnvceT9WRV54p7Ub8pg9bVfRP9bjnXQRlSvzgG
boPx1nZt7O6YcL9D8ubuJU87pyzZL+dSKS+P1+T3azdd10/Zk1+b36yeM5ry
b9bNCZ95eA97+wX+Nu2lVn9Ufed7Ack12y76UOt28ZjvZWK77SOtB8ai1diY
E9QHOx7iPAPfx8D2ek9ttmfCiY55+G720Wy+gvpNOX3xi1/c8hV5n4jfhVMd
pc9gDEh7mWycXIU4NWEusYv+cJVbaqxkjLMu+n0V/U4fzL7xHT2MZxyTMF53
zrLXtDzbTf/K/tI3k2+6fGXMnBZtiHpjvsF7VceNR8agttE+kdhTPPb7HPxO
J44P28v4l3ZpLJ7sy3yI7woh5+r49llW6k37T7tnHOB4g3bKuKf94jvMaPfG
O9o/dW/iGav5CGMudWmSPWMu6h+5nnk//S51nXvt+l4+6I/Z975jhe8soU6s
/ArjKuLDFFNOXMb70xuPyRVsq8ZHtrfXF5/L3bO/W/bbTH7YcQnbl/XJWV/R
9ce+7woTnS90nMp7WlYTR6gu1Gb4/i3u1eHv1HvGFcSpjh11vuWYu/J8EN9R
Vn9dDkgb9XtwOD6e0/e7CBz7eB6K2EE+59iJmNO28T00fK6e9sP6jN+TXTle
oWwpP+cLrK+T/dgPkcM5dp54c23NciRH7nhWB+hLKpfqs/dUpG5y31tzh+ld
QuyzOXvL059N/Z7y/RxD38/5TPab7aFtMT7mGPt9d9wvp3JzrM4YyLytNs93
xFKfiR/0M7XLtqO2QXu1zdGndMyP00/68eqoc9stN+GbeXeeB8l7P77yla+c
I8Yh5gavk9d49rOffY68pA9zDb5Ljf7C+kSbpf3xfqy7/fU7XahLU3naDGVN
vLMcV+/h6nj2nTH1c54b6vWcv6d9uu32Gc5nMJaonNu2Yr3n0Owvp3eOej6L
/Jc6bB7uOJlzNNZjvmeTcYdzKN5vhTrtnAftgTrMXKrxdZrTo2+ffBh/Yw6m
B98bzHe/VdfKDTwO01yVuUDbzPdvE8MY2xKPiXGUITGdPpT2Qky1rlH+LWus
N4ZPfHTV3uYMpvefMp7guJrbuA3OT1Wm9DHFIZelHk/j1e/Ee45z5dM8huOY
3Dvr3a53vett+WPn/xhjZb/6q1/96ofHPvaxR76qOEteQFttu1uuvo5Y5ziJ
8QGxyrG+uRN1l++xJne3vKjj9mHmKny/Cv0D8cXc3LZFm67Pppxqx8QGtsU8
n/U7Pqnt2VeRd1OWtE/aPX2j7YDcxlzFsXnHnlhFTKYOtR35XiyoT2rdlGvL
G/+JKzzPWGuSBWXGa/obczjWQbbdOG+/SJ0oXrMtfd8a57FoG6s42+fJxWhz
jldoL20T4y76COqG4xlyqa4h7LvsGBcSZ1Z5JccgfS+s33vHMWm5vsvVOm8M
mjCp95x8M/0Z5Vm8NH7Q71LvO4Yds9QVfpx8RdZX0F86j5N8xVWvetUNvyvj
+hTem3Ecx6n9cHw8xUnUKXIZytJxPG2D9dIuncPo+8KNC8RL+1hyAsf+Uxzt
3BGxju+1Jb+a+CHt2vbce/C85WFds/9uf8hjLWPWMcWcxucpv+D3wJvzTnye
7TAHmsbZZRnfs+/M85BrkYMSp9oH4j25IrGZ/aEuTPpL7kT/R+7d+ondzJGu
8GzCZnKXvl+T60nID5xDN0fn92INc5PFCo67Y6u9XL95PeVRfWIO0HGz9Yy2
zXGkjThXwviePt79IAdi/OCYjByVefN8Zr1b8hV5/o42RFtLPZ///Oc3PM78
X+XA8aN9GyN7TDG/8+H2N9R7c0/jEfFv4krmvuQiPEebcbyT75R/+0XObDw3
R/e7DJnHME5T39j/KRahTpVbkluRX5pP066ZAyfWELecn6DtWI94v/STsRXx
iO+7JdZYrlM+ZepX8Yb4PPldv5eedm8sZK6CsbTjo353rEafS59gvKL9kKu2
LO3Z9kO/2PPUwdSR99wzl9J3HDcO4D69HfP8zncke47E4zLlcygLjvHEkZuv
sH2Tf6QdP/nJT476Uh/hGMdybDvJ1Rj/2j7oP8kPicnmQJQ/bZLYyTKxpexH
0f2EajuM6dq2vO/0ile84tH6Y8Yw5oS2JXK72GJ0wTnU9p9jRb9FfuG1iJRH
22LsoR1OMaTjbcrK48vxsq4Z3x1jkgsRB61vzgNR3pYBMbj9cb6ZPpu+v+2c
8qvEmPoI5ou9RoZcwc+acQ6t+RReR39Gjm++urq2upbzeZb0IQ95yOGSl7zk
4eIXv/jh1FNPPbz1rW89W2zB3ATxujIwvjBuYDw+8V7nHYjfjFub9+O73y0D
jnd55pSL9dyQ88psY+pIzP/DH/5wO7pugVhOf77KYzC2sKxqiz/+8Y8P3//+
97fP5uKIDzysO1yvQZnQbzq24Lgak9p+YmX5B+9BnaW/5Xy8bZ45B+YPnCui
TlBW9QknTpw43PCGN9z4MdeB0z5y/ac//enDKaeccsSPiW/Ol9i22w7yPeMs
ObBzAuTdtB1iruMRY525ETmScznOMzgf6H6RQxkXqQ/EUeIA/S3Hq7rvWKxy
6jnmzWir9vH9rX+3jTxv7DHPsK1Pa1upz9RD5nQYF7EMx5f+s3Lj4Tgy9X3s
Yx873PrWtz5c6lKXOpznPOc5/MIv/MLhghe84PaOyJe85CVn0zXmpqlTzDV0
vMkZyU3tkx0TGSOZtyU3Js5Sr1b5qraXvqky4PoE8szWWU4UTM4n8xW0o8Yy
tNP85jxPsZvnKueUzT16H2PhxIvpy4mh7p95PG2Of5OXtbwx1LGi18xX9p2j
jVzom6nH9k/MFdGvUN97r+Bx3tcU/tv6PA+bI79nPi/PVxtvzAVXeTy2s3Wb
Czq3Rlk55nSug7g58VVyauKrfctxGOt8DO2R9jXprOMq2l7b0t9SLnrM3If1
g3pkn0HuwGuKtZSVYy+OIX1bbdwY47wRx8OxutdLUPZtA318sYG44big93rQ
gx50OO95z3u40IUudLjoRS96uMhFLrIdweXEgXnPTdvCHBH1gLFr29nYrlyy
tkYsYr6fuj3xkvKGYl65I3Wx/NlrGSs3ch7nY4tBnpthfox+wPrUcm0Xzzdn
wbkOr3/ovdqHrlVznO4cMvcFKB6XOxLLeY4+0H6csUx9CfP0zGNOcRI5kdfw
TfXTBms3tidiEq9Pfx7wgAds+xpnPRttj/iSc8Hjq13takf8mJzKfTMGE+Oq
A+SDbT/HmePaezD2dq6B4+9cK7lGPh0D0yYZAxmziWeMf2qnzcOwH9V96j/r
WNlzjwm7WafLO6/CmIR5v+kc9ZC5Vd7fXCC/p+/N4VHXnduszOmT7MMoR451
66Vc2v/yrm9961sbtzj3uc99uPCFL3w4//nPvx3B5nDlc53rXIcXvOAFZxtz
y9xxKGXenCs5cuXbc+bK1PGe533YBva1R8fZeZDKdzWnSt5MXlu5lR9n3PI3
1yA692KOQvnYn9KPWjeqR80NFlfpg6qD5FjG0UkWnmtwPEY8JedjroD6OMmh
92e+nzhkbkmf3Lq8roh4XTzOcx7JVzCPyTVtuS7zede5znWOns+rDTjn6JyN
8wXtS8s4JuVchfP3q76SdxRHbRf1Bcy5OgdLruj8ADmNx5z34DljpW2+96je
8plS6hDjBca55r3UM56zvyFH4tw343/mLMhpmMNhfsjrtcwZGrcSb+2DiNfF
i7aLeFhZEV9ybdbQhzMEe8ONg8PnO9/5tiP8+Gd/9mc3/W2/2Q7Oa1UnyPHp
n+jDOBbO8frIb+nTj370oyMMZCxFGVCnHMNwXoV5pokbU2f6yZx129F2Vbb1
O+Y9HZ+Uzyd9VvtYf0tubBlNc83ELWIybY/+i8/8OQ4wBpDDF2+ZVzLOTnjS
tjJeY33M9TGmN0baP9fm8/f97ne/w7Wuda1tDqRrKXKQC6Se/J51GM985jOP
ZFo5Ns7wfKHzPR3PcjHb9fTsWuVWeRNrPGdFrHZMSn/ka8jz68c5v9bxIq8j
d/HcZG3W8wwdC+Jm+90cG/0BeXnbSFwnn2DexL6a8QttlLysMjOv6nmvn2q+
mvP9tAXW5XLtS32COTjbVvlxDas5Rr9/73vfO9zsZjc7XOACF9hyxr/8y798
+JVf+ZXDL/3SL22YnPOve93rzoZPbpvjf64XYcxJn0Zf5NiDPqe4R91wOeJ7
yxf72D7GK+RRHB/neei/2gZylZ4vVk/coWPBOLQxQnW4PI73Iz+uL6y+M8/V
9uRc8xWOY8w50lfPYxQryAHb3raL/o1xCfGe5egznPfgvKRzBcwD0v7aFnKn
zEMnr5b3S5fPpLz9V/IZWaec5/PantrctI+J53vJya33jtvpi4wPtYP8zjmB
YhXz7LXVziUY54kNxZHq4TS/R58x+dO2h5hM3+mcCrG+7fb8NDGZWE4dqYzo
xxnn1f9Oax3o/7xugb7N9s6cBseU3K3XlAMUezk2zrPThhyfEqfKzSrP1JkY
71a3utWWLw4O5zOYXJ582cte9vDhD3946yPbzXxgx4mxAGVDXey1jF+MbcZm
+hFiRX/jteWsifd5Xe1uenaCawboZ5hzmPLmtHWOK3GHHMQY7bilcyXpQ3W7
eND4mn7cczHkTs7b2Dbz6b2SyFGMr+b9zLeQMzm/OHH12o/XpRFXiMmMt+gn
ag8PfvCDt/UV3d/NuY6O0+c+97lt/XHWx5Hjcvw9X+pnNdkfxlicP2S+pffm
vF1/67X2W8We4gnzLm0vf6v/Y/zAPLpzpcRXcti2x3EXf28d5izV3cYi1U3y
ROZ3yNs5j1P8pe0yZ0PdoK4yn0+/TjlUl8gZi4XMqTqXRowih+79bWeMHYkX
Huf2J/3O9S960YsOV7nKVbbjtre97bY2Mxic3EUwOXsTZj46n+EUwbhcX67G
2Jf99HMvtDWPMeMd58OLVc7TEo9pn8xLtTxtzO3zPofpG/GkbaZeMV5h/Mh8
M3GabWZuK2XtVztGlQG5hu2DvowxJ/GefeEYTc8g8TtxhTlK2jkxyfyWOV/q
Z3GlWEo96f3tv1uvc6fkXOHHeX9ecm/Uk+bgK6/kj69xjWts75duv8hfffg5
G/s/25jjavss4jRtlDEy+R77SLsm96NMiUuMMxhjOK6tztLP0qe7n8TwyqH3
JofgPAexlLbC+KLtJB6wftpz9aM2lHEOhzluroT+n/Pb5JkT1ywfqA+ib0p5
xsbMUU48jLZQGUZv88zoKaeccrjRjW50eMtb3nL49re/fXjnO9+5xX1Z9/a8
5z1v25/wIx/5yOFOd7rThsuPfOQjD5/4xCeO1q8Qd7hWzM+N0R8xf77KPzCH
ytz5lPMiPtFv52/GmuaGEyZR5pRhzzf3Vp/mXKNziLSlyp9zBK2TNswYgjEv
f+NcDuczii/GUGOOY3DvgUvZcLzMkchzi1vNyZHDOmdDP8l2eA0f9YZyJc6k
roc//OFH6485lxQ7LRdMndHnzJXk/aeVUdtP/rC3v1YxgLkw+yHjLH03Y19i
H3Hafo51UG7EE3JOcq+23RjKnBtz0x1b57Gdd+Vcg2MNYh/zVO0Lc3aMr7vG
1DyfuQTqW/0L55Uq244Pef+0xq0+iOPFvGqvr/6S87Rs86Pkzsz1THiX9qVs
YrasNc5c3WmnnbbpMLElsd8tbnGL7VmExslZg5E1nhe72MW2fWY/9KEPHekm
xzHXO/5lPEedaJu8joZzkT1fOfRc5y0dw3ksmSsiHtG+GDM1/qV+M/boWBg7
PP9Of87xJb90HFqdp28lv2QujX6celgbdBs6LsYb6qjjcto8ORvbUsxwjNHx
zXXtU9vEON37S0ztY+7T92w7Hvawh228Ivsf107oW9vurHdLrPec5zzn6Hf6
mSmP7Pd5cA6H8QvzBYytGLeybMszTvS8GXMuzKFZjxhvdrz6N2M8lnNMRk7Q
nCCfQSRHtp+mzXi8nJulb3Felz6AOQZyy5ajfNl+r6HgmFq3ORbOhzI/R+5D
edAGXZ71THm4PFOWdfDhB3e+850P733ve8+mFy1717veddPt4HHazrnwj3/8
44e8NzLzfg996EM3/W9eubLw8wn52/lA6lpxqWvIOsdV/k+e14Nrc2l/zI0z
dmK7jEXOrzl/RN7DZwJrE/TV7pevdyxX+3OuoHrO/FLl6PlF5094f/p+xy+t
t5jn/e4Ym3ZMil1tw8Sj2H7z57bPeDzt+2+flzo5l9l6c4/kK6KzyR9Peea2
LXic+C/vB6netT2VwYTDlA31jDyE8nKcznL1I87bERPo9+y3ieHEBd6HuTLa
D+d1e51zFcyzmMM6l+TYyXkB47F1hHrivjiv0Os8R8bYkzk58gT6WHMxy5Ix
LbkteWE5jttDH8m8I2PFtO+Tn/zk4Z73vOeWc8ha+OYcnG9O/fe61702zP3u
d797Nq5WuWUOO/u3RK/vcpe7HN7+9rcf5fA5HuY39ofEUM4bcYwYvzEu5Bia
xxK3m6M0R2a+ivMK1X3nCazXzOFxfQC5EMeXY0le0j6T83VOsTJnrEju4mdi
nFNkHpF5Wc9nmkswx8b6qle0A8/LdUzLrehTzeGYi2D+wbFMx7z+kHrdeDjc
IDobftB7kMdUBtHd5I/Dj5nDbPywek+e5cV40rrMOnueMSLzHvRVxS/zdOf0
yROIJeSPjLvts1mm5Xhtv7ftxRfmPthejin1qHmZjn/tgjZFn8Ay5C0cP+o2
15cyR2ROOOExYx3nb6q39BfkP7WpyosxQnGsvK02U9vP55/8yZ8cbn7zm2+5
hrxHITw0bc9983dzBNXzrOU89dRTt/0Ter/Gn5zHTX45NpDnot7whjdsfJpj
Sn11rr734zwA57bYpraLvp/+vvjI+Yy2s7lRxpvUG44R8xK09+oEcwLkE45n
ur6j8wvlll1/x3lLzsu2PcwPOD/vOfJ+lmPXTpjHdJ7WHIFjREzmHD5lbQ5M
ztN2Vw7pt+d9nLMgp3QcwzZUv9mv+q773Oc+W/4478ejnbDe1BU8znMjL3/5
y8/Rd/N1vp9uen8pZTjhE3ma+Qnz4+Rw3r/G17AdzK+7Tue4qqP2y4wdue+H
ZVNe4/xr/SHnbj33QGx33mzyH6yj7TJ3qJyJg9QJ5yimvSnaPo8V/VFtgjkS
1m0+QR9GnMtvsYfsC5v3hd3ylrfcYrWU5XMNnSurzeT7fe9738Md7nCHDVOI
ofQTOXKPrK+/zW1us61Vvsc97rHlmT03Q39Z2+462tXaaOZqiH/kqYzLyaGY
T2WMtZo3Yk6F9XEs6COY466f4rMynOdhPMXfuAaR87XFEebSi8e0h/aXsZ3n
0sib2U/HcPRJ/M25Ea6LYK7dec0+W9i5EOahI4P4bf5mXLE/IIdhjogxSeY2
+v482qVxPfsJ5f3SL3vZy86BY35X9HS0DK9b2bux1vKd8iHTd1/rMixrnCY+
TbHHNJ8y4a5zWn43mLHK96nOmh9xbMhtLSd+d76E8TPjOvdlkmdlQ6wyN3Ff
VnMbzltzbu0973nPNmeX/MSjH/3obZ0P453iBOddquvZyyLPh4Qft17HSMwv
Za3Gc5/73O09OHluNVw59kZbcH60uMF4esrBkVvT73NOoNyRbXPuZLId61vH
eOKIjEeZdyFWVJ7k1sVy5vwcH5nDkmNxjsK20bppB4zvGefZB1GnJiypPOz/
OF61Mecg+73l2k7m4+j3PD57/XRutT40c9A3velNt/3oGbcSr5qvyPPSZ5xx
xjl+3zvIl4vHjoeNkdP3vXzI5CvNWSfMXsnN8ya+jzn3HhYT02gXzjmRJ9IG
aMNug33GpKvETueyys+ZN+m1zP0Y46f40DmXvfFkfEFZUz6Zs3vNa16zvbsm
WPzqV79647nMY/Xa2g55W85lbiTrK8JxmC9z+4uB5ShnnXXWhuOZL8z7Ir/z
ne+cI0aqf2Qs4/whx8j5efPc6Rrr76RfrXsqQwymvNwG3pO6uOIh9jnkrbYV
8gDb4YrnM/61PFZ8eLJp2o35wtT/fFYHOH/uuR3m4Zn3sWzdL+o99YE2l/Vu
wePM5xWvJ36X9zWFH7/4xS8e77PCY+YuykE5buTOe/jr/Id59+QvrScTjpv7
GFf5G/2IfdIK541h5oaMaclJphjBut462kfbY+VtPldO57zeZFtTvmkal2ns
HBtMvnrinskVZN1P8sR3u9vdtmdDGz82Pixn6bwg8wbNc3S9W3DceD/5MOJG
nr0Ov86zfXm+5DOf+cw5xoP4Ra7pOu2/j+MFe76fueMVZhuPJgy2PzQusC/0
s8RgjuGEQ3sxq8d+avvEk4hj1rPpfA/aYMeuR8fO9zOXm3DBXMJtP25MKIPo
9CMe8YhNZ2MD7JNllfXHWe+WuY89frxns8bjFZYfl/s4GXy1Lu/VT39sH16e
TflNeDxxyJ53G6nj+QyedF8DrkGd2uT+TXkK+kL7AceBXuNhHs7+0ied7Jjw
mpW+tP74iHe9613b80mZq8h+xT/4wQ+OYjzmOBkrT7nQzuclJ5zy5JITf2k7
aVPh1eHomV/JceaZZx7xpela60PvsyebKSdqPbVvnzirMcG4PunBpFcTd5js
fS9OXc0r2W/w/MSH3H/bAnmc/b/5ornQpOfEaecfJt438Y6VLbgdtCfGMY96
1KO2Z/6/+c1v7sYeWWsfnYyNcHzMnVY8tr/xmlUdJ4vzezib+iynyTevxs5j
sNJX1zPhpu/DGKxjw3yefe5kU+Q4K3+86p+5Odf6uM8rm51kP43Fqjz1P22J
fuU55mBx1lBk7ZnzJ2kjn83mugY+w9sj/DZ4HF9nPzZh2sTncj457OQ+spdn
nodKW7lOwDjiMVvpw6S3qzFc8RfnDPz7pK9TGfsJY+SEuxMXnOxoagN1g/ek
b1rd0/a5Z8/GSWO92zON6aTTq3aurnHbp1x4xjH8OPoffjzxhtabZ6HyjoUz
zjjjbL5lhZMTLnvdxeTr2i5i/uST6JesGyuucRwer+xgwrcpnpp0e9JV11mf
7bmw6b7T+Pf+XH9ofHE7mMPwfNFK3vRzbDv9B+vpGK3GrNdnLjnrILIHUPIT
WS9sv9WcgJ/F6Tl+7zWZ/7vd7W638dzJVqpr7Le5QuWUnEfyH2nj7W9/+8M3
vvGNs3G+Ce+MFZbPnq7SX1CWLeO5hZUPX+H/nk+Yfud9eF/6NmLkigu1jLH0
OL1b4edUp30COeYeV2R7yL0nPzJhoOXt/llenieIXmf9cfG4NtzP6mM++zzI
C1/4wnPEOqv+5Z/zxxNOr3DRfdjTq0l2xrE9H2efe5wOT3o7yWHVvlUcuOIU
lMXEX2gzx5VbcQ4fbKP10/2e8Gjl46pf4bPhxFn7e5Ob3GRbX5xzxBTqAe83
xbf1a8XvBz7wgVvut2skJhuY2uexaNlw8Pe///3bfMsVrnCFbS/l8PXiOseI
bVzZpv0jY6bJb3A96EpPVjo+6d/ED1acj77EPmjSGfth1zvZ6YrLTJzGdU15
iAnDV7ZJnF3NDa3afBxGTLhvP9p83YkTJ7Z8RfZgmXI+bUPm84rHLLOXqzAm
7+HVyn49HjyYk96Lq8ybp/rZnykO4rjbZxzne1f4PZ13G1Y6P9nHSo8dn58s
Lu/5nknnV/f1XHywMusns6dP1k/c//73P3zwgx882xrTPSxfYWfvVe6YNWtZ
KxfMtL+afIbtklja/qTtWWuUtc1ZbxT7yffgJO1sJXP3xWsZqE+ULdebe4wo
f3NS49hxeQjLxO2ZsJw8a2r/cceeXk1tm/pyHA5Oh9tqbNnDosmGVm1d4Ydt
M7qQmC7xV9b0cB7Jtpb3T2c9ftZXrNpyHLb8b/D4OPyyXB2fV9/31oyZHxzX
RtvXno9f5WWOk4HPr+4zcYbjfMC0bug4jsI4dA8nJ/nwnsXhxGR55jlzyHn2
Ihyz+0tM60pWOj6tuSY/zmfyx9Ht8FrKxHhD32Yso461D/k7OZBw+0tf+tIb
vw+3J/+2PKiT1r3j5GrbPRnf7vIThq2wbG9c28dJT/cw9jgMpn54jdGkpxMe
743lyeJxPzkX7vvT753MMdkz+9x8Yfqc+bzEdMFjYloxpfcNP877QV772tee
Q6f38Nj4NK1/s/0ZZ/ewbIVB03zopItedzLponHbGFlbXcXQK97I9q641J7P
M3bZXlfrA/dyRtQ9Y9ier1/hQTEy37NWIntO5N12ifmjU9Uxxm6UMTF3qn81
Hrln1lckD5J1cK1rGlPKqnL0mjjm5YlJ6UNy3le60pU2bpN1csUV38ecq22i
jzS39m9sg/XDerbC7gmzjdfWAfsYj7/Lu+49fzHp0CSvPY6y8iPUqRVXmbjw
ag0nf9/jWhMmr/ClY5m2nvhpvJW1753PW9lk35/X9RWrdqzaNeGCcSXfyS96
0Fbth6f72LZXGEtbsN77t8mPTjKe/LXHZaV/xr3j8Nhr8OwzjssT+ZoVttHf
uMwqFufvWQPxvve9b9vfJ8++ZQ+f4Fgwc8I/34+y7Bwk72sf2xxA8Dg8vOsr
OGdKe/U86urg7/Uxwd3YRp7ry/4u2V85OWY+q0cM5zOZxnznEnzYHizrCbf2
/OxU/6RHtIcJt33/lX+g/p8sP+fv5gG+J+2HunHcmE5+cg/PVv02h6R+8ZqV
zeR8nwfJejc+m2O8af74+c9//jmwbuUPjvMx05ge5/vpmya98zXTvT1etBfm
H1mvdXZq49TexhzTOPS8sW4l08neJp20z9jz29bDFc+f7NpYbp8SzEku4s1v
fvO2ji3zFK985Su3OTvWQw5N3Zj6Z1u23hCPkz9OvqLzebQN4rDXC7hv1g/e
t7FmMDZcJbaU/Qeyjjo5DT/zvHoOctIB46/HhO2ZrlvpjXWDfnuFpdR56u50
D+vZZDusd09H9/B64qdTOfv1ym7yQ/YdU99WZaiHKxudfHt/S5syp5I5j+Qr
yBPcvzyflPc1BY/5+wrnyIFPlkOvMGSvzHHXTeUmv7a6j2M3P/ttjsMytKVJ
T1rO9mi+vPKne7Lf00/rD3kj9dXt7sG4mfyJ+JK/88xzMDHPHYc3xucTL/ns
KsfG8Q1xY9I5+49en/xx5/PabucFcvCZWM6bUW624Z4nrqeePEuYPZnT56xZ
5rOBrJ/P3nCObsWjJtyc/BX7uCcn6+nJ4DjrmmxvmofmuNFn7NngdHiMGbNS
F6nbE44a3/f8j7HiuLmwFeYdh/e1wcxnZ01l1mhmzxXzIfYj6926v9tk077u
ZJ4RWY39cWUnGRwXm9uPTdg13ct2Ud7n54snDJn886Tnx3HiyR58zaRPU9vN
U6b1sP3N/oB4R4zyOubw3ze+8Y0bH84zRK94xSu2/QM5rzc9l28b8udKPlOf
c5+sgQhf5fqK6Z7FUvJg41zLrfhP5ZC5w/T1jDPO2Owlfiiy6J6Z3NOo953W
QBP/3ccpfllhuMdpslFj0IS1lvWkG5PtrL7v6TLvueLSvF/+9rp44rb1d7Wm
ldce5x9WGLPHF6Y8B20wunDixIltLX7mIdxu+qbgcZ5P6v5ulmH7OMU+e5i8
51f2yq7q6xq7FYZbH6bfjTPmjrRZyts67tzLyqam2GWygz1/63q5rsF86Tif
zTLk7ayPGMK9V4JFecdi9hJOriDvrOvc19Rfx2ITtlg2K5/mnFP4KZ+XnuyC
crK/sm6yXSs77r3DdfoOv65VTnzAvf8tT/Jy2xfbTr2yrU2cmvo4cYUpDzPJ
ijLg32zvSpdWfGeyvZW9TtdPsSPx0TEnZbmyPerTyWLzijPY73tOmW3Ob5kT
jg8vHq/anzWW17rWtTY8bt0ng3Msc9zc0iT7FQ4b911m1a5pXFe/maNMfVz1
rTbmvbXKibzX/oQ9xhr7/wmjjEvOMa5kvtd/5ifar/I67mfU99nlHUjJg2WO
eMX99rDN+ZvJ3xg72Ne2L/mKvLMpnNU5YsvG+y21rVMM4XrI9ZmLSduzh2d4
etaUhPdERvRhq3VdxOjVOE92ZvmYC0y/T8dUZsL1Ve7ZWGZ+usKLlf7vYcPK
Htq+Ff6tdL/t9f5Ee5jk/u/ZKv9O/Ywr83xe8l1Zi9Q20M9XF7N+P/PHmbOg
bR3nH/z7dP44HN7D0JUvnsambT5ubPd00hg14bnzZVO8Tz628s979sIyE77s
8WRjnMvUZ5gb871Sxbxcn3mrF73oRYfLX/7y255Tmb8rBnKfh+YEjI32FRNv
nWzd86/U1/wdHGz+mLkCXledL7/nfaexWOG/29R25zPr7bJONGtLskbppS99
6XbOe/e3rj4DTjnZp6/8NM9zD1Dn7Fe6MOmU7Ya6NXFI43GvsT82N1/pdj49
H+O4yrg/4fxkQ3t8ltiyytvv2S5x1HtATBiQc9m/Ivnj7BnAdpuDxK+HH3e/
zak/x2GpfeTe7xOP8+/HyWzCSOoLscByNBa7Dc4bm0NZn1a80Do0+X22ZZKL
4y/H4+yHv1v3LQ+20dwquJE8Vt6dlLj83ve+9/Y+O+9vT99OjD4Z2dlOad/9
NB72XJ7763q34vHqOt7PGGv8sC8x/lJGXauUe+e9q3e84x23fWCe+cxnbnsm
kiPTdv2cwKqd1lHKi20rzq+eo+Fe8dYf5lCML9Q7+iPr82SzK95mO2O7Jh8+
2ad1lddM/mfiMra/to3lfI3taqXjttMcGYPYUt7l2Pk8HsSv7l8RHtR7WI4n
w21b7+qZkMnXeOz28hVuu6+hPduHT3phn2jdN6+cxqV17OUOVrFPcWPyLXv6
536t8NkynjgAOXJ5cj6Tw8p8WWLxrCnuujLnYSZcnfzfZCcrv048YH3k7lnv
nDnF7MXpejmGfoZzshXWbWye2k+8p1xjZ6eddtr2rGs+v/GNbxzJjDZeubev
xsCpnR7Xyd+yH/UFK85nHaJPnWS/spdpLKc5tdVYs1+TftJ+bDd+lx3H2+Pn
/NBKf6d+UR/46X2qJz/U+yVfkTmP4HHyx4yDbItZ7xYdylw5ZURMmrDG8rdc
PSZ7Y7qXW+A4GI+PG98J41ZYPWG67zGN2+RjjOf93vt6vCd/P/melR+07H2Q
Q5kfFIfzPXwz69azfiC6E55H3afeTHzjZHDY7d37nXLrZ/A4cyPJIXfPH67r
mHwUx2bCpkn2qzGm38h9qXuR40c/+tHt2cE815dnSZLfmXxfuSvf9+uc82qs
2Sa2l+M62RvHrL7NORLKvd+neRvrpG18ZUMTt7ZcVj6QMYB1x5jcMuR4ky8l
ThjL7Nspn+bBPGYr+4td5Xnp5Cts77w2XCjvB3nVq1412tXqHQkei5VdTTzD
/mTCWc/vsczKdvO3ufXeevgVfk12uLLlla5P78aZyrtO32uyyRWfsJ8ib/I7
zoh10auPf/zjW44rsdLjHve47TmhzumlHPV0wlX7o4n7nIz8zUOan47+JbeW
9QxZL3+5y11ue9dI9isK5hGzW9fEJcwlJ5lYP8mTik/2Ra03bc2cTHIqXasc
G+O79MxFJx2grjsPYT2aYiPrbfWScp/qMedbrSFbxbHG45UNUv8mjHfdxvuV
7U72Q38Z+U86N8mW/Wh7PT98MnJP+RMnTmxrgorHHu/W86lPfWrbiyvveCTW
1Q74/h++J3CFYeUOXsvrPlv+U38mX0pOOeUyJ982xROVk98JsYfPjh0YbzI3
6HdC8h1cvoftY1Vmkpnb5Ws6Dny/It8X0neKldNd5jKXOeS5oPBOYsfEwVa6
N/XDNmo8nvxU214eEEzLO6jPe97zbus8znWucx1+7ud+bptnTP6WuLQ6OEac
C2O/puuIZ7wH30/K98emrsSl4fF5N1Vy3d1ztOVd18pHTTZjnZ5wecUdyC8n
jjBxgik/cDJcrPeZeJT582T7e1iw0hvK0G1k7qj9cB7fn8YX64HvY4ypH4hf
Dj/OfptT3rz6Hj3PmtLkjz0nw/d1e2+BPdyy/ky2an2axnBvHIxT5G/mPjnH
nHZ/83hNsdI05q2f7y3nu9sjq77fou9MYl6+Y0V7NFau5Go/bd5Lf9vf07a+
671H7pVnzDL/FMzIWpy8HyPt87wNZTzxufKZVZvbhr4b3nU7z1tZVT6Rc3Ky
5z73ubf33l3kIhfZ9o/P38HnG9zgBpuec53F1EbzjOYKJjttOyb5Gv/y2b4x
F5t64uvyTPkv/uIvbuu3uS+R8WjyY+bJlFVl1HZwrUbv0djW/TgO/yaM23se
bzqmPtAeJ6xl/uA4DmxO4rijMilP73UsZ85o7ko/5nVFE4+zL8x9c03wOPvR
d79NjlXbGRuJvmR9xR//8R+fzQcU140pk4+kbFfto54zx3MyfnWPR9kuVlzc
+so2UufoXyf/0PO1a75rnM9PFI9XPHPiJPyc9IOyo9+2bdhv8L2gxaKsl0j8
lLWO2QswzwM7H7WyXcqz5Y2p1OPIIpy77yQl3nruZbKpPIuS9WTnOc95Ngz+
tV/7tcOv/uqvbrgcnMtn9jWqD5p8XG2v8Z596MQN2x63ze0kj7JuRt7J/WTd
9pWvfOVN5tmXqO8CNA/fw7hJd6driMfpb31h32FvDJo4kzFlwu762q7j8576
K1w+bv8bY7i5C+v0WBUz64sYj5iP2iZXfL3trVxX5WjP1IPcK7m1rNGc8sfk
Tsm/XeUqV9nwmP1uexmTTbo7cdlJRpQVMYVrKc1pibFTfoA47Lrpx2r/7Zdz
FFNOitjn8tR5ctSeix6Ej8YGKjvGsvbv1q0J26hL9kPlrcZp6mTaEwwKP+ua
2fjhF7zgBRtOMjcw+ctVW2gn/rtH7p+5wviDYOEqj8VrK4eUDW/PWrKf//mf
37j8JS5xiQ2P85ncxfnPf/7D6173urPZovWk96xv6LtTuScbx4L6az2znlZf
eHAsy5/POOOMbe48+cG3ve1tW3ziuTz2n/Y9xUwTP6Lf9jthq4vTGBn3jMfG
1vateTm+Q32F4Svs3ePAx+3FYZtsPMB8IZ9lt6+3Xa/4/DS+tFnnY8g30o7M
J3Q+z/w9bcv45LN4HLtkvrE4E/2tHVF3LU/2qzzEMSH3pe5R3019aVnmrl1X
21r/v+IBLNNyjd35vk/rifGM/t9Y7CPlYgOx+76rPt/JofcwyTjCdrhvzEXm
fGXFd9B17PI+u3vc4x4bp8x6sa9+9atbPWlj+aKfnWB7iPd+v12P3oucqe0q
LhATnMPvPdm35CKSJw4eJ09x0YtedMPlrMfL3vc5Fz3megXiDNucsYhvKB6v
8rnuL33zNBdn3CGf4BhmPVP2uT/llFO2NalpR2PaSd7T2gvjNq9pe3Jd6q4f
bizgWJL9W8WXxHl+p86lfvMN4+XE1yjTyd+bu07YSDkTM9oucj7mqthX+4UJ
qykDcmXLx1y5eNz5vIlL1l4+9KEPbfPAeV+T198UV9ivzrmbU1KWxfvqQ3Me
xcT+TbzwuZ7nO4bbnupXy9bOG5fX5otfxYK2p/hT7uD8eOXTa3p/+wu/f7Pn
q6O8r/tCzmzdIhaX47TttC/iSMrmfJ6pq2/rs2DBoOwXdfe73/1woxvdaJsr
yJ4L7X9zCfnOOS7Pn9rflGtW5vnOuKAHOVRlnTY3V02M85xox+exj33s5keC
weHGxeXgcfbTSBs6bpV3783nB6l/tNvqVa6hffegnjIOM44RN4gtvT6+IH4w
Y5B1TXkXRJ577H3t8zrW5vKTD6+8Kz9y4+o35x2of8ZEtsF66ntWJ4txrnuF
x2w//ed02NcVc7huhfyu408bqX9zPp31Oefk9jkGbL8m2VTmuWfXH+d5ad+3
MWSO7AuTuDX22niuWMH5vCmmay6IezD1/sQp6zN1q7o2zYe4HscdLFPMKua1
H607+hKbLS/ifWuHrpNck99brjpf/Kk+N66g7CiDls+5Ke9bXWn7OTfY9tbO
KrP6pfqa6t3Xvva17d0dWSN26qmnHt797ncfcdi2r3XmvH18x7R6Y1/Vo5je
XADtgXIiP7beM09UWZW/Z71xsPhSl7rUhsPNV+Tv7P0ZnEvd5b5tU+XhOJbc
gP6oPK/t6DWM04zzE5ciRylGVUc7dslZhPdnvu85z3nO2fYqr9zoVzpe5pLW
xeoex5U59En3jfOMo+37ycfbzrath/mG8XjK2zmeIA4Rfypv4kcxYrWuibpL
PJ7yv9ZH5kNX6xZpM25z+XHWB2XvF+JcOUnbGjwOP37e8553xB3JEdpHjscq
D28exXZR/4tFtTvyIOYOGf+S7zlXW6ymvrfNvWf6lXxd7LVY7fk4vnOeuQyO
RdtN/sF4sOPBvnZcqr/kO84XMu5sPbSr6lljgWJN6+0Ypo4vfelLm0/OPFie
580eOKmXGFmM5xivOJ5zMcW92n8xkDFHZUVOWt0jD+M9c03a1LryLH/m7BLv
JY6LbgeDs14heZfk27J+vv62viJjnXgh9bR/9Gntd8eCuFKZVhfIISwzc1Xn
Ga0TvTbnM9eXfQ2SAz9x4sRRfrHjnn5UluY4zvsxBuvYcq1q9dgxY3WLeso4
mThU3SQ+MB7sd+Ie/YfzO86FO4dJ/+Kcku9FnLA/IM4Tq80tzd0ZqxErjGXE
bOJD+U7e/ZU9ar/+9a8fccK0pTynfc68dLhT4ifmK5jDLQ6SM01HZcr4nUf7
wdgp58pjJs5cXeFahZbheNN2yD/bh+pe5VD8LjeiTZZnNQ7nWJNntCzzD85j
OB9LLlveQv1mPGnbN6clB69PSx/jdzKeeSdn1k8Eq4JL5A70e82ppj7O47Wf
1OnmJYuVzGMxR1z7rq22fL57Dqb1Vofaz8g/6/Ey95hnVNKvHMknZ14y/cj6
oeBz4v70k/pbmZAf5vfiNjlhcwppZ959Uhyf8s0dD+bxaBcez/aTWNA2Vofy
fGz278x4nXnmmWfL8zFeIr4yh0s/0u/F844rzzN2MX4x5uy11AXyQeY+mfNn
bohzTl5D2T7UhhkLkvPSv9OvFGc8x0I/Nc1ttL9Tjom6P+W0aHOMmSu74lZ9
ab5nD5jw46wVqu5VN4gJZ5111obHzB+3neSf5KWONbgepDKl/OhjGq9O/tCc
hLZA3+Qcg3kY8wf9jZhQ2dYP5Kj/Zc62ZXlw/NluxgTEAeNxx5j4RA7OcuTH
9MttOzlEbS/P2WX/s4xpOHHyE5EhYxDqNfNIacuEKcbjyqd9728Tl+w55lcY
Ezie7BFMzHqErC3OWrHkXJt/pU7kuqyhz5qFxP5ZS9YYIPcrrnYs0p5cn/or
f9o34yjqC7GO+THmN6b5HOo55zMp19w793vNa16z5fiTV37KU56ycWdzv7an
Osc8BTlK7ZBx55QDpE4V+6nbxDwe1AfGm+Qqxlb6eo59eWjba35jzttzjE+c
H3abPZ9UmazwmLjF8aYPJt4TjzlX1nEPHme9W/Y1yXfmr+tTU/8HPvCBLd7r
8yDsC8dlL1+xt9ae8zPtV8eTcprywhzP4nm5mecoiAeOk6rzjoNie7RX6ijt
jzGuc4jFMvLkCY8pn/Ly+snO0XrN22RDlSHXbeQz5/Ocbp6zS34idp33KnEu
yXpK38NcNOfzPO9CnjXFOowtOb9LbsHcneeS2sa8eyPrEPJsW9aF0IcRkyrb
97znPVv55GeShy0PjgyCvZyXrR8mt3csxXifOTDGcK2P8vJ8AOPetpt4Zvlk
bV/2U45Npi/JMdGHV2/qS6prlCvza8as4mb7WR7HPJNzBqv4nLjLscj941+6
ns+64vwOcYP+nD697SJXL/Y67209Zw5mlVP3HBt1k7bHuJsYT7mxD40Tsq7p
xje+8Tafw7lPzg3m+uSPM/bZ/zjnWxdj6x6U5fS8DnG+ekreWuyg7vQa8t0V
32I+glyV8xTEQbbX8wTNKac870nOUF0kt6e/r063P+wr2+1cX2VRrtj25ZM5
LM5vEQN7FM+DP3m+Ls8Q552b3Ruz9+08X30Y20J7IXf2/NSEx8wnWna2pcok
9bN/rTd/Vyeii9e85jU3nl/c5POFxRBy2xyJDcKTg2fBsV7XfufI38GJYDR1
aMprGRNoa8zVVm6rdVLOtTJWpr/tvfNb3kGSeZ1LXvKSh2c/+9lHONyYsXY0
+X7yRPeRuX/6HMb4zdtwfmTy58yfMDdHPWFsxFwGsYh4NOW+PSfknCB5d30X
x6VjYK5NTuBxI1/uddQ5+izie+Ov6lyuz995f0L4Qmy1ukU/UhuIDnP9MdeO
kwO0380jT2tXUn/l55iK/r310057H+aDiRO0dcYMzKlM+UvqfOuY8vOOhRwD
Mh9X32Fu4nq5Xo795LNqvSf9s59/og8mHqT+xOdZx3rFK15xi4myHwlxlzrN
nBDla9/huXvHVVwbRgwgt7TvqU7QT9IXlUeEFyeHGm6Y/YOYN+sYlMs5H5b6
81xI5viyJ2e4JrlB8ShY3HyF8+/EKsZ5jpmoY8zlMb7g3DZ1j7la54DShs7v
fPjDH97GND4m78NM/NOcTeVPnWMehHldcnqv32zfbU+OB+iTPObERee2bNvO
P3OtWGMFt2vKxRiPzY875sR7xr70icyDd+xoh84LMXdInaAPZMyQcve85z23
2DX5Y3JP8tqU/djHPrbpf9a7pR3MjdSWiH9TvmLKydOXtS+Mt2gH1HXnbYzF
7L/tsXF88+jURet8sZX54/Kn6iyx1FzC+Gxs41ph9pv5FvaXcRVzLPXLvEeu
zX67r3/96zdbjT991rOetc1tESdoD7039boYRPumbnNdE3Pf7QN1jr95TYBj
GsedPeJbstdnOH6emzCn5L3pu4nX+e3pT3/6lj/vfhG1TY4/1xVQF5gzph4T
l8kbqefEZeIGfSo5QO3JXIv6HT51+umnb3n0rC/J3kmcX6SP4lg4v2m+wvif
bZ24UPtPm3A82PbyYExXXWeeZprfoz9xHc4VuN62p32k7hJPqLe0tcRNqdP8
mDI1JtEnk/+0zZ27yv4r0evm0jr2fo48fCp4/MpXvvIczxhxnQ7zP8yN8XkQ
zl84N1IZ0kf2PHWC3523MY/l2E1rAizD8rfGvObmzo/Qn3CeoHEVYypeT99D
Lmx+TTkR/yqL/N05qehKnykM7+t63Jvd7GZbzqm+xOtQiIXtZ/vHWKuxmGXI
uQ3mvp0Da56KcTz1khg48bnwgqtf/erbu3XTP/qh1uMcfseX3DZH1txn79DU
l+dI6h/I1YunbSu/cy6BsRf1hXOq5FWexyNXpS60zVyjR4xvW3NETsmPZw+P
7N2RuZ7uRUI+4RiPdXTMzVfJZSon4u+UF2HMbl9vvaPO57xzYJxXKcbVNzj3
51iZ8RnjEfNB55vpC8svq+e0xWnNE/WCczet1zks4nHyFVx/TJ/Uz09+8pPb
3gDlxz383Kdz3V5/3GdCeKzyGpxbdf8pB87DT7lMt8u/NQamnyfmN7fKdXCM
ezgO9i/EZh70J4xFyUvJpZxHpS2Tq2RMg8uZgw9mZR+E7Hee+KdjX/2lnjLn
1/uyXsYQxpSWtW6SWzk+dX6Pvqx6yrg+R+Ly5CeSZ8jfbSvjPtblWKw4xzUc
iR+yDi57F4YvF7OY+69sppwN+0V8Yx3Ml06cigfvQXyjT3AOl7qZz6y3eOIT
n7iNf9azJtdYnG+OiPjT/pHHrPruHLLPk3OwDsZ79P30bSm3J6PiKDHYeVNy
JPeL86LMb9Aemb+ZYpoJd2jrlEF9FGXGPAn9Vufk7nOf+2zv3OlzsZUfsTGf
yUllfLN2k1hsHHaue9qDZ9rnjetJVthrzHPuknVO+3bwORqOi/MtjMe9JoBj
6Pwm81zTXITncT3f6/FmG8injG89l/ZlXvZJT3rStkdYnnnOs13lG45bOKfi
WKLlHFcWs1nG9fVv+w/m6Cff5HZQLlnfE96QNcZ5d1jzdYxB3QfmXZl/os/N
71mXEV5y2ctedvNjkaPHjHMYnKvy+FROjOMo92ndsTGdeQHmBOgHqEfOPXd+
J/OdeXd8/FeetU7s1Hy6fbp1yf6YeMLfHBuy/5UbdYd9oa/hnITnDJgjoT7S
JulLGGuY2zC/wXqZFyPf59gxj0LdmzBiijcpC+J029f5vMSyed6HuUc+m5g2
h48kX/Gyl73sbNjJGKJ65Dz86vkQ2zQ5sb87ruPYkWeu6iT2cw6MHJgxKMe/
vpR+3NjG+id/uuejmEvZeyZpsiH+HizOmoHE3ydOnNi4XutnOyffN/Hu9pG+
gTpNfaQs6A9pQ8Rsr19ujOJcSP4OV8ha2+R6o4e5bg+XqDe1S+6RQqyrXQbj
g/fhJllr39xKOWj1YopXjK8ce89j83fqszGZvqS+3z7Ac/vVWXKXrKHJ3MHF
L37xbe4gNs7rpzjS8Sd1j3hs2VMO1QFzSPaVHJa/kdtxjJi3cmxIDKB+Ole9
aktlyPa0v7Yb+y3HRdVj+h9iBw/2KWMT/5n5vMzxMF5ln/M9/CRz813vZrk4
vvbRvjUfaF498ejpORhzDeIZ9WC1l9KU8+H8C3OCjMWck5xiF+oo5xwmvaaP
tZ/hOduK46mUD+9JrJ28YThx1kAlZ+G8QmVnHORhfKFvpP5N/Jj1VubGJ/N+
jl2P6ml+D04GI7MmM3G3bar9Mled8lHOKTOXkd8yR5L1gOHgyc+1LczjrXRq
8qFT/qq6sdoruH8759b2OiacfCO5Xv6OP0vOKr4661uTg2fbaCsTf+Df9gku
T52h7vQ8MZqcdeJR03jy03rNOqhb5kIT9+C4taxtdsIRxibMlRBX+lncZi6t
dTcnmjHKfvSZX574To/mj1/60peeDYOpI+ybbdPyPQ57KV/7WHMD82DHyZO9
TLpbeRWHmW/03jeTz6H+WT86voxHnfewTVgHjF9pS9YXPO1pT9vWG2RvqIyT
5yB4b/qOtpc6S1428YkpV9Ly1IXJHiaccn6KdX3+85/f8LF7s/O3Sd7WM9bP
eN7rAbp2JGP81re+dcsl555ZR0f/OPEG3s/6aBuaYp8VF2F5y9r1UnZTXjrf
o8fJWUSe2V83711L/GTdI14yZpv6Rft0/ydsbVuYj6IuTTZMfjVhCvs7Yeae
fkzlXC/LclxYV7GX+RFzLOrdKm+Y3/N8FvF45esT93D9ceU04aL1yLE78dxy
bP84lz/lIS1P84xJt9lmYiPPl3+uchT0eStOWJmRu0y2aF/BfDw50mR/+T05
/fjT7LuXZwHCiRmnmI8y5qKPMF+1nVlviOXE6Qkribd+Joh9sX0HP7KWNuu3
giPWAcZClN/07Buv6Tw+1xby2YmUCVZlX6Ks6Y1MKTfXT103B7BMiS2d17Zf
mvDF/m0an2nOnLhZHcy+ubH37FmTveLS7/rkCf+pO/SpjpOoE/QzbL9tkhzf
us13VXNvyBzez2fFXyZMcp/sv8wDbaMrP9i8JvPYnHNtjN1cSO/Zsqkn5bL+
OPtXZJ6ZuV/aU2SSWLHrKyh/8yb+PXGCyd9bX/fkPPGH6aCs2i7ORU3tNsbQ
Jlx+4oiTj+Z55wbMJ9luYzb5T9bC5L0uF7jABQ6nnnrqxiOLh+Rxvr85hmXT
652Hpa9y3p5tpQ/Y88O2Z8ohn3lmLnsV57mzrKNlbpT8w2NhXLbN9HrOuzNm
Zpve9a53bb4g/i62kXo89zPpY2XuvCXb6vFp291mY4CxgrrT8ef8qOtouWBw
9mnM2pvkgpgHapuYR3WekHlZj8GEg/afU9+pqyzXsqt3T/t+xuNisHWE2Dbt
S8zxMJ4Zn8gvmxfjsyqcB6ZdGdfLj2PT4ceMd2xXee9t5lOyvxRlx7Z0TPn3
yeCo7Yd+mHg46agxw9x44tbmHuaExN4JGzkuk5813yfvNXZ7noE6VL0vDmS8
8n6LPB+cnP8TnvCEDYuZP5l8odckTmVpCxMnaFtXud+pH57Hm3i4fWP2UQkv
zh5HWeuQPtv3rXi87ZC67hy120O9yGe4TDArOh85Z38Lj5H3ZtnjA5P9rvy3
sZZ4tsKh4+IuyyFzDnlOKOsHs7/SU5/61M3PW/dtF27XXp+q+1McTW5GfXee
3jnW8viJo04+gbHLJB+vNzCH8Sdxm1hNf8+1s36Gbcq999quryget6/1F8Sb
4PHlL3/5LX/MdhAvc3DuesJj67H5aMeGcpvmN8xX93CY49LP6Zh8x4T5HpOp
T9P4+7rK0Yd9RcYzcfOb3vSmba48WJyYuusSiev0g8zdTHM25VSTDk9rwaej
dUxrStyvPUzJb+ljnpVLPB09i05P47SaN97DK2MWx5k2wu/JX2TPuMtc5jLb
eyPbHspl8nPGG/uQFR7Xr638xNQPj9nUb17be9Q+M1+a58GSn0lfM/dXfldf
upfPYr3Mz/H3vWunc9Q/6hLXNU2+ZpIRuW/9w8oWe42xZeVzfD1xievsvPZl
wplcFw7N9W7FNZarfWedUfIVr371q892ftKZiZflYE7IPpMyWOGccd3Y2O8r
bs61wZY1r3ef7Dum+K2H2+Vx5H2pdxzD1tV4MTaS9bF5x0XWw2QtTO/LdtI3
UecmOdpfTO2kPzQGVB4dV7bHNkwsJp5y3iNYfOLEie25sjwDymejzIHYX+YZ
uO6SddsPT3pEfSEfyZxX+Hr26+nehsYg88ZJpvbR9o1uj33VcXyBduT6KSP6
scooMgtXDi7H38f3kM+1Lsp5b45ixYWnOdCJA1Cn2e/Jv1I3LX/Li3U7T2Ve
z3us/L1tnL+TW018cvJn0fk8v0M8pp1wDBIn5xmDrD9e+Zc9DuLzK1ywPIiF
E6ZYRpY7+zPpt3207dh9ouwnuyFeE9MmTDmOS2V8su9N9rzJ+tszzjhje2/A
xEOP40V7urw3nsbjqa0Tv2f7Wr710c5TLs8tP+pRj9rmMbKvfObYJt217nd8
uV6ca4kcY07Y575TJ3t98tl5birty3jUT9qvrnyw8dr4zHomLJtsf8KdFQ7T
x/a7OUQ4cda0Bg+Cy9nXP35/0l+Pb+812bv1ZYUXbv+e3q743nSs8iWruie8
nPBgdd9pDDinb2ymH40eJ39MPG4Z3rv8OM8ZdP8Ktss4OfmmyR4mfOA79mq7
uf9qXnvyZ+Q8ky3s4U4/J52b+j2Nx5Qj8ji1bZRZ68j1yVfG92VNS9YVv/3t
bz/Hs9SWJ7HBeLvymZb/lJPZ0/f26bh8xKRXOcKL08+8iyj+pvtIFjMst6kP
5n72I5OuTvKZbCr1plz2uc/cV9bC5V05E++dclXTmLttk4ynflsHLWPrvX9f
xdv8O/1MPBBMzmfyGd07hzy45ffmbVZ4vIdjxAHGYKt7GGv37j1xIOIh5bvC
lKlutpnPHvPevJcxs/doviLPU2YOmXbudmadTOY2MseSOiZfN8VttnP7F/fZ
OnKcT2v5SRYrXPDYT3Imx3L8PukR7cU4vCrvPrc92Sfnfve735a3TE4ve080
ruyzKMWstnWyD9rQyca89jOT7kxj4PzV5HvzneOe8nnfTHAuWOw9s3j/CT/4
3bmlypVx9HFciuPBa9qmxIinnHLKlrfLs5Dsx4TNk47Xx/j8Hk6xfuKUcZWH
9aBcmOvEJ9tKnSmT3My1r33tbQ1G9yWiPUwcZbLvFVZaPm2T9W3yoXu/U9cm
f1OM2LPRyQ5W9+Zvzsf6+j1+k9+Cx5lf7fN5zj9SX5o/Dh4XA9xX6sLKf1pf
J52l/ZFPrLAh10y56ZXOTfd3G8m1HNcf1/6JC01c1fmNzHkHn8KHM6eV2Dhr
kxg3GX88xuwP8bD3Xo3HSq8muRpTnbeY7NTlY9+x8+yJkvdaZ5/hiZNMfmCy
Jf7OOUZzQucGJt/cdvp76gw3zrM3eabii1/84pEtmJtb39h25zJ4bsVjGDsa
w1f+0rrhtpiHUmcz1591cOHI2dcj8xeZx8hvzr1O97BO7enYhDcru5p8q69d
HfRLzHmteJT1bYU3vsfetVM7e//wkeSL8r6m8OO9vGiesYztZF6/5ywv3t9j
sac7jHeJw54j2PODkw8jnq/k4ziK7fHc4kruE1+zfyp/N7bnCO9NjvLxj3/8
tuY2z7Tm2V1zLvtZf/L3KV5djQnlxjbunWPfqeuOJ6bYODwgepTYP31ObiZ1
TLbNsZl4EnW0a426vshttL5O9jNhFmXfnH7WJie29Box44fXJljfWdYxtW1l
8r32GbTvFd65XuIx75PzwYXkkpOrzDrLvGexe+ETA6b72bb2uONxGE4791rk
aWz3/BB9gu3S93L9kw0ZU6oPzqHZ7szbYhfGY/vy1hdfmdglupgyLUvZTjGx
x3/yyZQRY19jneW+x5/5u2VL+a24TctOfqHnjXk8xzEzHtN+U/bLX/7y9nzu
pS51qW2ta/SdY0b58D6Whf2Cx5/6R7udDtax4gEcf+cOOBfPOdVc8453vONw
6qmnbs+/Zd7CY0x9Ikav8Ng4trJ/49rkO1fYzL6nLxmnYNQznvGMzY4ob47B
FDNM3J5+zDrN3/f6Rxsnbtmeeb2xpQd5ZMYway3DxxIbJEaenmtge4/zdyvM
NE6aFzivbH1gX6aYgXW4zomTW+ddn/tlnLZ/s42RryQmCR7nWajMcU/j3e/J
V2R9RZ8HMeeZ/MXKfiefRv2cMNRj6/PGI+u/bY9znv7NdTtnZnua9HmF9znf
WDpzWeEe2acpeaPsRUFeRz03BtW2OPfF/CD95TQO1IVpvwuP4ZQbMw5QzuYl
xbHs/5k1VY95zGO2Ne+ORSjzvRxAx3CKAabvxr+pLMd+Gmfyk6xNPuOMM47W
IiSvZDmsdH7FW4nD/W5ZejymPvR6c3b7JZ5nfVO8GFknFkg8k/xmntfJ+w1W
XIb3m+zcNksZreQz+SCP7VQP77XHq1cYvNKrCX+Ow2xjJe0ufj1rqbLGIrnL
ljV3z3WZy8hcf9Yf29asx3wmm23b83UeJ8a+xCTfj7IgLpFveM0oOa/xY4o9
jMPkxcYhH8yzdU1tYur4t6yhCud4+MMffvjCF75wjjW5xMMJAy03t8c6ZK7k
HCbvx75OcQ+5LDmyr+Wa+D7Pkv7mOTy2w+2e/NvU15VNTdg62Yf7x7ZPtkSZ
xJ/kufXMcz//+c8/2/PFfkbG9bjOCYcmX2J52W/s8YA9HLLsJj6TI7wtz+pk
/WXWASTvlDUxlCH9+iqud1so8xXHsc1bntYHY9jKRvZ4sevv79Pz27SzqR2+
HzlV/g4uBBPyjEHkPHHa+sazzjpri1Xe8pa3jP5v8vXln6ucpMeE9XCeY/J9
q7LENK8X6fVcQ+eYzbrNvIB5N/HeezrRBnu+7wHIXmXJEYUXR7f7TjPuj1Ce
MvFc+/wJM8l1plwy7drr4ldYxnu7HPW+9XRPtXxmP6rsmZl+x/cUv81bqldT
rO3DOsr9xd2+VQyz8gPUD2NK+5bvWWcRjpyxDGfJb34+tnzA/GPi0m4v7+sc
kP2pfW6v9bpw6qmfq6SMmI92+ewrkj2JsiY7MXP3YuI6zIlnO5/XY5WbWvkn
8zRytxWHWPlu1/G/8SPEwYkzWe+mcW27g8eZO4qf6/rjSe8j4zwvHTwOx2nb
6TPIkVY5W59f+fgpHvEzB7Y522+OaQ/IqT3stzGVXJrjRh2vjNw2cqW04Utf
+tLhgQ984OHSl770xqsi8z1cmMZtspvanNcU2P4Y3/M37kNjWVh+1NmcZ16Y
bSF+ZH+2xFbJiyXmpU+kTXgMGUdNuL+yO9qD/SN5CfHFfeZ4mh/x3vk7sWXy
flmfGPugf2adXNPFOlq+/qs82xyCbfGxxym5H5r5+Apzasv2ieUNKRO/k/0e
MwedtXHBaM/jWp+Nx9bziXtMeRbmZMzHp/jRa8emeGHyh+y7ObI5prkm22ke
MeX7kq/IfqhZ/8n9hDxGOZ9nd4jH5BET7zK2rziJ70OssTx4T953wi/7dfLO
iWdO7V39XWyjfRC3e672ldzimWeeufHD7Bf/4he/eMMlc4lJll53sidr94Gy
sFwmXDZX62+WE59Htgzc1uzHnOeNcmQ/Yb8jrXXblny4f1O/Jrt27s0+3Xo2
6eQU6/B7PvPcROZk08+s1S+emU/wWnMQt2WFsXs+aOKUEz5RD+zn2p4JM93+
zIF0rUzmN/MOkqyXmfzFZKf9zVzDZYzHlsEKyy1T+ufpPqux5zlj9NRX99v1
Tzoa/5ZcxS1ucYujfIXlU9wJP06uM7gy2bptx7KiPB3H7PXDMpt0fDWGxGNy
EctisjPLzrrgeNj4UiyObmY/gMyFRmdf+9rXnu1dnXv93OPNOed9myb7mnTL
Y2c+Y71zu8qp00fu90qel3N5jiXxQGLavPc416/WG5g30XZYJ/eYdb+rExNe
n8zYTTzAZZmD4d5ZuW/WjWTdeNbqfvvb3z6SiWMP3mMa3ym2cVnjO3V50qOV
XZq32C9PfoB8o+eCD+l71mBlX+XwO74HaNKniX9YL429rsM4fRwHpEwnvPAx
+b7JJ7Be9muVB51sOvw4+7smp9f1FRNHzjhlHXz8X/ixc3+0IfdtiknoC8nv
p/GY4kzql/f26b0nffc4TX7acS7v1TavnmNk3jq/hQNn3cSFLnShbZ/p6Cj1
cMK5Xs99fjmuE4dk26gPHSfuLUW8Zr/ps1zevHLiCC3TPX3yrETmJpJXDRZ7
LKmjq77wvO1uqqdtYA6F9jDxFObY+rvngIkfjresE+Eryc1knrzPWHUPPdrX
Sjen2HLSW8p+svEpt+YYzjrc6xgD2Y8Qi7jfdn5PHJj3hiWOzhqBj370o+fo
G/FravvkA1bcmTkuy4T+ZarXcpq4ofXR/djr13E+YZJv5kWTO857HJPL5DyB
9Ti5oeSIkgvsmBlvay+Olyb+ZzszPqx8F3G4Mvc7is2rplye5zEmrOi19iHk
KGxjbTh4lBgu3DBrg/JO7tim/R1lQH9jHJ582or3TDpivDdPMN/ie869V0Z1
adL5tjvc8P73v/8We5111lnbXA/fy+mxp96s+JBxqXKwfPZyHh5Hy2LPp9vW
iM3tW9/xlWcsEwudOHHiaN1SbWriUu7ThE30N3zfJstMnGjF28htas8rzsK6
+IxgvvcZ/q4dynOW8b95fjHYkvfWRAa2F+PA1P9pDFfzZhO2mEdMcjXurOQ3
YRHjEdZNTjbp4DQuORf9idySP+7+Fbbn6lHekZmYu3icuovflgu5x55tTLg7
lZv6UL3kO135jiq+n7TzaW7TpHscd/Mmypo8gzaZ/dfyHHDyxOFIWVdAG2w9
03p3+jTamPVkxSvYNs8rTj7fOtiylZ/jceqgcbP3y3qD7NWW3FaeHVpdZ9yj
3u3Z68RjbMPT76trp1h30tkJmyY9jPzDc570pCcdrnCFK2zvEc136pNjET//
ZJymn/Z76tl29mnSGfOJPQ5k7jjJr30hHretWUPzgAc8YMOM7kvU/brb1xV3
3cPhFZaseKs5w0qfVvozXTdxs0nH8vdqT4vJj+Q5sKzrzjxEYunynvxO/phr
w3PynrbO53nuipzZvG9qg22AWGGd4UFZRyf7PrS+a6/n+g7S/M338ljP7cMm
vZ5+z8G1RykbHQwn7D5AnSM1l2dssdoT2muj6OPJKa2Hq/7ZB1HGxIKWaW64
75spZ64ueq/mnEsMkNxp9jmJnnSMyouM3cYOyplxDK/h+Dh/wmv4PnXnaljW
sp1sq/2d1kjw/dSVVc5l3iD5mjxXnWdgJi7J9vt+XMPf8eA7HXOUZ6zkcxye
MW4213GbiFnkIeVC9UVsc84lf5H1RMlhBEMY/5m3Txg7xXjTHAT5CMee7322
fGh3thXnQlZ51wkHyaOm8vRD5APRoeQ3gyHRn6mP/V487rslW2/1qn2s7vRc
Zcc5GT9DO2EzOYHzCtSbvivQ7xCs7jO28xph4qnXiVHPHVNWlzvuidGyZ+R1
r3vdzb9lLUrXYzqWN2+rDP2ejimHY52ZeA911bg76fyeLaRdxJrGHI1Ls34v
z3X0XeV5v3We98je5ilrvmedov+mvU/8luMw8UzqT9vewzkslp/0kPaRnKh1
nW2o/sX3p3zfWZmymZOJfYUn5zkq2sCUb2idxV6/x5x6XZ5hnkYcMIdnnDhx
59ZPuVonqYv2fda3fEY2iREzT5WYqes8GVM637/i5Y7vV/yYdUdG1d/ei++B
Jr/Z479TDiD3qX1MnI+6zdiG812sNzqUfEX2nm2ey7bbz+wjcqUrXelo/wr7
OI6BMdNY6dwk/dZku/al1lH6v+pIeUjfI7jKK0/rdRnvO//Ee+e+n/3sZw8P
fehDD9e85jW3PTKzDxDzq8YbXt84d8IE8vFVfDThk/VhhdmTj5l0ulysupTc
cPLh8eHXv/71t/z46aeffjhx4sQmgyc+8YlH+83Q37GdxqDJHxgrjMHVb7bX
eQA/NzHJZ/IX1NvqjvGS+labjz1lPKt7+S1YFBtLDBo/zXeTc6zZZnI62gzX
l3AvbMfj9DWUj2NByrp9Kd6zz5PfMF+irKf4LO9Cz7MOeedb5vryrHX60Hsy
Njcusy7rra9pG+n7+K7eHI2pbXOT7RM7jHH1m/XDfBcCbZq65Pc4EQ+ydjB6
Ek5Xfmzf0z5nLU9kGe5THTS2Ukd4//JUrj+o75r8cQ7KkfpJH0Pf3/p7v8oo
+zoyl8E2MXZkm9outtH3ThuTE8tawfipzF9xz8j6TnMq++/WV//NMa+cyYUm
vsBxs5+rbpIbVJZsK/0343jGxvk9+dC8a+2CF7zg9v6ovF/pYhe72OF85zvf
9hx0ZECdY76Da+Na/yq2owyoA66D+sR+c6zt/yl3zgWTExALeU3Ho+PVdkXH
EhNF74rJ7XfWgmUuPPPmiSk6rtQL6mTxgpg8vSOzY7WKHYyb7K/trTKjLzGm
Trm7ydcx9uR9I5+shYv+ZM4qz6lSZ83x2Rfmd2xTjB3bD+oc+0RZUxa0/5Uv
tM40fmxsRMxoPTnfo/pRzOlY51yum/C496MfiHzi27O2MLjc+LQ40f71/m0f
33vt+SFi3BRTMjYzJtLG2v/mLMgjbL+8nrJa1UmOTV+TGDZzFBe/+MW3OeTa
GHM05hLVlSm2tSzoV/yOWtpgvhcb2k+22b6m54y5xLraF/UlR85lru7UU089
XOISl9hy5MHiHuc5z3m2fEX8X3l/9K86mM/6xtTX8Z5yc8RZjlvqJBbabjim
uZfjVGIq5UjflftSTpVB/Ez6wLEgFycH6Gf5QOoLP0wsEf/d9wskn5F9VjuX
3jFvDEwMIDZ1LNtO5q2nWM9YX17qeI2YN8Ux5qvmfh1Pcm7qYvU7Oa4HPehB
2xqU8JjuI93xdk6k9Tv/ZO4+xcbVGeaI7Kcqz87/NxfOfAR1ovaSIzrRuKi2
nTGv7hMLq4/En1yT8vkeXMkzrHlGL/kK5+bJW5M/Tv4ncxP5rePao3ZRO2ye
wLyU+Pv/cfauL7t2Vfn/35Glj5vca5rkLoP1qpdBEEEQtNqXb4ogfJHUCnFT
UrlJK7FckaJJGxKswMpFQVYEvkhCKsmXQf/E8/Nz8TsWn+fwmOd9911wcl/r
us7NnGOOcYxjjDnmPM2d7XMai+x3ghvmfpFhxxrRU/s067Jxtp9p209f+D9c
h/3T2U/lve99783O/Bxzha6VcGwbbPJz2rf5u3Cw9sNpW2w3+uOcr+VqPhgb
DHZ4zDhyn+SM8cnMl+OHeL8n/JjjNa95zbPPf/7zb2vTsDXrBf3kQNeip/Qj
sUDw2DG1+UrkkfZbXpZbZMZ3sQVjd+y69bWx2TkaP8vzdeGu9nV5tut9jM/8
n30eyK9Td/Oud73rxhH5Pz6O/YjA6XAd461x0v3wfHWe47UyxhvLsH1R5Np4
Ef/cObSO76Mvxov4qcUzGOOvfe1rz37oQx+62RFy+MIXvnDTEc8VmEc1r/f3
xpTgscckvGdda19qLpkxjA40p8jYRp99fvNh3zexT+5l/w0Gs3aK/Ba+2teZ
r3o+j3lzZJbxTZ88tmmbubDxL/piPG6e3L8ZM3N98NiYbU4RWTYvdh2c22d7
8v9j79RVojvs58V7N+E1wZtgmeOf6HBw2bbbzzMX8/fGaHNq8474++QHMuax
1YyNfbx12/pofDImcx5rgpgrf+1rX3vD5GDx61//+lu+gho/3jXlHIw5ip8R
WZiXOg6NDpj7NYf098EnYr7ouf23cSnjbsyNTuXe3ANOzJF7dbwUW7EvMBe0
X8/YojfI7dWvfvVtnRB/X/7yl99yPuxlGV6U/hk/rTux99w7bbavaJu0DbVv
XjG+Oe+q2eo4xjGX86PRzcg++srzqL/47u/+7lsuNGutzZ9s7ys/FZk0VjR2
mxs7P9g6Ffszp3ANl/mux6nrbONTjdnGYXxPeGueDZ6AL8Tc4HGwhfPs/5A9
WJT9NpPf7TxObNg63py1x8h6E4ztvJTtMrqW38x1zAfaPoK7zbM9rvYlxiHi
dGop4YSss6OuLWPaett50M6HmsN2XYj1ovmxfVr0Ldd0HrJ5sX1O5BVZOzfR
MuEzOpS/7Lvx4MGDGxaDyeQByVWQv3jpS196m6dBj9yX6GHzvM539nyu+9H9
tcysB8Y+P8O8KbZmjLJe+Tzjlvlmx4WOJzI+9hnBSa5FhsgO/AWPOfBp5OPR
L/ZP5Fm+l8fZ8bj5Xdqca3ruMW1d+TfnFRJnen5wzSk7T8A94gfMkR27etw8
nlxPnSTvWsEvff/3f//Td+O43R0jdF7RHM31DB4v+1TH2Y6nmx873nJO337R
/tp9tJ37fLA4NuE4l/pYYiVqUfDL9u2OSajDA49Z+woeh0e4DZFRfMDyaTnf
NuechucQVs7Pvt047hxLc3TzW3M199U+zvWd2BH9Zh8gcjWsNSKm9Hg4b+d5
X69XXXGW8dg5DnPkFY+7XsQ5np73chwSnI6eJR+ZukXLLNdE5l/5yldu682o
p6aWljkEOB2YEkx+xSteccPlv/zLv/ym2NQ5lp6D6blz+3X704VFkVfP+Szb
tHwd3xq/O4fjGN94lGdEf3JP+6D+m77A3cmXvvjFL77JC/khSz7DmfmeWpXw
geaGznm1f7PPjr91n+1rzFHW/HnkuuqAV61Q+E/PAaU95tuNCzmfvQXAlh/8
wR+8xeGsp8G3p73GgJUDce7cY2V+1vYRvbLtuU4m+hEddj6v8cTxeca78xPO
XSR+zTlcQywGHrN/BXGCuYXtAzxmvfT3fu/33vx3Yg3H2ulr/Inv03MQllPr
h3NOnSM0ztjf5rf2mZFF7u+8judCnOOLHfDuxqx7hfex/tl5ecvd+m7bic65
pilxgblP87L4Y8/HWi6O0VvPzPW6ZqzzfM7TWVY8kzwwtTTMQVHLzzoP6tzw
T9S6wZHJU1Bby2f2XCRuMPdpTLVfsn27VtacNuNjjth5KcfGxlfjinMyzmPY
50VeznsG81YcYd13f+3TIvPIABsjd/ySl7zkFlPAi8Fh5Me7uvBt1KiEH8fO
zQcd3+U5weXmK85z5Pv0O32zThrnrLMr9uu4wzmSznPbtuPfWjdjJ3Bj6lCQ
CfM05L/C7zp32f6m+bvHzDIJ5uS7/D+27fml1hnrn3HK/TSm0HZwNvPLzk8Y
z5M/Jl+R/YR8vuNIuB75dupLqa9wfNP25jxGz89EXxqD3Jfur/vonGjHPy2j
jt8cP/R8o+2ctlIvQQ6HnCjznWATfeH5iTXaRzTepO9e/xN52l9HDpFd5ouC
xcvufE37e+v8Wrvk2Nf1BNEXeAr70YHDvOc661vsX2kfe68/fvz4xmk++MEP
3ngznCZzD85Zd3xsTm9b7Ln5jKN1JH0LHtjmzDW6f+YmxibPY9le3d72r80H
OhdiPxE8Ti6Q9RDUooDH4C/8OPOj/OWdgtileWHnYI3HzvM0n4ps2mcbYzxf
Y64XXTb+9hiZr7cNdM2w9bbx2GtN+UscwVwf+5exZxzYYw5jm3dclzFfz27O
3BzOeGN8DVaa4xvfGs/cz9h5z820XucAt8FjMCd1oznHeaPkj5lbhzNFN8x7
m2tEhzKenOt5NOtKzzO1r/b8nmOW9Df5ccc1zieEc3JOz+VZl/gLB+S9B8Tm
7I1JTqft9uQfzYuce1v5487xenzT5sZs41Dn6p0/ahxJPs051tyX3/iefYrJ
STDfT36Gd8JRS8J+HNhHOHT6Gt+ETFhv9Wu/9mu3WIL5KudYjMfNYfqzbce+
puOCzmcaE9L/zi9EBzL+jpWcF8wRfuPYv3G3fb+/bzwOluDbqBVM3picBRyZ
fDLfk58nf0g9Jfsoc7/Mn0cG5ub2sxkX5whOMafnjFuHcyw97vp3+7DFL4zP
8WXmC6f1d9g0a4GZI2bdK/oFV+C85m0e91XLtnJRtj+P7+J0XQtufDL2deyZ
5yxO0hw1eAwPYn0en6OnPN8xCfkK1ucxD0rNjnNYjt3cR8eTxo7239GFpTvO
PTRPWlzS/Qx+WBb2Vc4h85c5O3ge8wm864FadT/HtuYxzf3N3cwj0g/zG9fR
WSfMn60THZ9lzGN/jrHaf5vTca/IiuuYR+EdqrwrGRzGN7PnAr43WAQWB787
JnI+m/olfBicmjVpPNe+33OXtuH0qzlozzGtXEXHRx2vm6Mn/5O5Nf7St17D
4bxbz881nnn8U8OYWpuFgcmDIWuwmIM5LGpWWAfAe5v/+q//+sahWfuYdyuS
K0O+8GbP9RujI2fna6ybtlPrc8bDuSXn7B3/e51wY6598OKRznEbo9faptgL
n3mvPXN9xA+s7yOf4Roj9806srhK5ys6h2w8Xj7WvzkH6jlA++/Ym2Nd60za
ELwHg/NOs8znJbbqfV6IGeDH6EaPibmAc7puW8d4HXd3Hi7ya0xqrO45H88v
OE/kXFrnWakhRgbEkcy3MGfn+Ndzf+s+xtXFH3q83VdzuY6pHFObE+VezmfH
L5krOI9qjshnavDhHMQC5C7Ja6L7iYeac7q99m95DvaDz+Z+ibkTu1hXjbud
63Ps7djcsUzPDzXH8F/rmGN1xyftL+y7jH0979c50q45tT8Nb+Az9aKZk/jw
hz982wsPjpP9WNNX1uGDxeTn4czkz9irgLwibTAGtJ1Evzxfk746xnGM3/7P
WOU4OTll88D0v3OOxoF833zZcXTnGSJr4jB0lfwO9cpgEfc1n0t/rPvpi3MO
xmSfa8xNfzLunduMbrjm0LFx65DtNH4764usL+HH5CuwH3MD5x3BZjgT+3Yx
h47sLNuud2tMNR61PhuDck7re8dBfb/IyDkUY3XzleAH8Q/1j+g8axmIz5N7
tP502+xj7F/WfL7bGT08zUF0rstxYH9POxNrO7fRHNa4hR6Qj8EHk7dkLjs5
Gc9x2o91fNK+1OPEX2QI3sDxmL9yfJ2xav/Z8mou7Phw5ZmcR3QM0zF1j2Vz
AMf/9oG23c6xts9YnCvfkWsnJ8HcKDwZmSf+MOcIF+A6ZEi88Y53vOPGmfGd
7JOCPea9zs0LrW/pX+ujcbLlme+NL865rZqVnO/5e7fH8VrXafThZ0UfklMj
l0MMhs8npk1/Osdlf2zf077b/zeHcxztvOHSPferudXiV4698izuCQYzl0ms
BDYb24yxyR8jB+bzvD9dyy+HdaLP87g2hjWnzHdLDxrTPU8cDsH8LDEO61Iz
T4tMeJcbmEGM/ejRo1vcnnxD39scYeU8+//5zm017qR/yPX0HuWF0/4//eh5
GdtHuB2yIAf8x3/8x7d4D6wkLwE3QwbBSfNu665zKW6DZWO945nve9/7bjVL
7APdvscysL4sLtt4v+KLjsMaQ9ZeSbb19pcdXxnLzAmM7R7vfOc5FtqH72du
Crmga52rszyMZ4nd4c/YHnwa/kROlfWhzL2i29GBlUc1LrZOnXJF6/sVz1jf
T3xkYUXXazROpGY0Ms1z/u3f/u22bob5Y+wWXApXNja3rvnoXHBz5s6xmzus
Pi/bd4zs/+d5HpvoCfhEnI7PCR43niROYT969kQhJu33OVju1v/O2Xs/Ueei
rO/ud+uF8yTdTvOV6Dh8hNw4GEROmPkBZAw+Ey8yV8B+ZMnPxIbaJ3Sua+nX
qt3p+Y/GMutd+tH36dxduJvnm3y+OTX+Fk7BGhZ4GTk4MBLbblsNv8892g96
3HKd7c5jQq6TNZ/s1QAO+Xzut/busu2YQzcOuI3GMvv4zrXZLtax/ErzxH6+
ucbynblfxoJ5cOYmPv7xjx/5oOsN/JvHib/kmsCkrF3HhtnHAHvOcxtrOkaI
zBpPGkO6Rsd67HPbRvpa24P7vMaqOXQ/h5iCtXzUqFDzxdrh9Jm/yIGcI3qO
Hjl+sw93DGBf3zlN5xTbZ3itQcvS53rPctu98RIcIi+VfEXbv5+HH6L+hPkG
/r9i7eC+n+f3YLgt7SN7b+ge99bftW4oGJp90V/4whfeMIi1mKktYo0h85Ls
2fGf//mf38R9+v7ND1q3Ov9gPpcYyLmKxXfNNc2v7IOCl+ESnpvjc84LHsJ/
6Ts5ceboqOEL7sYW4x8z3u1P2+c3Z7Ku8NexFXvfgcnkRvgcP9mxXet220bH
PV0TYF7v+NE22GO71vy6j3l28zv7gIyX29k+MXkN1uTBCcAQ5zAdd7X/s87F
B66cAXMf5C8ePHhw021sGewHs+ijfUNk1Hlg23D7mOawbfORWeN75xwa69v+
O5Zpe/f/w//BXOY9mBNl/SzzH9QsY+8veMELbgc2gA/MfL/zcYkp3AfrnnNg
zoOt2Nxcqv3V8m99LQexJbhELib7ckVP/N4KPrN3AetB4Mm9T07w1P9vLtxy
tr89jUv718VtOvak/bSRPAT7YHIwPowL/pTaIvYIJ+4x/tk2zP3bP3d7GrNW
LLw4dscxzdccb/VYx64yN5D8BHlGaiXwscx7oJvMH4UPN+/t57evbL/TOuVx
NEdO3AwusNcH+YusPV/4bnnlns7pJsZ0jYPz4u2Pmwu3rJc+ud22P+Nm+0nz
EGOz8x///M//fMtTPHz48FbHHlyz3Hp8/XtzqcSrPgcuBUck9skaSnzhH/zB
H9y4dPt9c4OrsW75LQ7b+rrspHH8pOudw2hs873i98jF/fZv//Ytf0P8gb2/
7GUvu2E0a/g5+I5YuXPGPe/kGMJ44jzGqjtpLFrxkuXi+MXxFD6U/YSI3fls
/DfGZj0Ia7D4e3qPVdpwtcd/6/OyjxNP73N8xPeBS+TVWNtNrg4uDBYzD8Jf
ODK1tc4L2df5uY2xy+81jq9xWHhtObtv5nELz50DA4uZi/vqV796sz30kTkf
bJ/3HIdHuK2tM/39ig08lqd3s3VejL/4+0ePHt3mjFnX2Xpp2fWYnupqPG/l
dp98ePuXzkFFd4ypxmTnsWO7jZfus3WC86kjJqaGz1jfI2PHPsacU97VY9m6
wV9y0+SYwWTWVZIzgp+AW9Qp0B9juu3Wz1icuLH2hK3t+8w/lw4uXGv9aO4U
ThI9w6azH0hqujmwefAZ/5R3NnuOwvMEzuVYR7te0L9b94ytjU/mDI6pzM2Y
uyWHCkcOHi/Oig1SVwHGJV9h2+2cw1Wuoq9ZdrR0buGi+5+8KjE8NWuMBRjM
3gDkKuDGfH7mmWduMQ7nZVyaNzSWti6aazRvbc7U8z4dD7dPsY3mu54fj56Q
G2benXHBV+JXiV+bq0bmJ//ivpuHmbc4n+T4YdmoryWmJHcEb6OGi3alPig2
ENmlr8Fd2+4pRsz/vYeeZd04Yb2yjDxO/Rx/th+1/Bz3ZIyZa0Pv2MPfvOok
t8Z2+2Q/+xSz5TzaAoawnoR5E/IY1Dozb/+P//iPN0wx5i0+1/i8dHnh6fLV
J+zutq/cSbik2xS8cJseP358w132ZYIbg8t8zj4r+ETiR65bY916FZ1fHLf5
8MmfdA6uZdf3I86hzot8BT4mY935NT7j3+Gb5JGbS/UcXX/X+/QtXO64qeOc
5jYLT8KRiV9Y74RvzL4tYDL7LfCZflB7Ty2nOcKKx/q79nnNDR3zNIdubGje
0DzW/iaxCz4HvsMcHbEN9b7oIjicvQq7DY1TJ87uOKf9Z+db0/auI7PdxN8x
fwpPA5fhaeG/zUUad5ffXT7F2GKftnLxzdfaNy6sWM83vw2PcU0g64nI1VDD
4/fdd38sR+OL2xh+Zh/vtpiT5NpgMrkqcJm17OgKbXr4jfiJnDbv3rIsrX+p
67A+uN0dZ7QudJzdtu92W+b2a/YDPX/sWIXf6B94nD2asvYRuwebmfuCDwTH
l32v+KT93um6U9xwwsUVI8ARsWl8aN7buHAp7wdhvRD7Cjmm8XNO3NHY236z
r12825zhLv/Ec9lbgXwSY8G48DdrUqkRIbfK+BAXsGcb8wDE/cnvm0+efH3H
icZX62HLc8V0tgXnjFx3BtbCbZinw9fDh8kPMyfZ/V8xR2Pp0pflJ3NO+9zW
x+j54gQc1D1TZ4fdoHfpp7mPOecaX/8/sl+8rnHdfLkxoH1Tj1Pz6n6eMShz
mdRYksPH7zOP2v5m6Yv/7zrojpG6zY3tjXVcF7niCz/60Y/e9oOiNoPaI3LO
7OEXXx6ssx2c/J/HJtdZf9uv9dE+5ORfjcv5i3/C18BD/uiP/ug2b4x9Y+fg
cPbl5mBOG5xz/v7k420nnYdd+riw7Sr2P3E8xon8I7wl+Qr3t+UGHqNf5I+j
I57zcp7CPma11/1JXqNtMb+7BmDphH1T+gaHJFZkbNhLK+tSyV+wxolafPKr
1AnxG5wh89JgRdq6+NXCh7avcBnH97b/HjPHQ83zwi/JS8D3mVMF07Ct5rIe
Y9+j9cRct3GpOYI5dsugc0zx3dZrjwnzeuAAPj347VzwkulV/GRcbO7p+MS5
CR/N5Rp7r+Ib8zVjMn15z3vec8tTsNaGdi6uufrZz+7chP1/zz21Hq4YKNfD
vWjbw2/wZPZKpRaS/CvzEPYFttHFl9q2Tz6i+9X20PzecUP+eu4W30H+FIyF
a2Hb4DH8n3gYm4Yjp6aK/5Mzir9sP9Fc0jGG+9d5A/PJtV//svHmlbk334PH
5Lmph0rtYvSrsRwbYo4g9RVu72qD8dn9Xec4x7x8S5/v81r/MqbYPzUUrEXl
3TjM65E3Ts0V+RnGFR1kDTi5V85hzRp7mn3uc5+75TOcL2iOsvxj/3aKl3Oe
/XX0gXN4VwCckvU6tCttAodTU7n8wvJPjddL1msMfa/WwebM7n/3NToOl0ff
2L+B3Dc6BzdjPQN9akxpPG5+2fzYeL3w3fjW+t39af7tZ5sLo0+MFbpEDQk4
By4wp5bal+ZfLVfbRtvp4mvto3yvJZvlSxNzIX/2UgObqQMB4z75yU/e4sX2
cZa1saxrq5aM/Xxj0Ip7rQeRN7kVOBR5OmyUOJf1Taxzws7pC+eQeyU/Qa0r
+zOypphz8EEd7zS3Oul02tyY1vNl4ZZtS+ueCw/QF3L89CG8cGF78sfkK7Ie
xDyvcyKt4x6r7n/zrLt4/uKCp9gyvzOvShwAtsXvuNaF89E/1ov80i/90g2b
f+iHfug29tQtsC6KtZnMQzXfOvmOpcducx98j4/APsBhakrBLebnebcaOBz+
acxoH7c4zMLj1rUeP38+5f77WcaG5p/hPdR/MYcMn0G+YBefqR9lrhid9Fj2
YX/o78Jp1nxkbL+/swxPR/vK3AddIH/EHhPMwYBj9AHOkneWcv/OUXtO7sQt
W69O3HQd9leNC0v3+I62gWnsHUA/qMsgp0EegD6S/+551+a6rQetS8s+zW86
54Kdsp82GExOkVg27z9lLwu+J18R/YzM6APz22Aatps98hLTdCzRbV523Hjm
WoXFQ+862o7yGfsHj/Ez2EH61rjOXzCJOr7UV5zwszH9qvat/zZ2dJzk8W0/
0P6/x514jHEit2ecdJzkPA7xwK/8yq/c8gP4WLjDpz71qad7IXtMc63b2PO3
jZvmavwf/40fx/cT66J/yLz3EnEcueS+fH37butS/t++rdu77Mo2ucbccvCY
gFuZe8nev8SU7CNCrNL5gnXYx7mf+ds427G+uVfnJnoeJX1NLRznYQfk7+Bh
vNcjta70i/UHtME+O1gZTFh+rrnsCa87duj/2197LH0f253PQQ/hXPBlcksc
5JnI0zon0743/Uk/jN+Rc3NTc+TkrLkvMevHPvax2/4MyBcdAaOoJcg7T80l
8hfcZY6CA6yOnXm8F+5eYcwJzxYPXsfiNT3uORc8JqcPT6GfbevOJzBG1M2Q
rzjVsK38ib9zH+7yH6f7+/sVL3Q/M1b4f/w+/tN4utZIJKeZ35mToWaD68EM
5gPxvXBZ4uy+DwfX8zv5ksePH9/mDLO+IXWTnE+9KJw874jAB8CF7SdOPHbZ
5knXOjY68fWlT8vXLU5kX9O5gTyXOAP5gb/Mv9Bv9pvkL98xD4ZMm5uYn3bO
tvOM3g/COBssMWf3b8YM55vNwzmYf8BHgxXkX/P+O/wL3xGHsU7cGNp63RzJ
2Bg9Mt7GDk/cpn2i7eU+XMb9i0zBBOZbqFVkTRV/4aqModdgWx8ix94Xrdc8
Rq9pQ2IN9t+G8yHDBw8e3OZJsCHv8WWe0/rNPAvXffrTn35OfNw6ujDXcuBv
MK5jDePYFee07p/ObdtgDg/dITeJ7F2j3GMKDoPHyVcsbrbac3XOCbcbu9Pm
E9avtuS6yJ/8Evuokr9MbqxjhmCJbSK2gO8i1ma/dfCT3A33evTo0W2tAzYa
2cGvwWu4LhgL1uDr0WVyJ+hn9h3OflXvfOc7bzkhfo9t9Hg1x2ke17jd/i+y
ab5lfuOj/WyPb4+j7bo5WeRJ/Eg+nBwfeMz8N/FA8Ji6F+aMWWPNfkfkmZEV
tUr4RQ5slL/kozmIa/MbB2vSOMhLkzdgbPBx4Ajfcw1xEjyMv1zPPfk/1/Ad
a865lnOJiXIPviOOYZ7o+c9//m0uCU4cXH7e8553w5TsT9U8337vCh8zfifu
Zj4aXelxbH97wuHWK7cVXUVmcArqsIgJ4G/wEzgGdpH2gh/IkRog+Cx2AjYi
054bJx9BPTC5OHI+2AAHa2f5Dj0hH7/wbfET2sscfvbftv4uzmDdTbzYh++x
zr0rd7F4YvrvmC24gyyJS5Bd3n/bsXVwEBsJHvNsj++Vz156lz6czrsr53LK
qRhrjMXpO+NMnRi4aszLtY5fzUvz3JyPLrF/C3E3tkeeF1wl1sbmyW2RG4Ez
cYQ/wa3ZvwgdpZ6DWBCdffLkydO8ROflFk+80rVl4/4t3y2/v+Tqa0982HJu
Lt65I/oK/oJfrkNMbRJyIkfEWkNqFqntg4sSm5B3hqPlHSboLrlbcv18x/k5
uB5/mP0L4d2cx29cy73IXbN2MNfw/9yHczmP9Y7kqvjM/fieMWdvhGeeeeZp
vgJcpj98B5f8p3/6p2/ai+aUCzrZbORubmj87FjQOrO4j8cknzN3f8IKjyc5
AOb6kCk1GciKugX8F9wOu0KvGVvm0qhtwm+R88WnwZfhffhY8BzZEishd/ZH
Yq9WbCu26Trs9HfFcHwHdmNL3BOf2Ryk+cIJZ66wJz6ycxVX/PjEN7ttyBvZ
kGuBN7q+wnYa7k4+lTnN1B+3H/a9lw9ZuOmxdr+vMOLqu35O56vw88Qz6JDj
0bQlPsL6274imM0Rv4btMceQdVBgCnoIzmCjHNTh8H9sF45BLhrOHt/meZzI
vH2u/79sceGx+9RYeeJlV1zCmNG8xTIzpjh2hGOiR9hr3ufJkfokcJfaSngu
vi18F95FzgnOzGf+csCb4bf8BiflwN6/9KUv3XgSMSxcO3yb78ANruM+5EUZ
P/gYMTOfqV9nPQfxCn+5Fwf/BzNYS4RvDQ6DP1mn+23f9m03/+F5isgmY9Hj
0jLO38bOhdMZh+jOSV+uxnTxwjXm/ks+hjw5ukz/iWuoG804Zu0yY0z8gP+D
s+CryE/hS5kvJO5I7sF2YExYsZrlx2+MOb7g8Td4fGzZ17Xu5x4nDFu24GuW
TbVf7Fx921rwJHkcODHzRpnP67jGeIxe4stSO9o61vJax7Ld7ucJW5e/X/iz
uEb6hM+BTzF3TI3SysE2rvX/nUv0Z7AVG8fvw//QQb8fLWsD+Y6cMryp/a9t
zt93zVzLc/nx5lnWY8v1Kqd/9dviXst2bTP8Rfd4p324cd51z1wY3xHrrro0
j+VpjE79Xz6qecHKhzdXiL4Qy1D3gk8BfzKufAaf8c2pSWx7bNmuPgQvWi9W
vsK4bQxe2NF6fPLbJ67TvAROik/LvrZZixHflBxO1slRd8I8HX4vfPk0jv38
E1fgN7gROEyugvaccHsdzWeW/1r20vL09W3LPf6NxznA4PBjPp9kETwmPnny
jXjzqn/dRrdl6fzJdu1jlr+6wv2+Z57NZ/K/8Fg4kPX9NBarLz2O6RfXw7fQ
C2w1duq12mA1HCt21+Pd49nzTW2r7a+udPukU/fhQyvWWePRY2ydDDbBrYhh
wS9sF5kQtzCfQ/7c2Lfm0ywbY5HHI35s5ciXTZ0wr/lofAW+lzwIfQB3OMBi
cCl7qnl+sP1Vj1XatezmLns74UfriO9tebptSxdOY+55NXJ04HHmNZFL1mLA
TcjNgR1eLxidOLW98XjpGM+HZ8EpyT3BMTs3a1lfYUTb/brPFTc84YbPO/EM
PpPzIW7I/hW2dccuqa+gthJcXvxs2fjKWZywY/n93OvKd/ucfn7XTfEd8Ss5
ZHgs5znO67a1rTYvM57mO/b1Jy4Dj8lPpIYgNV3E6sxvtK0sXbjKKbSsco7n
+a7ut3TjpK9XfK6549qTIvIPPnEv8Iy8IXPJ5CTJSySX2W3o9qZfjmlWLVXr
S//O4b0Rrsa6OQ1/sRlq1qkHw5+Q9yYvsvzJCRfdR+vwSTfuwmfLzn7gKj/y
f4mZWpb5PxwDPc9ePjn4P7l2Yms4sX2obegKj5eNJ87nHuSGmF8nLjnZaP7f
eQxjvHWv90I7+aiTrl7h3rL15CuoEWCfF68HWdeyPhEfRw5tjXe3a8VNp3tf
jcFJB22jzRnbL5ojwc2Yl2GtXutGY8HJP7Y8e+6DvFrmqfiLnsKP0U3WQhLv
nmzuZKvLB652WQ8X51vyXvq6dMx4nz73fe/yrZEpOVj8O/rk2qWWwZX+m190
HumkT9GVtLUx0/dqX7Z8TOrCwGTyxtmzxvqwbND96z6sc1cMd8LZ++JD45vr
7E72apuzf2NeIHWMiRngJBx5TzD5Dff51Nalm933xB/8lr2AyZtY7i3LhRv3
tY0rv5ff78rXX2Eg9/B8HvmKXjeUa3gOfSZnH/vxvgZX9nLq5ynPZf3sPiy5
LD20nZo3Jef1y7/8yzeemr3GjC0+v9eLGptz7uKC+Db2bWF+A44ANwaXmftg
3qjt67TOp23Ivt05ksV9T/JPTNzzPws/2yecZG25tT+0vUdW8AD2PYPTsCb9
5G9PcX5znPa/+Xxq0zoaH1t+PiJrjztxI34XP+PvFwde88YLi/lt6d59j5Nf
7dqmVdt11X/Lwf7s8ePHN96RHB15C+Y8GWfi0lPb/Kzl4+NnuzaF39AlameY
FyLXdeIBJ5/UPvOESa2jPfdp3LJM8137iDV/yjpI8Nj5CsvGNg8/Bl+Cx5bN
arv/f99chuV/H3/SfOpKNx1P0xfqqJhX83qptrWFWVf2bwwAZ8hRs68htRTU
2qGX1FqGJyxsWTh6sqVly8v/tU65bwt3XQt/WkvWeNx8o/Ml9gHE9KzLZX+6
XtvYXHTZw2qHbWHZwcmulv8xziwcXDhCTTv2gS0xvo6tmg+3bXXfck5z8e7f
STev2tsYt9aZNw4s3V8yZu0IdSfMn1B3Ro0gcwLUy2RN30mfrzA5utO1oPxl
/g5uxdqR9Yzlo5avbBt2nLX8mvF06VbjscdwtY/fwIzsIwCn6zF1e1kfSn7s
yZMnz8GPkz4Zh+9al9cyW2N/1/ltyydcju3gh6g9J9+bcbbMc8/GnWXHPifP
b94M7rPvF7Wt5Np6nxnriPvdefyWxfJDJxlf2WrrWN+/dfgK6/u8fA4eU7fv
2slV630X319219xojdFp7E52f9KjpVfUXJCDIRdu/enc+7JRy8k6eMKodf7J
r5/4SnD5rrroxsZl88Ta5D2poSAGpAaY/X28V+QJj1fd2Wrrkjk1/+SJWEt9
hcVLL++ylStMuwvzWz4tgzWWYBE8n1zq4se+L/0lPwTnW7JtHDUu3ndOr+UX
++28erftyteexoa6KupF8K++j/OCa9+JKyzwmIeLe40vOsoaEuaBmYNYeHfS
k4Uzyy9aZ5Z+LHmfrl1+4ao2o/vhXE94MOdTt08On9rTE25ccaUTb1h2fxeO
N+617vi3pUu+jrk9amt5Z2H6f7L5xiLrtW12+bY+7McW57vLNyzdbuxYYx2f
BbdgzSLxHzXFvb/Luv/VXP9JD9uGU3eIb48uXY3vipXclh7XbscJj1s/Fi/o
se6Ylu+pmcUuWAeZdTHLzvnL3jb0GzxePKplsTjOCY/XPRa+X3G0xv11Lz6n
TdmPg73Ult8yJvdzF6at+NxyDCaRZ8Sfs1Y683prDuU0N5C9V7Lua8l3tXFh
k9u3sPtq7PpZp+sTF8dG844wcvhwgK5pMyYt/Fl63GPX2GpsaA5un2HMcmy0
xt6/5XrWWxOrk5M67QVzGq8r/rZ+t231M3oMTvdc2Hiyq46ZOMJ9WWNDTT9r
7Bjf9gHr2ct3Lv1fbcp1WQOSvFdj7+L9V37/qo0nf36S7xpjn+t8VuyDfAXr
T7M+74rPs0cDOJK63RN++P/8a8z1EXmddKT11ef7uCsOse1lbFj7CU8lNki+
r/lpxmOtyVmcZOl7np0aAjCYuhzW8xJzZH7NtuTndO2sn9862rnX1vlT/rFt
cv1uXVo2dsL2+JvsK0OOgjiLfYJdS9y5GvfHbb7ihcHFyKj3DVrc8iS39nVt
n5GVx4h4kxwYudO8C6xrUTqvbJ2OnlxhQ+PIwimP51WsdOXHTv4jbU7shx1R
MwQ2sP4x5yxftvDV391HF6NP3JO1JcyRsyazZbT6s3Dx9F3Xm7SOnOxitXfZ
o/U3OoEvI2anBjT7ztp2/WzmwJw/Po3X1biffIbHufHZscQp9lkYfvKr8Zfo
E/lcavioB/ZvtpX037pv2Tiv4vE5rePhMzV3+EDqlLN/YGPwlf8++aKTD2+/
tnRq4Y45Tj4vW22/0/4jR94RQjyGDIyhq11XR4+X+3/XfMUVH7xLhqsdXq9D
XTu1BcSTHdO1f227vOuZXZ/mOOGq1qmvsdxXexpD2md430FyNMSZ7Jt4wnPL
dPXzPnprXIrMwS18H7rE99m7zzbbtmM9NZ44hlrXnfD4yhaaN+R8/rl9uZ71
IHkfRvY/7ueHb7B/Dr4IPO773EdvT7p1pT8Lk/zsU4zX+nD6jho+1tOT++pn
nnSn73ey0StfhEyxV+Y+WDtsfm7ua5tr/naSVY5Vi3PC98blu/q3zjv5DbeZ
PdPQN/LH3lNz+bgrvT+NicfLvuRKTqcxbvl0nWDLM2MFR6TGgHmCvL/grryd
ZXqy81P7TmNy6tPqv3Uqetc1HcaW4DgxAO964/0N2X//vm29qz19vetQ+Uu+
mH2dyB/3u2VOvtV6tmpXLYPTWLTPOenLwp+FRZYteziQy+NdFOjO0u3oNPyY
mmvq3e7CY19/mo884VZjsNvTeHXV15MN+97UH7NfF3sO0//mM6cxWGOydP7k
Q7LGk3wb8/HE8N67K/Zv7n2XLZ38iGVnPW8b7DFwTH2lTwsHFr7y98k3fDkx
FnWGjb3Lnta4t+yv5qeW3jW+tPwci/m7tVZrjQU5cXKp1O+Et/G954t6Xuc0
ZgsrW0eWzfY4LF29Gr8lm8g4sQAcgnwB9QDUXmU+Y+nhfe2zn+1x95ww84es
z8a3wxOX313Pa31a+OLnWBdP/uX0nFP/eyzcV/wbegMeh6NF9h3TwSWZq6CW
0LhpfbVMTpygdaD7eMq1LOzwb4s7Liy1nmZtCD4J7pac2Em2i78t7Gj8dayX
fRP5HR9P/RvxCTV4Ptf3O3Glxmu3r/OQOSdj6/slBk0N3uJFuW9+v+J61jNf
x/7PcBrWBgTzFyb4OZ5Xdd175LLwOG045VAji+6n8bj17gqz+ntwCu7C/sBL
J+4a39bbjn3bN7mNix+0vnYf21ZP+OHnUdMHl4CfhssEjxNLtM2e/GX/3nrX
eyezboJcH3uhJe9lvY8Nd43G0u32a+5Hy/OUi1+/93f9fPtUPid//PDhw6fv
M7U9933zPlNwOe9WOeUKVltPNms7O/nX1uml1+u5xoK8GyLvMg4mMj9JDTY2
lPXwjsmar1nGV/q7dNj9zXk8n72SyWX7XQuWR2Oh7bRjL+vkwrCT/7RvvQtj
u299jXUv56Nr+B3mT9G11s2lS/Y5q/Zw+XjbgW35hHU9Plf8qs/tfGzOpf6W
tax/+Id/+BzfsXD0hKVXdn6SwdJH+yXfb+nrGtv8Rv/yHjpiAGJKYkv2OvXY
mSO0fq32ref1dT3u+HO4IeusTtefxrD9bPrmubtu11223+NpW/dc8kn30kds
hBwma8uzz7/t276T+gp8PjUBPY/S9XvWgZZLY6r9/fLTd9lK4/WJFyw+xGfm
h3lPIliBPIxd3c/T80421OPacuXA17N2mFrCJ9+I57v+K/c4YXT66zmlvOeN
w+9wbNm2zP2slRuwDBzXr3jBcSZ/wSjm4KlP7bkoX9N134kp0pfWl+XHW9et
EyddbPyJfNd7ay1/v7Mo+sC6XeYsWR8BhvW9lz0v33Lfuh7jnb8zdvCv+WLb
uJ+9dDf6BRZQZ8ZYMi6WbfPO5QuufIrb3r4wOo6fYz9813q1LS4d8DOMFafY
YeG8+3TXOpYrHrl4XNZLk6/I/EqfbzxmjTH1s40LvueSc+PksoElr8bUE86e
9HOd63vTB/oNZ8Pfsk9ifk8f+52UC6uXvFufum/Jg/GZdwJRd4iOf/3rX/8m
HF15kuincY3/w//BAPqV91MEL042bftZPNC6ady5kkfkl/em8f4q9If93k8Y
hKzpe94zmOuJh+EL/E1/Eu9wruO1notaNtf2crIP/q4am3zHX7c3cwC0K/uX
MLYnPmTub33v8+Ongv1dR3CyHR9dA7T6erIj6xf8hTXhzOPlneetk71P34mz
n/C4fYzn8qhBIFdBTQc5Pp7jd/G1nBuXTr65/UHa2DpyOu+E9ct2un/5nXpJ
Yo7U4C4MzPV//ud//uyDBw9ueNzryJc9NofxWvnwipyf+wVPvJa4cwbmLP59
5RrDrTpmiO1nz3DiHvbgZW1IdD95DduD275qtFrP07beA8Ltzn2Yn8Dns5bA
74DsvMPJD7btBdvIDVA7A5ZxmGO6Dx2vtR88xQHGu5Vfyf5n2PA73vGOm841
VkZWtI/2gm/BHj6DxdyD39DT+Jn4HY7IymsiFy6d+PVpvt167rgl/w8+xodG
d3mfCO86YW34wtvFey3v1u2sA6L/yCO5A8u9caYx0jq3cqT2n7alyIdnv/e9
773NtxDvLP/XmN7t6XPdV/ej48RgAP6c9y/SjtiS/dTiMtYHz8u2HTVOLtxO
24wBlqHxO/09xZDWKw7m86g/xteh77anvi54zLo2+oyNc5iDed1YnsP/w9US
Q1svgn3hGcbs5lvGNsskOhQbxa7zjmHrVjA4777NX9YXMa9GnJD2p93pkzlZ
rzHotlpHPB5pX3+fXD46xnw1Pg+5B2+Co722wHbdthC5BK/SD7+nyhzWPs4+
oPnu4sC+j3E955HvQ88++MEPPuWyjXORd/qa8fT3wd3I1jq31l24L/bpjRen
o/2mc0KRfdoev8FBm+COzP+77s3PXFzCuGOdyjhy38jCdtT3PuXNgiXxc+vd
fr3WObrEX+yEtTzk15KnaL92krH7veZmWp/tqxxD8K61t771rbf3K/N7/FTu
yefIx+33s1Zs0Fx1HcZY4737tvrc9+42pI/kucidZv9jv0/bsuOaz33uc0/3
22Qs8ZUcsffgbThnrg2mBIvzDnDHprnWOuL5wmCZ389uDkg7wp3CA43HXBvu
hb2EY+CD4Gv4JWpi6R/zxr4n54STpY3us3Gh/UL6uvxOrrWPYm6E9xwwHsS5
PJecEjGaZdx7nZ70hfMyVuYNPS65r8d/ce/lI3O/2LixPX1mrQDrbrLXqPlL
5zUsm/hP/L65ca7J+PbaZOuu53DbhyyObBwyL+i9SIzTaYexEv1ibzP8PO/2
c7vaJ5rX91/zDfuhjiE7NmwOmufHFuLfjGV+bssFO6CWgjWteR+wn9Gx1cnv
nXKtjU/2p8EE2sv6R96nmlrCHsfYVPTI/M7YcYotly21LI29zfFtGytWab3y
d+HH1EvmfaYdx+Zc1kzgl5jPM44Ylx1jByuNg+EQOdfcLbIKnjVHaxvKd23D
PC/xuWOYYHAOzgHrwGPOyTuhWcfL/zkfHOS89DF5zNzfGOdnc6SfnQuNDCIT
cz+eSxzCvCkchPGBN9PO+BHOu3oPkPlm/F+uNY9Me7GzYL5zBYsrNl5kjNPP
9rsctJ/9adEzZJ3n5jmOW+ID097gBvLk2vQh/bTP4ei8l31n/Hm3s7m48chY
G5/lfFrndNOH9C+1M8w/9ZhZho4hjZV5Vh8dl/ccbg7nvdKv+Irk432e+9e+
lb3eyekxD5A22K/eFWMEF0/14qd5OP5GP+BKvFPmXe96103Ouadj5c5dOD5q
/GicbD9vP9h5h/Z1i++2z7WfbJ/DM1gPQv6YejfGJ9jnduZ6cAqOQ74iPj68
NRjFX8esraPNkZ3bsP+y/huTOyfT/jC+3/YcPXdeJf3nnPBf9uSlxuGd73zn
Uz5mTI19O3/XfQ2euH+5Np9tc8HX3DfvQ4cjI2tiMt83HNG4YZ+PTNpmaStY
mzYvHI0dOi5I380vFjZ3jNPchPcJslcHa1/cpsT1bi/Pjh5FHmkT30eu6bNz
y4kBHHt57LtttjfPf9r+zNvNfc0XfL37xm/IkfnyrDeyLvva9I+DvgQrm8Na
F3o841ujn4klOtee9lk2+c2cJTbAs3n/KJyN9wWyDs+yyJjYVsPD8lvk2rht
7tj51+b7tI18F/LELmJH9qPtg60vGcu03TlAc9YrPF55pc415/rOldqHeV8V
8yPmSuEtxACMZc5FnsZjnkd9xYMHD251yMmjmxeGEzjPau6X8e+8a/uMxuOV
7zRvT18aT4JbtqfEuuY80Tv6T/6YOgswJLjq5zvOz70cgzpHEXm3XzEeGhsc
V6P/6D5zYOQhc11zmJaDOVvHBRkf8x/Hc9ZZ46R9IYfr3FzTbY6VcedaaqJY
k4cNcR/nfHreMnhh3IttB7+dq7JvS9/sJzIO1o/mi+lv66flaFvy57SjY73k
uZEReTDq24mvO74PvsaXWDbx186/hW90TBoZLT8fG7KPaqw3T4j/jl0Q3xCr
kadgjX/8h5/Tsk174hMcAy88XvF82zxrp5hboR3kWY0paXvsOHO/0RnrUs5N
283PohPW585Ltj3El3g9feuUfZ7H0vER31FbRf4YPGYMotOOV5ENz2PfkOBx
eFjuFe5mzhiuwPcrBlsYm+s8J7diDet0Ypk8K+PgeSHuF4w27uT7cA307U1v
etPtnR7BXtuteazxODFV52JdC9V+xPdzvib4AY6xlu3x48fPmX/JuGaMWnfN
KWK/7SPctr5PxqDnEswFnNMypuVZ2EP+z1wxOpa6L+u7dTVjEX64YhLrQ9rZ
up37GwM812Adbd/Y+ta/pU/OR7v/joU4uA/7C5HnY12r55bS/uiluVS+Rxa2
mXyPrZpvpF2WZecU0s7wYNep5NrgMc/lGfxGrpj9ONijwrzdvrfzJMaG4KTz
ZY71uzbVuYfYFX/ZW5M8HnsjmutFPxJj0PbkE9M/+yHjd/9unp1nhJd5fNun
ONfivIB9Xw7rtvWV9oPHxJJ5f5512z4LOZE/Ao+jV+YHxv3IO7zZvjw6Yr2N
/jWndJzW+aTmZ50zc17LepjDckicyDn4XeaPkQf5yrTZsU4wP/bmeMQxknla
7uF5AOte+u7cJ89/97vffatL5j04fB+/75jd9+t5IMcOCwODV857xYbCq3oO
w74xcXLG1/EuzwWDmSOlH55Hdf7S4268izwch9pH5Pxwtfbplrvn5FrWfkbG
zeNgLmE76vk063ViDuTGHC31YeRrnDs2pzXm5n7pW3N820bGh9+CRfktXMRt
tMwaI43ZGU9iM2rif/qnf/pWmx+OZa5pzhX9t/1Zvp1v7jUOlrs5G7//7u/+
7s2vwQcztxefYv+68jzplzmuuU9k6/yU5wTsgzoH7cNcoOOHjuXMFZM/4n0q
2Dvz+cnPNWeK/HhPI/Xt2fumOVjjsX2E9bR9U+tC7CK80Xjc9aodjxt3HAv4
mbZB42vkhixYR8Z7Q9Ke5siRle3a8WrzNMevkU/nN9z/jAHvKiZ/kr1pwjXM
+9a8r3NZzj/4mXmu82AZt5xvm2oO3TrWuVrOY58ZOD6+PHbumLrngR0XGXuN
QSv2zLh2/sFj4TYbdztf2BhrnuMxtm02pnteAV1hToKcBfaW+zoP4/o186XO
Eduf2t/YLwYbnY8ynufZnuPtfFd4CvuNENswlx/+mftH/hlHy7TzvysfZB7g
+Kt5Bf9nnos8BXUV5C2ct4ltRV/SHtfiNG9zDsrf2cbNo11rmbZ17qXjXo/T
wqG0N34leEw9DvNHnkfhfNtf5vPgOuCxfVz0K31s7LJtN4fsuC/9MUZ53MzZ
Y6fmXM7BWfc8T2QMjW+Kf+K7T3ziE89+53d+520/u+hm/FPmFeAhyLVtPT7E
+enIs/O0zpV2XtL2xzov3oNDDsXjY31Y8wrGfHOwU2zZNm8fYsz2nLfjL2ND
+vKhD33otucLvs2xuHPwaYPrcDz+jccdR+Uebrf13mNkfhy5OYbIGEWufO8Y
PbLPvXsOKH2PjkXvWW9ErE29hXlY+xfnHzqnEF1NvY9trn1Zzu85PeOj59ib
P9In9kKCF3Mwz2RZuM0+Yqtrzrf5ZfTXOVjHvW4LORPe3c0eL87/RlfMpa/y
w517ytGxu/m+85PmZml/510b4zonlvva3iJT4hH4F3hMG4iRw/0im8gEPGa9
K+/iDP401kVPnUu0vcQvx4aDxY59E0e5Pxm/rgm0rXZ+3/lkcmGpMVg6nLZy
P+JL1lWx/0DWu7hfrrm2/ax6jMYI457zdcFk+7KMFb9T30OsxjqRcFjjpHMJ
HW/Y55jj9TyR+Y6xJ/MHPX9qXXUOILZBvQqcJvt/mS/ZV8VO7VttY+aK9m2d
szaeNOfpeZOev8izncsKxrr2PDIy92yO3TbLZ9bDEFvCN3t8V3vCy42jub95
v+Nfj+vidtYtx/qe68g9qLNkLpn5M2K0yMjnOAbsmKqPYE70NjicuWHnKOw/
w9E+/vGP3+KszF1ZP+1rgy/UbyZ3Yz+55Ol5B+NJ5BZMip533rHXWbZ8PS/g
GKr7yf9TXxF+HCykX74/z+UdjWB3avrNd4xXzbVs78Gf9g/RnV4P65jSORvP
63V8YPwMB3W9sOVgfxl94PmsWQaTqXc0TrgOzn2NHmTc7KOdm3Gu2fNDjl9W
nhCuguyZGyMn6/xwz4n6b3TD2OvnesxzmAOZ87ptjvXSt/QpfWGdMDV71OWY
l+Y663w4SeZijLvJKcXnO/6LPsW/e/ybn2ScOiawLzCfSh+79sGHcbT7Hyzh
L3Eoa/XYl4B6hcax1kvrR+7lGN360vIM7uUezuVF1+OjLSPrHfMVzOF94AMf
uD0vsULjpfvseNe4Y19hDnaakwg3yz3giHB04nh0P+PYbU+b+D680hjS+SrL
3thlHutY1xi6at3SH+OR84rWNY+34wjwmPxx9nczP7GsUl8Rfmx+Gtl5fmTV
YPmz85Jpv+d9cz+PlfPIHTs7J7fyQS1Lc/LGGb7nHeLoI2sSPVdj+YS3R57p
Q+NVP9tcynpl3TbHSbxCnQVrC5ivd8zt+Po039k+2Tnv2LDrUmhH7pvxsc63
jrUP4Xj06NHtfTLEYMHVPif2nfjCtYeJTRy7+5r4msbj5u0dMwbjnE831tpv
BAM7H5i/LQvf3/rLd9QFwJGpZeQ78zDnvtrXmc+49rjrK3KvztN13BpfnJjc
HJ/r/uu//us2XwEukGdyLZVl188N9tiXeKwtF+dbzS3znXMt7FdBW4iz0AuP
gdthDG9dOeUxPe5pW+4XPbD88zz7lK6t6Dyl5yKc3w8+BT/4P7lx6gl+4Rd+
4ek4h4MYh3g2GMWeSsTMjQOx/YxNxwDOyxmTHdPZ5zbWOMfkfIVrpDO29rWd
A1hzogvfUxcAT04ew1y8c5mLt5vPr73DTvi5YmM+E4MRQ1IPg47av3XsYB9o
v9N+YcX30b30K/bqNrt/mVcNJ+X/xLvkKuDz9ovt+5y3NH9YcaXPc198T8vN
55s7WCf8fXN9t6fzz21L1l0/M/JHbuQsWN9GnQXnugbAfWm8yP87nug8k+c7
81vXHyQmtD+0jnDuhz/84dv8CfGwY/y0wUfXEPjeuc541/Zsm7Y8PZ6/9Vu/
dfNj7J2RNniMHWOu+CjjbNs1pud+tvHmdr6u+9G5CvOp5Gda7paP8Z96N+aK
wOPwMPt982PiTtavwY/X3l7GA+O0/2/+7PE4jdOpXrzPWfvgrbXwa0505eSR
FeuR8FV512nkGv7lnKnXSnT84vad9gG1H4lNO+8QHOHdbD/1Uz91W09JDJz7
nPZac365/c8pVrS/bFy3T+17xcfzG+0kD0a+NO1vH9W+1OPjcx0DuV3hI9Y1
t7nno5csWh86dnLfjcnhC2s82w7yXLjdw4cPb3W8kZN9S/udlRvw8+2H2y84
tumcrn2FdYy+sCcd75zA7zPfkt+MN463HH90nOBYY8X5bdfmU7kfuZ0f+7Ef
u9VVIL/4DMcnzlcsubmvHS/a70dmHTN57iW+uX2t57g7tkmb/L1/s83Dj8FY
1oOkBtfPyTOSr6AODDy2/MxZrfPGxrUu3Xsdnc7vWOa0//Pa48y61n1q7O/f
+Y0cGvv68a43/u85Aa9NWPzafXR95ZKVr+O71vHmt9SOUbNAvYV1yXL0+Bgb
oqerzW2f8enhbwu/e0487f70pz99W+vIXFBjom2oMdPj2b+1T2n8Nvdt/9p+
Zfn4xonlx1Z7rtrWMQRr9bIncvDD/qPX3V75qhUb2UcZo9Pn2P7yj8TH1C8Q
03z5y19+Tt+ad63cY46OgdKejOt6r5t5cvSUv3BiMIccXXy+Y4nuQ/rY/sbX
OQ5xnr+xo3OOxmz3/TT2nadtn+1z0jZqWuEx6EnmwNum4x/zXu8nT548J0Zf
XNA+ztwke+pHtu0z3fYV0+Rz85KTHS0/dsWn8xz+wouZQyNnkX0V4/szx9Pz
s37W1X7Bp7X6Kx8SvYkvZw9u+At79JDrM550f80Zw2+ig6dYwdd5DDNmzY1b
V+A0xBa8lzB7NZknta20PS1/af0117F9dd+aG5mPNtd1jLPk1vq5MN4yat3P
efhQchbUZRvvVszY2NzzJ3e9c6nv57jJecLwCuqnyIVRo2juaV1aMc7Jv+W8
q9h1cWRjAHXPxKi8I+7EMZbudj+Nn60XzcO6TYn72rc0/zPmXMUDvQe6fSR5
PmIB5vPAGNtFywa+6Hc0uj93ceGlZ4vfnv6f53UMeOKjC3s7j9DX2FeHL7A2
hHxO3uOU2rle0+sYup+1sKR9TmOGc1aZ70mujueRi4TH0D7a1uO2fOrCp8ah
1kmvje7Y0M8wd2JvSdajYd9Lx9uWO862zJozXo3fesbiPcZAY/PiBy0Tc9LG
Oj+j+5J7Z66MPZG9dt9xyeJgjYWtZ/27+996sTCVdhHP/OZv/ubTfR7NHT0m
PX/fXKf1e2Hv8sHNv+EdP/ADP3Dz7eDUiUN0OxYnbVnaHpavsc2e/NHq28Kg
pYeLy/Id64PpM3OXmbdrWUXG2Be5DWqzT7Z7dcSnO2bJdZ2H6HFq37v6Yrz3
/Wy3J3+Q360XjBf+mZot/DM4mHpm79XROYCVK27fbdvrMbQ/z/y+5354Jv//
5Cc/eRsP6soS+6ftJ/9z0pGT3SwO1BiYc8If8NusRUvdanOQ5sXtN6wnKw/V
XOpkP6fDtticqfvZz1nxj2Ww7NX3QGeos6D2jfir+Zrz3ktebmOwZ9UNXXHa
xgbaBCempoz8cXMI66ivvwvjly2ccCEYE7vjLzgD/2N/T+fsO+a2/G2L9ulL
/xuLl+4sfO32u+/BnsbEpYdue9oNHqMbrOdMvqL9W+TDGiPyqdRX8AxzpbSj
sf8ufDYHapzsdy+2bNrfNG+IvjrWaF+w5G4+w9oQ+DHv7XDM7bj4SgdPPN96
088NJmWcXKeWZ3Mu2Ew9K9j31a9+9dIv9m9tcwuTF/4Zi2yjaRexAzyL+qS8
26w5gW2iZWYZRb/bL3usGquau3osjamORa76fzWezr3l3BV3WM85ss82axtO
mNkYv/TMfUm/r/ICuVfvP4zfpLaTvFy4ccdQebZl1VjUeBxbW/sdtx16LGO3
8A1sD1w2r40dLw4R+1yyWvrr7zr/ZJ1oH9ycz0fab39x0lH/TUzA/s4Lj1v/
qHcLP168znZ0hcfL5hdnW1jSvqXvveb7+pmL2y2bpx2M7fvf//5bjv0//uM/
nvax/e5VXy2X1p/F60747fMYU37Hlsgjk7fIfLj5U/exsW9xyiWbpdPBYT+T
vbHZWxNb4nfPHS39XjZlPThxq+WT1706Dmsd6nYs3D/5s6tYy/raPoO5vAcP
Hjz7G7/xG7NGx/mJjP2quemYbLV7+ULfH/unVgcdotaq+feySz+/5wPukpn/
32NjHWO/Cvab/ZEf+ZFbrsL2drJtt83nn+y1fcfidSf9bF3uNjg30rzmZJcc
5B7BY/LHxMPtnz0OvLcCWyN/3L5k2Vn7x8XlT/1cdnbCu4XZp/6e7MafvY8p
f/OeKvbvXTjiuOgKN5q/tH55vJoTNXfKZ+yZuIU5D/IWrsfxvbrdrf+L4y/f
0TgRrA02sAcXc6DURzdPOOnkap9xbPGPlQ9cfb7C2e5rt22Nk9vdbVochc9u
I3/hPdQsgoF555Dng9f4L/z1GJ5srvHYcgLfeW8J9o+Oozv2HVf63Pe1DSzs
PenWSd/x6+gR7UsubvnBE8au50dPo1MLG094sfik772wabWzcbvtm3wF7wd5
9OjR0zV5eVZzN/LH1OqAx46rl75f+cY8/4pbrLzJiWcvH+nzV02wbcxjs/Qc
Xsy6ROY6Ut+9uPoJ3xf2Xn1nbGyctJ3FRhlD6sep06ROafnU++RV1zic/Hme
nzVA2cOcusmHDx/eeJfPa7lfxYZt38t2Xf+X/4c/9j2t78s3rPsv3xe9POnO
SU7uS54PzrAfA3UWXQfbtRnxa66vWHx1xV/2I41J7AXA3CL8mGdnXK5iy+XT
3NeFBUumS/9yDu173/ved8OalYfj3GXTK9/dPrxjjMWR7sLjxQevfr/CdY8J
n4kLfvRHf/SWH0UnzAHcPr7/q7/6q9sacmoCr3xE51VONcMnu+jzVvsXDi//
28862fjyv9EPxpD31LO3CrHTyTe7z805W0fcrpO/yDh1vG9dym/EmuSRmben
9iPY0TZ80rclj4UpkV+wFJ1hPxNyj6zH+/Zv//ZbTjt7HjhmM35ecWb30eO1
bNoy7nzn0hH7gXx/imUXrruNPW4nnmCflDwTfhMfT20T81XMyeDTPG7Nj3uN
Q36Lvq3f1jiGo/MOKXg6tTqtF319sCxc1Tq99CPX+JyTzwh+BCvRHXQZfoF+
eezv4yNWPxr7TrkEj9ka88ZF415z8VMOsnXFMsteHeBx8hUrRuIgf8x+BIlF
myM4VmpMvrL1hY89/02bPHeybLFjspO87+PP7FPTd3IW7MG5cvL+3LJvLHU7
06blK9YYJt/j8YmOka8gv//7v//731SrZD05YbBzETmCn/1M7g/u8+514kr2
QnzNa17z7Mte9rJn3/a2tz37sY997La+6MT1204aR7ttbn/jdrff353imB6T
hQ/LTyybWv1Zep5nMWdGPcOb3/zmZ1/3utfd5tKoI+AdCIk9e57Rz1h+p/Hf
Msm5vi/vJP7Zn/3Z2ztonKdoXVk8vPPhywcYj3pMlu83TvKuNGIH1pV3HueE
5fZNHeOedP7k3+1X2qd0nGU9WLwx916Y7TZmXNhPiPzRo0ePnu59cdI/8sfY
O/y4+9/6sNqweO8JG3qs/DyPa+cW4m9al92nq7jjhIXUJjGnx/vb15i0zLp9
axyurjuNf/vA6DH/Z38LeDz4yJxr6oOiV41frYdte+vZ1h3y6eDIK17ximdf
//rXP/va17722Te84Q3PvupVr7rNV7FvTrC77XXp7/INzSUW9rTu2E7Xea0H
rRN38d71nHX/9kGRG+uq8F+vfOUrn/2O7/iOmx/jePGLX3zL95BTjh73WFnf
uzZ5+br85toc9ndi/pf6dXJdneM/yWjZFdd1TN1H69Wya7eRNfasyct7iJbc
bQsnH9jPXjJc+t+cpLHjCkfuwrzGAreN/jP25CC8HqT9SWwZPaKOKfFNPxc9
buzsubxlV6fvu89uf2RmmwiHPuHOyS5PGOHnkxtFh4nJwb3cx/FA8/fWkxVz
Lb/WmBu7W+3ufCb7RoDH1MvQTtvjsqUlp+YWtm3X3bEn80te8pJnX/7yl9+w
GGwBj9/4xjfe/rJnbXKirqFqn3/CzROGdv8XX2nZtO0t/W2dPOFAt+eEGZZb
eCTxKLn+5z3veTcfBj8Gi1/96lffYgtwmrwg17l2wRx0cc7TWObZqZvkM/kR
4lzmzJZvi+x67iZ9XPVrJ191xXHa7vjMvAM2xh4fyKrv022MP3B7Wkatx43h
6zzjsvUzurFyAHfhcONZ7NLPZk8a1oOQS/LecNbfYAExO3sC817BE3dpPD5x
4Csuv/xQzxmvGGSN27LhflbHKEuOnEP/2WuFd57aF6z+t09Z47/a3Mfy7+57
PmdcsTvqW6m3+J3f+Z3n5HwaK06cwM923sL5X3IVzDuAxWAK+4GBw+AyB9+z
7qFrKBfn7nqQyGWNR8vqSt8Xp7V+n+SR79fc3cKc1tP17NyLuWHs7Vu/9Vtv
OIwPQ17Ij/8Tazx+/PjWjuQRer1H86q2h6U/6fN///d/39ZOsj8CeZPOpy/f
crKl5TfvwuDTOZlHJKZiTwbmOxcHaZmuGPXkE5Z9NedZPH7p4F14bL9lPnq6
JvcmXoHzGo+7LTl4fx5xROcrekxaDotnLftbeLq4an+39OLKB3gczF06n9u6
zJwZtsScGbrs/q/ntd9pfWm8vuL00Tv+9h6fPW9M3pa8Be89gy/n3JXjW3jc
XNJzOdwL3s2eUvBwchNgCgeYAr/jAFc++MEPftOeh3l+OHb308+/8rknvG1/
d9KtHrel79bBvv8an9y35Rm84TvWJVNT+6IXvegWQyA3c2T+sr9k9jKzL1vr
e+3jmie2r2Es2F+e9cfMATXOp+2Lky9+cJd9NZdcay4db7G+iXeTUVNLDrnt
5D5jZbxpHDlx5nWYL631du5ff3dqd+P5kh94jL/k/b/ey94+PedT74asGMvc
7z7YaJl4Pip66nNPceLJr/h+65kneS+efZW7j+6wRw51o9nrcj375KPajpb/
WDrf7XQbGyPCg7MvFvlIYsDmvku/IwPvzRVOzG/cm70p0BVy6eQ7yVeEExN/
B2P4zHxD5PZ/nWtfsrniFfarruFov54YsX3kek7LxXOnPT59rnEzMuUz9Tm8
i+cFL3jBzX+BxcgqeEx9CvOhzGWBScFz1/PZNv0My8/9ye/kGfHR7JXmNabB
cp9rX3LiVZan530tQ9tujzH3z55ZXIuf5x1p2Y/0Pr73irv43LSz1x62744N
da2386AnP99tuGs+01w85xO/MEcHP0Y2zQmMmezzyPwNa9xPNrMw+Oq4sjPL
6srXnHD6yq/FX2bfnp47OflRcgHMh7MX9Emm3caO0d0Xc4cThjf/WnhvmeU3
8oOsyyWP2+u7Gk+MIeZFcO0vfvGLt5wnc97YM+9/p//oDvtqUndC7hMsBqNT
L0Dcyb4omTNqXG67bVtq33al28seg6FX/udKt5ae+buFMwsDgn3Ikf3TwF/G
Bb9FXgccfulLX3rbJwV+yNpG1gQQY7A/AXMBjKXf/dE5qBzms/b7zNtTv0Ed
GXvsOj9h/bIMW99OY5bnrvX/+d05kcbW+PvHjx/fZADOmDs3lqxxW36Ja/1e
hbQnXNzv/Vr2vnzA4tRt5/ns92q0/tm/G2+JwZnP+9Vf/dWneOzxtC/+7Gc/
e7O91OR0+5cOn7Cl46Dmhd3fu3ziCXN9bscYkdsJo/yM5LKooSc3S51FdKVj
R/fRenrCj7t822pPyy2fbSfkVPCzxMfkvOFbrD+g9gKMDG/zfl1cx9wlMRDz
Pszzks9iLpMaLWyFmDt1qNTMUjvF2l90iHiYZ+CzqUnG17OnLns1pJ7Sumhf
sPRpceDOq5y4QOuTx+gKZ0/43DJvLGj+n2fxziNwljiU2Aq8ffLkyU1W2Wsd
zsz7OBgzrvn3f//3215WjB/1qOSGyDNQX0iOlbku14Su9pHzIDbCp1LXRr6f
vZ6CWR0LLi528jc9ZvbnjdVXvo1rwUPaip4yP4W8Gs+X/2x8yPn9jtSOC+Mf
vG7yyied8Me/tS6Yi1/93jmprnfz/I31mb/kj5nPIu6x728/fcLDHLbHNa4r
3lhYlDEzVzDnbps82Zdj2MXHzCXAFPgKPIe1NNHN1p0VG7Vs7ooDTv7Z/bHM
4mfCLTgHXMWHwm2xaWJkuBn+5Gtf+9rT99+Ar9TXsB8G+Qj4LefDp6hnzt5A
nl8Kt/B706zH3I+13DybtVasyfW1aXf/3/JsP3tl11d43rJrOZ9i4xM/N2/r
9nruE/9NnS8xAz6NmCL3Ql7kL7DBrAUx1kW24BN7qPB+cfgytRH4P9aUeK/0
6Aj3olaM+VTW5rDWDZzLu1SXDBZ+2nf2mm9zjZ4La5l2DtnxYOTJu8jZFxpZ
4T9OY3riYUsnbJu+3jrcdmvc6hzbwreVS7E+LAw0ZkX3o/+Zo4LLZL9N3zv1
o9wDboRdMZcT/9NxftrQGNN54cVJ3e/V34XtzXvaV/c8SL4zvrWfaz3o+8Jj
wDR4YevoGr+TP2hsyTj5ee3zFo/vNrg+jlpTeAfzbsTF+UteAT8M/sKb2ZON
scXfwuM+8YlP3HAiuOG5hRU/2T5bXsTH3J/6CzABjLKcrbNtE+Zryx7bThs/
W/d6bE68vG1+fU67Fpegz8z74guRP2sYG8vcBj8zeuDzOQ/cpT6D+T5iFnL2
5I9Yy8UYZo0OuE/+iPpmciOM+fOf//ybnwWr+52i1sE1f3OSwcK+lR+6qufm
XPQb/o6fIbfmGN/6bJ1vXTlhi3W1cTn45jr95bc7pl7cYHG9u/I81lfnK7BL
fGnWsIfn5y9jSB9Z/5X5vLS72xG/7ndaN75aD/v9jwtzl/+2LeeeS05Lvm1D
vm+f7/HL+fhy+AYyyxrzhQ/Gx9aDhTWNLS2LjquC4cYB803OIb/LOjDsMvNt
/AWTwUfm5Tje/va333gwuQbWvqQWfc2xr/Hxue57fAn4RA0TtaXgPTF76ks7
RmqbbjxuPVi2aTzuce0xMka2Tvd5bqPHJf0mjgBbwGDyEOyvxB4M2ILtcNlj
c337OY68s4N8EtyY9QAf+chHbjIl30y+iLwH4834Zp41a07A8OxvsvzPii37
t5MOLJ04YXmPHzJjbUrqgcxpLA+342SrzRlO5/a4ructH++xcn9O/ubEARwv
u44XWaA3xDTgou+T97am9gYbSv64OWYOsJh4I+9G5bzGYXMov382+G1Oexf/
yW+ujTUOdB19+9H1/qyMycq58xl5wPOwua6zsM/3exNPa6nSnsw93DUH0LzK
cYD5Kp+RKe91Yi4/a8GwT+rRsp6OvAQ4iR6s/ErnrxZ2LH+y8I/7oztgPzkM
dA6+lzF3nN/vIGmdtvzSxuZprgns/Uobi1c81Dpo3Wqui65Te8LePMxjgi/k
9egH7Vp7jl7l9BpHOj+Q/ma9HbwSP0dtRnwv48u4U8OB733LW95yG+voW8dZ
PYaWaX5bedHFURceLx/O78SZxGa81zo8YGGq5bXGa+HG4lXWl1N+svOpJ51u
HmDsaPzK955bz/WxD9bnwY/JT4Ufp515P1D4MVyLmCL1x5Zpxsrveev6aue4
+H/2BvP77ftdtad+N76extq42Bz8Clf8/JVTYq0wmELuIm2xL/E7642zrcfR
hcQiLYPce+U18/+c55wU90S28CXWHmQen79Zh8Bn6h/ib42BaedpXqI5Q2Tt
e+Qc51yCXfh2cj7U5BHL550ntIU5rdQSXMVMaV/GuPdaTj/87M4DeMy69qtx
31hvu6LNzNfRF+YvWTeU3F/4yH04VP/WetdjQVuTS+J75gPgys8888xtrDnA
Y8YbPCY/y5ys29P+rTEuMjaGXPGClVNNn9a+Wcif/At7K7EvdPvHpXNtEx6j
hdONx82NjGXdt5aNdbnbx3FXbsYyXvw5+Qpq96PLuUfmeuKzmJtljgc87jYH
j9BDvxfbY9b95v7cm3NtF+t93S3j7odlb3xCV4P5a13CiSMsPxjs4x7Mi5Br
zT7+jZ/tBxbW2w87x+P1HiuWt/z6fcr2i/xlX5/Eq/DicKbYK2v4khturuG6
oPUu3s5NdFu7/fnLfRl35iGoNwXHyG0y18X34HGe6zE9+YF+1inGij4H63vc
7xr/YHDaxT3Yl40aCeZ32Y+V3Dj3z3Vr7uMUc7deNzYvTHJMQx6DepgXvvCF
N05M3phxZw43a3WYX/XY3cVhg1+LL536tvYScx9t19Qcs28i+8wht+Zw5lfr
MJ5YX5v72d4yhql1Tb8co3u+pvW39aV54BVX7LHvNsKPeV9T5vOsg8lXBI8Z
S2Ix6qXazox90XdztZ6jzTV5L5x9b3A9ONrvDF44HVtJvBv8oO3kToL7wf7T
2qe26/ACj1N0mZpccnJ5r0L6kev4f9anGTfzfNuSn9UxQo72U56b7Tgk92Bu
HryACyeOzbweOUdy4eY4kZ311O33GPaYdHvXmNtnoJPMGVIPx7wE74Ng/zzq
VvJMv6uqOU7jfs/z+/eMh/Xtivese0fWyIb3eJFvgQ+zhzCcmHsvXtV2u+z4
dM7CcOOeuTOyYs49sU/mbrPuj3kC5v3s15uLrxx8cC763DVV7TdOezsueyNf
TA6UehHrdO7ZHHz5+fZLK7Z2/BkcCMb4iN4ZS5ZNtj5e5WxOeZzm1/yf/Cd4
zFxA8r3pW96jmTo43lWetYxLZ+NzGj9tG5GLZeN4PuPB92Bonm9s8DUewzyf
a8ixBM8TB8Mf+N7nNgbms/PaGSM/F/lRn8vcCXX+9C2+K/3is99BmiN6kHjc
fNocxH4l9uA69qWjaT/n0Ff+st8INaxwJLgTa+qoYyO/iQ6l38kf0e70I3vN
e91z5G2+EX/a2Gw+5JjBOs9fcJiaMHJAzIGZj+V650I6ronO2H9b5uZEzYWa
O3Xewz4UOZCrYu6J9RrwGGIl5Nhz082lVkx7iu+NYebafZ65IQc6Dk9gnV/2
evqWb/mWW26I9bWWR9cVGFubt3nP/Hw2r+j2ue/LZ6Zf5L2JM4mVMo7us/HI
2Np4EVtqzpb75BrnD8Mh0W84G/ZrPGhdNa517NOxVPPkPmf5YH6DH+M31/ul
g4epkaEW/cGDB0/3E0q7HCsEA4O7zg1zL/fb9hEMSj0H5xG3BtOcB8l3jVvB
wfCgtD33sX/JsxuX+Y1rOHJNfKf9Av3HL7GeiPWdnJv+5vrgWMaxZRSdTuyb
9vm56UP+n3je9hC97NxC+k4dAweYR3wDr2P+LvfItWm/Y5zlC922tDUxYvoY
2/X1th37ueQRmJdinTDzUqxdwM+lPc1XjLF533fak2cGm437zru0L+OcyNry
TfvBjJ/4iZ+44QeYR61CbCP9yvmRiddEOl4M9jhmcj6tfYR/61jK+JO1FdR6
M1dLHoVcPTFc/Ll5QMcutunWWetF+7ycu+J59yX6xjXoILEbsiRvsXx5t6/X
8jv+MT/r57WvtR6Gf7SNNz4Yn437fm7HvB3ndn/a72EDvMOV/Z4Si+TctI+/
PIeaVOrRk69we4yX7VNsl8Si+PDYUudMM69jPGy/7Hxw5Ot7+fz4AHQ0vqDj
lNieeajbYF5q3QwXAePIG1oOwax+D4/zVvnNOm/8zVwqWGOc6LjB97Jfip4l
JmD+n/x/9i/Ief18+6D2DW6L43/zCfNq5B6uHRvIfXLvtJHP2OhnPvOZ27oA
MBmdY57K+O/nms/bN+R7YzmfW5bm+fY3lin1f8RC5KbAN3Ly5LqDu5k/sL7n
t/iJjhONtfZr5hj2tbl/rvFYte1xf/Ip8Cz8W9rn8V4xvjmSeYN5ALKzrlnO
lqexqP1h5itYZ0hsjr/oWMYcLXbV8aOxsnNrnc/re3esGhvvmNj2vvC5/ZHt
wDJvG+34Mu3Pemn2yTGXM+cN9wkesxbW/e0Y3PgTXbGtWF4rV9P81Xq44nXr
aGO17bV5Zuby/Q5Q9zv67jH3M7iGNa3E2MSwXGu9Cbaap5l/OmeRtuZ3rjcW
Ov8d3p12Rcatb3wHL6afnEsdLHE2c+z2h+bm9kELN4OvGSP7HfOLtDkyt37b
tu2DiPu5P+dSF4evoyaAXBr1y4mb/AzjUscylnGendyV/YT11efxPX6WfR+I
+8nx0K6MAX3ovGOuzfNpL+fye2JT56uDacuvmW9YP1Z8Z5vnfNpJLRT1bfFF
C6vajs15Wr7RDedeW+6Oc22/fX/+T502dRXgie2+eUB0xf31/c1BnMcwR3Z/
zLGaBy+Zenzsq6I/xief77jNtnGSCd+Dx/j9zOfZlxjb0CPmLJi/IF/R/s65
gpab5WWdcN6y8dl+3Lm06G/nKyzf9vMdgwcT4LfgVezFPCE213js+3MOnJOc
BfUByb8nl27OkPjU49L5L8fbyXllXDMnGd5J2zniT9w25wCsS/A89t6gDoBz
cl9jYvSn+Xqe5T1tPKaOT3yt/UbyIvbNkQH3SH7fHIy92ckPkKcnXwZmp93m
ubatfJe4MuOx8hqdR4zvwi6onaFOgfp88C25n7TPOu64pWMq89aeS2le3Ufr
SM9HmPdEHnzH3gbkK6jt5f/Ru+Zb5kHmu5FP/Ffu3bkq47Pt3XlFx7CJwcmT
kvvhYCxzTecNO2cZeTrutV46PjW+21+1Hac/xnN+d9wVuVjvFs427pmn2g6c
d3IbyFcwz84cd/qUvEbO4Xz0h/V51CZ5jrZzEsYAx6jm6+Hb0SP7i7apzjum
7bbl6FvkZo5kntTts+0799W5b8dmHTehD/Ancp6sbfCc5V38ODKKn4mOR7+M
keEmjsuDL4tXmZ9nXNkHCDzmvR7+Pfc27uf/aUvHqX29ebXl2zKLTofn2lbz
/PSJ38G/J0+e3PSTeXjWArM+NHKMP+o2dV7bPtQ2ZLvh/+TTqCNivQ95PPb5
QN+tOx3jNkfsHFts33js3OrKS/iwv3ZOI3btGCl4h+9ijQX1M5G79bzzE9Fv
c+DIy+PbmNh5s+Y/ju1zDc9mfyu4MRzZtt2+3rFh/+74w5jXOYceO/ug6FBy
mc4z2O80J8v94vM7L8I58e/RUWOxayAsRzCEHA5rf83BE3unPVyP7PC5zMt7
jsIxfsfBzdVWPrax2nFw8+DE4fa7kfnKs/qZHf85xun52+iPOWdz0Fyb9wpm
bUh+M39wLGFsym+RtTlBPgejjHn2cSvOSr/NHailwW+Qm3K+wZwu7fYzY6f8
5jjGOQnPlzo/ZMx1HJp2eW7F+mcfyPOY7wGT2VOHvAFza+bTeVY+Oz+c+ztX
a50LP8YWsAPi/IcPH964eeKH1uX2j86RxKcZo4LHPQfv+gHny1aM1zgTbHV+
LecQrxG3wbdoW/Cm85bOb7Wvsl9xG4zHa/60uUuOjDu/kddm3xziy7S/c+bO
NRg3mle1/8v4mKfYb3juzXpsfbGfco7BuYjEw57/tEyd7zPnNHYGB5KPyXwe
deSxf3O29D31xw/+//dUtl50Xtq5CNub5ZZ7x28Yy5x/8Fwr97Kt5bleR5Bn
OI5L/UN0OLI1fzRHsQ07lnSfMrboFH6KPXPsn6Kzbqt9iX29fbXzBca7lq1t
ouM1x3vRHbgfc2TkZYO3fl7HxMbmlp/5le2ia/zSx/g45zM89p77cFts+/yf
elX6wLoWOCxzfWlHx7rJQ7lf5itckziQGrs3velNtzXFxPrRoY5jzQsdqwSr
zJvNK6IrjcmrltV1BI2F5rid98h59I918uQhk39x7qAxpnlNx/TOZ1jG5hOR
jW3SNh5Z8Jeac+ZFWTef+Y3WG3PNlqPtovNVSyebv698Qa7Pb45XjUUef+fu
2qdZR+yn7Nfdv/gOOAExLHtE2ZfTLveTNoLH5Cvgx5G/bap9bPtH+zxjltvZ
+uLr7J9yfn5zvGYs6DymebbHuZ/jGLbjx+bL8DTWmTFXRn4ztSm2zVwTzO34
L3k6Y4V5bnTZ8jR2LZ/oazmXtlG3gK02/40tRRc77gxPNQZYTsai9nOOL5s7
h19kDN0W3zsH16KzzC1j09Qa8o6A1JB0m1e74rezdzM5TPZ9YK9h5pZSw2bf
ufpq3e3YJDZoLDU3avztWrPmiLYPY6hr9WLX6BHr5PFb9NWY0/y4/98x4NIr
Y4jtqrmKccwYwJpGcvLUqZgfGm9W3twxceu39dixWsbIfiZ9XnP36V/aZC5n
DoeMzb/Nm523s+4aBxqPYxfMH8OPMx/l+L3x+PHjx7e6cvJ3nZPImBrrLTuP
rW3N+Or6vY7hXRth/Xau1nHo4rS5f+zHdpvnR+ZLln2v6APfw6+oPfnCF77w
VL7mVumv5wQ8/+OccXOLYLHnnN2+6NjKs+eZ8QPkX3mHE9jsfIpzQ5Fnx+nG
4I4bjUeZK808UGNYxjV6k3il7ajnTPoAS8m/kL/AtpmDy7XImPwMeyIQA7L/
fu5F28B09q9hbR33gGtkj3ePR8ewxvjI3py/c/bGasfjvZbKeNxzfR5T43tk
aL3lPHI7zGkQP+R686yu7+3aJWNx10D7mebIxtzgm3Nc0SO+IyeEzNlzv/NY
uZfjYd/PXMM8dMUsrZeNixmLjseNJ43HnJu1ZYlZg8P2KeajPWfauRD7E/CY
fFn4see30rbcj/0YWUPF/hX53TUljmEbD52z8b1znvHS8Zd13dwqMjIeJy63
3XRs1uvYzMdOnKzxxPkF2sFn6j2ZF2VdTeaqgqPmdpnL8jydeap10+NlTu08
xIqX/RzLIe+aZ60euQvz8+QYk5tofY5cuh7ONmA87hjAOWnnwM117Hc7Vu+2
5DMYTO08a+VSB8E94blwROaMiNvZn4WaYfSFPUWp8WS94q//+q/fcNs6mbFr
rnuKq3yNfaX7EIxZe1YYH7P/0spptl2bq1om9Ac/gy52/iPPaXzwGDRemb+5
5sh97vaYwxjvGS+wOPlRvosuu87Je2f0mESfei7F8y9po/MrHU96PDuO7dxE
xsPrq2InnmNYftM4Fp2yrJwTpAYq79Qxl+Jz9CM6w3wecwSpd3P8ap1atWz5
f88vOl9rTI7OWGbWfcd+5tP2S5aJuZjrlnOeddzX5jdjvMctckaexLvkLPBx
9gGJi8x5M77ul/HGOR3nRI255pPGAuOB/RrnUC8AbsEZc0/nq+3PVozQsrWu
OW6zHjk26372/zun5mdYPyw/uEr29YEvMD9NHJc9J9nPgT0c8JfkLMFo9sVk
XznGLXzVuto+vXOojVkZo6U30b/e02CtIe4Yznrb6357XobzORebRg+ZM+O6
zif4OW2r3aeVmzCGm6taX/z/fOa51MpQ98E+Gx0Txf/QJudtOt/SOYyFm54T
aX5nHMm10SXLv2Pz8KKr+SYfzeWcc/E69GA6B7yOuSiwpPPXve6R/Tazf4Xj
ntOeUJ6n6P0uXFMcnE4bjZmRY/ymxybjZt1OnW/r9ylW7Bjc8rRu9vyS48Rw
H/YHZ20Ia1Wd13Ne2n4++uJzYwOOXfO7scm8rfmSY9HwrZzH3oZwJ7hidMbX
2i6bKzin1P4r59pmPQ69z4J9t/HIPtry79+WrMAh4nTeDQr3ZQ+dHGAyB/UZ
1IKRvwgG99ya/1pXuu2N4SvOs/5lPLJP4LIN5y7aZjq33DLiO+7NnCc2TQ4t
a/Ett76v5er+d7562cTC8+VP46dpE3UV5IucG3RuqNsXDDDnNjf3Mxw/Og95
4sTGdOeGOlfm50bHzUeN986D2mZXbjGYkHbD5Zijy/o883bbEePMOlbOpZ6g
6yizT0r7feN171W19oVZ9UCuRUu+x1jm/Ti8B4vfn2HbsB4al83vjLnm/Asf
0k/yYczPs94iGG097xon+xPbYd83/Vvt7/1LLN/s/+VzyDlRy0Vdwtr3xOPQ
bep6LGOo5w8cO/W+VgtnPOZrb5aFYUtH+MyeOdlflLUcHOHJrLFjDTH5VevL
1d6t3l+ncbL3M1p5Oc+t8Pe05/HiNI3Rbmvk0X6D+zO/8+DBg5u9hhu5vd5/
be1lucbgNDbN+fO8xGPm7VkDwnusEi+kb8Fx63zLoPM/PXdhPuvYs/XUsUzz
Cfv35kjN01s3zdmSh3Dez3zGbXK8RdzKPDXr8zx/2bwh83nEGnmnSuR22qM1
eyD1b70P39pP0OfaluO3g4mN5UuvrTdX+8n6/s3x7MdcO2QfwvXMoSBP/H/G
qXX5hCnG02X/LZu2pdXH3nOcugQwibgoY2x+5DmDjn3a9uJ/c+/eO72xN+f4
HW33wae1v3frRtrOvB7vjgsfxj+yto/3VOV9c+yRsfrV9zb+L/3N0T7hdCx7
8NicbGPJovdh9z2om6bf1MNnPNq3tX31d33+1b7qjh2CR9hI6tjCTdjPCj+B
z2w/0c/rd8DbTjx30/NlsdPkwsOr2u4852WdzeGYvPNF0e3FBzrmaJ7TNmDZ
cT75dfaDZo+ZlTcw3rAWHjzmHZh+XuPdwr2TLdmuWy/yHtrox8JKy8U63fv0
r/uaJ7R/d/7H+WXnoBZ/YG0IsSJ/78vBOi444UNjxxWPcX8tF9pFfWPW9PjZ
zcX6+SeZLtw4fe93C7fdnfxx76e79poNFrDuizoXaol5J0b+shc7/PhnfuZn
brZqjF2+ssdtPf+qbXcdrX85+Hfaj3Ph5+I/7KlC/pz8+AnvGmNPz1jtbT/S
nAL76XkufmOPY3IVcIFlG6fn9Tg57+eccvMKx9EdZzd+9dg7t9P9XHjXnMjc
6mQzCwPgx8x/IKvGmFyb79iHKWsweYbj7caLu7Clx775Yd/DvrFzncsvrP5f
/d7nck/nihyz+JntB8n/wI9Zkxz5WE65v/XDPLP9SmPwGlP70dYJ5zX4jlpd
aguCx2n/yb66LS3Pq7HNuR3jNyfs+13578UJuX9i1//5n/+55ZDJH4PFmc8D
j/mO3LFlZ5/l/OnCrGBN7PsKV6+w7so+/18wvPGYPYXxueji4uVXbWw9u2ts
/dkc0nMLyIpx4X2T1Isz/2qZtp6bNy089nxb13Y0R3ZuwWOb+3QeaOHkCUta
Bo3pzrs4Xmz/HzvkXOJq9mthLpZ+RDfTXuMHew7id+HHazyuPi9OmiPt7Zj8
lKuyDbU/uuv6K1tojO1Ypfmj75nriaGYGyUngA4u7nvCpMbqxVUd56yY4PSu
nMiJtZXUf7He2PawDrdv+YblUz2f1ZjX/KrvszCgx8hYbF21P6fei/kQ8Je6
imeeeea23oPYIPhguS8utOLD1jmPRf7f8VzzpPzucbp651rbzxXWpw3sg8Q7
2JDDlU+4D8YuW2mf2T4yuV7XI5CjoM4Nvev7L0w48WM/x/kF47D3YaEdtm/n
WE94sbDB+NB6ufyd+2Vu4/v5+vSDennm6Px+6TXeXA8/BruZt2rdsR6e/PFJ
xvfxx32PpZtXmO/++DlXttdy6/Fb48K9qLPIfhZrDqqP+/jfhYmW38mGjIl8
pjYGPH7y5MlzsLr9w31s1r5j+RXruPGy+3A1rlfYcMJ4nsOaXPCX3DE5in/4
h3+45RPzO+3xfH6Pxxpbt7ltt9tiX7jGceHx//VY9oINU19OjED+1r6iZXmy
zfiZ1baTjTZP8JwL86fUQvOOPOreW3ZXsVHLsPXaWLzqFDt2XPmGxvsr/Wtd
W+es+y/8ax1DJ6l7In6lJiC8fmEWB3gMzlBf0bxnPWvh7+qDx2eN+X1stNvh
w+ckN9T+yX1t2XZM032xzvCXeWRqfOHJYEBzJMv0rj61zFp3T5jefcjnvL/2
85///DflrlabVi5z5RKXnZ7immXLV/p/hQPr3DyPeTvWnvLOVudk+A0dABuw
3SvcsYwXP+ez4832Vyf7P/WldfcKM9c94IbwUObn4aU9J3nXc7v/i7uf8si2
Z+MlGPPw4cNbm5wTvdJXy3x9b57p2gbPwXXN7dUzr/TyxMVOsuzYdcnw1Bf2
+Wb8qEvFl5wwn3N5fx54DD/2s67sqe34Sh+v7O6E8eu65urNfxfOXsm19cz3
aZvkN3Tj/e9//w2Tswfn6RltCz2vfJpfO/mKu3ScOjfmC6iRNv72eWnLusfS
qaWn9oHtM5fNt1x6zHtMTm3I/6kxJpdPni32eYXrxgnn/v6vsUPucR8e0fJe
eNw+ddlBfsMHsd4280EnH2t9Oz3Xn4NtS0cXt7E8/+7v/u5W10LdxxrfE96f
dOOErR3b3IU13f/TvawX3f/87fHyNY3r+bw4O/aZd5W7FnvxRNaDME/A/Ohq
3126eqXXmasz9pzyale20P7E+Nn463Ft+cS3O57tHHzm/BL3mg8xz0+dBTq4
cM9yPeUS0wbnsht37uIa7UvIKWKvYNR950Gtd+vclmH7uHWPPu++9nPCsxWL
krNAX5nfct6wdbDv2THVlf61P1j3c1t7/qHve8Lj1m/nFNwO8o/oHXV/znee
8Nh9Nm70+Ky2Nh637QXLmNv+8R//8Rv3O+HF0pn7+MCFE0ted2HS1fe20xVr
rGfc9ezWm3zmHT7kj9njI/z4JHf2o4cfU3980if//z46lXPx5dl3q+19+a+7
5L18Fd9Fli0Pc9Gu2Y7OuY6m1w/7Gu6ZfUx515Dx2jqc57f9n3xY2/tdONrP
4zNz23kHnNcv9H3aLhcHtWz57Pm85nPdtuBEY2njdtt4Y1v318+FHzOv+vjx
46dju3Sj85P8zr+TTq1rF+dvvV197T6d8PgKbzwOzA/gb6mj4f+JCa548LLV
Ez6ecr/5zf4s/p8xiL6tvpxi3oV1J47WbW3dW76u9d39WXoRea7c1BXmn/S7
bYkDPHZ9RdqT2MT3ZP8KsBs8ds5s+YUl5yt9SA12arfv298T7ue3K/0/YZp1
y5wmbcyaEO817fU3XMNn9kPGNsifRU9co9nzYO0rzetXbOP7NSbk+9ZP8tms
l2ZdyKppaXlf5e8alzO3Ehn0fdIe8zDXjp7w90rXbWvtx4jdyc2gt5ZH60dj
Wtv4FZ9u3em8Yez+PjHkVb7iZGf9Hft48B4VcgThH1d4fBdOW570zWvYTjZj
mf393//97X2/zHFHl09jah1bsl7PW5h3wr7u14kzLEzI+StnuXjpwuOVw/Dv
mc/7yZ/8ydtcXWxqjTP3+exnP3t7PzH1bi23toe7dOe+R/e37e8+/mn5wauj
xyNyyRpNr4d0fXLXnbP3JnjMu057XBvLWk+tc8Yxj19jZI+99TNtAo+pr2A/
P+9R4mcvzrN82rIF60Su7zr1vu8pd9H2c8VrLK/8hZuRr0j+eNmRvzvZ1ZW9
XeHGyR4WDt/HDnzuyh3zHTrHmgvqy+333IeVj285Xvm55beMj/kO/WL/Kuan
sj5/teP/FRMaB06cwfprm0o8l7gp53U/V9zWNpjfrc8nX7M4TXgM803Mtyff
tDAh9gRms58QeNx6doW5Jx/Sunuao2i7uwtvl861fS0591g0N/Qecr2/We+R
w2feV/fDP/zDt7kVfl+4f/IRrU+L3/c497nm0MEj5tzZp5z5xuzht+KD1l1z
n9NYNB6unPcJj5ZddmzZ/TRW5nfHEuAx/IE1IF4H0DWoyydZv0/+4T64vGL4
5ki5930wv+XiceI35njIkxHDnvJ8J5lbhs3x74OdXONngsHsqUctOHrX8Ynv
ed84urG3Mbnjx1NcuezNttB43NfEzhszl3/PsdY0B19TF0L+Hzz+yEc+8k2Y
0fUi4DGx0Fe+8pWJAe0Tlo5exWInPD795s+2s5XnO+Fdx1iWa9us1wd67bT3
uPAeUeRqqQNlPTprQ/x8x3zWqaV/xtRe62ab7H6t+T/sgniIenPv/bd82hqH
5UtOeGyesHTe9ud7n+zxhJttA5ER9Wzf933f95x6t8XljVkL/+57LNxo/ep6
GffnZD9X9mAd5r7YMT6Ive48TqcxNq7d5Z/sMxbG5/tgxp/92Z/d5ha/+MUv
3n5rn35fnG+bvdJV36v988oZpE+9Pnj1sZ/fex+1nbTtXdXf5TP5CvaNZQ56
7bthX8DeYMjX+YrV5iu5LjtdfV33blm13K7sys9eMm6/2HLwd97fovdY7Dwo
6+GYA2VPgZ4n7L7aXtezu93Lz7T+ue/RIfgx+x6Ru1jj5bhiPbN1t9uy7OM0
jlc50j5n6dxJTziYzwePVy1J69G6fmHSXbjRPPg+dn3C3PW9f7fvy9wGfpbx
zX6iyy+3D7rP85ac+nzH/8yt8B4a5o6jZ5b7iRvfhcfNYRv/1v4JzVFsYz5/
4Xb7+rbL5hs51pyfz7EdeQypAwCPo7M+xzk3PjMHRD70VF9xZVPG466nXTra
euO+tl6ceFfjRfvHEy67xmL5V77Lew28H7vX3aav8GLmlHiHBec7x7zm6awz
Sze6f25T69vCfM7hHSHseYid3OXfV1t87/vYSMvYOtA+56QDxuP2n9Zn56pT
70a+on1l52Duq093YViPiz+fuMqKF92O1U7bfLgX44mfZb4273E8rT9Mu077
8F3Z05X/SE6CXAWyzztKbLtXc5VX2LyetXjtwhTr7V0Y3bjb+Nl62nqZsbF8
W8ebL+Uacpy8f+z3fu/3nsOn3Z609fHjx7f91tlf9WovuftynKXna9zd3uZ8
J3504px9fduor1nr3XNN3kcXnU/+x+vp87x3vOMdt5ofYhG3wb6l+eZJnuY1
8e/eC919bZ4dDoPN8n4M2h/7WWMROfQ+evbXi8ufsNZ4bj3t+57637pmLLL+
p71wRNcfL7/R9zvxA+tf49XC6JOd5hzrgMfd92p77t8i//QX3w+3Yr00+zec
xsa2kH0qPaZd89JjdOqz+8QcNnuPsWb9xMVPuLFwf+HEkusJuxtTrYOx8f5u
HVfj6t+MBQtT29/xl/PAY+Y/ybFdcTf+D4fOvlE9V3MVb1zxiOZli/80h+sx
XNjWvtNcq/3zlS70PAP3zJxebL/XX2dsIx/qrb7ru77rVvOTPp781Ykj/V/8
f2OwsYRrea8cHAr77fcxtIzz/6vahlxr7DBGXnGS9hv2s8uOFh60fucz/UO3
2Se248eTvTbPznc+x5i/xsjtWNy2x7l5atvs8n0rXvn6179+2++duVrvP7l8
6fIZy4e3zJcNWy85l30z8AvM5cFBmm+ceHD7p7t88fr9an6qZWAfZPvtflv+
PZYn377uYbl73I3Z1B+T///ABz7wTftX5Mj3f/Inf3KTMTUZ7kfL2mPeuNfY
2P1Z9rL0YPmYK27TuH+FbbalNacUDtE5Y9s2R2pYkDE1ZvDkvCvBaxG7Td32
5UuXD1s64Zrg6BPvkmTvw7wno20/dtmy6HZ07UPzg/CvU2zSfmP55GBK89Er
vpZzmc+j9ot3BF3No9jeFi42fi3/0fI58efmVYs7rDHv7+Lz7U+ZZ2ddMnnF
fl7jQst38bAlb/tWj5XPZ38b1inw/u7sV9Hz1ad5hZM+NN+xjO+Sc49X68/i
IdYr3+uEFf7N3y9My/07DuE7sBU8Zv+KXlvVvIRaGvSbuVv7mObz3d8lM/8e
nVr5ax9XdrqOtteW8xq/9sX5bDxOn93e9h98l1oMchtwFuaWyNeHYzvHsPzo
8hd9nPxY5Or3KKQ2hzWD8EbWS6RPjZseg35fWo/JstkVF9qGTzbQvqExr6/x
M1uf4IvMpZKLW3nU1rHT8xsfjCULU5uLtR0Y104+5cQJm8Nab548eXJ7Vytr
9Fufgt/h9rGdxS26/4svN2573HlXKXVYf/u3fzvt6sR9w+VaJtG92KExsO/T
sr4a45UHOvnMxp++Lvdt+ZoDux3+fz7zl72BkB3vPY/NeizTT54Bz+D90nlf
U+uaY/cVO/v8/O73JruO15i7/MTpvjnnNN4nn3yF6z0u0eF+9+/K8+T4i7/4
i5vs2NeCc7I3rN9rexdnX/bZ/Qke+d2rrs3jOtbGM+9NLBkdWvzIObD+bOyx
//H7VNY67Mag/rz61vJY+mVZRwepP059hf1D+5Ur39zjcdKxU66p9c73aM5t
frGu6fvm+/QFvvTgwYPbWpCWZevnCftX+1vnFufJZ/T53e9+97MPHz685e/N
ZdoOT7Vurc8nXnVqw9W4LD7VMohfMAafZGcf2TjbWN3P970Tx4LH8OMPfehD
37RG2nrLX+apiUO4xm1o3Ew9mN9H61yrz8s7CL3Pv9+nGhk0Lvge6zfnz/xd
3vfk93D3ug6/M9FtXu9s8ro8Y7Tf58V55CzIvT969Ojpe83d734XZvOPKxxa
/j/jHNwnp/e///u/t3uzNp5xTJzT84C5r9+NlX4aOz02fkdujsjvqv1t76f5
9bYn53D7/vED8H/2koUfpz6x86kdg6V/J9/NOa4d7/ofY4drw7vdPca2i8V1
TnzD9sy8JePqtXCNA8Z793/d94R5/q1xn/0zmLvm/W/Waz+n8xZXfKP7fXVc
cfCTv2zf1/7/xOvaV9geOue49HeNL+MPtsIhyFf43Qlc23s6M97Ef+SpTu97
7/caei2x10oYe4ONxsHoZb+rsN/zGkz1O7bdHq+ny/d51yFz0OGo/b5Zvw+8
35/X7Q/ueF+hxn3wkPc2kLdlDQ6/553iLaOuPWj/4/FPPxenpT30ERxmbUrq
27AV9hRgHBln8zLfg3bR7tT1NZbZB+Z9EHke19nHrFip7c1x2bLBEy8zJ4js
4cbEzdQDkS+nr/T/lHNpm2q8SX8dcyxuvfIY7kvbr/dQjy547JtftkyM5+TE
qEeFl1ouzZGbry08bh7evtNjb5mxRgGO/i//8i/PiZmMI8bkHtc8Y+UHe24h
7b3PGsLlY1vPVgxwwnuPb2TQeybYL9v/GQudU+A+1EqAx8lXeLzCc9AVzmWe
IPvRR4eCi8atYFC3L7YSnDOnMh4bk4xFxnquw/aDq8FWdDpjH07k9x5GbnyX
fYHC0XNtsCXvDe+2RabLHwWbg8d5Dp95vy7y4y/9yfPD27qPGSev/2veb4y2
ToSzIhewOO+v4TzWxrOuh3G0XsW35f7xW8g1vmatC0/bMp5+h2XaZAxaONvc
t+cGOmfROhWs5GBOhH0TXv/61z/7qle96tnXvOY1t3lo9tpxzNN+L+O6MMy6
G5vwnn2LM3rskrtvLMs+KNFjv7v8ipM2t6df1Poyn0ftcbDwlDMyni1/Zzw5
+cEeE/pKLSX19vhkx1jYQfT8LtzreMd6089fOaW+14orTnMzK5ZoX2Q9NZb4
fdbtC3195nVyWCfhx+xJkf02m3NkrIPH2b/CGJk5q+Z7nT/w+62CdelHsNC5
huZsxsDgbGNwxr5xyHnN9CtycYztNpmD+7rmV+bvkUPuFb/DOdQzUGfxcz/3
czf+6LaZnztutW50/qCx2DmV9IvnRA7ZQ4D6O3gje29xXXyp+5W+OIez/Fz6
l35nPBxTWFfst9yXztf0PmJtV+Ymzo9R40b9Le8w5X2mr3vd6254zHv0eJ8e
OdbgoPWycx95RnPC5JkybtbVjIF9q+O8zpOkn7lfuLH5Vcc89g9tf6ljjN9t
nxNb7nxJ/7Wvbdzv9pjvE5Owd8Z73vOep2Pr9yf1eK6/J9+w/Ef7AtcsLb6/
ck/2580dHcPld/soc7v4aOf1HN82dzG/Mz9gb3niC2Tod/8ZT8MP4VXg8Ze/
/OXnxG9pj2P/xvZgSXAi2N14bL/csQL3iu5lv0v7pGBIMDWH8xnGfD6Hlxgf
07b49NhJc7f0zzYR28r1fi7t+8Vf/MVbvp4cX9aUWCbxAeYR0S2Ppfed4Hfn
R+KPkmsAj/OcxJRgFTX7yWk435txTwziMTX+Wdbpq3PikYvz89FB78cU3TS+
5LtVF2F7yPk8n/vSJ/oGL37rW996q/t+wxvecMPnl7zkJc++/e1vf1pvksN2
GN61OOGyJ98nfbX/sR3Gtv09n52vs0801kW3O/cXPaH/vCeQfd9jx43Hebav
bazo3I+x2Pyq5004yA9R30GdfbAhttf1ncaq9ntt9x6PlV84HfYlp/40Rq0c
Uz/b/Nhc1z7evtg+yOc7bk/7mNMBH8g9pT3OhcZ/B4/ZK5k4NzoZXIxNmy+l
9jB99eF7B1Md/51iF8d4ea77tfIK0Z3+Ply956GC8467r/Lxzp+mLc3haSfn
8c6r7/me73n2b/7mb55ioXlndLjnM1sHbAvO+3isg6fU4YLN2c+NNrzlLW+5
2Q3PS245visyM78OhnkOgO+C+Rlz+6O0K/KMX2p5Re/oj3Pu7dc7Zxc55xmc
/9GPfvTGhcFk8Jh+vvGNb7zx5Je//OW33BzzfFzn2Mqc3PnAfDanMvaGLzsu
6DkQ457H174o8uq8YsbCPtvxVLgCOQq4Mf4mtmBeapt3G20vjlWsj+1LPTa5
J3rw8z//88/yjjK4RsY1crI8zC2a09ovrvxB5JZnGzuXH3Pc0nNRvt6+zbGB
Mb39a86xLnQda+d9Yq/O2Xp8mPcn50TttrlI9DE8iN9Yw0fekXq34Fu4sXPN
flbnFzyGixs4L7XwrzHIHDb4wN/YcfTH9WXBK84lhxA8SjuN9Z6Ttz3a/+UZ
p74HG/lMTSz5NdYvMe+S9ltPXPdhfXVcbszwM8xVIw/6aH7MuyPIV5DH5h7p
L9fFJ/KX/0c29jHcE/uPH017uUfX8GWfj3D02Hz8h3EsbU77zbM7l9FxD3sH
UXfLXoUvetGLbpgMJwaLk7d45Stf+ezb3va227sDkb15g31v86LFHaP/toGO
ydIXx26e58jRnMQ8Ive3n4/Pyv05n1wBWMi6Lq7LOES/8te+2kdjvDmKn20M
Ne8HE5gboU7LPjLxJ/dwzGfuZGxrP2AOaoyxH1nxU+dV/DznVnNfzxE5dnEu
dsVryR+YcxiTck37lLbVXEO+gjlZ8LhzRuHg4RDUu1GzxVx19LG5pe3EXDnP
7Hxn9Mo89LRmwHmt5iU9t9a5LtrqnEqwo3PMwbbmyM5xdH1txqQ5jn2O7YI9
uIjr/vVf//UpTrouJG31850nMDexfeYZkUPsP1hIH5EHMT3PZz/EjDPPAreZ
hwkuuB2xx9yT85zfaTzOHHDjbNpqW29sbZ2O3MNj8AVf+tKXbu8Pe/To0W3/
UGqs0E3yl8lXgMdvfvObn+Ix/yc3hz8kj09sz7vdPvOZz9xycPiZ6JvtsXPb
jvmcu0k/o2fJgTl2SDwRnTdGG2cc63dtpmUWPGbfg6xFpF08x/hgH9CYHD2z
HjmfaN081Yg+fvz4Fo+wJsXj7ns4NnW+p3PrsQFzeOOI66qCn+a69pn2a8al
tMtzIM51ty2ZA7s2IPYTeXcbFx54nskxFQf1guio1+eFg+R+qXf61Kc+dYv3
mM9zHtv5iuYI5pux0cgtfYy9r/kTx4qu8ekYIbYQLu8Y37kJY4B1LuMSH2Mb
6VjTOZ/wZcfMrRv2sfz/85///G2vlT/90z/9/yo7s1Zdrup7fwCvvBGTmGha
YzT2bVQi6rVgb+yOUWOXaGLsm3gMYnMjqImx99j3BhtEUCFiVDQoEowiARH7
j/H+/0/B2DwZv7lqHzcU77vrrVq1aq05xxxzrFWr/o9thn+4zay3GLvNozyP
wxpw8gCPF/EOCa6f9xiljzIvLnhsTpI6BHeDM65bx/zOV2Oj0e3t9/YVx/Xo
LeDN7bffvq1b+p73vGd7ngVMDbaCyz/4wQ8Od9xxxzavEN2YcTzG8C699NLt
fzCbZ/6JRzyzwLsC4JTodcy/YB/cGfvmenDoxCfnqe3/1gacKzQex66Mb87f
7JvxixzrHMjtxXHUi3gCPyVGUR9z0/BT+0vHiB6/dhzt8QCPd/OdOM5YIteH
p1vb97hv2sy5hbm2ca85UGt6wR5jZusJOd55r3MG50eOAeaZ8ff4cGzT10ub
+NjU3TbfscHjJ2kbbI/nxvJ+8D4+Y0PsZ10W2pznf3I9x2vHXn86ZtiOwyvN
j6e5Jp5/nX5uXmGsDG/NOZ33OU64zR13zeeMhelHx8fEu+YAzpNcXt51yvv1
8AXrC+k7j6V1X+Z/47392bzNOg2/0S70HxiE1mo8cd6cnDdziVNux3XHpOb5
8Qv7g2OescCaBcfy7CC4CX+lrcBV9Aa+sw4I7w678847t2Pj/4k9aELwNbAW
XgwWgxdwD9t/dE/myqKpUy5rHcJPGANEj6WNfvnLX26ac+dd6eNoOIlnyR08
nmJd3fHcY9C2TY73OGzbpzUxymGdbfJcch7KTrsag2w75lyeq2UtvXGueW/y
Xa7NM75oJdZxnTuYp1jrTFt4XMJ4MenoxlJzXbdra0qOSxPvDjZaW5rGpXKs
62tcb+0/3MPjL8k7nU/HrrBp5kxEd3L8sRZB2YzL48fRj8370ucTtzcWBiuN
A+Fk6ceef92aRTDQubS5WO6RYzMPOzpma56eu2S8zr2nn83v2h+cx1nzil37
/tNW4Ay6Pbym/bJ1PfPd1mRyLeNj69qdnzCGS25LTkS7Jr9NLp2yzPHSxrHJ
1jsnTtExKfdPf1Nu7oM5avBa5lOyNjN1Y84avPeqq67a5saTU7DOK+Md0d2n
8oODcDYwHQzGxnkGxzlo2ibtzvHwcOYugy+sE8kcUHR+nnljnAx9Aw7Nb+h8
lEf78QkGR6cPHjtuxeacp7SWlticXC7jqN3/5gzhMeAw9eQ9pvwf3zAO5b7N
68ybjL3GMttcc17sDB0TDPnFL35xj7l9zpuiozsOZF+wyHzS2nBiXuOv8wfr
er7HXCvtMPHh5hHGAs8tap7m8bVsvr7basXtrNdwHthKP6LDm3+Z93LfXAfO
QQwGQ5IjWwMwp3a7eZ95XXDE8+uPezYmXMxxrXU8Y0XaxOMKzv3MCaf+Tv2t
J9hOzRvcdx3Xoq3yP/fPOhbkJWAQx+a3zFPDt9miFVgXWOkljsPZT7norfFt
rsHYF5orc2rMoV3HtEM4Wuds5l+x5fRl20JsjXuDu4KPYB4Y+5GPfGSbp0Vs
Itbz/CK4h4+Dv2B1xoyMDbbj9H3ie+vR1tOs5yTm5LfYjMdz0C0YJww2g8tw
dLQPdBPWJUFH4Z6Yyw+Pts03v209Nn2UGJU+Ct/mN+NYY2gwi9hKGzK203p2
59LNRR2nprzPWrO5SOyb+fSs88n6/859fY3JT90X9lXzEOfQ5vv2f5fneRN9
H90O9mPX0dqbx6jM03w9a0Dh8c1LjX/WTpI3pK3AVq+NZ9sxf+ScvB8k891y
LeN36p8tdXcMbk7juVDWKvLdeOz7yf31HMO0tXXj8DzjY7DPOTO/JefMWJ/1
w5SZ+7b2lf5y2+U6zle4N7gba6zBB1OHzC3LuFrmfJgHp93jC2kLzgN3Odc8
K7pH+oFPrg0G8o7plBdMyPkpw/1m3c7zBKxleBzS+IFGw3pf6LzgLeOJzH0A
g1kbn+c0wBKuayxP23t8xvEotmLssP5pX26+1zmofaNjbjCGfoFzo5cwl5w+
ZM4GnP7EiRPb++t4zibzNzwe0fpl/CbYa0097WsdwX7e/kS+hR5OO6f/PEbS
uWTaK37aeJz79fwdc8b0MfkEWgXPBpr7Z/zH9mrdLeX2OLl1AseL5nguK+Vb
q0gMj34STtbc1nm8c05jjPP/1tOtvbQvhOu7H3yPjlHRBbJWKTwl7ZTN8YZP
9Aryksyv8HhS59odQ8zhO3Y61nu+rbly5lyEi7puPS+u+3fKMVqfiE+aF3qu
V4+7mRubDxsrHZOMK9FaeLYUjgxfTc5qHm8bMbZZQ+H/5GJejyM+aE6TOATn
hOehCYDh4WPhaIkh+d9aV8pMnMo+jy3DgZnbDKcE97EvcJcxOO4ZrRbNFu7J
9RMvfR23JW3veWf2YevkjhHW9Iwnxl7rCLYn6wK+fs8hpb5oHKw5wBgpWEyb
wp3RocGpq6++ertf5oPAH1vjSyxNDLZu5OeU8r/ny4df8R2Oyvzf5FTZzDeM
u7n3xGFrjcaTYHb+b2wEN8i10CqMs+1Xjm/WBPybbdV81fzH/N7nNG827zPf
db7bm/Pu4FHG1p1Lp608lu5Yaiy2FmL8nvIVPsmz4CpodNZSzD2D34zH8zwI
Y4DWSdJmPV/RPD7cd3reM5vnYE/rTHnc1HlBzxl1/pNjHIesQXf+a19vjb/3
+9zG6tjulBPE1hjLZ+yI55qsDQRvPfbZ85xTJ+dCzb8cY8zHuA6clPw7vuhn
qtOX4W3xZ88XzPXJz7EH8BeNgXEI3qmN9gtf5LlPeDjzIsAkYkH6LP1jDdy+
0ryneZf7OD7nOXeOR+Z3xmTjse09fuP813N/ond4vIDroW//+Mc/3vQDOCNr
GWUuCFjNXEfm19EW6Pi0R+qc3MR5m3lu+iS4HJykD8D/cNTE1vRd4l1ile2k
9bqOUz7W51IWcym4J2I7dW+dt/2/Oamxps+xlt1Y4jjRcy7NjXKedSOXY7sw
buV45zfmVs3t8rttK+VYXzRGdDvlN/QK4jhcxj4bPI6t0y48R0C8RyczR7VW
YpywHmm/it1Pz5T38x8+3hhuLA9eT+vk5pz4sjdzbZfVcSJt2fbkGJl27nnP
Hqtw7KJ94cXMs4LXBIsz5mCc6vzC8cX5jGODtTrrLdQFTgqf4trgB3WP77Z2
Hv/PmGvKJB9nrilYyxxI+C/zy3geg/XumXsG/814VPuJ2ytb7s026BxhwmPn
1vGdVV7omOr8wvyleYLjueN+60eOwY6ZtBvvu//whz+8zc3jGcFzzjlnWwcU
LOOZV/QP2ti829wmPut5zekv6oRmAObDqXr8IzblWGst2O3stvHYj2O8827m
6eRZsvAbcxhrQea0/r/1i7Sl54Fb20ifWfe3/mOu1rqMx//M9a1HGMM7hzb3
tY26DXOOx5Lsq9bJfW4wnTj95Cc/ebMX6xSNn1yD5xeYg4SNNaaGM/RcIOO5
57D18+qeO2GMc+xsjsPv1pen50is61tbMl81rga3+KSN/NyDdef4i/Mg5wDB
4LRpz+VLvZi/D57hk9bOXF9jurVxxyrjvzEq+2J/zE/l2byLL774cN555234
AE7gW+YB4WjRm+F8xGx42KMe9ajt+TfyKt6bDc9n/gL1N59J3poxp7RBbLnH
JDsf9b057zHOWjdyG7jd4sMuz/G+ccR43LE8v8Xu3PaxWedFfT/8hsbBWnOM
oaM/X3TRRVtf4Ido0oyb42vRy+LjeQ4nPJpYylxr9GvmAqJhM7+afoymbp5o
faf5b2sV1ii6jZKvs24rz/5T17Szx+uaN00x2T43+Umv/+Nc3PwzdXNO6fjm
2G5e47zYvCptFJ/oeUOtvdpunANbI+6YZL5vfsycYuZZxtbbhnJPrLnAXB/4
VdurMSP3leutuHDPaZsw2bzG/Zk69rOS/dy762Yu1rZhvuU2znWsi01zLlpz
6XJae8j/cCf8MPP4g1P9PL/nRsXuHPfMlR0LzeEYZ4LH8pwa82vBVdakxJfR
GOBZ5M/EaPQF8JdxIjRgcOMlL3nJtpY967uDwYwjgA9uu9h36tnP+qSuxge3
9ZSTtJ3ZZ4KNHleNXVjnMc92zF7Zm3MM44LjQ+K91xcw1rS/WrviE0xl3hxz
bcBgcg3mQNPWYCua0jve8Y6tvZnHhk4NFtN2tD2/M7+aZxHpS3CZGAnORxey
3mDfzqf5qnE624Q9fBJT4PfMR8zamtbekx80X+i2tU2nHs3zOlduW28fs+9Y
P3Sstl84NzBv7TaJDZlPreyJ4xzrplzWukjKhRexNjljEWlL55M5j9jMMYyP
Zw5Sa7CxffNZ/m8+7PHE1Vr7xhnfq+85fpJ90zpE5jZuq9SxMTXXy3G+P8e+
5NpusylfMu/o3JxP8n5878Ybbzx67sL16LlDjr19LdfBeUm0I/A1z0eAwzxj
wQZX5plink9Bg2Q8Cr0T7sOYPZon/Bi8Tnz1NcJV7GvOZzo+dHvZz1qP77Ed
+3S0EMc/4675r+Oux4xbJ+lxgLRvxjSaO9im3R7mlmweUzUfcj7EtcA2fBIN
gHGyyy67bIuf5DTERXRpxg6Ji2Aw/ZfYynwV8h3GT4m9yfFa9zC22Md73C7j
BI6z6SdiNms1kVev+GFwqO3evpZ+9HNI7Defsk/aL5xD2pacTzVux16sITo2
Ofdq/zPf8jywxjdz8/Rv62Bsvu/YALkGcTXru5k3ui0pl1yIsQhrcp0XN+fP
Ma1r2Cecy/odN9Ybmk9P+/udKr0u0qRfrjRG2577JPfXOY6xPb9N3NtcIbaB
hsjaC8y3jc26nTq/Mnfpe7SWlXpmfh24j/8Gj8FmfDlrtrNWFPkv84JZo8t9
lLwtGkbnvp0Xp607H0v9GoutU5pH5L7cFrHz1CG8O7jiNm/OY33DOYZ1Bh+X
NvA7OtIm/Q6L5vn23bZD32/z0h6bghMzHwUfRXeGAxND2XgWHLym/xJjL7zw
wk1LcKz0+L+1VucVHSesMbdmyrgteTX1SvuHj/XcL8db53TmM93HiX/WQY0T
xur0uzVc93Pnja1Zmtc0RrsM52OrvNx4Zv3cmNGc1ziNbkn/8i4m+z7X7/kK
zB9l/nueD+j8PtdvnaHnrrWmYLvvGOi8wHi89z6sKV7Z76ztNVaYn7Z+23mt
sbrz3ORCGQPr/nM8Ya4QfcD87tTPfec+DceyT7n9+9nMlENO87rXvW5bXwde
E24MJmftM3wszzM4lhjr/VyF893WA9ImzQe7jY2xqbtz45yXfW3jiUupi3Pz
YF0wwjpTbDd94dy1NebmQdaRjSud37pvmn95XMnjwznfz0sHA5nPgL7B8yk8
k0KfEUvzHpRgM1o0mgXnZa6F5yM6XhsXmremXrG5YDo5HXNz0K8yV7N1MmN4
8wnjn7Ep2OHxn2Byc1v3i3Xl5gQ9vma/dvvbr83Fmn+1PhsNq/06eWm3ue/Z
thjfIa8hzyEnTb2Mf14DAu2Y8SfitTWDtNeUrze2Nm46b+gYNOG3xwAbh1u7
8DVW43qN084L3OcuIxjceW9+n/SJKSalv5nDj20zNypY3H7jMfy2fbdf403q
zT7mo4HF6NVs9Dsbvkw8IC5QpseWPQ4WHcJ82Nd0vtgY5Djl3K/5vW3WOXPs
pP13ynsmTtK4M+mMzvnym/lv7CrP4DfHSr2DXxnf9Gb/No7bd60p5P9okZwH
vvJsIPwY/AWPyXP4DCbzfA3HrnA4/eA5BJMm1DGG4xjzOHHixDbm5NjfuaTx
t9uhOaptmH0rTpVrrPSBtkVzhilHNebYBntupOu14pU9PmS9zfy9bd33xVop
+CjaYuyksTPlM4aTsYIJE1u7mDTd6X2P/T3H+N2E/Z7C1RoXPsbvS3Rssc24
r1LfxB/va93aWGy+dFwu0zEiOhLjZsxzgP84tpqXOKdufch+ZR0pfsE1KZs5
bhnPYyPPZaNfibO2AeNl9tmHst/jzrEv8wn7gfHLvuHfHL9yTes3ncd1PMr8
ENfJeBn/M9cxFkx2O9lb25J1qSkfsq3n+vab9FXzbtctfcs6B8zLYa1ncDha
Mvox3JW5hsGE9JFjonOD1mP9PfdiznLy5MktjjOmmDrFLpwvmgO5zMYO+4L7
2G041ak3ax+tM5gX9jVsf+ZrLtP1nnKmHkdIXO4xKnOWthGOYeyAsYI8n+c2
saZDmay3yTgCWmRrwb6HFfZMHLHb3Hl8a8Or93ZP78cKh2nfitZlvHBfuTzH
lI4XfS+TtrHSacwJEyPJU/Cvz33uc/fge+ai1mpbUwk/8Dwj4wzfmT/OWAGY
zNpnaNY8L8dcYTiX/bRzMGOH78HXtW7quk02MelSaa/28S6jeZH9M/5jW570
hdYkbQ++Ro9XOP+adDLnS13vxpTsNz+M7TuvMiambYi76BbkVcRVNGMwmdjK
8xloCuF2nUc1prltzFOiNTofpFyuyfz1lD3pNvaHFf64Xe0vPb4/YYjxr3Nd
29XEwTtmrrB1VTfnTsGZ/OYY6pzNOW3XzTaDfsx4LLls59+2P85jDSnWt/r7
3/8+xivbsN95NWHnhLF9Tn+fePJ0vvvN332MbWHlX/097xPv2N7X9H5fr+tg
P0Pne81rXnO0Bucqxnlf85mO+9m4HnOl0I+Z1wZ3QifmM2uwOxfr+NUxsvm9
535OuGS76jKnuNX1bx9u3mr86/aZ6tz7EhcT8/o847K/d59ONrRnf9P6hWmb
/B57M3673Xg2C22C8Tue88Q/8eesrW07ad+fYsOEfW43xu9Yw4Y5ePzunKLL
cRuv+rDtoM9b9d8UA2073Q9TPOj6Tn7fbTJxiz6m9Tfrl3v4z2fWE2KMfxUH
0l7oFcyPzNh7Hz9hTmNRx5bWI3K9xuz8bjxuf5/4ctvU1PaNu9O9T3HFdZl8
03FwL8fJeYyn8Xwb8/zzm6/R+ZnrNuFB6gBPIq+5/vrrt/5mv7nsisOs4mfK
DRc1B5jySd+v8SU2OvGh7sduq8azCf98XttJYlCPpyXPnuzPcyyOw+Gucx8z
2fakvbW99z2mH6g3+5gXTFxnnTzmTrGP++pz0hY9xpO6GceD6+xnDRvWXGFs
P23onHDKYxoD2j8nbjfh9gqfV5jS15niQZfX1zPHacztuvpesKeMxxqLV7aS
76xfQbzj3XjWztInOY4+JeYy54b1CiYf7TY/rn1WcXNlw+6TvbkVK3/sNp98
OTiRNpxypCleuh9d1lS+8SrYxO+/+c1vtnm/tHPHkLZl36d1cpeJH8GD4dx5
Bs9+k2Mn++9rtG7K9+BANmvPk4/s2cgU71Z4POF1x8Acl7EU6y2pX/Ra8/uO
b8dhy2SjfS/GcXPeKZ6vcH3CFHMGj0PCl9AU6HNyINtk85aOPe1rwUn2Y0vM
60DjQp+3HcSuJ40o7dntM2FCeHyfM/HelQ92P7tsawbd5it+uIejzQ1yXY/R
9rjCKmbxO2M8PA9EztOY5vvBXuHHzK9gjsvEIVb3ZW4xld+xeYXjboNVO9nm
JpzqOja+pl2ae/r4yT6mWNNxrevd7YC9s/4mz13R3q7PCqc6/zWPxhbQodCL
6d+eUzth4AoP2t5Srx7Hcnt1zF3Z/+p6e7F8wif/lrr2uKzr5ngy6dxTffdw
0/2+uhf7wcp/Vvc2tZf7IjEGHOD5HdY1ZQ5Ext+7LNtk32fKNnaxZjXrO2JL
U843ceTmIf2726RzvimGdF/v4cBUlymmT3nKHn9w3fv31NfzPXqsaqWjsYHH
xFLWc11xPb5jszyfxfqcHq9cYcSEycamtvHJr3zfOa5zxil2eOsxo5VtN1+d
zpmO7Xu31tL3vMKXlEsbE+8YZ7NGv7LfiR/a1uDbPHsJvpM7OdZMXDCb+2vi
sc2xY2vdb477nfNNsW7PhiYfmHx+lT9N+4I3kz62suE9Trtqr+PK7raf/Kax
vDmE7ydb3q/GM1yez8Jxe3wnz2R1LoGmyfqOjDnFrnPdxsoptjT/6lxy0nMn
31vFuhXGxQYbm/vclT/ttVXjU8r2nJbUw9w/7dbjPsxZ4ZlY+mzi+DkPvsYa
KIzpMQYU/9uzseaqxlT/3m1z3JjdhKer/Z0jrHzU/W89zHlG+3LzNF/fnGVV
7yne84wec4F5FjL6bI91THHJ83M4Du0QXnxSz7d7rDn9P5XVGNg+kWMaD/25
wqEVV1n5cuyhY1zrqo4L3ebto5Mv+hi3zZ4duh5dv8bZKd/qNjBOGv97a6zu
9kqZtAXjfIwPkdtOuY3tIW3YmjK/sXYzz28T29FEHWf3OIo5RNtP48RkNz6v
49BebGu/ZmstpHG47XC1fxXvfS/mwlM/N99LvzGPET7GmtmTfpD/0eC+/OUv
b88sMFbvfl/Vb8XpVvzONtl23ji3as8J845rw+ZsbquOX6vYPXGB9v29OuTe
eAbrZS972bZuGnOPm0d0Hzp+5BjmI15zzTXbnDbGBpsb+N6Mx13HVRt6TK5z
L8fbCWcmXjf58Kq8KXbkWM8VneLd1Eexp1VfTn49xd6pvTpOda7anL7bmL/W
+ib/n+JbPtEWWYeTOXCMHzg36rl/kx/kGj/60Y+2ebHMmWxbmupuG5owJeUa
I72lfvbBvdy6fW3Ko6d8t/t20qmNYyvsn/TY6bzJlhw/g8esNe928n3zP88K
8A5q1qBCR+rxwslHur7T1rZlPu+6N25Ndtnxuftriqv+nWuvYvbq+8oXuh36
WLdxczw0XzR9tKGc2/M87CvGVjCcsVnWcWP+U3DTtjbVe9Vv3rfKM+M30cmm
eNbnuK06FvT/7d8r7FzlE40BbsfpuMnG3Edt012Pqb0aFyb7ncbg+/7clvnu
uWzdzmzwJzRJ5jsyvtexYLLp1JHvtCnPK6Ed8+6XCSunOeJut8a7rmO3yarM
jofTvgn7JjyZ8HXyi2lbnTv5yGRL5jWuG3MlWMva43ldBt/xc+a6ML+COVMr
ftPXsO1O+1exZ5V/TNx3j3O2n6343XS9Vbmrtt/rp85XXU7qlDLwnyc84QlH
z+hM/dEad8pH52BcnfU7rfHbh6dxlemebZvGxL73qZwpBvW9T23atrTiO32d
FRbs1decqus75SHH+WT3+6p9+tzVWHfHDfe18bLbz2UkV+A5XNbtY/1Oxphc
R9sln5kbQGzlGNbXffGLX7zNde3nKXocYtJTVr48+b5xe9KTe4zAbcjfZDuT
TU/XN1at+nJlo5Mtr3h9H+d7w/fhYmCt42wfyzO78DbmgcOp09+re27/nmx2
Tyde1Ttts/KLvXvuOq1i5dTGHpvrOTOnW++9zcfhD7yvl7kWaHXTXBnbSH7j
OTvWpGVNRsbvjDuNW91PU3uusM1+3HlDc8HGh9jMHh53m6/ad8LjyT72+qNx
wMf6/o6z11U8732rsdLuj44xzUWn+Q2+j9hqysx8VeyKNcFcjjHJ/RSsJR8m
h0avzHnNI/faI3VpXWivbzv+NK6t2nLCzdagXWaX1br86fTryiZ7W92zj8l6
9KdOnRpzmOxDP2a8lmcWGF/t50onnbXbdeUj0/1OGJxy/XzmhBmdz01t0nWb
OJRzplzDx0/219eb/HzyIbcdx/D8Butj8o61xADbk9uEjTyUecY888E8GPtN
dJj28Un/bb7VfKzxwuM/ft7XfZrjJp12FcMm29/DP7f19KzhKrbk+FW8m7D7
uM11aSzw9Ve27v9tF73+QeZPr3IoxyY+GZNjPdUTJ07cYy667arHfCkb/Rlb
JJfuGLvy5wlrbA/dD/6t8XelaayuM12zOUHX/XTi7R5etS1OufNkf40LcF3m
eEc/dnt77QT0Y7CYOY28z8A6XfzNzweu1lVp/LZG1HzA4x+2x1X/uGyPVXSM
aMxOuXke39xh8tOJz+zF0caUCQtdd45hDWKeDeGTfV5/3todn8yf4D0/zKdg
jTa3t33OvjzlUY33e3bYtt33N2kDHQumek66QtuGY+HEoVobmmLRqo626UnT
2cPl5lZ7XLjziNYgcg/G3F5zPXbqud9Tf7DlGPRf5kmAy+gQ7R++d67FehU8
68c7ETO+vOIZ7Q97uO12cN/tlb/ys1VfHcdlu86dF+/hs9t6up9+rrHr0LEw
bcCYEbEPvdG+yPesR5t30IPZcLC8X9p27OdR8pzWKgbk2n6XZM8NaZ7Bb16f
Y7oX22RzyImjhxu57n5nzApv9uKn28X33L5m/5rWAeS5V7guvoPfZG03r9FH
ecRJNEHmGbMO4iqOTNx/1W5eE63j2Cq2Onau4ldjeft/4/GEm9kcN32c49Xk
08G4zn9s+22nU70mPtVYZBueuEnXudebacyd1mrymnB+br2v6z7CTrAr3kmD
X6ccx/s8R44GxnsK+Gx/Sx32sM7t3zEyYyaTvRoHGo/bx22LE9dtu+19E7/y
9/hrcwgfN/lH+4jP6bJic2ArOn/G4oPnwWO/q4B3mTLGxHwq+wF96HcQZD3I
VVxLH3gN236edeLKWVPSa7zbLtoHJ84zcanM3fYaBr3e6Spfsq7cmDvVyf3R
9badc32erXrqU5+6zUmmXl6HPvVmzT20Pea+eL3tqT7+v/HGOO7/Gzvbp8wL
Og71b80J218n/OwYMmF049tUl4kP9b312Mnqes2JXW5fey9OODY73vp5rn5v
Qo8leG3zrLkc/cJchM+cz/MDPHfEOglwLL+TxRjPcWgVvJOEcSaXaQxd4bCP
W/XzhF2Ned1Xq/5tP/N+c4W+1iqe7HGQlX2tzpnyYdt4ykSv4J3d+HW3gfGJ
PsPneX8hz8e3n+Qde3kHV4839H0knvvdP42Z9gXqEJ6eNcobL1f42cf0vAPv
n7hhY2V8wnicek4xvDG588PmYLkG77Bk3fhTp07d411EeeaHZ3nQNFhPgHnL
fheD+9J+6fZoDubre73sXhO5/ct1bi7p8yZfaKzvY1yeY5Xn1XUMyrHuC3OT
yY+ah/Xxjb3uV9c77d1rUFprsB3kN7/H2O8eYMt6znnXiscFkmNyHsdlDX/n
nGmzfLIPjevqq6/eNC7sLJqG8RPexbzlG2644R5rvHasNC/z+iWTPzlGm+d3
nHL5aav4V2NJ59KrON92b67ouYsTpjcPbzzu+WP2aWMqv7kfug0Zz2OuqvE4
ZRIf/e4A5lagJd1xxx33WEcm+b7fleN+cC7kvvI2rddo3+t3ZLX/re7Rfj3l
WfZfzs8a8LH9XvvAzxZOOtZ0XeeBe/l0NJmsf4NmceLEie0ZHN5zSX9kHRfW
WeQ31vICi9PmzVcaixt/GguDJVnX3e9G6LzC7b/X5h3reiy48/Gp3InPTPl8
dKDWY6aybDtuoymf8/1NemC3oTG3c4Xch7Uy+tVcIxt9gCZF/+f3jOskJ8Uu
Yhte/9o5jm0x7cOzIsyN5Pk9sDc5V/yIObDoYLfddtv/aSe3Q7ev+yT1TN3N
u9xvk85nnaD5vjmbbXqlFTs2r/y1sXvSRqYyp2sbxyY8Txzu3B1svfzyy4/W
P87vfCb/ST7Ds9KM5zFm1Gs15t1lifF+F+KkD+ecYF7W2fK4YHDR2q7faeN3
2/h9XdNYo3+PD3jdbNfBGk3rflO8ba7n9s/1fV3HE/d77Nf3x/t7mY+IVsSa
Fuzjk/E7nr+D27Av78PouDTx2QmPjQ9pB/rS77Nrv7PPx5cddxyP0/bmbJ0P
+Hg/+zzlN8batK/XmU272077el1W8+6Ja+35vuuTHMV90JwpbR4uY24cXkC/
Bo/BXL+PMMdxDPMb4yv9TE5jZO6d+/3hD3+4vQeB8T3Ws3Jc4Z1Q2B5Y3THJ
ZdrXGnO8tnSvxxpMiv8aH9qH2v86xq1iaec8k89OfTv59aQXrzC/28P1MSaY
X7KPdQ5YIwQdyX4SPM7GuYz5oSWBx+3z8eN+V1/3ReOxsSfvLs77F2Nf4CP2
iF0GI2Krjf1eyzbXSHzOu8SsQ3vt/tTd7z/z+uQTP+s42jmNMdZbym2MSN24
T45hfgXv0yKHYe0A3nn6/ve/f1vjgjnjlMWxtFliSOfvE0c0R+l81u9/iv9n
jCgc3u8EcZzpdxH7HWTGkY6Fzk18rH23cbe/9zvy+n2RHkNNXb3f+ZfveeJc
5kXNj425xpzGIz75Dbu0FmeMip2H/1qzyLhH3vsdu288djzruECd8Os8g0Cu
hYaJ3THvqt+P0Ji14iCdd7q/bHO2o4lLrviPy05frfCvtf7Oa1bjefaT5jZ7
3LftoOdtpN1tq7GLrAE2PQ8S7AtescYF/BgMt0ZlHPF7Ea0RZ6xv8h/3l/Ow
fg/u9B7e+FDs0hqr17b1e8k6FpgbG4/5321uvbj/nzb6Jtr7FDfShvHLXDc6
AX6Bnzz4wQ/e3o3Ge3l4F/TZZ5+9veeDuUjEqXCj1lgSR1qXsL04r/a4Uvqs
+yCxIuMEjl3pD/cNv+HPxNLgicdwMxac/R2zrIU5xqd8vx8uuJV3Kud77iO4
7P7w99j7hGsT9zHmTrF1akvPkbEOl/5L+wWv0n7B43DonBv+4vcnT9qCc3Dz
2tSV+e68rxo7w974ftFFF23jEzwPEm4x6UkTj2ybcyz1WGViCfcRTLVuEl+x
5jeN9XQON+Fuc6qVDtHntU7ifp5yBnO7aOb2Petq5rWUh37M89LEyOBC7i22
Ef86derUFi/Rk7AB47vxxPqdOWpspueXOd8NHhpTzZ+6b5x7Gavjsxnn6PNa
1/L7c6O5ZA3iKcdvLuzYmjhsTcbrUqdeXDttnHiSvJTvjG3z7lE2/IT3VoLH
F1xwwdH6FtEeE+88Buu+91yp9E9r+Olnyko9jFvJi9M+adv+TF9zbOpGWRl3
stYZrPWW8z3fMvs9l8A4Zx01uJr/vS9tnLbPlv5IPZ1rTG0YHE4sC+fx+4Qz
Dpfrp45c37EufpM4YuzOGLnfa+u2Cp6lbSZdydqBx9bS5/zO+m+PfexjN/tK
7Oedpdgcz/R53YqO6RNWNZ5Fl3HMy/+xs8Q/61sef3K8yTGJ4801T0djdPu0
zmHfcd5lTOoYYJ5nrdXxtfVR81D28awduTDv0fQcxtyrNcnw49tvv/0eOq3L
9/zY3G/nopN24jae5rM5VvZ4UJ/rMcbYc88FCy+LJpf29bwh123Sq7qvW18K
f2mczL2H25tHBidYl401YOAp+Eg2/AT+gu/QHzyLx8ZcC87hOT2e6WMfn8xT
4jv777777m0fx7H5uPye3ziPT8YN+R0NkY1jcs2cyz7m3OQ6f/3rX7dj+c5+
/uczG8dxDscwpoQeTp7MJ//j+2ycxz7yAH7PsTxnxsYxlMFvbOzjd5dHGZzH
/xybOua8XDN1y/GUhZ7K3G/mIvCd8dXsAzfBVTb/zvfU3WVyHX5Pu7CP+6Is
yuC31IdPyqMOHJ/24HvXk/25P87h+slFksckP3Ee5RyC6588eXLD4dgZHIBP
3lfNd3Tm1r/tC861/JsxPDgQf4j/JQaZN5qHJcfOOJbzWee/8f9pvKp16IkX
e12b+KjHq5yb+TkL8/bUy3HZOU0f1xoreAw/5llot4djQrDuG9/4xuGDH/zg
9i5kx7RuH4+Xtk5kjcL4Gl0yfdXaPmX1nCH/Zhxt7S3t4bGicCrnvGmncKbs
9xj5pEu1rhg79Jhk+I3zeufRsTn8h3PRhBj3hqPgF7w3GBy+9NJLj76zn/lw
zFHmvdGXXXbZ9j+c5tGPfvSG2Wzoz+xn3JbvKZPvnMN7idGsnvSkJ20+yTXY
KIONGMDaXtSHdY44n3L5je+Uzfl8UgbfOZZP3rXGOo1ch3P5zkZ55MJwL+bs
MC6BHTInluf30S7hCYz/kwsw5sT/HMP8TOZccw7ztfid9W5Yp5R9/M/Gut6M
jbBxPO8m5DkI1vg4ceLE9p33JLM2KXWgLtdee+02D4y10Ph89atfvX1nP8ei
E/GcDmvrsL4IG8exMe+QcVb2cRxzxTiX8jmfeWPMleF/jmNNVcbR2Pg/+8BG
xtK4DuVcd91122+cy7HkqGzvfve7t+Mpl/2cxzps73vf+7a5qR/96Ee3HIt9
+C1rgbG2CRv7ePcp6zVSFjYQHL744os3HOaT/9Etbr755nvoLPbvSa9ezVGJ
jwXXMvaR2OFxo86DjSHGD+Ncz+NaPROy4lM93uYxip5HZjxu/dVaSuoYHHF+
7pyPT/RjfAD92Dk/341X7GN+BXPe4Ezhdh4DS+5tDSFlTTlgzjOf72f20m7B
N/NWby7L4zPWHjpnd77a4zwdY1faku0s95T8IDnPND/UuXzuyXXJc634CLgH
xoKR4S/gHnP6f/KTn2y5JnOTWNuNd8Dzrh4+WbOWZ7GYm8EaMrfeeuv2nBX7
4Tt88uw7x2fjWD5Z55byWIOGc3M8NsCzQ/zGd46jXI5j438+eb8BG/MoGSvm
O+vRoHnxP/oY53MucZ792CB+z3Mwn/nMZ7Y5P2zsZ2N/Np7dB3PAmI997GPb
uysY6+R4ygBzsFU+OY6NcziO34NN7GPjf7ALHZVPxkzBKr6DjWAeG/gHjuU4
zuM7ZTIXBpzj+GAlWMcnWMrGs5RgOfgKvoO5/M5YLbgLlrM/n2B68J59YD5b
8J5zwHownt/5JN4wDxL7ufLKK7fYQ6wi5vDJ7zxHQKxhIw8jNgePifexNXCa
/2n/+E+PqcXOwznjr+FNk87XGkb8IDjisdVwPT/vYp7Z8008x2Q19tpaRmvA
lBXcdW7deb3xJNjXOqFxsPVV4xLXZr4bXAZbTgxK2dZ6OB8/xPbIizy+Fh4Y
nSx5heOFcS71TbyznpVxmWBoj3ukbNtE7s1tF2zvMUlruOGtwfFcJ/2QOUvT
eO2k9/e4gmN2j4l5vqk1C+dHYBI4DBd+3OMet23htl5/gDonF+18suNGz8Gc
7sv+4tzAY8fT2IZ5yTQW7s3cwnmLbSV+5XkKsd2My9G/KcvXtCaWejlPtNbm
eQ7k9cmn4nPO62Ir9mVjhbXDjLVFQ0aToM+4Bhvagudzcgy+hfbAb2wcz2Y9
IxoL/0dPYWv9hC3Xyff8zvf4K7oJcQXszVhF9GP+J/YzZjRhmfW8cMtpLLHt
xf1jjdHj7B67ctvmt+S/Pc6VvjU/7nobo1tLDqb0vFdzTOfq1nmNx9a9PZ/R
fLHPAY/J5eBXKTc4kvGbjH3CdYjJcLfWuM0BM/busbXUL/4Y+0/Z1oE91uc5
D4mhGUcxfkzcNPHXGkG2xA1zcY/3WkNe6RUeJ3Fe5Zjp63q+gOO/85r0F2XQ
zvCi888/f8Nk8sZLLrlk4zt5j2HKoq9sw9bfPRa1mvfW8SPjeqm3MdD19PiF
+z1l5diVjpR81XO97JuOYTneY1l9TWtn1u6M89bzPFbsGDnlR6vxIccij6+H
D/S4Y7TcjGl6vgj7g9me95l7yXya6K49Z8XxzTbQeZ3HzzmGnBc9Bxsj7qMv
wZnBY7g81/Nckh7b7Ng7cYLYkP3A3Lg5k7mMdWJzzsmXzOOnORbGYceR5gu2
/Rzn/jWOxsZtN8bd1kbDYWOHscFf//rX23oh6Me599xLMCtckbUr6CfmZMSW
3VbxS2wkY8jWqmMfreub2/TvniecfZkX4z7uOXE5Jvwmvpvy4tfN0xyLYyPh
le5b9qXPOnZ7jNMamfUJ82HjlbVsyuF41hKnf8gZ0e4znpRy47c+N7aQvjRW
9JyRzIGy7ed+7CvBrOBVjyl3jmluY43c8zQ8hyB2Elt1POjxB/eTY6a1Ledq
HhdxnM//1CfjYLnmKm7t5R/mG2lDx5SeR5+6ZWzLc9ucb/Z9x89sw7l25yfm
CT3/wfcE38bH0efR6uECaGF5JtQ4PMV280LbneOY9dOeY9jzWKb5WfFfx/dp
vlCP17kfPe7kcXj3Y2yudU7H+/Bjz/MIl2pNxtwvcwlsn8EK5haiHzO/Ivaa
+zHHZR+aRtbknbQRa8mxGWOutSZjWe7L/bsq2/q0+8y8M5yitRL7r3GjxySt
GTR+OSczDvlenMO7L8zPnacFpzyH1PGODZ8Ah9PvwTDP5er5Lm5Tt71/M9+L
TXgOWPM325XnihgfGs+Dq8Hi2GHKyHHWCs0p7X9TO3Z87vuwzZhDOM47XscH
mg+n7Pi87dXtvjeHJnoB+B+ek/qG//ccvdbTPDZiO7dOlnInjLPf9JwJ6gDf
AheYx0HZsQ3P62oNoucMeI5Vaxc9nmUM8Hic29W4Ym1y0gmah/SWenS9ss/8
OG3buopxcZrb4dzUnDX3ZwxyDIMfox/Dv9KesTlza/5nPIZndJmvk7Zzjmtd
JeNY5vXGBX/PPfpeO9459jsW+96b21qHcn5j7ms/jYbSfmB/d5+ZN9n+XV+3
v7lfz9N2n5mrexzQ/DCb5zlO3M2+6fZN3zn+Ne5Oz2C4Tz1uMD3PG5yLrtka
kTm05x57HNaxIXgeDmvOHB+2buXxaduoNWPHjFzT/dJ2OGnerSWuNDzPkXb8
6bbwnFxzR48p9b27L13nxuCJ59iP3U6NFR2T7MeJET3m1uMpnafYF112xzXb
vv1jwj/j8aQxOYZ0LmG79jxpr12Z+3QfNh73OEhssjmrdbPgMfOlMv/YXNba
H+Uwrs08JOaOxien8VLniK3nNCZ7bLLtYbIzl2mdwvtdnv0nbecxB2u9LsNj
N82Jps3xq3nD5Mv2Z/dHxyvzd+eLHV+sM5kH+5qO8d22U95pnc/PZThX7N+M
MZPu0LzI9uiY4FjaccL3bExJu4ULeKy05yf19VJ+51Up2zHQWmbnbx27OrZ4
f9uA7bdzr5yb3xJD3J8rf3fubV9xP+W61rtSjvu6uatzGuOmMd45sXHV7d34
PrVp6ts5hfvXfRb7Nodq/5uuG5v23DLXx3NYU/eOMV0n20zzRo+LMd/t6U9/
+jY3KHwhxzefuummm47wuLmguYljtjHWOneXnc1tNmkSzcE7v7HW0Rhn2088
7Hjd8c0xZ9L/jbXG+x5b7jp0rtRjhbb5vjf7m3HDvK/1d9uUOUhro/FLc3X7
pfVy+2lsOOdZC7CfTuNyjZO2gfzvHNdaU/zHWmLr8Y3tzhsdq1vTtw/lnoKD
rYX5vq1TJEfw2LjbKRpq8Dn25Hgy5XzWYsybcw/ON5yvTDzT8cYYbd/0dcxf
raM2z7COmPbveNj5c4+t2e6bO6cdXO+uX+smjlu57jTmaJs01rT+EA5q++64
2zGz9W9jD2sDwY/RIhJzYtPGEPYxT5O59Tzj5HqG9zfuug2NA+nv3N/Uhp3n
mK+5TY1Dxu7mHY59+T/Y1XVxn0SrmOaVu4/j984FeozANptr9Xhv6w2+XutR
tnO3jXErm/2s+8dtYXuJnRujje1dl7Yxay49PtjPyNg/un0d76zpGV+n+zQ3
6X3OkT0mY7y0buEYbb8L5vW1GzuDya3D9Nh3+sRj8s4lGvNtp46LHotwDrqH
tx3jWu+bclr7n+tiHtYxcDWeETxuTbB1IPu1ecbE1VI/5429f8J/c0zHEvtY
7CPtZV9wOzpuOv9p7s3229/+dlsrjPn5GVc0HjvvZq49/DjjeZ3vti5gjuw2
n+KXf3c/pa7W4hxvVv47tXVz6saYnNPjztNc8ub+ndO5nB7zSB+47Gmt1dVz
Rc0vXKb73DmT+8v40vHROVSw2/fY1zAWN7dMvxmz3E7GHNuL2yxzjJKjR6OO
L6QevnZsxmPJzhmMM4315pXOlWJrxpz4n3EhWonLMiZbZ0j7WZvsOhrHrJ04
Zjb3aJ7rY1J+47HxoflO51TG72CxbdP1nTSMiTOlbfm0Pxg7zL19zea+jjGx
E/Mhx5FpTnKP306crzn2FA8mHtlxynWlHPQK8Ji5xc0v+x7RKziWdQ2sKdgO
rHt1Ht3jsLETY6qxYirfOpjtYcpxe16L8dB45rbae/7OepSPa127j7Em4Hay
LU9bP3My2ZRtuuNdc9bMowqG2K+b44br2887f2+/D457LNQY4zkVuXawxz7p
OB2bcHwxPnCc446x3pjmezUepi0zPyQ8NmsOtW6Zenj+h2NhygvONh57Lkzi
gMcS3Rc9t8JjHYlzxmvrQe0bqzkQ2Vp7ciwwDvoeWwfxGLnLTl+anzhntr43
jWUY53PtPmeVaxt/jOnmXj032c9Mt427PTq+9PXsr+2f9gHHBt7NBsbyjOs0
Bmm+icbceNz5ZOt19quOY6lDryHbGOM6dC7SHLzbpPP8zPnsfMRjYtRlejdP
z9l1DGlMdP+m/h6j8xj0cefHPozl7kufa95hjsrcJZ6F5vlpngEiDjOWy9xm
1jDheQCe+wKDnCMZ+yeNwhhuPdh5DVjD82WsgcO1sZ/m0NYGzEma7/d8W8do
+0xrefkdDZe1krhnnktzTpl5DX7OYtItYkeer2xc5JP9PEPHmqmMt3itbj//
13MwjO/NLY1HnVt0zHGbTuMDwevmu62tm7PYBx2f3L7WI5y/tV3zmzWVaayk
/SuxN35qfcN+P/Ev29Eqr/aYTo+HdQ5kbGpdrXUPb805k7/ld3yStV1YX6Bz
/s6ReUafY7HnKfakT7u+1l7N36wZrda5a9twrmA8aJuMHuB4FL9znLI/O453
7hKMnt4/0HlVc2lzbOdxjgvm9eb25supr7VK86m2lfA+uN43v/nNbV5j1onJ
xrN/PIPFM0Gsl8D6E8yPnXK/zoFah8g+66B8pzzyL+ZK8swX6zwE01p/7XzQ
fZ1jzVHSDsHp5nf2J/COtThYe4h1johPsW1zTs8JsUbjeMRveaalr8U+1uXg
eQranOd4vO5oz6tuLdrzqYzPxgXrH9YkguMdR4wtzY9b57Dvdg455anOzW3P
jtXWW+MPjjfmiD1m3voJ/5snNW7Z731PHVusk+YaKa+xuPHa85cnPtUabn7v
cXlzHv5n3jc2Ax4bh6f4hH7MmlzEe2u0zimNC81tPX5qjuxYkhjYuVjrEo7z
Ps42MOnaHuNwP1hr6DiZ8bx+h/hqPaiO846HHuexjbZOOWkizWfMTVa8JufQ
pr/73e+2/mMNT8YBeNaPvoQbszYJ682Q/7AuG2vlwGnj+75muNmkB/h5tOAW
WMR7zFn3hjURWH8sebpxxzhufWKaY2D90zpJ67CuH/jJOAnPA7MWHWsxZcyE
drJOkPnSbttcK9fxXOjGSuIaz1llLR6PZ5p3Ow6sxip77rk1AmPlpHN0jmF9
eqXbmRc4LrbfGM9iv8aPxqnOf4zD5rrGWdejc0r7mTXA1MH1nzTS6Rnyzqnd
FhPfim92PJj01z6/sZq6ka/im6y1ZZ20r8H9sDYW6x+yDmvO9zX6no3H3W+O
Fc4FzbM7tjXeNEdvHad5lDGrsT37nO8Hh61T+H3S5vS+ZttK51zNPyaObn7c
unHn6L5X/99tiB5x4sSJbY0i1rEGc/zuvrvuuutw4403bngFZp86depofXbz
tsbExMBwwHC2zOUK12QtKnCQtR9bT+05wq3HGL/7OZWca07u+XT5nXYlt8va
oj/96U/vkeuaC/jdAH7O3bjZ43aOH5zHem7kIFmLIFjpvg63dzt47lT2Oc4F
16d3KTQWGyNaszTnbfuL7dqH7Bv2F2NGc7n+3drhhMfOCb2G1VTvjjXWT+03
rf+2f1mf7GdwO1a19uBx+LRVsN55c3Nn18u/oeeBx/hea/KtQTCex1xlOFXn
N6ucyNjg/LN5/Wp+k30+NmOdwlpS2sncqnFqylcc+8N1g8fGYmvH0/sJjY/d
d8bS5EVTPtC2bbsyBse3na/a7nxcrg0es/4iaymy7iL6ad8va6CzZi/rFqFN
8e4Baz1ZVyE2Yoz0OkzB2oyLcTzrYrIuEmtZ5hjjWTiyOYAxJGNtxv2em8/x
wapgqdekQMNm7WZwknfBcs8eewv3z3zhnJ81Q7KOXrg3W/YHU3PPrMF3zjnn
HG655ZZ78GnzY2u+HW8Ss1oXyjF+xtvzuj3PrvnvxJmm3NxYHh9qXG18cL5s
fzb+2k7tK60ZWx+0nuc2M/8377F+3BpeY4x9fOLL9uvm5rlW59nm550fmDc3
b2Q/egV8ATxujao1cNa3RmeEY7gNWxMJprf26JhpfurcIfdnrGw8dds43jiW
Nrd2zEj7eCzAOUNr7I3H5q3mvJPNmsfHfzs38LmTVjFdt31ixWHMm1gvBk0C
zYA1cMGQPFPtPI+xPvoZHo2mDG4HU1lXjrUZ0WD5jVycfIlznZOzoaGyvi/r
8rJODevxPuABD9jOp84Z12I+O8+Hsq4vnJKxZcqy/sd3xuBYg/S9733vhu2M
fQQLwgm5R9ZTzvrIrNsMPibWMVeT+fZwEO6TZ//RtrkPNJW0QzCaT87J+s0/
//nPt3E66yLBR9oha0QzbspaxOAxvhUc4fg777xzy0WoF+8NRdsgDgbTuR46
N9ejDfP8Vc7P8+msM5G1b2kLrsv4/KR/t7bu/MYcbcodjXWNR+03nvfRxzjv
Ni62bmxMn/RjY4AxImXHX8xZmyOZ205Y7Ps9nfrb56acoL/3GGIwjOdBGNvI
eJ61MsdGroMPwI+xl46F5uetxzamOBamno01fX++F+/3/TteGdPTD83Dp2v6
vnK869z1b3zszfV1TuV69j3mOv3u1MZk19v16Xrl2sFj1rkFK8DY6C22LbCB
dVV55whjcKz7if+zdj2YyZrqcD7WXeddHnBu1scNL6NcMIj9YCfHsj775Zdf
vvFjcBI7o0xwC7ymTLQS1hZjw9aoR7CH8Ug4PeVQHmNl/M+cH+Y5cI/gddZ8
53i+w/EZ9wgeg23Ug5hErOBYYgvxh/LAtOAs1wer814O1p3knSPcN/gXP6d+
4Ce8H90d3kK58BzwmFjDmCbHcK+snUY/UA5r3VJHuDp6PWv10/asY8/a9rQ/
mj/vHsgaRMQYYiHvTKHNuCZ15x7oD/SRvGcmtt/8rjXM5o3GaOO0faltuPXA
HkNZ2ei0v3HS+u40dmdfddnmmMbh6T0/Pc+r8TfHdv2mY7tO/r66H7bMr8AO
w5V8nHkudgYew2eme5nuaxV/GmMaG91XPd7q46b+7vXzug5+52hrQFPscP1W
95pj+9kO99Uq/vZ9Tu+pnviDr9v/d07FJ3oFfos+DJ6Bdc5JUk98GT8/99xz
Nx4JHtPn4BbvS+JdfZwHPqAFswYr+JJ5kLxfBGzgPRpgFeUz3453UjC/4kMf
+tB2XNZ3Bu/ASTAQfkn9iBngDscw7kY9eIcGGMm57KMs3v0Er8U+wczzzjtv
4xb0L7yBsWrqxr1zHhyWc8BJ7ocYA+cH/9BoeM8T/Jf2ZP4F785Ap8u67WAy
Y3SMTRIHuDewFJymzTJfkDjDde53v/ttMSNYm5hErKMM8Bb/YzyVjVhEe8B7
wV7qwD70bng0++H/+CFrxlMe981vXJ9253hyWMd95122bfNFcxD7U+Nw81dr
au2HPVep/bD9v/3KHMr+0Pa94iyOKY2r1o07PnS77OF4++TkzytNpP068yvo
z84VXDd4D/Ea38PvGgOmdm5s8vWDiX2vji3TvbrctKX7f+/ajb+Od1Ob+fod
O7PPHHaK9dN997U6Fqy2Vexze0zPdJv3olPQh/Bj8MRtkb4Ge+Ch973vfbf5
FvBOYjHvJcHnrd2Rd8PTwAt4GVjGuuYcGw6ZvBj+eO9733ubX5G5Z9SFdw9x
LjiDHgF/vM997rO9HwmsBQPBaOaHeD4FHBoeCu+nTtSZOQ28e5B7QYuAo/K+
K8qhfeCp4BVYCdbFT+HT5InwS+abEKvAccYfiRHECzbmfLKPMsFy9sFx8SHG
B2k/6gf+Evvuda97befQ1tQRrYZrM56aGAHuUi/e/Qc2M2eZOkVT4L1SaEf8
RuxADyBPQfuBN2eODuURY5i/SN2MVfRx9Ktodcfxw+aGbd/Nr7xvwq49215x
t//FJ4wFzYes6za3s3/7HuNTPc91hTMuy76/4m/dNnyih2Gz6FSca53CdcMu
sCVsFt7hOHg6eLxq673Y0308lZ02NMb3vLT/JS5P5/b1+t6nurZtTmWlrh0H
VzlFY64391XbQfbB78Bj3ivKe9fAxAmPwSIwkDkWYCtcFKy74IILttw/doJ/
cyy5M/OawVl4IWucwGfhxNau0CnAFfCJcTU+g01wZvg0eE9Oz3vd4AhovGAd
mAfGmReBYWBQcms4IZoq+Ay3Bs+pFxwSHKPtwGh4NfW47bbbjnwSzAWL4Z2s
IUA5nEdboWugu8Ch4bRwYdoFLkPMIVagzXC/1CVzSuCt97///bd5SbQTWMg7
+SiTGMQYYXQUYh7vSQKTyQnSxtSP9gf/yRn4TtngMRwfjTljJvQv72QFj7kf
Y6nzsbbb9onmMLb7xpvGgPZPc6uVba/8o+3cvtl+0Ne03a3GZPZ4zsTVTye2
NIas7mdVd/R/chz4Qe7F/m+MRrfDN7Dpzn/2ttO9l8ajjl2NWXscsc/ptlrh
ms9pe+v+2rv3/yW++3/zkolnG+utD/cYbn73fcCP8VfwA1wBN1xmrgvnI4/G
r8EiMBHMxf/hydELw7nAqrPOOmvD+MTs4Irn2ILH4AploHmAV2AjXC7+k3kC
6ByUzfgGWu+znvWsjWNm/NJjM57rQTxATwU70TfAMDAfbk1bo1dQB3AabAs/
RnPAtvEF7hesBrPBXvAZ3CeGhCdnjI3xOHCUd5Si32ScEg4Ldz/77LO3GJa5
zLQP7Q8ec4+5PuVQJ2IZ/hW/4xOtCE5/4YUXbjkFuEtbUzZ5RfgT/Qs/5p1L
xKPJbtqGGoOnPG3yp+aX0zWm66x8ZfJjb82fVvGA72mPnuvUczFyD3scr/10
z/8bQ7r+07Hdftgh9sH48kpjiQ5DboR+iF3uYdVxOOn2dtzc27r+ezHuOMyb
/u/42lpDa2Jtpx0/uj6ng999zGSHnT82fluT7rqjPcKPme8FzoIRGQt0ToT+
C6YyL47nJ8BS3leM1sBcOPDG8RoN+cwzz9xwmfcwojcwT5283+PbYNEZZ5yx
HQ9fRb+Ag8IFMpfC826pH/wTPYQ6g6nxt3w6J2XcDJ2Eec6Zh8DYGHUJHsNh
0V3BLObypW3AZu4XvQNuzLx8NF7iCvfBcZ4jkzU3yCuZOwefp30zFsYxjNeB
obRh5jrQBugdxLc8B0n9yQWoOxwdPZA6ZQwOnL3iiiu2+Mh7w2kX8BxNB79N
TCIveMELXrDlNXnWJW1lHXDivunLjuGNA9NciNjg5BPOAe3rky+sfHLiTis/
8ljSKhZNdZx8eooZU067OmdP62gsTlvDA/A9fMIcqbGefsh6Qonfk17ReDTF
t+Pa9DiM28PsbrsVV53Gz/zbxEuNmXt43PWYrj/Vs++1OYIx2fF9yiMnDoFf
o2nCN8GDjD35GLgh+AWOwC/RCOh7NEzO8/OZwR1yZzgiOA7vBY/hpXDVxHJw
FpyER6NNUC7YDZZRJ7SGHMsn5ZCL/+xnP9u4OufBM8GdtAO4BNaBtWho4ByY
xZx62otroAGjnaAps4+6o1mzgcfBdPgkfhD9mTlp4DHPk4PzXDNzEWhvnm1E
EwD34NGcS66ZNgd/3/nOd256BeN4mQPGvL88m562pVzuF60ELYOy6cv0LfdG
mzJPD22ZstD/aRPeoZZYRv8y/ki94dueM9RctrFgwhTbqm1z4gnNWz2G3b5g
H5meeW0caN26Y8sUa6axnAmr+v/27/a5KY84jovuxZ0+Hx5AjkQexG+eB+DY
mvnHjCnAMVpDXXHzCVP+Vz6bfauxhAmvj+Oijv0+r6+9F1dX+Nq4bltp/pq2
M+9rTrKqa/tBY3v6M31FHIVnMQcBvRM/h0OSi6NfMi8B/gy+kPeCS/ErsAtM
gHuFz4JNHAMnQwcBD8jB0QrgveTrYCP74HxwcnAerg0/Rn8lvoPJ6NNcA26K
fkEZjO2hUcADwCniBGN+6AdgH/kaZXINdA2wGC2COMB5jNfBN7kG3+H11IOy
iB8cl7YBW8Fo6s3YH1gPnoLHvDOSuIDWge3DZbkumEcbEi8Yz0Q/R7Og7dFq
aGPmV6AZcy6cmrU74OfkGejH1uFpF+ZuwKuTg9DOtDdzMsBwODB4jF6BfkSM
il5FP6KvcA/UMX3UmNL2bWyZdLHmcu0X+d5zvqZcsbe21+P8zHy848iEqc3B
co7/977VNft+j+NnU37RbT7xL2wZbYq8q3EqZYYXoP+FHzePnjCv49/E9dKP
wSiX19g+ceHpmlOfrzScjp+erzxxgz1+0Dg58YHmEVN/TvXztfZse9LPuQ7+
jtYIFoF/4Ba5PLrniRMntvEpxuvgaDxLAZ4Ez2MH4E/GruDCxHIwAiwGSzPO
D1aC3eT/6L6Mq3EOWINege4JdjEXA97NdYkB8Fu4Y/J/dDHsAq4KJjIfDb0Z
vOETvZc6cI9gNJiIrsH4INye2MP/HAtvZD4ZcyA4Hw4JzuX+4LBwen6jLPgm
MQqthOtSDvdA7KE86p/cgrgBXnIf5AC3/f+cEw2b8sBzfIb5pGAsbUvbw9sz
r45y+ORdzrk3vrMfPk//wIPQTWgP8hr0CsoGj+M7xBraiety/upZixU383wl
5117PKntee+4lf9MnMa/97GTvxurJ5xe8bIVj3Rb5b46119hjv1uuldr790G
4DGaMLoU55of93N68BTGuTP+O+Hi6t6nmNj43/G6cWYVvxrz9vTzroOxvrVZ
z5VPfOo5lp0brfp9Va9c23NFJ11+sv3OyXwfHc/x629/+9vbs29wJ/CBXJ9P
fBedlmPA7TxblXrlk7rBz/KsBfMhyKsyzpb8mDYDa8CKPNtAXk/MJ78GV7Ke
BJ9wT/gxWgicFC6b5/MyJoPWilYKTjOPGQwEr4MbXBe+DU4RWxh7pq7EEP5n
vghjJeAh3B+NBB7KfD1wjO+UDZajb7OPunENeAjYjyaBTsCcJL+3k0/uj9iE
f1AGsY98kjmiaECMyeE/XBueD8bSflzf47FwHfajmxDTaBM4de6V6zLPL/Xh
3ogz5CYnT57czuM3eDKxZ8LN2LdzKNv1hNt9znE+uMLC48a2Jnz2nJouLz7T
fG6FS3u4bj/aixGTrjHh7h4erOIWXIacDr/0uLnxOJ/Efo4l95ravet3OvP2
ul5pl1WfT9fb0xRW2lHbj/dnfMTrP1h78DNO/dzdpCHs8YLm55OttN6R+k1j
yF2G8dlxPvdpLhHdZDUOku9cL2tVZHzasSH1yBys6KR5Djn46bUUyN2JB3zG
7zr35VjKyjPCbpv0BTk7WIreEB2X/6kHx6Cd8B38AuPTd5TJ/tTXORJ8FI4O
b4aLpO397DufxCC0bOIN9ct6FdSd46kbvsMnsYKN4xoj0TzQX4hL6EHwan5P
fAKz0XXQkjO/j/LBfHQg9sOzuL/2p4k/TDF88pUV55h8tPnV5GsrPmoMaT+Z
jp3y00lf6N/2xoamOqzwZYVL030ehwXke3kexL4UG8r8HewG3kDMxu7sCxMW
Thxwys9dl9VzbFMcmmxhsqe2o73j87/X0Mr69X5m1P2beVZZs6bXJmqOv+IO
q3bpNorv55nerFOQOJp29BoZk42ufGRle13PfuYpmLjnA9bOnXtNz4zn+JTR
80iM1/neawxMnM98utcN6ee92n5ynNdH8RpQuTfz3Wm8qZ9hSzxLvyRWRQ/p
+05dXO+c29pq+i7700cTZ2m8sG34nAlHJ0x0XdsHbRcTJh/HI1fbxCV6HGfC
Y++zDXR9mxdNfbOKBZOm7HLZh+7HuC25bPysOUfWCmFcAn6c8bwJh1cxsWOC
78nP0fcaEhNOuV2Py6H2coT4QWw/Np65UnCscM9e98r36vWroqGmTpNdd47V
sX+lfwRPvCac3yeYdpv0IGNS+8aU603XbkxrW3e7NrZ2PzY+tJ24XGOW295t
2xqX44bv3f3QefAU98zRXYfMaci6Ql6vxf1pHzenMHb0GixuV8eynkvj+4j9
tt/7mmnXLqcxtO01bd2+29fw/TpXcg45nTNhU9ub273ni/Rx3hojV5zN1578
YdIAG3PdNuZvK0zqjePhx3BexmdW8YhrYHvoaMHjbpMVr7DPTe0Ru08O6PdE
9D1Mbdh2y2/T/EP7Y3Oe+FGwDoxDE83av/a1jo/GyOTeK44/5V9dv8bhyVaC
/1l/t9urY/DqesGXts+Jv0990D7b9XT7tO+t/l99n54F9/7pnqd77/Zc7TdO
28ZjL14D2usxNl9yfA2mT9dyO3ZMyT01b+v2n7j45P+NIX3t6f8Jdx0XpnY3
Fnst3x5/se2v8m1j3cr2Jr+f7n2yD/NP53HJ5aZ69/3HDv3M0jRPoW3PPJux
BuZX5N013Z6JR9SHsZA8n+c41eflHq3B+h0yxraUkz7z+7HaVmzD2ZzbGVcb
G3odwWBo1kr0enFoAOAxWmPePelruJ2Nx8FJfpvwwDHBmOX+d1+5fVoz9tro
1ipsP+Z3U1zstl1xixUftg84tnUu3fZ4Ohix8p/mcpPtdVyaYvWKK7ktmu86
Hnot7thr6xPddq5zt+XE5zqHmI4zP0jdbO9T+6za/nTaxNfMvbidXG5+81rP
vVbuFBu7z1YxdS9OTGVMPCLnxb+SZ1gDct47cbzGPK+r25y946ZjMp+M5zH/
mPkVk68GvyifefzgMeMGXTfn08nl/N7cfr9Z7jv94/Xmg3urGM5ndBQ/z+Ux
79Qla9N7TVbjuN+fFAzzOyG97rnXk+3cwGvMxt6o6+r5bY7LuzO9zrnLTzua
i2Vd9ugpjl3JM3LP0Zb7vQHT+KMx3jlK6uCyvea9y3G7Wl9tvXTCBduk+Wlz
nsSbYE/rXB0L2Tzva+LFLt/+Yd/MbymL+8pa8W4f22bHbutdzbfNFzpudnzr
dmlekD5vztD34nONZ9bDHc8nvuf2bJ7MOVl/u9fonmLPcTjasaDxtbmxbWrC
0G7jiQfHNlN31828Ksd73VGXszevxHVnzJj5bugVq/tNPzNXlPmpfr90txvn
+hl+x0SvzRXcDDbnvQd530H3u3lvxq79box+h1DaLn6TcmOnwQ2/jyFrX2W/
1/QODvV7Im3vsb34YvMF243XFc97KIyfqWPeQ5/3VaT98n639EHH5n6HnN9R
73e+GT/7PZfBX7dxyggWuc393qFgut8d5PZoTmOftxbj9xc1jjmeWrd3uca4
4J63xh3Xw3brnKrn3vR8m6xlnz7t9wKmPT2m2OusOzdd5fzNmc0LjO+5H9+z
28Xxwjzb+JnvHgNtbjdpmOY35luNzc0Bfe+u96TT+7zOC6fY35w7eNuak/lI
9gcPPbZvO0s/+T1A1gLcJ8bO1Iu5lMxX5/mkjh2+B9qS+W55HsR94nKNZ3k3
jdsytrp6J2Xwo8c23O/R72x3HG8sSn8G540/jjGtQ7A/3D71zH3aT+3DiZPB
EWPHtOXaxku/Myg+N/Fcz/2IVpH2SZl+H1B8wO9a4tzcs/3cmlLO8eZ3YTjW
5vjONdLnjpXOezrH7HzA13Zfp6/8DiD/3pzQObLHqO1njUWr9xN2DuJcz2Pf
tkWX5T63lpf94Q3W4XyM30fqWOAxGL+jJ/v7vOBD+s7313Fjih/2u2Bq5wFp
S7//drI1xw5rQrl324D1etehY5ptLVjm79azrPe2psA+v//Vcc/akPs/92f9
NHHJ7ynsuMonz8qDsT/4wQ+O+PakO3Iu89J5TijrnRhf0o7ho8mnMwcs/dg2
l2sEj8wn0jbNocxrrRE0X3J/BqMcq+JTwVxjvbUDx2LHS8dI5+rRnDsHm7S+
9GnPsfO7MnM/6ZtoFskPeowpc3zdPynf8/fSBmkj+4r1BttjzylwbpuynEPE
nv1+QNtM4pl5R8eJ+IF9we8cMg66Tonx/f4tY0p8NvU3DpnHWVtsHDNWGbvs
qz2O4njn9xylX23Pfk9227TrkLLDQYIJ4SXBRdtH95s1u1zX/NR5pHGkNRNz
sH6PV7/7L/c15QOOycYI971zJbdlsKe5cvOB9Nukaec3+4BjRfq7dVCX53uK
ndq203d855kl5kzwHFO0htxX527Mr+D5H/Tj6HSONemLcOPu95ST+zB/d16T
vrHG1MeZf/d7HW2LrXUaj30958L24+ZVbsu+h2Cx+b3H/q359/s48+7PzLGz
jbWezvnx29SDz7xH0/eT+6VdiJHmmuZOnivQMTx90fYZnPS4jvON9Hv6K+3i
czreth843zAfcrx1fZ139/m2Z2OMxxra31qvSP3T18ZKc9D4R441J3ZZxnr7
dzA25Xlue85p+3Sciv2nPa0Tpm7WO50DOHanzmmD5ratk07aU/OK2JzfPZ77
jF80Djsvi+2Fs0XXi1YWXAgvak21NePUsTHZea85ojE29+j422NJ+Z46O9a6
z6kva6ow343xPOdauQ/zEdZH9Hw3awrGGuvAwZaUEX6c9+B2jhHbcB+3RmY/
7NzWONf5nu3Z+7s90//mc+n3jimdq2Q+cNrG4+lTG0Ubdj6RuqY8192aj3WM
2HLuu7ErbdPjT9ZzWh9oLG6e1/qYuZDzZbez8bjHOVtrc2xofmtMMFd1fIzd
dx6Ttu1YO3FSY9GUh1srbDvrnMp5tq9ruzMP677JdXLP1pLdNmkvY6S5u/Xu
4IDzjNiJ8d623xqa82n3n32+41GuFd68yska32wPbrvWzTpf6tgfHHEcbR3S
xzlXNh5bK7Ge4r5J/dyWrmfiIMfcdtttGx7z/L3rlvUF0mbsB4+Zi5F1XlpT
4DP96TkJxjTuKxhkvt4cvvvXPttaX2wz+OZY0Jqq265xov09/d7jDLle56mJ
zeYyPe4cPAhnsE87fuQaKS/1y+8eL7INWAsyhjsXTr3t/90Hxo/cQ64fLdp8
t2OZccTcyPxjb33n2N6kMXa9be/2qbRBj52YX1uPsD85FlifMnYbpxOvfZz5
onHDGOr26+u5fulf81PPPZ/4v7ElfdN43FpFa0HmFLY/t719srUg607mL9Yy
3JfWNmJfqVNrKq2P5zcf6/4xHrtfzAmN3z3O0/VP2daL7MvGPedDvifbK3UL
HrPGYfiYtRe3P2ujoFfw/L37usfJOSfxM74U+87YvPV562GJ1Y5Dbp89fuR+
cN+k7NTJfZ77tT+7jrZTcyfrCMEox/SVbmwenXkV5gXuU+smxpjU1ffqHNN5
UMoIz25uS3nGTGO7c7iOfxMHm3hR2tf5XmtQnQs1tluPtnbr/M/aqWNk7qHx
ojHeHMtYa27m+JvYl76x/pNjO343P4xdWONvjdJx0X1jftq4tJcrOD6FNxtf
HZdj++ZGzZuMd/ZNx2Tzb7dT++wUH6wFTjaZe7OPk2t6bovzoPCh2P/Kpv2b
x58cL61d9TGts/leral0vGfdEusVwZS0e3yK/1m/An7M+hX2w8Ydx3PrX8Gg
vEusc5bkLYkZxvweB3P93Pex3bSX8SicvT9jC25/a1iNUfYDa9oe/0h51i2c
v3JcdJuOGdYtzCvct27b4KvLcb3NVVtvdZ/7/tofnes3T+lY4T5y37DP2O0x
4ebIxlPrBsmx4/OtFXgupfMY80TjSWumtonYkjU8a45un9atzHuae3ee0PzV
mN08sPnrpE01tvR+91va2H7q3NY5dmPoCo8712pdx/wmx7ltc465d+7BnC3+
ZS6TvDH+7jniweDWnaypUJb7JfVprbftsfMqxyu3hbGufYhrgses8cp8N+uL
HJf7yXMH4DHvWoAfO383z/G8sIwhWSPNFp8x/hnLXJ435xGOmZ37p4zmjc2T
7VP2Ncek2J/ttsdj3B/OS3qsw1zIGnBiZnRkc4vmDo4vHsdsvuzcw/zMvmRb
dowz/lhDjn1Oc7PNX2yDXpepx1amzbytOYlx3j5kPHW9OieMvQVr2gZtG8F2
x2Dn4eZ1U67eGO3cpHODcIcpL3Y9jWO+1qRjtj33mJqxvbW87PP9On/z9c1T
nUt0//V9ua4pK/ZtXa3zjM4BHHftH/gS6wXyaf0gNpj7iu85F7U+4/hkHuNr
+l7NzZILR3fs/MJ5DBoD8yvgvDwv7bHL3KdzO979xZrfeT4vfpg45nhuW5ry
wM5b2ufMycyRjffO78wpOpdxmzXfai3KuW7i4KRxt723Dmxe4fp7LoL7z3NE
nGM1flofiW+nrW0jsTPnBdYy3PbO/ztHTrukH6Idh4OYS9quY0uxxZ5n1THW
uJN7dvyLb9pezIcyHpH27PkB7ltjUMpNH0a7cmyybut2ckybsNFY7nmM5uvW
kd3XjoWu9xRTW7+c7i1t5P5yrG6b7RgV+0xf2u/MN+1zU1/aD9MeaZPYi33B
dXJe0DidPvcYOWsesNmvWndzLPfYuWOp65/+b94y6aZpg/iKfcq5StqO8RT0
Y56B5v1hzJfKswL2jZTDOw+iV/SYiHHb41hTftrjsM7Fcn7bao6bxvI7P7Ru
MvHFzgl7Hoe1Tcdyl9XY5b5J/9ovnJ82l+nxareF69aaa/Pz1lUdW9JW0Yqa
97Y23bHV2uBqDNK+FRtOPOi5H7YZx/Rp7MM8MnV0vt1Y6XpNcb9zq7SN8wjn
w9135ospy7mw+bMx2ZzJeZPzvdYTJjw21jYHnvhrOJ5zKcfoSWNLPEdfBBfY
krulT1MXY5d9Iv3Q8WjSxdIHHltK/W2/vQZA37ePMb/M8bGx1Mt6p7WuzsVa
T524/dQPnacaj1v3oV7wYvRj3iWQ2GJcsQ2Ax2gbwWNfK/dkbtvz/Yx57r9V
zPBYsXU5182f8Rvjp8frJn5rn+/nFMzbnMM5Z0nbWBOKzQb/sGl+s8071k9+
5vyg9Y4ppqVPU54xLTlTcjhzAMcuY4vj65QjmMM3TttPbOv2tdjnhD/G32lt
lOxPjp86d07jfDr3wfGuR3yy+b59xfYY+3ad7b+NSamL9Vljpe0o7W0dsJ81
mvylr9fld0xw7PFYm/HYbWM8sk5kDSzX6fjYelnHPfuwY8nUhuYdHdNdVuvW
bQ/BY9vnhJ/dbvZ/++oq13es6TpO/AWbRq/IeptTW3ue2M0337ytBcc7DtiX
5wt6PCgxM37j8XTH0sQft3XjpW3QGpg5cWOLx6rtr32dnJ9zgnW9Jkr8Y7L5
XN/22jE/7dFaobG9ua3nIUzjXp5D57mEPW/UHLL16c6328bahjrPMzdubcB5
qjUFcxu3n/OOvfED21PObf3WbWmMiT21n1orNs8yNhsDckznddZjW5Mw3zIm
O+51brlaS8fxM/fufnYOnWs6R7QftKZs7uP7cv1XvN99b75pXzD2NTa5jXtf
6+3OXW2X1uiMS/xm/5v6tXMK33fbVdp+ypnc7i6nuV3rFXxHp2AOG/Pdsu6c
OY/Hx3mvF9oG849jxx2v047J3/wseOeivu8euzBfteZjzsO+5ADuM/O1YKHx
OHU3p7YuYLybxr9t1/ZRzz3OPueFU37f3C546HpM61j1mLY5rG2PsoOJ5u0d
p1qLac7X3M+/h0vZ31oHsObsMW9jYsfy9EnbkG3BttQ5l/dPYxneP3E5533G
dudU5uvOVexrjWltw67nlFOaj08xp22hsaZzXbeN6+O65hjnLKuybLf2L3OD
xldrs63BGsPTjhOGOG5TVvQx5yKJ/z5u4hPG4km3a9trndDt0NjbGqLzIedA
9DvP5/EOYN4paTyPxhg+QRngMWtd8HxeY0pik++/+Zvtq+3B9pV6Oh80l4zd
Ulbq11wz5dnWY9e2Sfer/X+az2G8MP67XzoWmiessLd5R+JEc0M/W+K5c7Ef
z1NJTAtv8lwuz6GxfbgNjdPBohw75beNacHc5A2eR9bjIOZIk/91f7SOZIxt
nI29W++atBFjg3N6t2XjQdrFdpJrTbzd+Z7HR+zzjcfmhM2Njev+zfmbea25
c+sSsWvHGftoayuTFtC+7P+9xX7Mi1K3jjdtZ9byYweem+axDfOEtre28XBI
95f9tMdtjNduq25Dx+e+72Bljgseo0GgH+dYyuL49Fd8nOfzwGPmVzj+tU/5
3tJetpnu62BJazQ9z8WYZ5sxz2uu1xq0czH7Vz+34TEWc0Dn7W7vXNMcKtea
5hm5LzuntM2YC6efG59Sh+j/PT8zde+1qB03evw7dQ3GOxfId8d15yWZk29O
bk3WWGf/Tvt13PY+Y479ruOhz2t+GQxz7HV/e56I7c64mmNth8EJ8x/nxs3d
+x6dq5m/NEY7dtgOPeYYm+x5Ac4N3L8ur3HfPDf3Zi2i7dc4kPw1Nt16inEz
9TTPbO6f+nXbdG6Sjboz583jfOaqaaf46Ep7aP7l/k0ZUz9aOzUe555jQ7lP
9ArWpEBHTh+kr9L3ydeY75b1j5OD5jrWyN3mHTfcXuaEXCM2bUyyH3iOsuOa
50hHJ+j5gp0zWhN17LO/OnYYj91GbWudt6WvbfOps3Gzx4g6Zjn37d+NT8Zb
+75t1By6+U73Td+Hxxh8r82fHf+N87H71js6r3OfWBewdtVcKm3rcafmZY43
zRE6h819mHeYQ+c+3Bcpy5hsvpW2W+XrrV+0bTp/dR+ak+U605iZY6391RzK
eYc1jLSH26e5ZjDQ9uGY5f6OH/R63ObCjYdT+zgf6rjrdm+Npes9aTDteym/
eV8+XbfEsuCkj/FYmDUv+PEzn/nMDY87j2c9t4985COHT3ziE4ePfvSjhxe8
4AWHJz7xiYf3vOc9h5tuumkb3+OT3z7+8Y8fPv3pTx8+85nPHD71qU8dbfzP
/s9+9rOHL3zhC4cvfelLh8997nOHT37yk0fH8/+pU6eOts9//vOHL37xi9s5
/MY5nMv+r371q4dvfvObhy9/+cvb9pWvfOXoN47nWM5l+9rXvrYdz/aNb3zj
8PWvf33b2M/G91tvvXVba5T3a/NOVz6///3vH/2f7Tvf+c52LJ/f+973tjj2
3e9+9+h/vud8nq1hy/7sYw29lE9ZuTb70e9Z+5T1qJnzwv+sKYKOxEb/sLGP
XIZ5ihzPb/zPfp6xZOP/HEv/cgzf2Ue5qUs+c7/UN9/ZqFvuhf1s7Mt+yqKu
jAXnO9dPmWy0E79Tp9wLx1GvX/3qV9v7G3kmiU823o/AO+55jxj/8/4a3l3P
e+15lz2/cQz72Hi3Pceyj2P4nXL5vPPOOw9//OMft/2///3vt+P55Bx++/Of
/7zlenzyPzyDsRH0uL/85S+HP/zhD9s1KeNPf/rT9jvH88k+zuPYbJz7t7/9
bRvv7v18sp/fmZ/EM1X/+te/to3v7PvnP/95+Pe//71t7Ofzv//97+E///nP
9v0f//jH0bl8pyx+Y45tjuOTcjiG/7MxxyfzccEHOCPHsvGdjeP4THlZbzDP
1PI/x3Bt6scn1+LYvOMmz2Dk/ZO9ZhZl8Hs4VK7F5mfGEkt7/LfHXXJMYoqf
qw3Oe00bz+/J8R5rzr6en+c4lrEiH2ONK3EtuVY/q5Y47PsI3uNbzGHDv60F
8P3ss8/etgc+8IGHhz70oYdLL730cMkllxwuvvjibXvQgx50uOCCCw7nnHPO
4QEPeMC28T/H8/uDH/zgw8Mf/vDDQx7ykO075/P9vPPOO5x55pmH+93vfoez
zjprO+/CCy88XHTRRUfl8fsZZ5xxOP/887cYwLH3v//9t3KpA/sph09+y/Hs
45jLLrtsK49zzj333K18jk39+S11TL347VGPetThcY973OERj3jE0X3yG/dE
3TiPtuA4/qd89qU+lMVGuTmH749+9KO3jXpwf6kX59KOHEOded7mYQ972PY/
n1yHLefznTalfo95zGMOj3zkI7eN/ZxDXbOP37kX6kOd+Z97zPXYx5b6s+Ue
Uy/qwJb74njO5V4pizoxP+cJT3jC4fLLLz+yETbK4H55/8wLX/jCw/Oe97yt
LH57/vOfv+1/7GMfe3RvbI9//OMPT37yk7f9vrenPe1pWx5H+2APXOspT3nK
tj/txv+cy+98x665BsfwP+ewfjfPmGZ7xjOesX1yDPfx7Gc/e9vgHvzGd+r9
nOc8Zysr/8Nh+H7FFVdsG/f34he/+Oj7y172ssMrXvGKw0te8pKtLO6X7y9/
+csPV1111ba98pWv3LYrr7xy2/+a17zm8LrXve7whje8Yfvk/6uvvnrbXvWq
V23nsP/1r3/9to9zr7nmmu341772tYdrr7328M53vvPw1re+9fCWt7zlcOON
N27/v/nNbz68973v3dafQXNkY//111+/HfeOd7xjO+aNb3zj0b63ve1th3e9
611bGWyce8MNNxze/va3H238zrn89r73vW87jjEmvvMsL/k0G+95491CrJ/O
b9SFubP8z+/Uh/05lnPhgXC8j33sY4dbbrll43bwLfaF/8Hd4FRwNngdvCzc
jmPhe/C18EE2eBv74Gjsp6yUzW+cz35+D+eD4/EZLsj/OYey4Hr5nTL4HR7G
fvaFB8Jx4CrhdWBv+At8Cd5CW2Bn8Ivm+Hk/uMdFel68dRprgM4te65A67St
HXlM21rB9Kxz65HWxPp450V+7ijxMTHQ+bxjrzkC8ZzYHk4QvgJ/gctkLWKO
4zf4SjhEOEv4UDiDeQUb38OXKIdPzoObcG54E9fk2rk+v3O8y8mxuW7Oz36u
nWuFA1Eex/Fb+FWODz/ieuF/fMIZ4Y7wzfDQcFJ+g3fCNeGd7Ie75lh4Ltw2
fBeOC6eFI3McfDXcmGPYzwaXIK+AZ/OZnICN77fffvsRjw835zc4Pf6QvICN
79/61rc2f2Ejj8Kvks/we/IzPvmfY5LTBROcD+KLHB9fJ98EP+L/fCdfBHuS
b+Y77xDOdzANvOI9Pfyf/eSxYBkYB5ZxDnhF/sr+D3zgA1tO++53v/sen2z8
xvU4DjwFD8BaMD+4C3aDvSdPntyuTR34H9y+7rrrtt/BZbCcmEDMIE7wSdyg
DM5905vetMUV4gix5dWvfvX2/UUvetEWq/hODCM+8Z1jT5w4cXjuc597eOlL
X7rViXIpk3PZR9xjI0YS94iFiX98Tx0ok1jJ3AXiaPgBx1I+sZf4TdylPpTN
fsrhvMRpzocXcCznEJcZf2Mfn4nXnE9ZzEcjzoOxHM9cNsbg+J/tqU996sYF
4AnsRw8mNuJ35tF8en3C6CbB1ry7PscHr7PWm8+xJtvr3vacd2vh1ux7novH
4XoOh98BYNy3/t/vE+zxAWvsjiM918ZjDR7T8TyInr/R73azRuo26OdBfJ/T
/GOPq0X36vv2tfr6jpOua8dQa3U9R8FjQa3r2YZW85Zy7dgIdpZtGt/q8WGP
U7Qm6zF7t6nHAjzW1fM1rNVPz5ZZu7bebB265+x6np95Reru8UTrwt56vaye
S8N3Yn60iqwrGH4QbpK1ZsID8m7HPEcUHYFjzAusd3Be4j0bMTvaRzhF4nh4
CnH87rvvPuIU6DrRcBLno7+Em3C9XJ/jifM5NuWxcR7ncAz70ZvYz3feO8fG
/5wPX2CDL9x1113bZzb+Z+N3uER+R7viXDgI++EWfEYH4zh+5xrhKuzjdza+
sy8b52b+WmPoapzX69Y2PhsLp+fJjFX97oz4lvFoeh7NfmjscDzwMT323Of4
+n2eMbfHD1Kuj5vGx40zfb3OFToO9FzBbsfGbeNt12+FfY2P/r3n23mM2fgX
DOwx5h5vOV08bjuZno3p+rpfep5Ft3HnbF2229nn9Hwo477bpOPb6j6nOOi6
reZYeI7d1A7NbXz9rstqXodtq8epPO7b4+U9Jjf5btd1KqNj7Mrfna/nmKms
ycd8Xs8hcp3aphsrer5C9jV+NLa2D7o93JbNZW2j5pieC7vC4+n91uE+Lmda
n7x5d78ndvXdHK39b6rPcc9dmI9P8abr0Xy6sXh1L90GU10n/5zmTE/5yIR1
0zzx9s3u68Znxwfz96l+q3ee5xg4GLysY3Lbf/j/Kt9pfO/rh3d333dZtsHY
Vbir5/I6DqReq7JX97bql77HrvfEWVbxrH/vXMt91vuNdcaqKQ9dtXfbl7nZ
FDMbu9yeXd+VnzXmTfHf1+P/1HW6L/PSPb9ze08+ZHueON3UJyu7yjVyzgrj
Jv9b+f5kQ773CcdcXu6rOWNsZnVu36/9LnNFG6+nfvfvExeb7mGFTyu8aq7h
WNExc2r/6Trpz+PqOOGXY0n7w178WWFV+HfbVceAzk322qnrYB3kdPrDdTMe
NW/zeImxt2PUCvvb3huPT7cNjdspaxXrpzLdbt2f9pXGsynO2Ncbqx1bpvMm
X/V1uyzb46ofu459X1MOOsXK7suuS/tCY/Oq7r0/39NOje+Tjbjffe9t79Nx
exixh1VsztW6L1eYM/nAxB1y783Rs3+KE+0XKztpPrTC+eYFq5jn/pr8N/s7
LrWvdPv5/iafmeyq23XCv76Xvfbrelo3MNdZ9X/KmrB3ZQeT/ZjP9HzwVRyy
P9u/VjjcPrIXF3vbw+rJr7ovpv0rWzP/cRus+rP54ypOTr4zXb/z1e63tq09
n2i/T8xf4WeXYc7va6/weI8vTe2Q9vp/JySUpQ==
"], {{0, 347.}, {356., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{356., 347.},
PlotRange->{{0, 356.}, {0, 347.}}]], "Input",ExpressionUUID->"35a42c58-aba7-\
4263-80f5-0316ba66e920"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJysvdd3XNeZL9hrZh7mcf6Feblr3du227IkZlLBluTslkN3+7batmTlQGWJ
kiiRYk4gCSaACcwEc845gQEESYABAEEQOadCodJJhd9837f3PnWqUAXSa/ph
owJOnbD3b385/L+vffj7N/+Pf/qnf/r0/6Y/v3/1y+c++eTVr/7w/9CHP038
9J23Jr7x+i8mfvbGW298Muq1/5O+PENjNY3/i4bjJuG4g2o4gOuPQXiOqwYd
49LwvMG0wd+5jh78nr/z+FzqnK5L5+HzemrYXpKGR/9z6XuHzsGvweGp85jh
n9uje+D7oFePR1K/0vFe6rquuTeX7z2JJL1PepBX/o6fy9PDf0b6fTI5KMOc
V+6F75PuTw0HbpK+S2ZeL6mfNam+1/ftz6drjk8dlzpe328S/kjya2B+Mz+n
zXtgmO8cx8v6fXDtMj8/zsh2H+a7f+Rc6tlduU87Y7gyBv3hmeEGR/C5B9Xw
BtPXg9eN1smmNbNokS0CtePYgjWDN8dR9+A4BqcBrLqB+fXX1FNDr6Xr6c9y
LkeGK+dPylBrkcKvuo76XQqzyaH4SQ6qcxsMpu0LR+0ZvXdcJ/g/3lMGo66a
Yz3Ufatr+mtBz5jUc5rM+Dx0/ONYy/Y5Fw7Nd8ks+P//MxhTTmB90ocre9MM
m+fSCWAqgAGPzqNGUg03qedE0xRZP30ux9Pzos7B627brgz5n8GrTx8MRrwU
Hp0MrLkprAne9LUMreRz2E6Kphhaq+ilK/esaKmif4bGm7X1AjhNYV3NG+OM
946jsaawY+7PG4JVMzc+dpx0XBmsDTseA0e5sPU4x2XSs+EwmYvuZseamkPG
SpLmKymYcgM8RA2b51SGp/e+l9qrmt+6jBcZChdqf9L+CPAvGfSdYw/qQcfa
Sf83Pi9yFL7N+V3b0ed29bp6Pp0L8iaZJ4NxeS7GMz2rrXCqMAyhm4yJpKvu
PXUfgz6P5c+urfeQobUeAjQ3tQ9tfe+eZ86t92OAFyTdAH9gPk+fBwNYe9Q6
Zlv7XPx1OFw8iqZlw9rj4G24+xf6RWvozyfPl8x5iv4wvRGeoPFkfqP2tOvz
YLVOejiDel31dTV2HE27/HuR+VU0UfDtD4eu62h8p3Dg0rASdE+W5/Nz/s6n
ebaiUUkag7KedJzNeEoqWhPkM05qThRtZdqncMl4UjKsworQUnswhT99DkOL
GWeW5SBhOYL5FG4M7U7tPaH3mi4bmmn4oi/LBV8zhjPMugf3aYp/ZJffHkXr
HiUjDvf/zPuQ97bGjZ4zi14ty9NzPyjr6tpq3wkGLU/RLssJ0BZP+BOvk6yV
a+SeIO8IyjZGRlN4cgw91DKbq3kk0yHL9nz+ahtZy9AeO0UfXB+Lep8I/VPP
Jdd0lDzlGRopQ+8lR+0N86r0G/rs8/DBFAYNRrzAmjnJwHwG9kUAG0YGdrRs
yfvHTtM/PGTqDpn6hBM4V6Zs9ri88nHw8Y/w339k2PF42rBiMXl1Exa8hA03
Su8jUSRjcSSjMXo/QO8jSCZoWFF4VoToBg0nApfeuzYd69GxLh3r0P9pJN14
atgJ+k2C6A6d3+Hv6JW+cxMxerVkJG3SG2QQFi2L5pXuwaFj6Dcuy0WWLdhU
9IxwYBGtsxRdsvxhcOoJni05j6LDPu6cFL9Ur4ZXugF5y6y7woUvc3nBeVT0
bpB5p89vh9KiTBwpvVwNx0vRq8flf5m0LZOWPQ7/y4WrbN9l0sl/FN95M6Yi
b/oULJk5FasWzMbGJQuwfeVS7F29AnsK8rFn+UIcWbMEZzYX4uzmFbi0owA3
Dq3F3VMbcPP4Gtw+twE113ag+vpO1Nzah5qKg6i5fQS1d0+gvvo8Gu5fodfr
aKi+heaaO+isq0FP4wP0t9YiTCPUch9hHq3ViLTfR7TrAazeOsR7HiIRakAi
3IhEpBXRgTbEBjqQiPYiHgnRd2EkaE/EYwnEEy6iNCI0YnEXiZgaVlzxWitm
029iMqxoAnaE8B53kKRjHRo2/c5JEP4Iw06c9gjtIYf2Eg+XcO7QfrBo2B4N
2i+2fGf7tFdonebvIo8I/SQa7gSG3jsG466R/0SO1Dqyr2t4OdZaybe27KtH
r/vj4OxxcfIorD0OndxcVIStG9ajeP06FK9bi+00dm7YgJ0bN2Br0RqsXZqP
NYsXYs2iBZg/+St8+LdXMHvSJ1gxbxqWzJmCgkWzsGrZXCxfMhNL8mdgydLZ
yKfPS5cvwsIlCzF7fh6mz8nD97PzMXXWUsyatxILF63FsiXrsHxpERblrcDi
BUuRv3AJFi7Iw7L8xSgsWIbly/OxvGAJlhYsxoqVBShcswor16zG6tVrsW7t
BmzbsgM7i3dhx5ad2FW8m8Yu7N62Gwd27cOh3ftw/MBBnD16DBdOnkDJqRO4
cuYkSk4cxdVTx3Hj3CncvXwJ966UoOraBTy8WYK2ylL0PryF7pqr6H1wDX0P
S9FXX0r7oAKRzkpEex4Q7usJ48302oJYXwvscCeccC+99sAL98Eb4EHvB7qI
B/QQlmkkeum1F16MRryP3vfT6wBhmnCcYP6RIEwT/mlYNBJxes+YF5ruymC+
zHtGRkIPy02jY5k0LZu8ZmRvJX8ns/7ucb4Pvv9HsBiJWIhGbXpNoD8cQygU
Rag/hp5wAp0DFtp6Y2jriaKlLYSym9X49rv52Lf/LKprOnG/rgcPGvtQ09CL
ew87UHG/CeU0rlc24lpVM86V1+PI5SocOHcXe07fxeaDZVi35yo27SnFtr1l
2LrrClauO4YVaw+gcO1eLFiyEXMWrcHsxaswY1EBvl+wDJNmzMM3M/Iwacpc
fPb1DHwxaTq+ojFl8ixM/uI7TPpoEr547zN88tZETPrgY3z7yaf48v338ek7
b+GjN/+Oia//DZ+9+xa+/OAd+vwqPnr9VXz+1uv4ZuJ7+OaDt/HdxDcw54t3
kPfN+yic8SlWz/4Ma2Z/iqJ5n2LtvM+Jzn+LbStnYM/6POwvXo6Du4oIyxuw
f8d6HNm3DacO78eZo4dQQli+fPYUrp0/jdKLZ1BeSlguv46q2zdRfecWau5V
oO7+PTQ9rEFz3QM00Wh8WIvm+jo0N9JoaqTRjKamFrS2tKG9vRMdHV0yOju6
0dXZi66OXvR0hdDXE0Kotx+hPn7l0Uff9SJEY6CvD9FQiPZCCFaoH1Z/P+wB
GrQXeE84PAa6STbqpUH7ItZN2KdX3hM8rD6i6yHCfz+NsNB2zyL5xmLZRsk3
SYv5QlzGIMk/PJIWyUN0nAyb5SGSnZwY6Wf0Pck/npvw7QAih1tKL+CRoM8J
R8k+8j/iNa0tHUS7VuB6aTkihMNEgv5PdF0G0fYE/474UYLOE6PfxOj3MeIT
CX1MnGh/jM4XtwZF7zBylsXnsfj39H/aszHmhTTidL44HR+j/8WspHxO0H3E
ow5itEdiJEtGaY/EIjYN0gHpczwcJV7LI4aB0AD6e2mEIrSHYujoDKG5tRuN
LV2ob+5EfUsn7ZM23L3fiPJ7D1FaVoULJeW4dLkcJTQultzChYs3cebMNZw5
exUnz17B4dOXsOvwaRQfPIkNe4+hsHg/lm89gILtR7Fw437ML9qLaSu2YnLe
Bnw7dzMmz9hE+2QNJn62CB99lodvvluOaTMKMeX7Jfj402n46JNv8e4HX+Kt
dz/G+xM/xZtvv4+3352ITz77QsZnX3yJSV9PxudfTMInn3yGSZO+xtQp0zDp
iy/w9ZdfYurkyZg7YxqmfTMJUz7/FPO+m4z8ad9iGY1NeXOxdeE8bFkwA9sW
TcPegtk4tTkfF3etwPld+Ti7axEuH1yGG6dWofz8Oty5tBG3L21GxeVtuH1t
L+6WHkTVjdOoKS8huagMjfduo6nyHpqr76Hl/l2019yT0V1bhd6G++hrqkFv
czVCzZUkG1VioL0asZ5aRHrqEQs1+zSV9fXgCNJZm3X5mIXW5jbieytQfrNC
Pvv6oaXkHitGx8UNrafvSSZijCr5YlDkJ5GhBI+MVZK14pZcz9eBAzZdxrhg
N0G/tUDnGZRzO8xbSL5y+LyETYvf03EuXzfuyT0wJmXf8D4hGSlBPClCvClC
+k6ErheVvTBIr8AAnT8c4wH0R/kzQLAFiXdqRAdlDESTCEddOsZFb8RF14CD
9rCNVhotAzYa+hKo64njYVcUNe0DeNASQW0TvTaGUPWgC1XEC2ofdqO2thMP
attQRfT/7t06VNyuRfnt+7hVUYnrN24T5suJh9zG9Zu3cOXadZRcuYoLFy7h
9OmzOEPj7JkLOHnsNE4cPSWvZ06dpdeTOHrwCI7TOHHwEE7s34ezhw/h7IH9
OL53Dw7u3In927fhyJ5dRJuLsXNLEYo3r0HxpjXYSmPzhtXYuG411hetxLo1
BVi3upBklZUks6xE4apCFKxZgxVrirCksAiLC9dhwfIizMlfi6kzCzB12grM
mFGAmbMKMWvWMnw/dQ6mTZmBWd9Pl70w/fupmD1jpqx1guafB7/nEYsl0r8n
XMUicTQ1NJN8tRi3bpSTrB5LHRO3YbP8PcDH0jrHiAYRrUnQoln8XZTXnrFG
WIkpTMYFZ0STYnwOJZsk+HyMPcaO2FeSIuPHIiznM66Sgl++lhNjXA3K94ko
4Z7u2aX3Fh8v51e2roS/d/g7S64r9yxYt+Te+f/xuO1jVPZLwtNYVrqDTddw
Yoxp1h9s0SXknuX8mhck1JB9ZSXT7JKyH2WQjEPHePxqKbuNXIeflfeNpWxH
SpdO0QFH2+94bhK8p4m2WzyvNA+xqCs8JkojHjd8wZHB8xCm0Uvf99H3vfR8
XcQDeJ90hh10hGySkfTotdDeY6Gzk17b4mhuG0BdSy9qmrtQTbzgLr3eeNiK
K/dbUVLVjrMVrTh6uQ4Hzz7A3uN3sfvYbew6cgPb9l3ApuKjmDO/AH9/fSLm
zV+OonU7fBpmnimIOX5vni9O+ltDXSPmzZkvdC2INXUM8TbCgCW0TPM44m9x
WiMeCf0/W89TPOrKiIYtwaVN3yWYL+shuKUR4/fhOCw6n01EyKJzJvi8zDuZ
l0ZtzU8TQmvjsbjmrXH5To6huY3RuaJyPqJpRIcGwgn5HT+HHBexFC1kvEVd
oY8OrZ2TUJiwomo/WRp7vBeY3vO+lL0ZU8/Ie4HpKw+LMakxxvfG50hEbTmn
a6m9Yxl8if1G+1JYdgnwFnm1Pf9crO96/Cq6s6NsnoRPhXN1LtFXbeUrYboe
I6wmXJaL6DP7Ofi8LvQxgeMtRQ8Y/8aOSduU+AKdn/FPv4nzXnKVzOPLTvQ/
PobloxjNXZTmoqLiLgoKV6OqupYwP1SvyMpTNdYePqjD7JlzcLv8jnxO00vk
/pVf3bKZbtiy522HMEOfo/4+Y/qheGtc1jou6yS0w1byG89ZPM70yRa9LB6P
aZrHeFX0UNEnR3isrBfPD/2f7YK2rGtCf6Y1YdsG82KmdzGNccYg00Ba+2hU
07q4ugehT2w34XuMKfrl70lDczRN4xHX9J+HLcOSVyuuzqGuq59b72eeH6az
PF9xh/ZKwmDdVvonz5Xe83FN7/n3iu7aSmclPdYimZznSGh0wtb005PnVrRT
yxz6nkW+0bhl/DJe1TzRoGu4dC6XdADHtrVvSNHkuN5n8jt6BtYRXLbD0m89
3pfxlBwl+5XoB/O/tWvWo6GxVbCYTR8O4s3W/kd+9rraesyZNReVd6tkToy9
XGQiiR2C2MMtm+cwITYol++Z9Ptwdxta62vQUFONrqaHJDM2k8zYgkhfB63F
AF2H5p/lKlftvzjvQ547Ple8m2hcC2L9rYTPXvocV7Ywvj8ajC8nEiEeRzpU
LETPP0DvI9o+TDqQo2y/wvPYFkfzxnY4w6eshPKbW9q/lPI5uYIH4ZNsg+Dv
PKYT/Lyu+ED5+zRerbGm7k3j1jL0JiWTyu/kmUmOJMww1gSPvE/kHE6a/UD4
R0LLoAl1PyKHMOZsW+5V+eiUb4f3LuPNias5EjmX70F+r2ijHCf4U3PI9he2
pbMN0JK9Q3uAbZiCaUvkDn7l57PE9h+jfR2juWb5xVFYY9rNfKY/hrIrZVi/
ej3qHzbJdXPZVNLsKzz39Hy1NQ8xf+4CPLhfq/af79fyFF01PiK+Z8YarbUV
HkBL9R0c3FiI1fO+x8LvvsKK2ZOxdyPpQUeKcf3SSfR0ttBvSbZzeO7ZbmoL
9nhfxQYG0FR7CyWntuH0wfV4QPpQrJt0c3qeJPPMgTC62xvRUkc6UdMdtLdW
oavzIY1G0pV76L6j2q/uqrUSWujIPSsfpyN+CLZpif9VhonZSPq+WRPDIX41
R/tonfQhfgbtb3P98xv9XvFdI58xzZP3jrHNDl2DIfZXHYMivn8n6MPl3yIV
V2D8t46hGbb2BarnEzlQx9Ok4mg8329nfDFMRxXtpd/zmrgqJoz1rLjsQ1fT
A1prTQttvf9Zvr9WcpWwVoSW+mbBz2P5IPi+6dyMNZbXmJfaCUdfR60jyw/G
x817muWrzuZWbNu0Hp9//AnpO9tRc6+GaFsjHlQ/xL79R/HOex9i+vSZpJs9
VPuI6TQNj54zSefq6+jC4QOH8fX3efhkch7+6+8f4i//+VesW1mA3vY2krHj
qK+9j2+/n4y3Pp6IV958C3/+y6v49z+/gtdefQPbtu1AX1+/Hwsk823pWAPC
ivjjnaHD9e36yYCvPKn9p+p5XeM7NcP42NP89Q7S/L6WpleWq+NP1HmTdjIQ
q5TDZu/qmDsTF5V2r+Y+3Iz4Ph2Xo69tYhts4wMO+HtN3KF/70H/hB/Pk/If
+75vx/htzf8UzlmGvVpyBVs2bUJHW5s8/2P5KVhWJTpWXXlfeChjzmCN+Qbv
40Gx8WlcE72JhMI4uHcf3n/3PSxdWoD6xi4MxJKiLxHk0dZtYUvxISxaRP+r
bUQiHEVLbR0e3quS9xbpE5V3qrH/0Emcu/YAZXe7sfvAZbz77id45603UHX3
Fsl6Ydy4cQPFu3dj1+Hj2LjrEIq27MaCRcvw5lvv4+Ch42KjNvtd1sVWsUk8
POMfzYwHdoP+zFTckmviVCSWJD1+lOOmVCyRWjcTv6JiJm3la/djDRzlT9U8
I2li8bLgzI/HMXhzk35sn+dfx3z2UrFxEoepYlE9HUcTjCVxAu8VzoK00wzF
p1wTH6PjIgx99Vw1UrGGEN2B37MMebWkhLC2EV3tHWrOs9C1IbTNUTpV1b1q
oWtBHmpkOvb1JS1lj7AITHW1DzDpyy/xxuvv4to14nss29pqL9Bt0OdB4uNt
OLDnKJofNKG3qRXFa9fg4I5t6OvqQLh/AOW3q3G/thURxiiNcG8Um4k+vv73
13G55AJCoRAe1reir98SmT8WT6KfdI27VVWYOWs2bt+uFFnJSw768+PaOl5F
eLSt9r2nYr7dZFINHX/BPEPxSx3j6yqcyrNmoYdJE1cpa+75sSlmzzPvUvqS
4+tS6bG+ubGWNpKp9U3FLyMVP+3HU2rM+XFz0PQ4GENAWE8GfbEKq0kTX+co
XuXzAJ/WD2qsadrrqBwCR+8xi3hv6eUrxM82o6e9S2h3ms02Qzfw7R9iE4jj
3p1Ksa+xjsDfJTTeWO6LRJWOx9/1E9/at2c//vCHf8OMGTPR2NAo+qPFtjPt
G+djB8Jx9Pb0E43txOYNm/Gnl/+EN4j3bVy3Cc2NbXQNzVdFLiBaORDBpQsX
8enHX+B6aYWcg69tdDybrj0Q4mvvxdIlS0l26xD5TPkUdVym9nUrPpCKzwkO
P0bYdn07g8haHFsaoC1OcN789eP1sn3sODouS/kwUzFwhm44xu+eEeuX1PhI
6twJL8sxil5pfdLEl/iYDNAdP8ZYx3c66bHywf0iMqC//5I69hQ+noxM5eei
OJ5/fTdwXrYdXLlcgm1bi9HZ2Z0WK5CJNaObM9+NRmKIEF+7S3Ri8cIlaGpo
UTZX3zbnia2FZUXGU29XJ+FlI17+1z9i+fICdJLcJT7lhLKxmXjHyECCeFxM
6NOxY8fx17++hlmz5uPa1TLCYEjbOFyxz/FxvT3d2L9/P+bNXYTa2jZlHxYb
qtLHYrE4GkkeLFhRgFMnT6M/FJb7dJyUfG7p+zWvmTYeY7vwn037v31bl8lH
yMSm0Q18vJm4UKUfmBwHE98RjNlNyXtBHKXidP14+kCcnM/fndQYkodgYu/9
uP1UPIZtB3QazRu9YKyxp2NNMnUT/9yez7NT8m0qzp3tMZcuXcSOHTvR1dWT
NmfZ7GoGa0zbeK1vllUgb/5iNDe1+bZsM8SvKTTARm9nJ9auWoU//OvvsWrl
avT09Ck9ntc6ru2EWhdj29oA0avr16/jnXfex7binQj1hX27nvEVRMIR1D2s
w9o1RThMslkoFNf4dhAlvTtK+yhMx1y5XIoFCxbi/v0Haf6vTJqdzb6TibWg
nTtTrhhObzcxn2mYDVwjm5ySSy/LdtyjZOxcsR+PpQeakSMmLhefD+rsjLV4
PI7z5y9g16496O7u9fGdbc6Dn2XeiMYw1hYuyBe6xuvo56JovcXYFPqJjxUX
b8K//ellrFiej+7ODh3fqOVhpqdxpatKbBnx4/LyCnw48SMc2HeIcBWT8yjZ
NCkxmwPEl08eO4PdO/dLvIOJExB7O8uB7H/p7SWsFmMN4TFENC04L8PFymSz
ZWdiLPM3uc4ZPE8Qa0EcB79P49mB82d+ny2eJxtGOPcw1zkfhenM5848T7bz
BXFn/Gh8XDQax5kz54iu7RJaE/xftucOXo9/y1hbmr9C6BrTO2MDMnYjT+eD
RIiXnb94nnji/8a0qd+gsa5W2Vu1HVpsAGzjimtfK2GtrPQmPnj/Qxw5ckz8
TGzvHhTa7JBO0I3yshu4cvEa2pu7hA9Lzp/oknRdG+ITampswIoVy3DixGmh
oZl0YLgY1mxrke19tt+Zec78/lFrl4mtbGufC1O5vs8Vs/io/WauF6Q12WTY
bM8SpEvGnz4wEKV1OIXt23cKXVNxRKn9luseDF27QVhbsni50DU+n7GvybPo
fCVXfDge6Yct+G7yVLz79ls4ffIIomxXtaOig7HtOU58LxIJkQzWJfzx2pUy
vPnGGzh+9BDpIQNiX/OIFsbCvbhz6younT9JOGuSGHUrFiW6FyV8JURPEr8l
YetmWRkKCwpRc78upZMZ+4CXnu/4KPowXAx08HfmvNl4y6N4bS7+9aicqEfl
K+UaufaU+V8QC7kwlYm/IDaDchfzlcOHjwoP7SHZW8Xs2EPOn22Omf6UXrsp
8WtNja1pWJPf6PxiV3R90P+ThLHLeOetD/DNN1/g7r1ShAlvzMeZRjK/q753
E/du30Jvdx+ulJTi3TffwKG9OzHQS7Ikx4CEQ7h9g/Xm1XhQfQt9Pc0ky3XS
8e2kYzbTeaIqrpqw208y3k7aQ7t37iUeHh1iAzK61H9XfpD5f6583Vy/G46e
BrGbnlee9PPyc2EreF/Zcu1y7Z8g/wvy90ftjWx0LUjf+vsHsG/fAezcuRvd
XSGRsbJhLRO/gjWijVeJ9ixfthJtrV2Cl1Q8sYeUH8fEnTno6Q6TrH4D+UtW
4auvpmLu3LkkS63AOo6T2rAJJ0+VoKmpizCYQHXVQ0z6Ygo++vAL7Ny2B21N
rbh07iI++fAz/PsfXsF7b32I99+ZiM8+/hxfT5qCs6dLRI91RW5LoLGhXuwx
rMNGI5Zv+07p/EP38nDxy8PxxP8OrGV+n+3cQ7Hy+HkojzOCc2HkqWB8Sa7z
5uKtQfwwDz148DD27NlHdCWsff7uY+GZ/3/xwhXkkW5gsJbGd10Tg+Iqf7ul
sMuxtG0dYZw6cxUbNxZjZWEBtm3bgrKycuLjCcKZJzEo/f0k450rxZrVxTh3
9grpE724WnINqwrXY8HcAuTNXYG5sxdj/tzFKFyxHg8ftIqOKvos0bXa2gek
j2xHS3O7yjP06dpgmv3gcXjS46xlNqwNx+OyYTIX38y1Btn2yePwy0xsZaPh
uWSDzPtKi8kYRhZgrO3dux/79x8UHiqxWDmwZn4TjGk7d/YSFi9aRljr9LHm
z43Jt/X9P+octsQ7EeZsFUfIsWpse1VxZwmJ5+aYKYnZYptbf0JifhyJhXFU
rK/EA9pEx+IY4N9wrKQd8LMQPeVYcPZ9ik7gDKbxzUfxxsehR4+zxplY+0ew
8TjyYVDG+UfOlXk/uXCYKUNlo/1G/h/uXgzWdu/ei0OHjhBdCw3RxXPpR0Kf
NNYKVqxGZ0ePyGspWsvHmufztE1PP4en7OvqHlhnHBR6xHFYnEsTY3utrfBh
B/ZvegzD0Lk2tkg3kI+eem4MoRWPGsHjMnXPx/lNtvXOXLfhzpFLR83Gr4Zb
48xzPkouyFznbDaW4LkNXoabG/6ebZ2MNbYr8PtM222u3/JxbJdgrC1bWkhY
6/Wv5z+fsSF7qZpYKh7BTattYOp7sN2MaZGJnzK6nIp/cxSdM/YzJxVP7fl1
YkwMj5eSyTLw9Sh+kms+s2F7OHqQ61rZ1nY4mpO57x+H9mTDnD+XWXjwcLL+
o/QBgwWJt8g6HzrWgNa8vz+MLVu2Cl1jnTTTbjsc1lkPPX+uhOSttaJXDMGm
X7NAxQyb+gSCP/p9UjBCuEtqfwvTLI6Rtl0fhxInZ6UwLPF1aTRLz6upx6b9
yn7sgZvMeI6htMrURZIY7qxzrushBOSSFCZy87khn52hdvL0a6XOZ3DGuRfx
gO9PzUnSj2+S+dHDcbOtdQp7ubAznN04m10tG9aM7DRkj8lzq/iE/r4QNqxb
j2NHTwjWsslomTSdX/k41mFPnTqDoqL1aTZ5c1z6bwcfWd9E9nDcHlbOzCVv
Dy+nGP+vyt1SfJnn15a1ZdnQ5I8Y/ixxPkKTIXExtrxPpmog+bWLNK7djOsG
/OPpdsakisXXfthMTPv1IRIqp0bi0TnWwPZ0vBIk3mLQNjFuXAOE1prrf2Tg
PBe2gv8P8rFs9CQXHoPYGLreg7puk94T9KwRkps7W9uwfvVanCSsRfojfu50
rvUNXpt1gZMnTmPDhk2Cu2wyzXC6VSZ9Eb4cS8/ZyzzncLLWo7DmaplPyYqp
+piOXltHx/qYWjKeps0mHtf1a8UM+rUQTHxkMB7SYE3RHzdtWP7a6jhjHb+W
qp3j+jFxvO8SMT0sJ1UfjG3a7KfT/j3bVbkpw2Erk2Zl8r9MrGViLpPGZfqU
zHoZrNkmjlRyOxwMdPXgfsUdrFi8BKeOnhSsOVY6RoaTORgTp0+ewbbiHSLr
DScXDifDBHm7ycPK5N+PknGGxZubijcwdeL4WszDJRZc/LKOzt9IyPukjs3x
jP6sdZWUTc7USXJ9WdTUF3TS4iw9BGUWVSfJlvhornkjdW8chTnfJqljzq0Y
6fURjhGNK/9dGr1P8VK/LqadnR5lk72Ho3XB90HZ3fiaeGTGL6RjTeeAsQ8q
Ss/JNoaeECquXse8aTMFazHSAdPjnbLrNHI/dB7ObTt25Dh279wjsWy56M1w
WAvqZ+ZZjI6RqVvnkhcejTVdv0tjzQ6sFcfhcr6/m4jAioQQG+hDIhqR/Igk
/W+Q5UrhV1y7i3musk+bXBSJq+UYW6mf68mw02ofqthUW9cVlJguS+XVmbqb
fs03zXdV7JcjOUl2JExjQNevUXWVVEwlP4+OhSQZQOWVZtcbs+kPj8JaJk5N
7lbQ95SJ6SHyFtvuO3rQ3dqJzoZmVN2swMr8Zbh87pLkWJp9O5x9R/5HxzHW
jhw6ir2790k8WxDXj0t3guc1NrvgHskm0z4Ka0O+N3GFQazp2pVc6ysS6sbF
00ewZP50zPzuC6xbtRi3r18Wv5gbkMmDMfRGXlP6hKJNRg9O1XhNpsVOShyK
lsMkn9SXH01NSo0dpgdE0wb6ehDqakF/RyvioR5VW4ZpL8cGc307T/lBGGtJ
tkdaQ2OUDG3K5m/M5JHDrU+Qdj3OPpfPfO1oAr2Et962TrQ3NKGocBVuXbsh
ueKZNqBs6+hoeWKAeO6BfQexZ9dewZ3jx2HmxkImbQvix9J5vI+i9486fzas
SeySX2cwqfM0SA/v7sbpY/vw+l/+gOfG/gueGf0j/Py5Efjy47dx/fIFonUx
lSNsGVwYeU3VqfR0HUGfntgpO466TpBvKt2H7c7in3FSteFsLXtxnSw7FkVd
dSUO7CnG4oUzsGD2d9hTvAEP7txCIhwSPi/01NHx5JLzqWINhvOTZ5PDhpPr
svGU4WT5IXjTdJz5wiD7Q7t6sZqwdu1yqcQuujno0hC+RM/IcbkH9x8SuiY8
1E6312aTszLPnbl3Mu3P2eyUj4sx37bEvgJH6Qierg0udIloS8WNMnz43t/x
3PifYOzIf8a4UT/Cs+Ofxq9fehbzZ01FqKMDSY6ViiYkL9eTvB2mYSSHuLre
oO34OXkyt2m80PPlPfF5SE6nE6ATOqaKz8k5itF+ND+swvwZk/GrX4zHhGd+
Ivf26xcnYPJnH+Jh5V2ieazDJSS/23bcIXQsG//MxNrj6BDZeNqj5OYhNNHo
4TTfPZ09WLGsAKXXrss658LaUFrhCV07dOAwjpMOy7GNkveQTOX3PIqmZQ5j
pwnKAjmf4THmICivqbwC83+FgTjR4u1bN+OXLz2HcaN/jNEjf4BRT/P4IcaO
+BH+4/e/wPnj+xDu4BqDzcTHmpHg3OdwG/22nfYajy4MEK2JhMO036I0YjIX
HE8nNTb8YctrlOtLxHVuftzkqKoc6kQ0hq7WZhStWoZfvfQMxhDux4z7McaP
fxLjRz+BX/x0PFYsykNHS5PUNGT9QTA7DH16FA3Lhc3MmkG5zpF1fcwwWNOv
HB9ZsGIlyspuSl2Ax8GaXIMGx+zs33NA6uEkeN/byob/3421oO17OL0427Ob
51X5va6qWcvHMr8eiGD9mtX42fPPYPSYJ/HU0z/CE0/+Lzz15A9o/AjPPfcs
vvhsElatWofNm7dh65Yd9LoVxVu2YkdxMeG0GLu278DePXuwb88+HD54lOj8
YZJhj8k4fvQUThw7hdMnz+LShRJcLbmKy+dLUHLuIkovXcbt0huoKi9X41Y5
7ly/jmP79uLDt18nfv40RhPWRtJ4esQPMWrUExg75ml8+uFE3C2vkBpfkk+v
84gdd6j8lSnDPw5Ny4a1zFjJrHgIzrkembIS5xisWFGI8vLbYsMJHpOLlhis
cX253dt24TjNq+gVdkqnyqxXbbCSi/byyObDzcnDh7m/bJjm97Yvd3HeVpz0
7jC2b9mCX/z8JYwdNwajxo3CU6N/gidHPokRo8fgl7/7D0yetgJ5S/dgwZK9
mLNoG6ZMX4UZMwsx9buF+PabOZg5bT6NOZgyeRqmTZmJr76YjE8++lzyuj7/
dBLee+d9vPv2u/jwg4n48P338d5rr+OtV/4L7//tVXz29tuYRN99PXEiPn/n
XXxCn//ypz/h589OwDNjRhCd/TFGjnwCo0bTPhjxBJ4a9RTeeecd3LpZrmqn
6PqSgo+AHpA5HqV//iP0LdvaBfe5zLvpOxPUSem3XJ+wkOjavXtVvu6XC7tp
fJ8wZbB25vhpyQEN5pCl+wiGl9OyYe1R8kIaDcvYX5lY83sN6DwElq+saARd
ba0oWr0Gv//9H/DMsz/F2Oeew6jnJuDpsRPwr398BTv3HkdXr41Qv0d6tie1
vbimUSRsSTyc1BRknih5ZXGVAxYYnH8YDkVoDMjo6+lHf08Yoe4wIr30HX0O
dfWhr7NPakO2t3Xj9t0azJibh+d+/iuMHDsG48aOxAjC/lOjRuCZF36G2Qvy
UN/Yourrcy12nfecqpM+1P+V1WaVQy7L5L/DHZNLVkuXtbTdj/YF1+pbmr9M
cop5n/gxXX6d9lRtEanHp+UQ/szxZDuLd+Lc6bMkryZE/k2rye8mEayNPay9
zknP/chJq/26BikbaTJga3eMzdXsGS9V51jkb4417+8mGfsGDhLfW7FsHdYW
bcG0WYvxn6++hV+8/Ae88c6H2Lp9Pxqau1SdzISnea/SJ9Q1UvU6UnU+UsMN
9Okwcy3x9boWm8m5d3T9GNFJ6Te9AxYullbgzYmf45nnf4ZnJowlzI3HUxOe
x4Rf/BZfT52GivKbsKMDSCYsDIrsmVQ2PB2/H5TfFI+Bv+eDtCaXjDQcP8nk
m5nHmXUMYkD8wPT8zY3NNN8rUHv/gR9j5um+BbaWX335lmtG0VxEwwnJCe5o
68LWzcU4d+YsfY6n9UTLtXey8b8grcqk10N+b3Q8/7PCWrDfRyoGJOn3seCc
ayvWR7SkHXfLrqJwyVwsW7Qcdyrq0RuypIbdlu2H8PnX3+HkqfPoItoj9cF0
LbLgPs1Flx9Fh9U6eAF5NlD3z1F4S9D3Pf1x7Dl4En999XW8+OJLeP6l3+Ll
V97Ah19Nxxd0f0UkY7bUVkkN6KQdl5gY6bdgp2Mg9V77Zz1v2LXJ9lyPK7Nk
8r80rLlqPRhry5csRUPtw1Q8o6NtNVwjTNfN49co4WwgFKdXVQevtbkDG9Zt
xMXzFyTf2AvQnH8Ea8H7eSTWArpl6reezv3XPl9P+yJpXQfZhm8laJ+EUXXj
IlYtW4L585eh5Npt9IdtTWuUjbWmph4bN27Fw7rmQByvtvc/4t6HW6/MfW/u
ObOWgq3z6C3JO/NQdqsS35EMuHHzDrR3hNBP/Lu2oR2bi/fg+8nfoeTkQdKR
W+j54soHb+onWbay86TVdwjul1SczKN4oG+X/Qfw5v8ueAw9d3NjE/LzFqL+
Qa3v+xP6kkjp66qugaPqH0dtH39c82DNqrU4e/qc0DXHzi4vPdY+0XR2uNxc
83s/vtrT/SdMXJz2Q3q+r5vOEwmjo+EBDu/ZgYULFmPX7gO4XfkA/RGu6zYo
fmtH275aG5pxeO9BNNa3iA7h56W76b6Uxxk5973fv0XbvW3TU8v44FP9P+7Q
fc6dv5j28kWxpUjtiHgSnZ39OHXiLNHlfGwpWoO2xoe0l6LwuNcJ10fwa0S6
ureWwVpqb/pz9Yj7f9z/ZztevjM8m9a28WE9li3OV1jTvMjnZfEU1hS+iLZF
bP9zS1M70fN1uEBzwbFs2WTK4e4jTX63lf8skSXGIztdS/q98Ww9pAYAzy/7
ceIxREN9eFBZhV1bizFzygwcOHQerUQf4uxXZL6qe/IoOm6jtb4eB7bvQkOd
qkOXTRcZDkePxVd1by6z16Uelx7B2FGOObpzt1Jyf25cLxWflepDlxT5bIB4
zNVrd5E3bzE2FRXhfkU5Er3dcOm5uT6plST6mDRr7QnNT/o2Alf3rXz0nsnM
m8jFN7Ppur5NgmOp4jYekpy2pnAlWhoa/f6Lvpwes3RtW4UtpXtZQtsYg4y1
TRs248rla1n9sMPRtMz1kfp3cVvXn0nXRXPLeCkfpWBNaBT3MyIds7kBl06c
wJzZeVi5bgfK7zZJ3oId03U+7UDNIfEhxGkO6mndNkjNJb6+0Wuy2WCy7YVH
0QT1nIO6NozWGf16t6YXm6I7TONu3SjDvNkzce9epYpTlphDS/eM45wNoLk1
hA1FmzF78jc4e3AP+jvbxKcgMQAe1/ZXMaoS8yayuKOxNtRm+bg0esgz5cTa
IEy9X17bmspqFC5bjvbmFsl180TG1DYbS9VH4HrYqqaxwllc81bmNSyvXbt6
fYhd7FF0aQgtcDRdi1m+D8escza6keoXytdU9QuteJTw1IU7N65h0fw8LFu6
Cpcv30RjSx96w670B5G6XWybYhtNQumvIq/bvHcasW7tKtIXbgveM2vtPQpr
2f5n7tm3RTgm/ihdlgnKn/zK8W0XL1zE9CnTiOfUy140cczKv0/HkEzG/Sa6
u/pQdrUUSxYvJR6Vh9p7NyQWifdRQu4FsieTft6HC1Xzbeh95pLXhtv3uedo
0N9bvLZBrAkdD2AtaM+TmJKYrhUssQqO8JpVhatx9co18Zk/in/kwpuj7RVW
XNWGDcZrBm1GQf7s+HGItuKZsX50NNbg/OmTWLxwEVasXIey2zXoCyWkx0eE
c65iSt7k+uJuxJV69K6ui8UyUnNLM9auWYmbRE/isVSd6Uw+ms1/Npw+FLxv
U3/RCdSdDMaRm+eMRmM4cfwUvife39rQovypUisoKbIC062k1JBTNpgBeq7r
t6qRt3ApCpbmo6q8jGSILqIfcc2ztV5iKztUNt6TSzcYjt4FaVvaszqeH18s
g9a28s49hbWWVu1jGhxiD/Q/S85JUtdlYbrWJLrBtSulQvceV77JpL2Ghiqe
nVA6fADrQaylr50rdZatcAhN1eXYuDIfU76dit37T6C1O4IQ21L7CWdsoxmI
K/7PdeS5lj3XCoyrvhtOQsUzNTU3Y9WqVbh69ZpfmyTTjh58De6FXPknQ3Bq
pUaw/lvmeblO08EDhzFrxhy0NDZLb0Hb1KmWPiAWTB1e7m/DtRtjiSRq6jux
bNUmzJvxPS6fOopod4fqcWVrW7an6sEH9dBc8kCuz9kwmfZ7Y8fQdIn5IMcB
3blVQftgmeKhmp/k9NXabqqPhK4BznTtZtktifMI5grk8p0N5YWGt3t+TXU7
YMvNtl+M3ZZrTve0NOBA8XrM/HYK9u4+hLq6ZvQTxrieJPcxCPfHha6xTTBG
8hrXs48QnqO6v4bxiXO/veYmptNrpBcKx7SrGGFVY17khrgaYndM2H6vApZx
JW5W9xCxgiNhp2I7uHaxrpEYi6o6ctLDRvfosEzdXFoD9jPs3rETC+bNQ1tb
m9TUl5jwQKyio/e+JT1sdE8B+tzVE8eps6WYOT0PC2fOxoOKq4iHu5W+5xis
D+b0sWfjKbloSDbM+fXx9bzxs3Kcxs3rZVi7chU62ztUnfEc/DeFNcfndbU1
dVi9cq3f28DKwFouvGXl9U5Sy4bWEPtakPapmuJ0/f5ePLx3G/t3bCfdfxEO
HTyGrq6IzDnzDOk9JP1dLOlVwLQtwvyUcCiD+1VJrKnKb+AYjdamVqwuXIvj
x076WFO1r4M9CYx+bvnPbCccf5jvzUhIPw3LP45jFGKE99hAQuVga9ulsZnL
eej8/b1ci2QHCgsK0NHeKT4wji+0pFa14/dWUn0hVM1yS9egj0Y9tHc7uHDp
DubNXUzzswCXzp9AT3erqrMTVbU8La33J0z/k4SpRW+G68vsj6IhaTKXqTcV
VfnlzE84ToNjD1YVrPSx9ijZ3qc/NGdcj3llAcvSd+W7oM8gVxxKNswF+ZDC
msoBNbGX/vOxrULiaHtxt/QyNq0qxJqVa3DvfhPCEUdwZuseO6pWv6IjTL8Z
X/0h7n0WI/pmSc8WmWOu0W+r2PP2li4UrSwSOYnrGEosuviXPN3zKql7FClM
BTFm6FHwc3AEsZgY4J4ztt8bydK8RvWb9sQu3tPVjeItxVhPuhf7SmPSx8aV
YUVd1dstavDFvoOY1ITlmincDyQaBfrCHioqG7FgcSG+/OIzXDpzHKGOdrp+
1Ke7HIOQiCV8fElNeW13sHWfDKGnGXXjMmPA02pBatodDfiGQ7R3Lp67hILl
hYS1zrT+k9kwm4ZfOmdtzQPxb90hmS8tTlofY+SXTMwJxhxV23fQU7Yt1gO5
Jlac7pFlK+knFTe9kG3xMcVJ1i2/ehZ5c7+XXjHl5ZUk1zgiq1im1rmub25y
31UPPlv3/klIDQex3UStlO/QVT2T+2g+tm/biZMnTxOfVfkTikcqe6jMh98T
2cj46Xs6V5yY2VPS80X3MHfFFqD7wDi6hqquD9bR0YaVhYXYXrwTvV1hmgtF
q4WXJ0xOjfJv+b2d9T062pZr+h2GB1xUVFRj+vRZmDdnHm7c4Fo6Cm+O7okh
NaIl7pKezwK8ON1vdFB6IylceX7Pmrj2h2eTqYVH6P5KsUiKtnGdqNOnz0n9
2o72Hn3O9BjPdPk2Vd+Aa91W3asknK5ApY4RcU1d+wDWM3UM305rK7nW03ZU
7kMT6e5CVek5XDixHVcvHkB7YyXJGaRLxfvR196IUwcOYtHcBVi9pgg3blWS
XMZ9y4K9to0u72jfuO7bE1dymfjamMcl1LB0zL+jexdzv82d27bi2OGDhMt+
5XdwTKy2lzq3nxflPRbWzHeWphu2lvFcO5ULavaI4lk2WklXW7p4KQ7uPYhw
34CqiePrEkmFMb93h14n21zL2A49VWOdcBMOO7h58x4KiIfNmzcXF8+cxkBX
l/RXMbV/LW1rVPKjI/TV0f58xzG2IWUDyPasZn2ZDqZjLUH7eEDqLfpYS6Sw
lpUve4Pax6v631XevSdYq6qs1rTE1PLPHbeX6rXh+XI1Y62vsx2nD+3F52/9
G/76H+PxxqvPY1neF7hx9RQqK27gyL7dmPP9XJL/j6O5rV96xyUMxhKq3pa/
VwKYCOo0Ri+ytC9M2XA9ldeUSKC/qxPbN63D7i1rEelpo3uzZL24f2k0oXrR
qH7atvKDudnp/3D6q897xC+m9VFL8/xEUnIbuB9UM+k4yxbm4+RR0iX7w2L7
VP17UrZFx0nJPMbP58cWuY7uVaTmyegOjQ0tomt/P+Vb6Q/d00Y8leP3dV1j
lb/IsXEhulY/uP8K11vPxMNwz8o4Yqyx7TxM9GwgHEVvTxhHj56QWEnGmpKV
rJy2CkWftU2EMMNYW046bFVVCmvB+vZBupgtvtPcG/ct2LN7B377u5cwftzT
GDv2xxgz+n9i/Nh/xq9eHI83//4uVq3eRTpmj9B0V8eiiQ6QMPWLUv0w/GH6
AzimP6Kt46M8FRclfSBpbllmCYdRXV6GuVMnYeqX7+Ne2SUM9HYqW4Ore2tJ
LLnpZ+D6tf2H030y9aC0fad1UJWX4olt2WHeHY2hnuZ06YL5uHT2hPSy53qZ
Ko5mqL0+de6k75MI5sJyvJFj+uVxLwDin5ev3sCM2XlYviQP9ytuIs49k6MD
sAb6EOmsR28T9xl/SDjv0725cvtIMn3YxpfOMjHXOWYdtLc7LLUV1qxZJzTO
3GNOnVEPnl+bcHn75i2xm1YxD7WHYi3bHsiMTebXttZ2kr9m4GfPj8OEZ0Zj
7LgRGD36SUwYMwo/HTdOer/X1HZKnIP0hbPTc2GV3V3b29xAnnlAx031hVNx
HdIjQfpBWgh39+Lq+dP48sO38esXxuPnz4/Eh+/+DTu3rkeou03soco/4aX6
8mi9xcuyx3PZrVI2SkVbxXYkMY+O6m9DAn1/dzsqb5WiYPFcvPXaf2Lz+kL0
dDRJvp4n+S+ermedxU7ux28YrLli95WaElp+VX0hSM8lvbyyuhEbNmzBzO+n
4OzRPehruIeyUwew+LsvMfn9N/H9xxOxa2MR2hoe0G9iMH02fLkwQKuD62Hp
2u4Ga6ybhQhfR48cx7q163NiLdOWwnuHZWXG2p1b5ViavwT3q2r085t6jbnt
hOa9sW0wrXlQU4uPPvgA48aMwPjxozB67AiMGj0CY0ePxXPjn8O61etIX+/V
+b+2zsdM8SXlPwzmZ6p5NjVhDNbYx6Z6NCo6yPMRCUVQdecOvvzkAzw77kmM
G/0vGDHiB3TtH+OV//gdzp84gBjpJJ4VV73QeB97g34f8sf1Y6XkNde35ap4
O2WPdi3iNb0dJCvuxIfv/Q0v/WwUnpvwJP78p19i49oCNNRWSy5fCmtZ8maz
Yc1VcUpMC4RGGB6s+1Q+eNhOPGMdvv36c8z97mO8+8rLeHHUU3hh3Hg8N2Y0
/vTbl7B5dT46Whs1z8ueUx+kHYmE6lcpvYljygbJvPTo4ePi0wz1RXysZcq5
qfdGvlC9gO9V3MaqFQWoe1Cn+JiWXdP6K2Sx9QVtHDzq6xvxxZdfYvyz4zCK
4+zHjcLIMU9hzJgnCXOjULx1G8K9vaoHp616Omb6E3yakzZU3RcVZ+DK/kpo
m5nqK++gq7MT27Zuxc9f/CnGMdbG/xhPj/wBRo78Ea31CHz12QdoeFApMWLS
P8pTfkg745ly2dOHyK4JYzsx+HBFPooRnyy9fB5/feUPJEP8C0aO+meMGvnP
hPkf4ZcvPSt+zs5W7dvRtUSGyEsBv76iP0ZHTfq6g3+M1s14//aGEtLj63cv
/5qu/ROMoGcfQXM/kuSZCTQHf/7jL3HuzEnEuFejMzQGx9gchvQzjivbGNt6
BvpjOH70JM31Nnof1efIXrNJPYvSQ1RedkLo2uqCQtTX1ml+kJIXstlOhtqG
VZ9qrqe1et0G/PRXvyCcjcHoUU9gHI3xY0bixZ8+j0P790qNedUXLunnRPr3
p3l7Zp84x03FTVpaN1J2SdePyW5qasXi/Hy88OJzGDOe8E14Gzv2CcHdWOLj
f3/tL7h7u0LTzaSKYXJVbFiq9lt2epZtX7F9zfQXso3eQvSip6MD+Yvy8Owz
YwjnP6G99hOMGcv38iSemTAa773zFt3HHWXXC8i76XhP2WCy+SnVUDj1pCet
0jMHSLa6WX4Hr/zvv9L+HomxE0Zh1Hhah7GjMeqpHxN9G4H169ZKXUjGcDad
O2hfM2ujdP+4zH0/0TLOLdu1Y5fwVbU3s+tQ/pw6yt6YIBm27Oo18aUyXUvo
XO5gbGGu/Z6SZdU+Y/tL6c07+OirbzH++RfoeSfgZz/9Nf7jlbfx5nufYuas
OaKPtTc1EO/m2huerzMbm15KTza9tgI+be1DUn2sgrJFEu0dPVi5ag1eeImu
+wznUo0gmkI4HzcSE2i+J34wEdUkI0j/GSOruSma4Ti5/Z9ZZVTOi3RSPnxL
623tze2Y8f10jBk1GqNHjiL6OhYjRxP2SZ4YP2EMXnv1VZSVlQndGMo7jfyW
kqVcn/Zlw1tS59grvZZzNe/dvYu//udfMXbMGLrmKNp3xGNGj8Top58mrI0X
OStM+qTQBx37ky6jOUPxF3d9usY8lHMaObeR6Zpral4EsDqkHpujbC+85oy1
5SSvPax5KHarzLpKw9E1gzWW71iGCZF+fOZCKf78t3fwxntfY9q8dTh44R6u
3+9E0aY9+OKTz7FpbSE6Gx/Apf3lWKaHbPoeV1jLnNek71tT9Q6UbMO2J661
e+z4afz2X/+A0RPGY8yEsRgxiuZ49BiSHSdg3uw5aG9pF7+Rk0brlYxoWdl7
QOSk5Zbt1w328w7ofno6upG/YBHGE9bGjiKsjR2Dp0c8hdEkM41/ZgLefudd
VBBd4zk2+96nBSYPye9NGrDFpeVgJ/3r+v0+WW4luvGw5j7efP0N2l/j6LnH
Eu+cQBgfj1GjxuDnL/wGBw8ck7ww5ltx3T88yD8z64WoZ1Xzzs/HfhuW1w4f
PCS5ZSpXID3GIpvsZrB2/coV4aFNDY3i5zA99lJ9gTNtwemyctC2z9dnnXju
wqWoetCEnl6SldkPE0uitzdB+kcTVq/diMnfTMLhvdtIP+xQtcXt1DOnr63p
w6X2h5En0uyPcm0PHR29WLd+M37zu9/jZ5wrN+EFPP/ir/Hy7/6Ibz7+HNWk
b9ts4xJZz/P7dPt2siy0LBvuRD5JKFnZ1IJkrHLMbX9nF7Zv2IiXnnsWz4wj
vBFtGUl0ZdS4cXjpV79GAdHeru4+XU8k5S8wWHN13T9fRwzIzlnXgX/H+KDn
aqy8J/n0L//+j3jmhRckd3HM+GeJtj5D9P7XtCbL0NDYJr4m1es+6ct9xpYU
rF/r27t03BqPSF8URw4eIZntmNTmMLpBJi1Mk9+0DucQr79y4YLoBm1NLbo3
o/JlmH0f1I0z8St82TVxdC662ruweeNm7DtwBL3c54zt+pzDwLpzxEVfn4Xq
mmZs2LQVefPnYs+2rSSzV5O8H/J5W1J4ddKXi809SH4S2xfZV278Zk7KFhAO
kdx67DTe/+gzfD19HqYvXI61m3dhz76jWLqwAKuXFOLe9TJdt8Xy+7ObXsa+
3B3El7++Aaz5eo3x3XnSbybU2YbLZ05j9vTZeO2NiXj531/DmJ/+Bk9O+Bme
euan+PybKbhRfpf2XlzZksX2Yeq26XuwB2H6J/o81eDNTfFsZXehc8QiGOho
wcWjR7A6fxny5i1E0ZadWLZ+Kz74egb+9F/v4qXf/AlfT5mBa7fuoq8/IjEM
ptYS8yPed+KTSQRrBQ76dQ5Nj3nBGvFQrjN0/OhxhTVtP8iM1Rgii0qfMguX
z13AGrYDN7cR9hylX2Wx/fg6ol5fO/NcdP8192tRWLAGd+9Ui21C6TE6biHi
SFzQQNhGe2cYFy9ew5RvvsbqFUtRfe82IlyjTOvjwWF4BdvNOVYyTHIC5+C4
tvE/qviI3s4+bNpYjHVbd+FeYyc6iN738fFRD7W17Vi1fB1WLF6K+/cq6F6I
ttiqloaxWRjZz7FTMmLKJmPioJR92dbXlJgCkjvYV1Fy+iRmfj8VS5aswYXS
Guw6cQOT89bj759Nxa/+/BesJprb2dUnMpJDz5m0uIaNpbDmKp1AYS0w7/q6
ji8X6TioRAzxgX501D/A0V3bMPXLr1C0ahPuP2hDx4CNFprj8rpe7DpyFR9+
OR3bdu9DTygsPj1fPtYYlnihIXWlBv16dypmSq1jqLef9ILdUq+PseY6Jv44
N9YUbXQlbr/k7HnBWldrBzyjy2fu70zanWEn4HOxrnLm9HmsW7cZPd39Pi3w
fJqqexmwb4143kDURTsdd+DQCXz79WRsKliEuqpyevYB4StekJ5q+Vdq4up+
pbwvuK8V15xNDAzg0qVzmM/9dhvaJKYtyrRU5wzzb0M0/0eOn8f3U6fhxIHd
GOhqpXPFhGcpmTYhGBKs2aqOmthGHNVDxHUs7TujNeJeupwjRLT7QcUtLJ4/
D99Pm43SsiqE++KiZ0bpnKFEEm29MVy4VCr+y/vVVcpWZSscs+/SYtnAUXk9
qo87vwcsou1xn3YrXxXnUNuRCMm7VTi6dwsmf/011m/ai9qGHokH4RzBGNsb
uVd61EEfXfvw4WNYuGghmpub9DOmsGb88Jm80/jKVH9OE0vCcSu92MFxDcdP
qZpWWXjmEHlPy7csr10+fx4bVq9Fb3u31N/1c+VzYM3QszQ7AfuoaN/s3XsA
R46elBgMH2uesYEaW7sn8hXPRT/RuY7OEEpKSrF08RIsmjcbt65dQKyvnWhu
VHrseZan6ziS/h1ReTomBk7yl2n+uf4c+0CPHzoqvFTkXra3xlWdV6mZRqO9
qx/HTlwkXWEB9u/Yivb6+1KnQfXktTX9Mvmkxh+m6uIKPeN74GcgvER7u3Hn
egmWLVxA+t0G3LhZSbqRrf1Vtu8fiNA9tzS1YemyfBzcv0/szuKXYxsO8x9n
MANr+n9p8o8jNuBoTxtKz5/EymVLiH+sxPFTl1DbHMJAYhDRRFJoptSiYVmI
5Mc40Z5bN25h5oyZqKysFJlG5funYy2oK6XZG8TO5Pixe1yPY+f2XTh/9oKq
RZJDxg1izdb+QCsaxblTp7BxbRH6OntUPHzg+Xxd3E3Rdl9GcgP6OR3b2tyC
LZuLSaev0PcfxGtAR7FUfwOOBxrgOFuiDxyDW1FZh6VLV2DhnBk4d2w/2upr
EQsPEJaU39Lh5+WYA/EZaPnFUrG4F89exOplBWisqRMcJCSekf1FluTA8H62
nJjwkC7a6ydOXsb0qTOwu3gTmmqrJfbQ2B1N/2qVg6f82EqW0fc8EEFrSyMu
nTuBpfnzsHbdBjysa6H/uf6zyXrSb5K0/lzrLUq06PCRY1izerXkuim9grCs
7bGOyZUx/MYyuVme1GGN9YfQdP8+Th3ag7kzpmHlyo2ouNeA3gE6N/urxF5h
iwzCuoLUl+P9wXaYlk4syltCdP+SxCCZGD1TG1PFpxjZWNf7D+SeWdqeyKO7
s1tqJFw8f0ls6sPlm6fJ9hb7HyI4c+IENhatQ39Pr6pxHLC1BPunSL+xIfZ0
lcvJfK2M5O6d23ejTWJNlIxh+mME/W+p+wjE7DvK3sP9Xi5fvUn8Jh9zpk3D
7dLLCPV00p6OiX9dakNwnoHJd6a91tHaghXLVuL0qWtEQwK+SYkJ13l9LMtb
CeWzoOeOEl29Xv4A8xcWYsn8WXhwu4xowIDk1tvsW9A5XY72Ebh6TbjGaz3p
MssWL8S3U6fj1KXrRJuNXuf6tFzlrwxKXRhT/7ahqUPq+pecPyO01PVt6qma
GCKbWCan2RVfb39bM07v24k5U2di2bK1uFNN+n3IIvlA5RF5XBOYbShyHnW/
fi9ymguWj48eOYE9u7cTXerxYz5VLLzOPXGTGXJyCmsmjkdsOl2MtS24fKlE
sGYHbPHD5S7IfqVnPnvyBLZu3CQ9EhxNy5T8Ygk9MH3tgjaeFJ1V9xYO9WN7
8XYcOngUPT1hP+bH2E48L4W3oF3J+L/ZR8f8nOMK+vtJV61qxM6d+zFj5gw6
7ya0NdaLTJaIKB+w9LTleSRd/8TxoyQjbkRjcy8iCVVLgWUBpilc44vjw5UN
T8t9jtK32G99v7oBG9dvQv6Cuai4dpmu0S98xtU1IiUvjNaC5csoPePNqyXE
v5Zh9aoNuFlRg55+S2gsxz2q51P705ZcvEFdQ16tZzhs4eyZ81i7sgC9bS0S
66dif5XcyXPDOS8SY8c9WHvacf3CKRQsWYgVKwpw/uJVNDR3Ijxg6zqDtsrP
ZLoiPgxtO9Q908UOw/baiIfSq9eJpnLPznqxa6nYdhW37udUZ+DMrJHsaR2L
3NXRLXaGq5evyGcTbx2kbUH/oonx4P3EdO344UMo3rSZdIw+v7eK+n2Aj2ep
HSGYcRROuMbDksX5RNtuiv3Gr3fsYz7dfpLCvSM+eLGnir7DdmqOz3bR0R3F
jj2HCW+zsHbtatwsvYLO5nqJA2MbJMf8192vxOIF86QWSZhjgW1dD1fyVlRM
iOS9xD3N2zzNa+KiF8QJi/VN3di4aRtWL1+OG1cuie3CjkcFczwfHF/d1d6J
S6dPI3/uPGzZQHy3uYvOreIRpQeNrjOv6s/zs0HjzZNXLwGJOWpsaMby5Utx
41qJ1I1ztC7G8VCeHSNaFSF5rge1dypwZM8ukiunomj9RlTWtqCXn0/nzUn8
p+ArSAO031TbMUzcFN9jTfVDLF+6FBU3b9FejYpcbycCvu9sWNO1KfwcBhqd
7V3YsmmLYDehfR9DYuKCWNO0UWFtAIdJXmWshfv6YWp5ZNp+DS3LxJriMTau
XyuVGLiW5jbdK28wTb8wvDTdPsr6rIr3kFhoE5vFNCuu9lxfKI57NE+z8xbh
y88+w6Ed29BN6871GPuJtx7bv4N06KXo6exUuA3Efql+QIOCW+a9McmPthWP
slSMX4zuPxofREdXFMeOncbM777B6cN7SE+qlzgwlse7mxpxcHsxvp00GWfP
lqCLZBb2X9uaFrtGb2A6qNfK0zUUjD+XY7S4NkKYZL2TZ05j44Y1JN82Sxxf
IpIkGkx8O9qL/t52XDl7FNMnf41p0+fiekU1QhyDxfRacgkU3/VjPHU/Godz
4JO09p6dFhPmartzd0ev5NWfOHycrhFS/C/hpey5PlYDdjEtO5mcYsZ4e2sH
YW2r5NzFHxNryubBWIvi6MFD2Fm8TbAmeRCmRlkW23nwuxQPZz14h9R35jwb
yQey0+2+uWqxSYyzredQ6rTbIldJXRFdd6if9IH6li4cO3kRU6fMxuI5M1Fx
+TRKLx5DHumtl0uuSn6S6Z/h6F4qLC+zfhcnrHHuA+sJjq5/auzAxnbH9f9C
fSwrXsesWdMJv3mov30JN84eQd70aVi/ZiPu3rlPemZUchjihEOxjREtljrx
mg8orDlS+yUVe2f6wXBssIOah3Wik54jzEV6iUaT3hzu7sSNyxewYNZc5C8q
wJlzpagj2hkm+ZPj4+U8lqd7NCgdgnuUS98XiaNmO6Qle1f1OVK9GJQNgHu0
D4jMtnJ5IekKLZJP72g6n76uwRxi45Nxhd8yz2xpahWZo/xWhd+PMdNmkY41
43twhT4c3n9AsNbPdM3ykOo1PDQ3PN0+p+h5TfUDrF65BvfuVKZy3zLya9Iw
66Rshaa/o1/nXuuAfr96Oh/rd2Ha2x2dCZy/VIF5M+dg5rdf4fMP38H8efPQ
0NgieqLYVrW/KSgDSFxhRMVhqTrKmu6Z2EDb1bHBHnpDYZw9dxrffPkRvpz4
Go03sX7lKtyvqiPZgM7BNum4ui+mv2LTtwZ9GcnoSp7nKBnV1ELQ9jE+huOo
N5F8XLRyBVpqK1F1qxS7d+yQXsEFy4twq6KWaJmHuM4zFH3YcXRPIW3/MfGF
Gmue0CTVN0bJK4OKj4vcRnuDZIKbN28jf+Ei3L93l2h2TMmJGbJZKtZY5YOa
XL1oRMl39Q8bpM7Q7Yo7Aaylx2O5GVizdbx1NBzBgT17FV0LDQSwBgTzPXyM
+DVrdJwIyRnnzpwD581zbcu03LcMfKZ8PMlAPCb8WIFUjwxTw80V+4bFemeE
Y9+TJM87qK5uxIIFy/Db3/1RYkce1D4gWhORtVf9/fQekV5Bis5zXckBnYel
co9VzW6VJ6FkX8khJnrV3lSHxQvzMOHZ5/DXv72GilvlJCP2Kt0lru4pHh2E
qSuZqkPpwe91pX1svr7AejDLf3SP0f44Ss6VYMqkT1FUOA/TvvsUn3/xFY6d
uoLWjjCiMbVvJCfF1D8ytiiRt5PCOyX/y8TDyHeetlnonCBtk2YcMi7aiDcs
y19KuuBJkXlFhw3ymEAcSwpjFsL9MfHXc/4a0xXOW+f8ToU1vZa2WWsTN6Dt
R9qOrvxbEezfvQ/79uyXePJg7TVfD3FMDK2q7arqICl5L9TXg3VFayXOhO9H
aovp3N3Mc6XrrwaDKRtiylYcsIXowTZZhzHXn0BzQzuWFRbh829n4rtZ+fjk
s29w8sgRhNqa4YT7Jb9FZCjHUvkKYscalD53UeOLkVi0uOJ7zHMTnGvaj8qy
EuTNnI0F8wpw4NhlLFqxAdOmTcX1S0cRC3UqG1+Me0C7osMov3gg347jObU8
oOKUHMmtkfoIXHeV6ElPVxcunDmFD95+E//273/Etp27Sb/sQB/n88fstDU3
sfH+HGbanExMf9AGZfQwoQ2Dvj+TY8+2F++S3gQs47Mcp+qnpfI5VP63qUHq
ivxhagZzvl51VS2WL1uJivJ7fv0K/m0q9y8g8xm/vqbFjK9d23ZJzxbTYy9Y
Q0XOI1hTMTwe+25sz1+fhvqHxD9X4taNCr+PieGjbjb+mUGvlb04i77spPLU
/Wcn+T5B8tKNsptYmL8Mpy5cwY17D7F111HMnbsEW4s24OGdm0iEuiTXWXRb
vo+E1hd1XrzQtpiKy5IYcsIB57+UlpwjerYYmzdsQ9XdOtJLXNTWtWHT1m3I
Wzgfp48dwADJVfFwQu7FjvE5dd6yxCVZKn+R5zih/Zi61wvXXkqEu9HeUIND
+3Zj9pwFmPjxJPz9rY9w/uJ19JGsyDSEeXOafJ7FRvqokV5vzJNnlzj5MPdT
PIs5s+dL/jmvn4pbdQN+qUE/Z0jVhHR8+saYq7xXI/2z7929n5Y3LDmMmb5Q
jTPhybRHe7v7pPYa+7j6SVax/frEKTpj+XpiUtsmlW2O1+1ySQn9fiPxz1Yl
G8TdVL54QD/IlPmy+c4ysSix7n4tBFXXgHOtd+3eiZ20Nzq7QojQ2nCN72Mn
rmHKt7OxlHjf/ds30N/ZQXMVEZ7q0m+9AeIZhKeBzlYM9PQIXmzOsSd9jOuI
nz95BPkL5mDzjkNoauuTuWPfGNtLGoj3bNh+AN9Pn44Lp0+go6kZsf5+seE5
fH/cPy/GsnZE6FeSbV5Sy0b1gYnRfYR62nH/znVsKSrE999+i227j6GkrAYL
Fq3CgX3H0NnRL+tpaazlwlFOGTgH1gwOJPeOsHanolLq2FwhfYrlH8abq/2j
hg76WIuleKl5ZaxxT+PqqgdpPlRZp4zcuuDgvRgh/WQ7yWoH9u0XXUXoV4a+
qvoTaqyxL8BR/bk62tqJd68SG3IsFvfjikwtllxYy7QpZ62tFRyW0tsHwn0o
vVaCefMWoKqmUer5iOxnKZ9ee08E+w6dJ7n+W6zNX4jG6kpEQz0Idzaj6tJh
7Fk5G+vzvsGFA5vQVn8P4a5WVJddw5I5c7B6xUqJUZGau6y7Gp+No+x1/dEk
rt+uxbQZs7FyyUI01JBsHOpFtC+EEJ2/re4uOhrv0ec2ki37xaaSiJF+2dOF
m5fOYPWiuUR7F+PIqctoIpksTLypj/TPipt3sJJ50q07fn7YcPjJNnLV+TN+
QbNXmQ50d/aheOsObN++U+zvjm+vcXUNClP/SutlkVStPn5lrBWSvFZdXZMW
eyv1SHJgTXpu2Ryf0y9YO0i6aCQDa6ncd3MfnvalKX/svTt3ST9fgrraOvEv
mDzPTKxlYmu4EbSTuD7OHJFzWpvZxr8WO3bskxjMhNb/XHkWkoVYx+uO4/LF
GyhYWoDZU2dg27o1WJU/E39/5Tf45U+fwovPPoH/+reXMGvKx1iWNwtzps/A
lvWbiafUSy0kFRdn8kg9icGwpYZCEn2kl5RcvSG22KV5s3Ht/GFcPLUbeTM+
x2fv/RVfffQ6XW8pmmvKEO2pQ21lGbauL8KSBYuxc/NO3L3zgM7BNj3lZ2C/
DPODNauKpE+M9DgMrF82Gpbtf7nm0cRjCw60zZixc/zYKSwkWaGro9Ona0YX
M/kbxh+r6jopWYZ/e+d2FT1/ISorq326pnR6Ly3W0udbjutjjX0F27YWqzjL
gYii395gWnyaug9d1yOhYik51vzEMZUn2NsdgokDtjQ2MmNFsmEu1/z5Pg9t
U2GfCvvPSi5cxOK8xSQr1Eqsr9SFEh7P+lBC4jmYd7GMUf2gBfNmL8a/v/xb
/OyZJzBi9A/x5Mgf44mnfij9eiaM/SF+95sXsbxgDRobO+Q3qmeB1uFd5V+y
tX4mvYsTg+L7rKiqxqxp3+Njwtff/vMlPDvmf2HMk/8TY+jcL//yWeTN5pjj
9ViePxd5c/NQUlKOju648GPPDsTREE3h3sAsQxWI3astFe9rpeSLbPFgQXtr
Zjyseg3m4rh+bC/TpnKiodOnz5TaGoaPij8rE+e24qWm3h3HI969U4W1tOa1
RF98m0cA1+KnSQTlIsUXGWt9GmtnT58RrHHcoR+vqnPgTeyZ5EHEVb2gutpG
2o+rce7MBbmHtJoOpqZPDp9sNjpm7i0YV2Bp2ZWvyTEka1auJT1mn8QMSc0B
7r/MPnI3oWJ4uE4Kx9VwDgbNUX19K777bjLGjCWMPfE/MPKpf8HTTxDWnv6h
5PO9N/Ft3Ci/TToR16vQOTp+3j/7l1zYOnZW4tCZHnEcXCSOspu38cZbb+Dp
UZyH+kOMevoJPP2TH+Opp36EEaN+glf++jfs238C7W29iHHOm63yqk0vAE/L
RgnSLxroPlcWrMSZEyfVfs+Yv+Hy4XJhTeWNumk9gxX9SUqPgbz5C4VWMB+V
eEBb9cRKoweO0qlUrS+Vt3f3biVhbZ1gLagbsA5k+f78jNpb2rfU292LzRu3
SB8NrreZGVctequuHyW17UgfYJp27UoZli9dLn42FZOmbPWS52tqTOWQ+4fj
m6b2nsqXUr2aGNtlpTewetV6oWmqPgPbMei4pLI5sa/RSyj9nuPUokTn2jq6
MGfeXMLa03jyyX/GyBH/gqeeZrr2Y4wa8zTeeucd3Lx1W+xZYqdwjY1F17l3
lB2ee8qamED2i3Mc5p271Xjt9dcwkntMPf0TwtgT9PpjjBj5Lxg9ZgTy8wvQ
1Ew6iKX5sPbJSy9cHdfGdhj234ZJZj/P8aqFBWhtqCMdOtWjKpcO5Zm+Gpm6
lq5DJnUg/TiOdLsZ86HiLduwfm0ReoiPOkY/yOTNWoZRdRRVPbrbFXexYcMm
NDQ0+XkfKq/M0jq9thkkMuoNcW/lrl665jp51lgkni7P65iXVL16RdM4Xo7t
cWtWryf9qVc/j47ns2w/ri5bvOWw8oWuB2dqopm6a+wXWV+0AceOnkZXZ7/Y
rz2JoVF0SPXFVv5Ck5cVJ77aRXt27YYteOHnP8eTP/kBRo36AdGzH0rO5uhn
JuC7KTPEXsS1niVGSWLiPcl94bxiT/dIdrTdzNY1bdnOUX7rLl77+6uEq6cI
t9xj7SdE454Q7HEO0/qiTcQzIn7ujOkRyBj2HEUPuN5ylK47QHuqgfvuLM3H
lXMnEO0PpepcZuDNr4MQrAtnuwGaomQrI88bf4bJCWL7/wDx7YvnLmDerNm4
c+uW9CkU27aTwadtN1VrTo/ymxW059dI3rnxhwaxxrphTOsTwRx608d7/ep1
KLl4WWPNTceatmMEsdbW0o7CFauwf98RybNXcZFJoW1cY8vUaczsrZxNVwpe
y04o2hnEGvtXL5y7KL226uuaJV+BaT5jje0NYt9yVN02QztUvCfJlHSOC9fK
8dpbHxKfexKjiK5JXvCE0fjZr3+LvYdOoKenX3o9cJ5XQuIa2c9oq5ruuheu
unede2CpOpAPa5sx6evv8NzPnsfYZ5/G06N/hCeJj3K+1PMv/hL7Dh4j2S6m
4mYEGzqu3FH0gnOgWV5RcVtEa/rDOHLkMIo3rEV3e0eqT66bHIo1nbdohspj
TPWASuspEE+v8adyBkK4WVqGKd98g93bt6GNY8OFp2XplavrH5vB/GXF8gKh
a0EebxlabHl+nTx1XUtkL+lF1dqJIpKDSkuu5cZaTPle+f/sx7p29RrpMfmo
qnyo1l7HC9i6lp/JkXad7HQt/Xlc3y9paayleKglNUa4fyD37QwzriOpOrcS
v6NpqegIrsplZz05aakYbrYrnD1bir+89gGeeeE3eP7nL+P1dz7Dpq370dE5
QOuh9hHXhvQSJn/HC9SWSfp5TRJnIbYnl/ZYHOfOl+H9D7/EMz99FiPGPYWR
E0bhxV+9jGkzl6ClrV/i3tLre7k+HZY4UvGj07l13ce6ugYsXVZA81uqYsNs
49dM+rJZStZwJD4hpvvpBntAsY2fh8GasacqTJCMTnIT1zqYN2MmFs6di4ba
WsGaWnsTQ+al1dc0uL5x/abU8uB4j+A6JnRvSo4PSEgfqoSq9yhxCkq34Nqy
y5csw5WLV6Te8f9H23u3R3Vd7cPf5r1+z5Pm0EU37nbsJHZcYju245q4x72A
MdV0oQ6qgOgSTfQiOqJIIAEqCCGEei8zmnLOmRnud6+19z7nzDAjZMfPH/tS
nVPXXn3dt2noOcW7nG+n52AwfkiQZ+opl7pxQ6E43zp0dfbbetrUsxqc4w2q
viIta87SNQzNrcO86EEH59XGruVYd5hnEXPW5KLtTitjhlL9XPZdhdn3sdTs
nJwTibBvxNdvKN9bPOuBfh+OnbyIz7/+Uax5jHfc1ell7DeD/FHa++KaTZ+U
WZs/xsa2VP02prQREuc5zLi+h4+cwUf/+QKPPPUkXn7jn0hdsw5Xq29jOHCX
jy1j+pDr3sMKZzHC74Wer/xqYXBwGEU79mDL5o3C3nSqOijVeQBnRlTKW1Bh
Evt8ATvvqjFLuXY5HJT5J8PdhyA/Qzhqbc0d2La5CKtEjHC74ZbkgeD9IJ+l
rvHLfS3n/Ml/rrpSxf49yZruQ6Y1PNAHgzAuCTOWZIxyx4OSX1rioAaYMy15
5SqhN8oYY1vm/SVnAM0KGTRb7yU8Lw/7Ebdu1GDe7Nk4uHc/hoSOY46rgINX
qH0F5h8wwkquQrB7+C2N36f6dQlzXfUVyNycwfgUprjGrrZWZK9Zi6OHSpmj
0+C+FmkvHO4fl/+p8zSmziFqTEPCNR3Etq0yh9kn/M1gUPfMhBXWta4PRevh
aJ88BD0jL7GUwyzH1C/7ny++w5aiPTw7Q3iCxI0ha5WKQ8qKnsWz/Qa77i/9
rNraemSlJuNmdRXPGVAfmqX5AQwHU4nlTLx7f8C05wb0nIpT63LHplLWCH88
EJQ9qZVXqpG6Op3x9/wBXeNXvSLapikcf7JXlB+pvHwFmzduZj9K9u5LrKcP
3vwrCrNXoLXhutizHp4BYbzfYcVPJXREa3Mbv8/Ky1Ws67Su5P5g4jz3DMLT
2YSaC4dweMdarJj3Bb75/CPcrG2A4TF47oR69I2AxKkK8n3fm6uJtqO6X1r3
Sakes2Fh0wZ74e9rQ0/rDRRtzsPmzYUiHuiXeOzUr+uzVF9QOCqfEi83YFoO
Lh/lEQmPe2/JXsZrtvGs2OaG2SZrbJ54eS33OXR9T8tHnXgWK1am4ur1OoWx
FbF5T+16k0vW5O+1TVXHVj0RVN/esaWIa7u9bR3i+QbEkngOsv9BLurTJLtF
+ljmB+Ry8NfDTs+u6h91czLQ/qIZzY0F+ThYspvzfBJL+66axbVgz4MovUY+
GfV+5+XkufSafA8zJv0Gzz81DRkr5otYuoH7vWkuhN6rj/HbDObRoNwOxRc0
W0p6kmrRBteph9He3Ij1mavw8VvP4/mnp+FPjyThHy/+FccPHRM60q9qfrJv
jP10wh72h6X91bP1hmX3lclrk/tB9pvIuM/f043Lpw+gcM0qpC77ET8t+AYf
v/+GiAuOiuvyMF9GgHpYY2Qtfj1f998o7GXxM80lbN+6DfuErBFOj372lvZL
jGgeDXeuKt7xdW2E9mRjQxPS07JQVXVd9iWZzqy+nleM6scKObLm5KCkTJBe
qrhUyf30Vy9XCJs0xDxo7GfYmA6qd4piPfKLvAr/Xvg4GuPFMvVz1n2I0u6E
VZ2RbJdH6PqDe0qwIS8H/eL5U29CSOF80XmCKi401BwgyUTZ2TLO33d3dLM9
CnPsE8R4Eecnjf0t/vbUwzhbehjewSGF+RlmrEDvIPW+NQvfew3LGvn9lD8L
Uk+C3y/sQy/27inGMw/PxNSxv8eksb9j7vJpIqb74dvvcONGveztUDN1ISFr
0u5a7GuHFA6eXvZMnOr1lr6zCU9PFy6W7sfHb/wFj08fgwenjcOM6RPwzFMP
4dxpkulBO/+teSljMbviLj2XZMkZGKrFHTpwkPWavddNZz7O3T+sfQLtk8fK
mtt3bqi/icz0DOa/0ljoYVvW4nOhuzEwdK5c92t2dPSwP7y1cJ2wSTXobrmJ
vs5mEYd5JN+bIe03+TlkmzjHwDwjgRhZ07npiD37ETbkNWt/vvxCOZYtmo/G
6kswhzoRGvZIH0b8b8Ala6THSRfRrF7h+kL0dveovmSfOG8fJib9EZMnjcND
06diTWqqsLEdMtfJ9sri+exb9beFXlvDPBqUo2W9FgiwT0d2/MvPPsXkseMw
ddxYlrGpSeLrVBFvPfYIcnPWcJ+/SVzKlHcVe8siri6hhwyPFyHCQaB4imJS
2oeMjS579OkcJNNDnn5cKi/De+/+E+PH/U6s34prHoOZUyZhlpC3JQt/EHrj
lvAngqzX/Sqmcetvt52Oyqeo3muSC6pxbSrcKGTtkJyhdXMyJswrK67tOLyQ
Tr1WYvZnpIi4/Po15qDkeUH7mHfvwYK18SKt6FyGxDsP83s4tv8g/vniC3jn
pafFegwLvn4HZ48WYaDrDs8Ycz01QPMLNN+uen6Ggw6ujtrfpMPuclwuc0GU
P/bzLJnBfTCNN29i8dyvsXbpZyg7tA4tDRVCdnq5l9e0e9kMW9ZOHj+FdfkF
Qq918r1SnwH1Yj0g9Nq4cX/AzAenISsrU8RePapeb3FMOjTgY1nLysgSslbN
PScBxetAueKKikq8++47SEqahImTxmLC+D9gyuRxmCZi+2nTJuKzD97BgeJN
uHB4D6qOH0TtmcNouHAEdWX70XS1FLerjqGl+iS6Gs6j/045BlorMdgm9Gdn
NQY7rmOg/TraGiuQl70Kjz/+EMZPHC/WWEwS+4MwfmZMHYc3X38Z586cFc81
oPLElrrGxP1IWuZsrEDK0/X18wzsESFrPEOk8uv6f+3PKH2m/Ro5qxtSNt9l
Q+1aUMjWazdqaoTOCNqzvrK3WfbNJqrTuXsidW6CegyyUlbgT48+iJlCX8yY
/Ds8Omss3nnjeewu3ozBvj62l36vnF8knmvNmai5j5z+aMvGoJZY2HLGnrDa
Bno6cGTfTrz+8nN45tEk/P1vD+GbL97CmdKdGCY8a8pzKuw1ibEYwJFDR7g2
2d1O/SxedLU248fZX2PsBKo5T+R4vHjnHiFrvVwP4SV80MH+YdTV1LOs1Vbf
wJCIqci2SlyuMK5W1eLjT/6D8eIYD0z4A8YKfZM0PQmThV6bPmMqXv373/HF
Jx/ih68+waLvPkfyj98iY8kcpCz6GhnLvkPygs+RuvhrZCX/gNz0hcjLWIT8
zCUoWLscuZnLkJmyCCuX/YB/vvkypgjdO07I2sRJExhnl3GdJ4/FK6/+HWdI
1qhHzJVH0r158WMP/R5lro1iKo+IDTauW49TpSdUz3Akqm84Sp8pjHHdR2Nz
Eqo+ceYrVH4dfV9bU8v1uvq6evVutX+mZE3nTkL3zqI59xBR/loQF8+fwmv/
eA6ThZxNnPAAJgq/ZZL4Oi1pHD7/+N9oqq+Bt1/oDc8AfIP90k8blnk2w2+p
PJucD+I8qpo1kvjCGts/iIqyUnz6wVtiT0/EhIkTMU7okxkzx+PTf7+KyrLT
3JcaZL0kbTPptQP79iNb2MEeodd8Q0OoLC/H3/76DMYmJWHS9Ifw0effo/rG
HQwQRj1ziMl8B9WwyXYSLjPJHOGJE5a9fLYRIZuDQh/mCL34ECZOmYrx06Yh
adYs8f0MvPzau9hz5AzudA+itVesngG0dg2ipXMITa39aGzuRt3NNlTXtaCy
ukmsO7h8rQnlV2/jwpVbOFdej+PnrqH40EnMXZ6GR55+DmOEThsnnukk8Uwn
CnkbP3kS3v/oU1y9dsPuz9W8LQ5G3Aj+mqnnKiyxh3t53rrs9Nm49TP9vcF4
CJIPR/cHan4c+j6g68qqz5u+J76bjPRMYetvq1qqzgXLmQA7n5ZAr7njUMph
bhKx90OPTBfP4Y8YM+Z/MPaB/xG+8u8xbfwDeO6pR3Bw1za0Ndehu6tZrA7x
3no5zvYOeuAd8Ap75eV4lhbplcHBAMdVFBMSXrolYiNvbyey0pfgoYeEjIhn
PWbseLHXJyJpmtAjwm7lrcmEh3JDileO4gKfd5hn7tblytqGV/hJpcdK8cij
D+PJ597EvCVrcPFKA7p7/fAMBXluyi/iW5Y1YUOvVl5FSnIKyxrV74hbTOZn
IswrVlffhM+/XYpHn34VUx96EtMefhxPP/8atuw8jK7eYZ7zD1gm80HRbJnP
f1d8XnKM+P1y+fx0rAiGvBEMDkXQPyBsmucuBj0R9A4YQg5v44dFKzFxupDl
aZMxfeYMTJkxDdNmPYQNW3agq29YcVda95W1qLyHKX0tWYvrZr127tRpNVMY
x/6SvxQ07R7WYZ7nMHixrHmDdm6eMepUPyHVozPSs3CroVEdN2LPuDj8LLF7
Qf5dz3vquQqStaKiIjz6uNjTSb/HuPH/I3zY37D/MmG88JenTsWLf38F737w
Cf798Vf44tsF+Oq7BfharO9mL8QPPyzC0iUrsWplqnivacy9SPi0G/PysDk/
D9vX5WJLXpaw0Uvwyj+excRpYzFm8hhMmDJeyNxEjBn3ANuVJYsXMLeZz75f
Q8137sV6caw+ERvQnGRl1TX89fkXceBYOW40dPPskc9rMU4L1wB8claBbCj1
7qckr8aN2psy3+zTOaYI9+14hR6+WteOdZtK8OOC5XjznfeRnJqD1o5BjiUl
jqcpbIOs+0mOC8ueMZU/qxqXem+0CPcv4AsLP9TAgIhRyi5cwzdzF+HVdz7A
s6+8iSf+8gI+/OwLNDQ1szwz/oDfsOt+RvDefESsrGn/nWSiXzybQhHbXSw7
b+s19+f4e0NzrEk5I3413nte1b+lFj97v6G49vw8l5uaki7i8gaed5Z5Xomr
wX6lG5vM0D2JEbsH1nQtkunjQve+9NqrmCRs27iJv8dYscYJP3nCNGFP/vkv
ZG/Yjo1FB7Bx215sKT6Azdv3onDzTmzYuAPrNmzDxsKt2LB+M/Jy8oWcZSGN
OH9Xr0Z2WirWpiUjbeUyLFm0EC+98jImz5gijv0HjCcca+GDT5lCmK+zkJ6+
RrwXj/IDFe6Rz4cj+/djS2Eh47BRv0tzexe+m7eIcc50PxHVqHgFZE8MyRXN
KV66WI40EaMSNzrpXL/fcHwWrvvIHgiaoe0QsUXhxq3Ys2uv8O28XDvROUpL
YThRPTmgcMyoNhMImnZPp57HkXUFy7XCrPeaOzw4d7kBm0tO4Ov5y5GWk4O+
wT7VV6XyEuqduPm94+W/TFXb49yE+FxvZ6ewC2tQfv6CzAla0b657mmQOVGp
w7zC9pBPQftB13+Cav7BZMwk4vrz4eKFCp7tpP7oYcXLpvtVmDMvEHRwtV2+
oPYHNRekri/VNTbjh8XLMePRJ4UcCFmYOoV9l6dfeAW5G4uFr+IVz0XsBa+f
600UfxKXKsWjfl2v8lvyeQ/5bXvK+0TsM8Lo6he2omD9djz5xNOYLOQ4aco4
IWuTMXP6w/jLX/6Bkn0n4BlW8x5BOeNIeDcHS0qwffNmOXNO3DFCDo+fvWTv
G57j9zt+Nb13uifi3aA6b1ZGBud0Na6Zk+eU/TQSD1ZiD545cx452dnobO9Q
tRNZZ9F4rnYPWtB0el1UjxHntdU70P6mxI+n48s+RJohoD7pispq/DhvAa5e
vSZzFEbI7mEI6PyanbNw4QOYuu9V9oUzVqh4Tr1tLSjIyhD+8Hnm7mZ9wvVT
S/XeSZmjfCHNQzLfN/EwDfh5kZ7T98FfOUYzeL62rKyc6wY3bzZJfWbHlqZd
03Ln8CxXnOtwNKjeIOIcHRzGqTOX8OrrH+Lpv72DZ//+Ib6avRJHTlQIe+Lh
3k6vR3KSaT4Ve/7bFSvL/LTlqhnK2QnqnQqIayLs3KysdXjssb8IWZshZO1h
/PnPr2J94W50dA9xz5Oh+vlM9i382LWzGDuKtgsZ9ipeBWH7vEE71qI+Dd1v
QntumHuYglzLI95tkrWWO+0S+0fNU7qxayylu+j662rrhb0gm1ujer1DNr+S
u+dJ94Hb+KDKPrnfl/xeYwRH+8u9vf3Ysnkbdu3Yzdg4pt/hFSQ9qbFsZJ1K
zaGElB6ztP2WWEbUF97WdAeZyatw6ewZmFRnV3jnQUPPr8j+da2DbT/NE1R2
VF+7IXk66R5p/woZLDt7XsRXaWi63cIxlazx6Peunqm7J95yZnQNxaOt65zk
hwz19TFG6KKfVmPPwfM4evo6rlS3ifcv9NOQ7IGQMhawZ6vt2DfWL7DCdi0t
Sr7FOyOsiGvX6/CZiB3ffOtjzJu/Clu37eM5RX/Q6SXXdUuKQ7dt3Yzt27Zx
bjxk4yK5YviA4m0KOP1ypF+HhB6+UHaR8Wuam9oUtqbDGSCv1Znnot93dXRx
LunkiRNcY9DY6+4Zsdj+eBlnhZyeq6AZJY+xMSHnrMV1Xq28xrMz1ddqRHzt
Y72r9Zqb7yMRxwr72zSnKe6rqf4mfpo/G2eO7Uegvw/WsIdr24bCrJBzr3dV
z5AVZTNtPuWArpOr6yf7L2zTxdMnha+9Es23GmWeXff46nxqvP5QFTcYmvdF
/S/Jcsttmi3PxL59h9AjfNmB4TAGhL9NvPdUX/MMDfKzl/06ATufl2i+I8pP
DMp8D+kG0uHNLXewZOlSHNh/Bp0dXva7DJ5HUfuB+ymkXiCM982bClnWhgmD
0Z45jkDjVOv3zLokIG22nzGOg2xD8/Ny0Sr0Kdfeg5q3x5E1ed2Sl4/ukWqK
+RT3dus5nLBrFic+z7NbBnXNUfvj+jPud0D/Q7qNcDqpXkMYc4yH7zdtv1ti
UcXnEpR9jUKWPD2orTiOxd+9jxeenoKvPn4FZaU7MdjdwnVf6vOmvjXZPx5R
eRWlw/Qckl5qHknm2Ez21waFL7F9/Rp8//k7qLpQCj/x0hA/NtnvsOrHNeLn
PNw9glwvJgxCr/SJ1mZmoa21nfvTh8l3UDqdenWCxJHkDapePxd/sxkb68bo
N0PWUSnXS/UE6ts4c/akiKHThA4ZFPcF9Twl7qDd06tkjefWi7ZhZ3Ex21BL
YVNLmxZdt9OyJvsSQ2xHqeeVZK27s09xtpi2rDqypnNAYZ6dox6m9NQM3Kqv
k/VaJWux3DKxMxf65yjcy6iZ/IiN0cQ4zkK2So8d5zj5Zv0N4T95VX3ZkNca
VLY05Jr7csman+onZw5h9uf/xOPTH8CspN/ikakP4D0R6+/ZtkHcf6+QCa/s
HQi6fdqgmgnW9XFnfpJsJMma1zuEq5fOYfXiuXjlb0/iqUeT8PV/3sKx3Zsx
2EH90cMIhk3ZV+7K5cbm1iTGg8ztUxzRLOLu3DW5OHeqjO2kzLsqG6jqzcz5
7ZP8d+yHubjDY23oPbItPmsFpP/V292F4uIi7Nm9R+gdxWNmST1M9VxT7zW/
fB4ka8T5taN4B3/PesbS/ZwhV6+F6h1XPiTJGvm/p06exPp1BcxFLvOQrh4Y
l6zZ2D7i+J3tncjOykbZ6VPsL1LtL+zqr71fjjVaDt2y7MLxMOWeam/rYMzM
I4cOYqCX5tX97JdLe6xsaYysSf1K/VKNWLLwezw6cywmjv9fTKa+gaSxmDlp
DD58+1U0NlyHLzDM/b2y192yc2eW6WB0aK4LHWuRLBLG4JIfv8ETsyZh8qTf
iVhOHHuKkOPXnsfxA7sYD15yYauaQCh2vlv6sYbh8KTSTNORQ0exPn8zOtv6
7NyOqeId2cdLPZYSGyngsxQXeMiufbrtZ9z+F7oe1s9BNNy8gYL8dbh+tQaB
oJ8xIux585C+vpDdK011WupfIH4g8t3csmbPhim9xv6amhkiG0l67fjx48jL
z+XZGoczxJE1jTlj47GxnvdjZ9EubFy3juewNL9sFI9Zgpp2rKy5+c3d+XNH
twVw8eJFrF61iuvEAXHuUMCy84R6VlbWNxUvpCGf5YULZXjxpWcxfvzvOP8+
ZtxveaZu0tjf4mEhIwcO7GPMNdZVqibhxvSUnF4ynmQ7rWrRQ30e7Ni4AX99
8iFMnTSWZxgmCRkmvrEZUybj4/ffQ3tzC9w8cu55W1vvWCEbU4N0GvU6MI97
+TWuEUqMLYvnYSSHc9iOAaLmp7Tva0VjeMfaUdalPA9AMc8wjhw5jLzcAnS0
94Dna0Mh2y+x977yIWlRHxDt+30l+ySPhmE6ek3x3st5DMvuFdb+KOXSjh49
gty8bDlPbOp3Hy1rDv54WD0XE2dOnUNmWrqIX1uVj+/g7MbmvRLlWuUzCEfL
Wkw9h3R4m9Bt6eJcRw4eQn93L2PMG3reQs2kaf9a5zjMAGGDl+LZZ57GhDFj
MI76EMb8DmPH/g7jJ/wW06ZNRsmeA4z/L+fMgnLuICh9rHD4rt17Zutg8pPF
e+rp7MVPCxdihjgG5fLHjZfckZMnEadfEl5/9R9iX9yy667BWJ/ClPOUbjmj
uG7Prt2Mo9cu3r1huGMzhblkmXbfLONxhsgfCtpxsbahiWRNyqXEKKHYPj9v
vfC/dnHuTe9Tt17R8+/STw5isN/D2C2E6cg8GmrOz7AxEcK2bQjaswHy+VFM
d+jQIazfkM9zeDL/o3uHdS+Mvmb1nIxQFL4fxYp0HSE1a2Cabp6Ze+XN7dPp
+Db6/1znsmT/McVexHG1Vtjt2zcbZF+66h32+00Hr0/xNYSoJ8TnQcWZUrz2
/HOYPG48zwmP/eNvhaz9L8ZM+B2eevpJnD1zQbzjIPuFfl9AYhpZkbj82NL+
WLy/+8S+XJmchhkPPYKJQpeNF8ebMP43SBL6c/qUSfjnq6+joe4m985K7soY
u8b7QvX4+AOsY4iTOj01HeXll2Vex1C1chfelqXtuZY1y4iexzWi47FY3nDp
A0mbeOf2HWSkZaP8UqWqSTpY2tKPUbOe/JxlLrSvZ4D7iQ7sO8C+kz1TakZU
nt1Sc6SGS9bkMSnvUVpaih07t3MPsPy9I2uOzxaG7rUKWxJDnXDut24ukvrU
O2zn6d2z+vF8Bj2naGPcKN/ejXfi5tmlr6SLbzXcQVpKBo4dOszxiaVmJO3c
sZ5TEDFg0DOE3rZmFK/PwUt/eRozZszExKTJGDthLMYnEXfrRLz48nOouVYF
/8Aw57Up5+iOj2OxbKQvIjFfqc69vWgPHnniTxiXNAl/HPeAsNO/x4RxhN2Q
hC8+/QKdze3c086Yui497449LeUL0YwuYZIRb0Bf34DkZwlHbLm3Z6h0n7G9
9505JFmbNaJ44eLqOPHcKF9x9PBR5GWvE3apk2s33IPPvftO76ih5lpkjsdk
WSvIy+ceQIoNGJ9B4c9qWXNmrixbp+l+hiNHjojntpWx10zbH9a1YyUjlsaa
0XmtEL/vUyfOCt2WI66hT8mOxENxy1qU/jb03Jslaw26T9eKyf3bOKZOXpn2
xZ7d+5G+OpXxkcygad8X2w+eFxUy09+P8ydOYsXin7BqeQb2HRJx9vZ9+Pvb
n+Op5/6JF1//GF/OX4HPvv0Bq1euxM2rlfAK2SG9xnwbNrej9h0lHg5fc4Bq
VkNoFDFx8tKf8Ne/voCpjzyDSTNnYdqsmXj4scfxwktv44P3P8eerdvQS333
Q4OwXLkv/X1I2Qd6Z+UXL3PtvqGhUc4/MXcz4eiZEn/MVO/DljVHziQ/gpr3
V/lT9/OPnsegZx9AZ0sbMlMyRRxSyj2MfubYDql6lJqB5L0g47OAsqGEn7Zl
02Znbl3zcRkyb67z89F61rJl7ZDwgbZv387Ya/Z8oLZt1r12X/YkyOuhen16
WgZuNzbZXDryOu/lH7XrNmpuSMfpeo+GlK9sx6Ua30H1BVHcX1tdj9TkFJSf
L2Mdzvw/5BMRF0B/DxqvV+Hg3gNITV2LvIJNqK1vR5/nLtoHDJRfbcKh0ss4
deEGbjQP4mLlTSSvThfxdAaulV+Af4j2yzDXcg2FDcU1OEPjzQmfqr8DVy6V
CZ9qI1JXpWDL1l3I2bADC1ekYL7w6bNy1mH/oTLs2nEIKxctxba8HFRdusSz
v4wDZ+iaRhgRtvcBjum3bNqGHcV7RZziU/ud7KOUNcaU5Xk9SB+ca4bKZ1Ny
pjHH5Yxe4pkizpGLZ1V99TpWLl0l7PZNrr3JupKe5bC431PPwhp6VilgSoyE
gvU4UXqS66xBxY2pMYpi58jdOT/y70p2l6BoWxHXUqMwWV32Pt610/ednd28
H6nOJXs3Dbbtbn7pe2TVJXdc32DZVpjZtp8m+wwl9vBdOSNH+aCeQezYLt5v
Zga6O7q4RhQW9nu4txtnSg9jxYK5SF6ZjvMVN9A9EICPnp/Gm+XYKMx9T2KL
Mvdedd0tpKRmYtHc2airugifp0fVcqnecFfObtI5qBbs6RdycwLLlyxCXt5W
NDR28jGGaC5Z6Nx+8SwJj5d7qbwhXL1SjXTh0835djYunj2Hga5uhHxB1mdy
Vlo8L+FTXi4vF9ecgisVteIdRRR2jwk9z6n9DIeDQOGMWKaq/d61cw3uWmii
HBvlikuPlrLv29PV79RG7GWquFP3TclYgnowKS9GvDOnRVzopTwnYc4YMsfp
U3kRy2VL3ZgkJF+Ey0G+AuMyaz3vygUljJ3F58nHo89S7NTb3Sd9c2XbYuVM
+2q2v6bxAQzVdx+SS76HiPI7NaaF7GGkvFZTYwsWzl+AYwf2s426fOoAls/7
EUuXpuDU+Wvo7ffx3Af14gaVDg/RDCrPoUocXe65J85q4l4T9r/06BnMnz0X
+7duxFBXH8slxxjESzTsQUv9dRRmpWLu7EU4d75O+FQBxmMgnG7mu7UU14qy
c4YhcwtUw79adR1LFy3C3O++wuWzpQgM9sMYlhyona3CB01egX0iHvb2eSWO
iKHlTPaE67w09xEoHFldf7yHlyRunB/9HqlnYsO6DVyblP0ElppfcZZtA+38
tvT1uzp6kZOTh7NnL8iZJtVHEGJcf8POJ2tbamONGBbL155dJdgv7I7kglT3
FiNr8RbXq4SCuCB0GmEgyNyHYeeY4+k07qPQcYHKC4UMFcswj6Gc5SPcgbv8
vAIyv6R8X/JdSbetF7HQ/O++R9qKlVi8eDFys9ejquom+rwW8xlynsmy7Heh
c8Yka+GAxEg2FC4HyVVPjw/7959A+qp0HC8RtqylGaHhQSEXXbhVWynOl43V
qRk4fqpKyJnEJNe+M8sFx4YhmytB1jGkv+sR+7+8vErog0KkCLu7t2g72hpu
oL+7HWWnjiN52QrUXq/nXoAQx606dy7rtDL/IGVN41y6fx+LrevOK+n5Kan3
Qlx/rLlew/OdhF0h6/ZOnxbjCRhO3KLzZBoTpre7X9xHPi4wZ4vKpSpf0nRh
2Tj4P07fCfmlJGuaC9KWi1HIGi2SndaWdpY1whShWqnWv5Z1b02cbbrGA1P5
ZdknEu378qwbP0uFHRskXhNhn71e3pdbCjfh2aeexXvvfIKdB86gtX1IxdhG
VAxry5rGxOBZVBNhv0/InNT/JBPEddc3ZOJ0WSVWLliAA1sL0VxdiSsXTyFl
9RKkrVmDK8Q35gnL2VeaGVM4UpK3w5B+QCRs8687fryQN18IHb1B7Cw5gR/n
zMea5CXMI5i+ajl2CZ9goNerrsWUMagrhrjHpuj8QBxZc/snjCHkmpcMqVr2
idITjI9Mc04S6yoad8Y9FxNU/Eoan4xycnl5eZyX0TglIZWz0LrD6eGxbNnV
NnRH0U6ui3DNgT7v8tfcKx6HGp2L8JUIy4tsqZcx84O2DY3Kg8bYUVNjhlAe
T2GoREjuCDdU6De/sp2SpzmAwEAfai6eQ9rSRXjvvY/w6mvvYtnyFHR29Kk+
I4N9WsblY1wW2LE0n4MxCyW+h8U4MQbjEREvAOuksOzzrL9xi+3pc0/9Ce+9
9S72HTiIAcKYUPlXia0pcwem7iF0LUvJtmNTZd8Q2XPi92zt9CBv/Ra88Oxf
8fbrr+La5QrZw0L9k6qvzZ5VZ93sYNk7fBAu++nCnHfrNAe/SHM5mIxZSr79
mTPnOGfJXMjBEJz5eBc+ZEByKmkdRbJGs+5rxL67dKlc8q6pmk90fs2M8gEN
NZ9B+VvK6Rzcf0jx80XHBoniGffv6Fro86TbCPtV4/M53NExvQZBhR2n/E7m
SzSVzTPUzEnYsaeG8GUJp33bxk3CL1+FvOxCnDl1GXv3l2LZytW4drUKHnpu
ATlfqfmgqGfYNHWdTvLQBZUdpn0cUnzrltYPlP8VvlnttctY8OMivPziO/j4
g69x/Ohx5u6UmE+658Oyc+q6ZmhoX0DHNkrmdO2FuNZI3oifl7AYPvz4E7z8
6htCt63GzcpLGBZ+HNcX7Hcf5pqAZQVUHCDjJTd3FK+wlDcr5n3pnLu0ZZK/
7VrVVWRn53KfncQajc5xuuVV9t64ew4J27cTmZmZqKi4zLktt6xJ3AnzHlkL
Kj5AkrWtm7dxXx7JmjsO1dfuxlBz6yk7lhTXQ/32hIlJ90K9Jk7vnttX03lo
R1+zng2oGMoyVSwaljwYAS/6uzpw9XI5Nm9Yj4WLlmHXvhNoahkSMSFxYA2h
YP16bNq0Hh1iv/rtvjGpnzh+NpS9Ub5KgGasycabkltT1vEi7JN7u7tRW1GO
HBEDpKRkYnvRMazJ2ISM5ExUlp2HR/zd4BycO88ocbfcmBlOjUXnccIs0xFT
6kM/cYWfLsVPy1Yhe30Rli9PQ2byMuG7HROxQpOw0V4X7p4p8S6Cmv8j4uSl
dJ6ObE7k7j36QfdDaywOmsWmGlhx0W7u/ZfYK/fybkfVEVWuWeYygmhtbkdW
VhYqK6tY1nS/mSNrDt64bZeVrFFujjjTDh88IvVajKzZtfs4sqavj+6duIFI
rxVvL+ZcEnPP2FhS8nMa89DG1NF+QkD2yslrlviehmcIbfV12Jq/BovnLxR+
Tila2nsxSP2oPkPFRwb3Ni38cS7KL1xy4QuYjs/KCzyDE1Q9LtJ+W2qWLsx5
s4Guduzfvg2Lf5iLg0dOo2tgmHkT+nsCOFl6CUsWLMGBoi3M+en3+bg3zY3N
YhrSvml8EJ2LDivcQYp/IoxjFxb+bRNystNQdu4yevoNxp/fL+LgJT8tQ15G
Mm7XVIjYo4+xJy2VT+UZV67dGWppuVMcRfFiN0PXi+TsA80Tpq5OFee9qGpS
0bIW+47t/sqA44N1tncjNzcX169Xqzye4ktRfcVOHBu2ZU1ixAXY11uftw7H
RGwga5qu2EB9H44zbxaVjzZkjEGxbEFegThmD1+X+3Myh+jM9Lp9UZ6XDSpM
9GE/vF0tKN27A8sXLcH6dZtQU9fI+PLEneOlWZKA5AOm99rT1ovCgq3C59yD
QeIINDS/X4j7FmQORuI/8fGDMj/LPWXkR/mG0XG7Fvk5WUKXpXGPf+9AEMPU
CxGS+KID4ueycxVISU5GYU46Olvqhbx7pG+mcBSjfSxVe7HctUKpgzxej/CV
TqGwsBAdws+kmU26r94hP66L+8zP34DFCxfhxPFDIl7o4n5IKyAxoaWuI3vq
t22qlDXF3RijCyxT4kAzD5TwxYk7IyMtEw03m7j2aXN22e/VwU1y6iZ31cyN
nHMmnUKyVl1do+oThooP7qoavaX6F5x3TJgYhJ/S1dGNgpwClB4ujbKh7rqd
5o9O2Cuk/AKaaSb+0KbGJr42t6xxD5TiYIni/CHcLcJ18wygu7MTFWUXUbRp
I2NjlJQcRme3V8ihrL/onBzzvameXOLOKzt7BRkZWWhsbOD+o4DuYzc1z7Ly
N4LKv2JckSB8Qv9eu3QB29av489XVdfD6w+p3hiZMwuasieGeIjPX6oS8rYS
2zflob62SjyvQdbBpsIo1Hj1do08FFJ79q7ys0zcaapnjK+y8+Xw0bwOxT1B
OfMwLM7d2NSJbUX7uDZyoGQ344P4h2Svuu1fKq5mjfUUDul+hfA9sqZjA7Jf
RduKsW3LdsZnNILaR3P73vF7uwzF50iyRrjF2dnZLGvaPuicR1DhlDLWip51
U/ipFIMQ/xXJ2pkTZ6TsxmKPuWd/4siZ7tMgeaMYhbC1yi+Ws9zq+RLNK6Xn
yPTsJPuR5AcIn7j9dj327tyGr7/6Bmnp+Vxbor5nmjEPGY6sS4wl1cdMvOxi
f7ezXl+LQwf3Cl0wwMeknqMwYzUa7O8EFX4/6TpT+IHD3R0oP3kMyxf+hB3F
B9DT7ZHzQlaI88iMtUJ5PtUnRn8bFjqovrGN/ZW1aavQUHtN8rME/dJu67jK
VLVcK2RjRkve4yBOHd0nfJZ8dHX3QXMS636ckIrRPcT5dK0e2cInWTR/Liou
nYF3sJs5iEL8DqXNtnQPSEhjsin/2HR0BGM2+IKMsZe8YjXOn73A/UPavkTH
evfiwZmqJ17KrJS1tWvX2jbULeO6zmBzetp1eNnvSfJRWLABFRcuMmajEz/G
YCCa2n9z7sFSOSTG6CQuc3EP27cUo2RHCYb7h20dKef9IvAF5HwX9Yybfpq5
9KCjrZX5YubO/oH1e2VlDdo7BsXzDvGcYzDgquGqPgaKp3geUHG1UG7+xPHT
3EvZUFfD/FJcV6JnxPckeTZY5vxDaL1Vgy152chKThcxbD36B4M8K+jEQlK+
tL8p952MKUn3NN1px84du/Hj7Dk4ceQQPANd4l4DUqcxdojFeKQSI86Z0aC5
l7y1a3DlcqXwBYL2DJWp8On0vDLVIfzCr+vsHkTp8VOYM2cOcrNS0HzjqrCp
HukX6Dojx+1B7i0ylL6j/RU2pQ9MeUOaGyXe7dQVKbjT0CL3qxGCm0s4Vie6
ZTAY1FhCBu7cbuI+j1s3b91b83b1fttzjUr+KPYnG7pxnZC180LWhpVON5yY
2z5/KFrWQrqH3sbSi/D82MmjJ7Ftw2bhR3XKGjv14Pg1/m1I4nYPe+Htacfl
sjPYsmkLVqekY8vWHai70ch4l8wHq3oOgkEHX52vX83lcJ9ZSObs6f9a7nQw
JsneXduFn9+K4FCvkLkB5kImPWgJOSOeqGtXzqMgNwf52QUivq3hmTyqNZka
B8GVr4rlyCK/iP6P9G1Laze2btqF1SuTsX/fTvTSnAzXI2RtTT5HlccU19vR
0ordxTtQLOxYJ+VQOd+muEkUH5S0hZIPlDCmqYZG+CulR48zBnpmWgbKTp9A
f2er2KvDnIOwc+Gm5pcIMb4O1dK5jimeXa/iB9i6eTvzA9i1pTg+eLyccNCW
HeIOrUdeTi73vlmu3ivCsrZ70F39UrqHmI5Fei13bQ7jqdD8tuHXe0bFFSqv
Z9o567Cdy9B5RNOS2Ik021177TrWi+Pdqq4W90zPwyNi/EGEhS6KUPw46MFg
VxtO7N+B+bO/xcoVaaiukbzWhK1KPistxjjRs+12vUTWf7knIeiy88Ew9xwU
bd2KOd9+hrPHS1BdeRwdzVfh6etFgLBL+ntRea4UyxbOR17eRjQ190p5NQyF
gaB4Z2PkzC1rjI/FtpTmxsU77Pbj4KFS/Cjs3O6iTegVOpp6mjgmEHouLO4/
HPDBEvr70ulTSF66FHXVtdK3M2X9VM9+cKxqx/93eT6abDD3bYjndrOxA+nZ
mzD/x3k4tGcnhvu6ODdCuRCeiQrK98v+uSGx8/l7ETPX37jJfJ/lFVfRP+C1
eX3i5UtjZS2o/FAta8QpRPNzhLFs51uUrLnjV/cx9KJ6D+EbXSo7z/zfjL8a
MO24SttSqveFwjKn78bdl36/5M00hN/S1FCP2d9+idde+iuWzP43juzKQW9L
HQIiRvQI3//oriJ8/dlnWLh0Jarrm9g/Dqp5YFNhf5gKv9s9t6vxqKnPivAO
qPdF7h3Sl0LXDBg4sv8gnv/Lk5hKHAbj/gePTP89vnj/RWzLW4FVi77D7O9+
QFXlDZ7nYS546pcIS34Wxri1ovPvjs/j9N9Jvg0pc8SnQPHwneZ2rFiWiqXz
56OBcrJd7ei8WYUTxTnYljYfW9IWYPHXH2Pn1k3Cn+xxfGK7RuD0aNjv2gzZ
mNwG93UQ/k5Y+LFtWJmcjS8//wJnjuzFIMWq/PzC3CNCvpzEDqA5DB9jcx/e
V4KcNdnCJx2Q+DecIzTvkYtY2TB1jjoYVtgTflQLXULYa7asWVCyFj/P7z42
cTytychkf830S4xcqUtcMbzhnicKq14u3b8nfWHaX709HdiycT1eeOFZTJ02
XrzrB/Da848hc8UC7C/ahrzMLO6xKd5eguv1d5jTUPc9cY7aDNnndfJUWp9K
biWaPSes8qDPsHtKCD+iQ9g06v+fRdhwhKk15veYMv73eHjqb/Hysw9j2eL5
uHShkrGh2H6RfFkaU1vqlUgoHJU7iJU1Wf+VGH+G3huW9IeqqxuZp33FT8ux
ZvUKLPjuP3jjhSfx3GNT8exj0/DWK89j53bC6OuVNTyN6xGQORO3byjzcpYz
b0tyHpK5Z3pmxGWZX7CJOUCLRcze2ngDARGjBBlDJMR61zcs7MlQJ3pbb2Jz
QQ52FBWLe/fZeVVdL9W9bvasboy8aRwAyXMY4Nkb6gFva2mLkjW9R919mbEx
ZEdbO3IJA7y8gmVN9wM5s/jK9lpq1t5w952od8E9l8M4X3YWr732MqbOTMJE
IWuTJo/DlElj8fis6fjny3/D3DlzUX65DgNDFuP+m2bMTKDl7HN7PtC17ygm
ZX4Gn9OTzH2tHsKJOI+/v/QckgiLkHh6JtCM3gSe0XvmmSewd+8BOUdpSn0U
1Jhoqr4TsXQt1uWfWZorNWLPrWtfWV6XgztB19ZwqxsLF6fgiUcfwozpEzGV
sAqnjGc8lscffQQ/fP8NWppu23MozCuuatMhW9bkvqY6bSQkfWLCOTGZ78/p
qe7sHsLOPccw7/sfUJCRgtorIr4U+pRw/wZ6OoX81aD+6lkc378NS+bPwZkT
x9nP0HkZjc3i1m/35OesMDTOjZY1wgMmG6p5iWX/ptOnEU/W5FwAYYDfYb1G
HB6hoOKxV/lwmd9XvePKbgcUvtGwN+jC7DEZp5di4ZkPTmfeuTGTfotxSX/E
BJ5nm4jPvvwMN2/WM9ZRgPLrKidEfRE8Yx2ORPVkOvshbMuhxNmQOEtO3s7C
gLDPu3fvxEOPTMUfhe0cM/7/iWt4ABMnTcSECRPx1JNPYb+wr7JeelfV+6m+
b8pZYUvXLxNwvyq8W93Xwv0NjMmkauGm1EXDXh927dyNxx57BElJYzCBeK+S
/oBJ4x/AVHEtTz/1JE6dOMnvTMuavUwnh8Fza/Z8QcSOv+gaI+rdWTz3EERL
c4/QM5vwxScfi5gsAzXlh7BnUwr+/fpf8KeHp2Lm1CQ89+cnULx5g4jHKF6S
59b34Z4bd9tAfe+6NqJljWwozVERzoacN4N9nYl6gaT8UvzWLGKDbNRdr4bm
rtLYmzK34swpaI4MjXnnrq9STXZ1Shqmz5jBOHEkZ39MGo8JU2h/T8GcHxeg
WcSmfkP6RtoHC6sZAy1r0depOTikrDGGG+dBnF5B0rNein9PnsFTf3oSD4z7
HcZM/D3+KOQ9acYkTJohbNhLL+HYmTMIhCXGF+1H5uTT84muvhx3T8vIshZW
dfW7do8YYSxuEj7EjBmExToGk6eOxZTJQs6SxgnZm4BZs2Zh39793Bej8042
x7jiodF98HYtnN+Fns+VOW2KdcM8T0x1FAu3RZxz+MhZzJ2/CO+++xr+/PQM
Idu/w2Rx3klTkoReTcI7b72KyooLqg/H4bFy8znElROFSy570gLMTUyyRrUh
y3DJWoyOuGd2Sxz/9i3hZ6Rn8DH0DLOuTeg6r+7PNFQ+lvGVVD1f5//7+jzY
uKUYjz75Z0ycMpnn2MYlJYlnTniYMzl31tndJ30PPb+m3pHDBSB1i9Zn0Vwv
cgaRsC5pGbZdJ3zZiNCZbXj/oy8xedpDQs4m4gEh5xMfnIGZTz6Db+ctRl3j
HXFu1fcbkhzid2nx906PQKK9qZ+b7U+z727ydZqq92lYxFa7du0WMvUExgp9
OmnKWEydMo6xGidOnYo/PfMcjh8/zTZf961qDB/G+NJ2VOXGOKdHPGzUR2CG
7RxKSHO40Jw21Z+Ej9bbb2DfodN45rkXMH4C6dQHmPdvzCSaGUvCgw/PQH5+
DnqEbrNzUAoTU+u22Lya9pu4B0vJGvVWEJa6I2vR8hRP1mjROWz86to6qdcs
nUsDJGdHSGFAafy4WJ4+qWOJ16nq+k2888FnmPLgoxg/Zaq436nimU/DI48+
hfXiPvsIH4F8TY2DRHaIzuPGfVf7RPICuOeqtKyF1RxjUL4TqqmLONTjCePQ
kfN49Y2PMGH6LIyZOh1Js/6E9z+dh8tVt3iG/K4pZw05Pg+H7ThH5xoSyVls
TdpQ8zsR5nwMs57m3hJxfddFjPCv97/FlKkPybnRqULmZj6IB5/4M76dsxgN
ja2MVSx5cYJRuLw2tr2pdLjSPZw/oxhT4SnwHhf/41OyYjC/jrBvVVV4983X
lR79I/MNjBO+64SJxBEwA4sXLOH6QdDVq60xo9zzMFHxo107kDOixA9E3Dc2
1oF+NqF79VrssyNZoxomyxpjOYSicDFs38Cn8Qw0/4z2zxXGhXiPAx4T5ypq
8c2CVXj0+TfxxAvv4d1PF2Du4ix8O3sBtm7eiN72Zli+Ya4bmIbGHNBydjdK
1nTsK+VN9RuquIRy5bLmKes1NMPS3e/Dpco6cb7leOvDL7F+60HcEPqO/mYq
PWCqfkcHF9CpM/N5dUyVAGPLPQvm7q1mrgBx3IEhAyfPVOHTL+Zh+qPPYOKs
R/DYX17E6qz1qKppwpDXkj6n37KfJ+V9eJ5a4Z1qXkPpKzuzl4biPtdzQ3qm
zgzIXoyGGzfx5VdfYsqMKZgwlTgmx7CcTRg3QdjymVi5IpV9naDi2nCwhKJz
u1G6zdTcoNJfK794iTm048laoudlqXWj9oaI1TO55qDnIqP/P2TnSw2/aV8b
Yx0FtF6LqJ7Su+gbCuJKbTOKD53D/hNVuN7Qi6YOH46duixihxzs3roBdVcu
wdffg4hhyHqOng20ZM+CtKMhxt8N232PCh/Tr+ttQbU35N+Ya1r8vqffg207
9iB3/Ta0dw3bcRdztqv+W/YRVW+ZjgnsPHUo4tRIYvw2bUPtZ0S/535fOQtA
56B8v0f4UJerGrBoeRpeffNfyMotxJ3WHgwTxwqvkOwf0PhkCifCPVdCOEKW
rl8bEcWlIGdryZ6GzZDqV1Ic2cN+oTfq8OOCeZgy6yGMmTINYydNEr7zFBGb
zcKzz/0DJSVHMdjvtfeJaddiLGicQd1vFwlrXzGics1h7mG7eP4Ctm3disGB
QdlHop9NnNjO7W/QnqyrEbKWuYa5u2NrYVE+irtHROFwy97WiG2zDUPiFBLG
OfkQnMdSOYZhXxh3mjs5Xl65ZBEqyk4iOEi4HGpO39Q9Lvo9k4zJuD+s9J0j
a5aqdd/LUTY45EVR0U4Rl+7DkIjxY/lSYntXE+l799/cy50fcHx32Y/tHFve
x6Xyy1ixfBVqquvs/KHu3w2o+XTtozu9/rpPWb/nMEKhmPjckBxQ1E9KfJiU
g+9ua8G2zevwr3+9h7+9+BqmPyL85umPYOpDj+PxP7+IVWn53DMTNGJytS5+
Po1Hq/mY9dK/o74k4nAljPLBwUGW/ZGenf1sVW9GrXgO2ULfEEfqSHGE3j+y
jurM8ceeR/ZHax5KyZ9pcqwuj9HbO4yTp68wLvrG9bnoaKqB5feIZ0a9czKf
TzEpY7qG3Hl8hbHk03M/9+Jv6fzHhg0bcfLEKdlDF8e/j1cHHMlHcy+7Zpco
bnPl36uEH03+CfkppupJdHKk0fXp6Dkmmd+Qc4CmzOvqGMmQvcumsv/Dfd24
dKoUyxf9hPy8Lbh+vRF3Wrpw7mIlCrfvx5Ydx1B+9YaIHTyK/y8aB87tk0k+
PWcWysaqVF+pd+f4sRNC1nYIWfPA5g+M83zviQ/E5wkblGSN+JTd/+POL+m4
Tff82XzjrjyM/j/py2ieern3LbUvQ2q+aGAwiDNny5Gbk491uTmovnIR/qFe
8fcA7PlHklGyp2E1623JHg+J96j2vxFyyZqsw/f39fP9lJ07z+8xlgM8nvwk
ynXEPrcoHyTB593f1wofmLgyiauKsfzsuNtlv+wZ8Yid29XYPiRrcl7WVH2X
sr5B+9Hn86ClsQH7d+1ExuoUodOKcaepT9gPqk+F4RU6oV/4zwNe4gywZA+I
6vMNx8qB5fQPaRy3qFliJWuk144dKRU2o4TxOOLt0yiZ0Zxvlsz5E8ZQ9tpc
NDe3xv2M+3PxeDrd78Kt13j/KTvNs5JCZphnOGQxjzo957obd5C1diNWLF2K
y+fPYEjsUcmRHLJnzBwse4nfpWXN0u/DzkPKRTgf6alpqLhUYc8NxpOHRLPh
8WRtpHphXH9a/Uw1b+KUq6+7oeatHH1h++Uuvab5NLhup2yutMdqP3HMQHgi
g6i9VomcjNVYviwZZ89VoJ+wGdRepppIMKRqI3bvLc2LSUwtjW0cjWegeSgs
+/rcvNsad4RmOw8cOMQz6CPt1dj6Ih2L9NrGwk2Mb5Ywlxmn78G9v90yasdp
lszThlVtL6zznmGd45B6y+sP43zFNSxcuBh5a9LQ3VSP0LCX5+lChqF0nNxz
NjeUnjt0yZqsjco6CPFu1qscTrx9F2+vxNuX9/v9SHqNros4XKj/hnKXGj/Z
LbPx8F7tnlBD43/KPk3yG3yeIdyur0ZBVha++ex7HDl8Ft09XvaHDcrhhC3J
wRyRNS1LcbqGdE+llrMEMqF9BL/fHafqHKph9/mXlOxLKGuxz4efXUj6a9S3
TbLW3t4JnU+NJ1+xNjWRftP1Ws5lhGXPKO2liKl65qkeQTqO403iagL6RZxR
UVmLTYVbkE/ckkLHBQe7JR4CHZf6UAOSE9nmPfNHY41xnisQZB1C2LpNtxpl
vjCOPLmfayxOXDw5G8n3jd1nth8nbrJJ+MDUE0E1RNJriey5uxZpY+255wED
It7q68HFs6eQmpyOrPQclF+4znMQ1IfFfYRc1w0rvm+nPzdsOf5LWMcyCWTN
bZvkPHLIzuGTzBHHFc2t79mz9x5ZG3HPWmF71q4gfz3rNX3P8Xq3Yn0Wt6/s
Po+b/0bParLdpHqy7tGynHyWvH/JXXWnpRdr1q4TcepSXDhdit6OFpg+H/fW
Brwm9xH5FVePEYjuTZc5QD+/V7KhrXea5TxnAhuXSC+77zne9/H8tdhjGwrr
i7hJSNauVlZxbsz+P9ey8X3tz8r5XuZfpHx1wIM7jTdQengfkleuwobCXahv
6OT+Ip3vidg1NO1bh7l/PeTqIwjz/IvyY8z49+fkHcIOb6od+4dY1qgfmWSN
/LVEeEjx5Id8qUsXypGTncuyNho7cl9Z0/GUIXWYLW/kK4SCsn/BkL19XA8l
nWnKPBX5GL1Cps5W1GHevKXIWb0KDdcvS85C7zACnqDNARzLEcR91sJO0f1I
/J1eG88zkS5JFEvGW4lkLZG+oxiZeryodkj1apPjx3tlzVK5EomrEJJ2zxL6
POiHf7ATVRdOYOlPi5CSthbV9S3wUE6dZIHOwzGYzlXctXtY6b1G1MxL2FVr
ZrwUdb57+gui7FXEzoXoXBet/t4hxnak2IDi/XjzfnHtoup3pDmu3Jw8dHR0
jWhHRvJX7Dhd+RXSX3NjAtyFrm9y7UnnUk2ZVw2rvUnPICD+d3A4JGxqPXLz
NmHJwgW4fO4kBjvbhG7zyTqZ4m6y+8PVdVCfxcmTpznW6e3ph+bSS9QTGJu7
iBef3m8l+hz5OoQdT/7aZcIjoHlIux8yAptjT59f44HRXIRvCK2N17G1MF/E
Tck4XnoOTc1d8JI9E7G6GZI1TJ6jZfwzGbtHaC5HyRrLGPHRkU1h2yrtixU7
KxV77abDz6tnkTS3IOFnFa7fzD0zlPOI5iqProXG9snQ8yDubso9EI6a5YpP
RuPD8DnUTKCWN64fBSWuGue2XDUBzQ9sufwKzYnOc2iGkwf3ekO41dyLTVt2
InnFchwo2YnGhlrmK9H4THLe1OG56O8fxLFjx7Fu3Qb00TyV7oVy5eFs31th
2NDSvQ56xfPVY2XU/b/uHJCdPwuYXHuk3PWFs+cQJH55F86Usz9DCofEYH+h
v7tL+GJlwvZmYXVqJs4Jv8zjDXOtQXIN+CXXiR0rWaqP2mIMCXueyNRzi/ra
XXPDCWydljWd29XH134L8V8U5G3A4cNHGQskNjaPlTW96Gd6HsSjsa5gA8ta
LO7l/fw2zUfiljWeQw1Qz44ztyh9VjmzIWfNVU9/BDJXGwmruTOd2wkzZwTJ
bXfvMPYdPoHvf5iLtNQVuFFzFQO9/SLu99sxguSPDLM/cVDE41u3FjOnWzBw
rz5zx4A6J61lbiRZc+dgGVdF1eoM/l7VeVS+T2MbUD9hQV4Byk6LWEe8G1PX
yW1ePZlTIP/AJ/ZQZ2srNm/YgB9mz8X2nUeZc3DYp2arSSapTs/973K2mnoQ
fD7L5i2Ss0C6LqT9OTkvaCnsQo0FEqubHb/XkTXuFxQ+zTDzXwVY1tblb2BM
SeojTyRr99hE0iVif5w9dYbxkdi/CTlxqlvmEttTmYO2703pOT6vu3fDpbPd
GP+yjiZraQ7WuVMT55jbCKO7P4Cr1Y1IXp2F2d99h4N7d6K/q4s5x0I0E878
PhGhE/pRvI2wQHfxHJ97rlBjuGg/nOVGLY0FLHu+I/f2/rvlVGP9ihUmO6bm
gAzTyWVprh/qJyRMIOqP9BNGs9LdhsKXChOupIgxB4Quu3T6GDJETJNXsBkV
V2rR1edn/1/P1QVVX4jTD6J7HiK2bGs9bhqWK46Uz9GurSq5tPdPTM5Wx53c
N0azHTbfaxDdNLeel49zZ85yX5J8JpqPN0FMwDY0zH24xBG8ddMWnot2y1hC
P+8++bZEeatE/raMs7Xf4J5rkEvOGhF/cgjVda3Izt2IFStW4PCBfei40whz
aABh3zCMwR7crr2M9FULsH1TrognxN4JmuwLSlut7bk6D/vI7qXObWnemnDU
snmC9Byaqn/bOAoh2T8r+/OkDaW88oZ161B65Cj3rHEPR1D6GCHCghHX2FRX
ix3bikQ8kyt87gNobesTNtNSODiOP+T2A2J1tKlz5kr/uXOwsbLkzvHp3Io9
M26G7RkImxOaeeYkxkJXeyfyRFztyJrjHzl8EHHyZfRshKydKj0uYouttqwl
igNGkjMta27bk+gzcWXN1f/s5uSR85+yb430BvVJdPb6cfJsBc+u5WSsQmP1
JQx13kLlub1IXvwpXnluJr7/4k3UVZ5FcHBQ6B7ZFyE5jGQ+wOEkCsHNBenM
qofsv+slOUDVLIjpyiMztlJA1nIJA92UMSXjRzU3MebR/j07MSjsPtnPCL0j
oeP8A324fPa0uOZFWLxoOc5dvslzGCGuIcvafTz/PV5sRvuIYitabnmL4qjS
+8OK/uw97yMk8SW0nWeuNYVh2iP8rHVCr1VQrBOInyeP+55pT/gDOC723A7C
FiJcZtc+ifXbEslcrKzF7r3R5BPcOHO2HTXdMqd6t7VvLvZdy50+EW9uxj/+
8Qb+/rcn8fisMZiZ9D+YMvb/w7SkP+DPTz2EjRtyRGw+KH0Yw7UHQ3ft7+1e
BnW9VNcx3HZX4zeaTq2fZYm4n2meXmFKm3ZtXMjc8BBablzBih8/xz+efQyv
vfgnLJ/3OS4dLUJ/ax0ar5chY9VCfD9vIUrPXMQQ8Wup/cS6MXzXzkvcLwdz
z4qDKeXmChyNzSF9pWs0PsVrrPVazpq1uFxeESVr+lpGkjXD50fp4SPYvWO3
xGWO4zOOJLuxx3XL2mhkLHrPOs8pbOkcgOrL5VhdLv6ZY98IGm52YPnyVMyc
NQ2TJj+AiRN/g/Hj/hcTJ/yRZ6k++eRd3L51i+fAyXaF3HiwpuurqXqu6Zlw
f4V83uy70Twd44JI+ydnfKRPFFQ1ND27SFjhIZ8XzTeuI/mnOfjLo1PxYNID
mDVtDP708ES8//qzWLVkPlYsXYSctWtRduka82ib6nya61di943g/4xgK+Lp
h9jc9f30gFMbdbClSEcS7vrajEyZm+acs/t8I/hbISlrh/cfwM6iHSJuG4w6
/0j3EM9XY7/fDCWUtXj35ty38wzcuT8Hv82xcfzMlD9K/YYle/bjoUcew/hJ
4/HA2N/hD2N/g7Hjf4/xE36PZ/78CI7s24euplb0t3dhqKsHQ929GOwRX3t7
MdTXA+9AL7yDfYyTRItw5YPiqyniQvIFrcF+hMTfaVnCJzSHxPL0Cjso/EFf
P/dD0YoEfIj4PPB3t2LX5nw89/RjmD41ieepaNH83rSpk/H0039B+poCnkex
AhGu24Xs2EX6f2HdJxPnuceze6PxceLl4RO9n+j4VGGZiP1NNpTmO2nmgPRa
tLyM4K8RJoKQtX2792CHkDWt10a67vvtL7cdjd1f8fq+nOOpHK99bRC+h153
o/od5YyCiPki1DtjoKRkPx598GFMmzwd48ePx9ixD2DMhN9ggtAnUydPxN//
+jze+8eb+OjNd/Gf997DNx9/hEXff4Ufv/oE87/5BCsWfINVC79G+pLvkbLw
W6TN/w65S+ahcMVibE7+CTvSlmBv9grszVmCHZnzcGTzSpzdk4myfWtwfn8O
Lh1bj8rTRbh+4RCunz+Egzvy8MFbL2HW9AlCz47BJJptmToO44WsjZk6BW+8
/SYqhF4IsB9pybiY7zuk8q8h3FV22X4erjzVaP3oRDov/l4PR7372P/hfkKl
10jWaB7Z5pi1PxtOeA3U40u8Svv3lGAv9SMNehPavpHuwf0MEsma/lu8/L08
jp4Rdek1Vb8LKxw7p09E4j1YEXGekIlLl67gpZf+iZkzH8OkSZNZ3iZMHofJ
MyfjH2+8yTiXh/cdEvpbyMHevTgk9NyxwwdxaH8JDu7bg/0lu4QPsV3o9q1i
bcPWjZuxIW8DNuVvQGHuOhRkZiMvPQvZKanIXLUSWckrGbt79fJFWLWMsJWW
IGtNCtLWZmBFago+/eobPPGnpzEpaSLGjfujkLdxmDhJrClJQuam4d///jeu
Xau2e+4IF9jiZyTvn2rovFzPL5Gs3U/ORpK1WLsa75hR/0+YZ20dWKPmoIyg
GecdJrahAe8wy9ph6ke6j6wluuaR9Npo9pLUve6lrw/RK+w860gkwnqA6i7t
nb1YnVmAZ198E9MfegqTpj+CKQ8+judfeRPrtuwQ/hBhBZqqH0zhsag5u4Ah
+wqHqU7hD8MjvvaJ+L7XF8KA+No/bKHPY6F3yERnv4mOPhFb9hpo7Q6ipcuH
2+29uN3Ri8b2ftzsHMT1lgGUlt/AnJ9S8cgTfxa2MwlTJk/ir9OmzRT74VEs
XZ6M9o4ezuXwc1VchhF1b6Tj3LFBPFn7tf24kRb/n4phO1rbWdbq6+q5dhFt
h+8va3t37WZZYx6NONfzc3232Bxy1DUnirPd+tZV24j3jLV9pTw49SQFhC/R
0tWPopITePeTuXj6xXfw1gezse/IJc4BBxXujZ3LCFlOHUPP0igcd8nlEWKs
FlP8D+OQU7+d0j2MzUC1EZprYq4M2DliYVLEuQCvuJ5rN5rx1Xfz8OhjT/Fs
7OQp00X88gReef09nL5wFX4jZPtmdy3ZfHxX7SfqtbLUfM/9dJZ+NveTqdHo
vdh8nf0edT+2uDnSa/nZOYy7a+k+VpU/GKkfTctayc5dOH60VPbmhxP7mfHv
516dm0jW4vmkznEdn0wfl3SX1F/hqGXXIFStixbpp34Rz9U3tOFadSPqb7Zj
0GPasw4ad8PG5SB9aoVsmx3NJxlxarghZ1kKx1nzRocVd5HzOacuQXWl63VN
SM4qxNsfz8GbH/2A1LWbcfb8FXFdAZvXQ+eVdV1YYkCFo3zUkfZ9or/fT9YS
6ZB4sqZr8RSztxN+acYa3LrZqOqCEWg+tnB4hHOJ43oHPdi+ZZvkbPEFbBwB
N6bASDoo3v3Gk7XR5NtiZc1Z4XuWzdMcvmu/N35nnJu7G10bUBwabIfpq5I3
zu3ax4yoXgD1jk1Hh+p9bfOOqboC+/GW7NdxuGYido+i37iLzgEhc419qLzZ
g+5Bi+caNXaHxK1T71v1IkTEi6O4IDKC3zQafXU/++P250fydeR7i6g+thBa
77RgbWYmbt9qUhiYEWis3BHlWhyDOFvWF2xgvHma/aP3cDcMJwc9Srs5Gl0c
G+uM5pnEsxc/e9k6AvfYnBE/o2SN5W2UfkSUHqd9p5cVsXNoel/F6nL2F/jc
sfvu1110Hn3tiWxw1P1aEVUjtdDUeBvpaau5B1Tzgmo7G8+O2b8Te4/qUiRr
hJEpeUdDzoxbHNkYaenzuHts3FgM8bhT/6+eZzz5TOT/3e/z7vfh1tH32yuj
2af/9T76Bc8j9lz3ze2q2U7q3blZX4+U1SvRQthrVhg2p3Eoep+5bRv/zgwx
B2N+bgFOHD/F3I+mEd/PSqRnY3VubJ3K3Yfza8naz9GFv8Z7SSRrv8Z1JIx/
fiXZG42tvW+diL6asseL8EuXL/uJZ4mDChtbyuO9x4qKB8Uzoz6inLW5OHHi
FHMdxPPp3fISLz8WuxL1wI7UG/drydqvqR/iyYH7ufxasj4aWRvNfcX7zK+i
c8PSxyV8EcrhalljDj8laxqXcSR57unpQ25uPnOuBWJqqe7/S9QrFG8vuOXS
PZOWKF8Y+6zdeiT2nSfyt+J9PvYYv1TO4um2eM8p1s+Jdz8jXc9I9n2k/08k
l/fTZ/F80ITXYcl+6+rr1UhJXcUzdxo/SOqte48RK0O9vf3Mp3zxoubni/8M
Y/dxohy2W4fF4hYm0gUj5ShH82zjvc/7yTP9fbTyNxq9Fu+53U+XxNMt98vX
/hq6NN6+GElOdL8S5Txqa2qQmZlqzws4dezEe8kta8SnTLyjsTWDn7vf4+nA
ePpwtLL2c/Z2ouf4a/s9v4YNHUnWRisfv3TFs6vuYyfMDVuyz79G2ND8ghz0
9eleRyfXOdIzp7+RrBGXpOa4jbdH48nXSLKW0Me8j/zc7zz302cjHf+/eaex
9zEaObufjP83cvPfxBOJfJVYOYm6Z9XvSzm2yspKZK1JZ99LfsbJhY8oaxbx
b/YjT8ShVZVXo2zoz5EN9/OLrnP++s/5frLkPkciWflvZe3XvP7/9t7vtxdH
K3cjyivLG/Xhh3HlyhWszc5kHSX1oHoOI+QDQ+rzxA9Ec7vXr1ZHcQv90mdK
/5/IXv5a7+x+fs//tTz8Xx3/l+T+fs71/rfPmd7rxYsXkZefzbOR8h2HRi1r
HW2dyEzPQs31WhuPMl7N8udcXyJ/JvYdObPJ9z9HPBmK1aOxubv7nT/R+xjp
Hf4SWf5vfMZ4MXoiHzX+Mx6dzU/0Dt2L5gLPnz/PskYz7/I86v3p/kK7/9zp
b9U468SjQdgXxAUZyxuqZ2vsGo97xbk++hpb+7z3HYXt2l9IzWLz15hnped9
E/UmxT7H0chgomOMRifq38XmxBPJ7S+xaSPJ12j2Ybz38XP0vfseo56d6kcn
vtmzZ88iJzuLYwOt1+Tn7qq6m9PL5sialEnCV0lLTUFdba3dd2PZ8iA/4+Ys
sfse9DVqf0l9r2cvbR2h6olRvY56Ds4tczHPhvdR0EyIFxHvubl/lyiv/0vt
bzxZS6S77vcuf64e/CV53F+y3HIW9ayofzMk9VpZWRkK8nMYXyGs/iZxP+X7
JVwq+1j2HMZdnpdtud2ItNWrcYNkjfDLFP6/FSML5AO68U6isLL1ucIKo17l
9aSMOb1hsT227hVvH8bTSSPpqZH010jxaLyY+n7vIvZ/7hcnJzp3or+N9H+j
lbWfo9MS/b/8vcyj0YwL6bX163K5rzZkY1A5PVtWKFbWwhLTJhhC2+1mZKVm
4FZdg5qxvStxrbUMuPg4HE7pe+d0ZW+Cyu2Zeu5SXbNrPso9K6f7UfnrL9A7
iXR+PHkczXtNpP9G87vRyMNoZc29b0b6n3jXkOi+4t1zvONGIvHOJd8r4a+d
PnkKGwvXSVkL3Strts9lOb28PKsmdGJL4x2sSc9EU0OTxNBnzkndr+qeR5d6
1NTz4WpWnGVNY6iFNJa9vDZH3lwyST+zLxjfzxrtcv9/vFrvSDOQo5GB+/1u
NO/9l9i3kWQtkbzd7/kkOs9I9xW9X+W7o1nkkydOYuuWjXYPd5SshSLO/LvK
yYX0TG1ActymJq9mrE2J8SDxMk3Ncccr5ODRhe66erGULJoR23byPK2h33XI
3hPumERjJ+jfayzpWH00mh6TeDHo/WRtpPc0GrmKF6fH00mJ3vNo7NxIxx/t
Gkm/J3rO7r87Sz5LLWtF2zYzlmnItnWOrPFMJfthllrC57ZMnqMlLPQVy5bz
XExAceXafIo2d2ZIcfe5rtty/qaxNt0YPdJ/1njWLnvuwsF243a479ktL+5e
sZHsTbx3k6hmeb8Ve67YXEpsb9b95OR++iTRnnL3VI/2umP3X7wZqXh2YKR9
Kf9GGOB+HD1yBEXbNzP2vPx7yPbX6WfmLFZzRKbC5CEsc5otovoWyRphohPX
rOSgMRSHqOlgV2uOS40JoWbBCZPUDOjPGKwriYebOa2DLsx84679vcatNw1d
p79XB41WN8XTbfE+/0t1QzxZiX1P8eRxNH7az72O0eqveH5rbHwZzxYk8nUt
5fN4h3w4fOAgdhVvkzY0jl6zsZFsblniBY0I2QzgauVVLFn8E8sa8TUHCO8n
EJDywvhKCpMueFdxpUgskghjDljMKWgFJQ84fSYgPuv3+/l7G9NXcb0wPl/A
UnhOjhzKny2bs8iZqQjZOvDeeQvNbRCydaj2LU3lI8TrP4/XD+DuS0k8vxqd
70gUH48UO49m38Q7lv5cvF76RHrpfvF7vL2cMMair8TZQrK2/wAO7t0je7g1
1o9L1sIBwsYxEPYHEB4eRtgnYgghU0GPBzVXqrB6xQo0N95EwDsIw+cRx/UL
OfErLlFL4dGFFCailC3ipmFeWyFThNlq+AnrMCCuX8ioGRDvTejYoJB98buQ
Ia5LfKX/tRTnssRm0jissfhf9+LrRPMCaEyxsJJhU/FYK/xUhQOlP+vu9YyH
5Rfv9/HkKra/OJ7uGOnvo5WvRD0y99sL8eQ6kfy4/YB4tjfq/mmJc3v6PNhT
vBMlO4tZr8XKGn2m4dxRtFScRHvlSbRVHEVr+WF0VB5BW9VJHNqagwVfvI3q
cyXwtldhuPMavGL5em7A33cL/v4m+Ada4OtrQ7CvA9ZAN0K8uhAa7EbE04Ow
R/w81AXL0wWTVycsXzdMfy9C/n6EAoR5MQDTNyjWEMuzoXj2DNKHNp+ExNJ3
uJYdXGDN1aR/p/lN3L93VgxGqHkv7qh+zvF0WiJZS4RV6n73sccaSV8m0imx
cxqxchfvWmNlfSSdPVLPl/u+nHuV2IVDvR7s2l6MXUVb7bl1xh9wyVrawjlI
W/AdUuZ9g5WzP8Xybz9CytzPserHr/Dp2y/j708/hAXffoz05XORsWoeUlbM
RWbaImRkLEFmxnLk5KQiOycNWWuykJOXh4L167GxcAu2b92FncV7Ubx9F/bs
3Iv9ew7iQAlhFxzG0cNHceLYcZw6eUKsUpw5dRKnjp8QvzuBk8fF9ydOM3bq
2dPnUXb2Ai6eu4Tysku4crECV86Xo/LiZVRfuYaaymu4LnRvTVUlaq9ewY3r
VWiouYZbddfFqsFtse7U16LtVj26m26ir7kBgy0N8LTcgq9N7JX2Wwh0NcLf
fQvBbhFr94s1cBvGUBMMT7PQ7S3wD7UInd4u5L9b7Ik+oX8HxFfaFwNirwwK
ezAkvool9gr/HBhCODjE+8cQPxviZyMg9k9wmJcVDDKuHfmxJvsYYYUfGmGf
RGNCsp+q4yQbK0nhIGk8VIWJFDUvFLSifq/9D/6s5lgJSvxc9tMVFrCNr6R9
DDd/jMKjtPT5lY7nfalsUF9XP4q3bsfu4h0Y6hf37LdsDm153SbudPTjVmsP
bjR2ou5WB67VteLq9WZcKL+BNTmb8Mnnc5hP99ylapy+eA2nL13H0bIrOHDq
EvadvoiSUxew8/h5rNt7Evm09p3GmuKTSN14DD+tLcFPWSVYsHoHFqzYhh+X
bMLshfn47odMzJmbgh8XrsbX3y/E198txKefzcEHH36Ljz7+Fh+8/wXeffdj
vP3Wh3jn7Q/x0b8+xqfvf4yvPvkPPnzrXfz79bfwydvv4ZN33sX7b7whfve6
WC/jo7dfwaf/fh3/+eCf+PLjd/Htf/6NOZ9/gPlff4Tlcz5D2rwvkDXvM6xb
8i2KVv+I3RnzsStjHorT56AkbwGObl6Gw1uX4kjRShzbk4rTh/Nw/HABjh5c
J/bCdlw8ux8V54/iyoXjqLpwEreuV6C1vhrNddfEuoq2m9XoaqpDd8sNdLXe
QE97A/q672Cgpxn9vW3o62nDYH83vIP9jOk71O+B3xMUi7hkJZ72sEfy05K/
HCA+ZOH7BIn/nXxcn5BT4kkRfydedot4PsXfQ4QP6PPzCgm/OuT3iu+9Qu69
ch/QHgh6xM9iBcXvTZJ5Ly8zIL4PiM8GpB8TojkBPx1brpA4B2P5it+FeI8I
/8lPPlSA/XfC8vWLGLSrvQNbCjcIGypkrVfss2GxjwJhhU8m8dn8xKcoYj+v
2FfDwsf3iUVzsh5vCOfKKrAqOZN52YiDMWDIv3uIN0GsAbG/+sS994h77xbP
q9tjMtZFj9dCt1gd/Qa6COOiJ4i27gDauvxobfeJNYz2Dg96OgfRIY7d2daH
lpY+3GnuFasbt5vbcLulHY23xVexB5oa29F0S65btbfQQKumAbdqbuJm9Q2h
z2qFXqtGzdUqXK26gitilV++jEsVV1AmdOGps+dReuIsTpw4h8MHS4X/egR7
dx3Avl37hc7fjU0bNqF4WxFKdu/Bpk2FWJuXjay8HGStK0Bq3jr8lJ6NBSlr
sCA1D3NX5GL2kmx8OTcN38xNx5z52fjimxR8+OliXp9+sQyffLEE//nyJ3w3
exm+/nYBPvn0e7z/4Zf44KMv8cln3+DLr2fjq2/n4MtvZuO7OXMxd/5CLJi/
CD/NW4xlC5dg9dLlSFu+AhkrVyBr9UrkpK/G+uwMbMjOwsbcLGwSqzg/G/s3
FYi9UYjSokIcKyrAqV3rUFVajNrTO1Bzchtuni3GrbIi3Lq0A41XS9Bccwit
N46hreEUum9fELr+MnqarqK3qUbq+7Ym8fU2BlubMNTeLPwl4R91tWG4qxUB
sVd83eJrfzuCAx1itQs/qhW+fvG7oQ60NVeL55gpnusmsbc6EBD+PuFcEfeR
nzh3GcdX6FDKexghmw+V8g20x86ePoOU5DR0tHbaeHhWMKS4aRSePOFLM667
xJumr/6APqb8WWJQE6+K8Le85H9JTl/GWKQ9FZSfDzCvtNTRpK/5eoRsB4MR
5vAO+sOMcc0xM9mRgIxfA8wjHObjEn+wn3hpGfPlrlwGxP6A2E8Qe0R8L74O
+sXyAQM+4iASa5i+j6DHY6Fz0EDbQBDN/WINWLjda6K+04+aDrFahnG9yYPy
2l5cqu7C5eoelFW04sS5RrFu4WRZI46fa8DxszdwpqwGpScrsP/QWZTsO45d
JUfFOoI9+2gdwvYde7ClaCc2Cz+ncOM2bMjfhHW561GQU4DcNdnIzshCZspq
ZCSvQlZqilwpyUL+ViEnZRXy05KRl5qMtauWIX3pQqQvmS9+Xi5+vww5yYvF
98Q3shjZqYuwJm0BMlMXID97JQpyV2NdXjo2FGSJc2ajIHst1ufmoTB/gzj/
OhQWbsImsfc2Cpu4YfN2cY27UCT8oK1FYi9u3S2ut0R8vw9btu8V97APRcW7
sTY3B//5/DPM/n42tm8rxu6d+3BQ3OfRw6U4dvgYjh89Kd4j8e8GWM/5WQ6l
P064u6eELli9Kg3trV3S/pIv4bN4Posx3/0h/r0ZkLJDMkdy5hPH8wudHCA9
S3k5jkUN5vIxxHH5a1DljEPie0v+bKg8COE7hkmmFW+5PKaP8yWav1XGwCbn
EJlbj30I2YtMnMGhQNjm7xCHB3EnUO+ovfQ+UYvOQzhFxAHoV9ynlGckufUR
trr4Okz/S/uH8KD5XJq/JMx88X6xDwjjnbgGmIc3KP0uyemh4g9D4YsHQ/z3
oPLR5HVJTuToZXG/jsamJRz9YXG/nmE/hrx+DIj77x/yM794Z5+wF71eYUM8
aGofxM2WAdQ29aH+Tg/qb3ehruH/r+paWpuIovCfdOXGhSsXLgR3RmmRYgtd
iJu4sMW4sCLoQhBaXxRTpT5ri0iU0qitpNi0iclk5j5mcjyve+d2cZhAMjOZ
mXPvOec7d77vD3R2e/D1Rw92vh/ATucAvnzbhw/bXXi3tQebn3ehjbnTy08d
WPvYgScb23B/dRNWVt/Dw+dbuN2CpUdvofmgDTfvvoD55lOYu/UYZudbcPHy
DThz9gKcO38JGtcWodFYgOuzizA3uwAzV2bQriac6sIRWKimOGmMv26/gdvN
O3DYO9J5qMZZg0axTfRniJ+YOd6II4iM67x6HnTM/2Y0Ly01F9b81YTjBy1G
K8cLZgJ+nHJWl4Kz8Dmm8ZmJ35TJOZSD9BRuYgSbUXwoaq4WLnJxB11F0eYQ
LeyYX9PYmdjIeyq1bZ2Ts1+prkMYQ2md7LkekPHqcr0PLjEvPMBSP1r1ace+
x3rieM25xy3ppvqSuY0yPMYYv8/I8PcZjQHm2aU6WTS98smUYwXnQznlRBV/
Jpvg/xrjPpQjEf/XCPelXGlEOgkUJ3A7zEoYjEr0cfwNfv43Rht66HYPodVa
gWdrr+Do7whrUQuDkxyGGDgGWJf2+4N6TRrV19q3JL+gntQG+try0jLu21cc
RddpRExJ6yO6H9xbr33Gk1YGafswriv9p4I5i42ebxrrKx91AyrhuWaT3i1p
L0VuUhN+N2VjbiDyQeaeV61kmjOsvHPNz0w51WLflfFHr/WZFZ5dF7SePHOC
eyvcMeJ/ek02rCkQDo7II2RDr8Pr3GzjfTqNQ2gvJIy7QnIV7rco9iLHqzGr
OAatzOM0rhgfjBoEoUco2ltcU7L+R8FGmDnN06x3m1d1LFIdEsaFVM9djifG
+6iZkAtFjWbJWziWZKI3l2EO8/vXPtxrtdBn2hwTKdeh3IYxqlws1YAqdV0G
XTfVPhvr6xjbl+GkfyzabITthWdlRdeE4iM9y1y1BlhnnDTasQ5yw2NwxCWb
Dbk2YjzX6Lxmy6h/HrlFnI/P1mLstYQbm0x9oYpr65jPnWoi1uQuuIcrnEOV
+JRLdKmtahKE3j6d0yc4lmowhR6yYFrTZO1mJesB0UyF96XCMVNWrFPgEpw0
+lSCM4umG8Xi+r3ciG2Zem2x1ViPl1GPI9UHEl9zrOHug++x/gHdaxrLU956
zR14/iySd3AL0fIRnRvVxJv4qAlj8oBTa+yI3PlGY4tLsBbRkqE4npMmDuUL
aGP8vPezizlni9dLUq7P341FE13yMgv/Aa4hFxM=
"], {{0, 190.}, {155., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{155., 190.},
PlotRange->{{0, 155.}, {0, 190.}}]], "Input",ExpressionUUID->"6a55b2ac-cfff-\
4a65-a5f9-b8486e87b5c9"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"v", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"UnitCirclePoints", "[", "5", "]"}], ",",
RowBox[{"c", "=",
RowBox[{"CirclePoints", "[",
RowBox[{
RowBox[{"1", "/", "2"}], ",", "5"}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"v", "=",
RowBox[{"Join", "[",
RowBox[{"v", ",",
RowBox[{"Mean", "/@",
RowBox[{"Partition", "[",
RowBox[{"c", ",", "2", ",", "1", ",", "1"}], "]"}]}], ",",
RowBox[{"CirclePoints", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "4"}], ",",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "5"}], "]"}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "@",
RowBox[{"Length", "@", "v"}]}], ",",
RowBox[{"UndirectedEdge", "@@@",
RowBox[{"{",
RowBox[{
RowBox[{"e", "[",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",", "1", ",", "6", ",", "11", ",",
"7", ",", "12", ",", "8", ",", "13", ",", "9", ",", "14", ",", "10",
",", "15", ",", "6"}], "]"}], ",",
RowBox[{"e", "[",
RowBox[{
"15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",",
"16"}], "]"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "10"}], "}"}]}], "}"}]}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"d0e406fd-bdee-4a34-8397-f730a6da77b7"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 6}, {6, 11}, {
11, 7}, {7, 12}, {12, 8}, {8, 13}, {13, 9}, {9, 14}, {14, 10}, {10,
15}, {15, 6}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20,
16}, {11, 17}, {12, 18}, {13, 19}, {14, 20}, {2, 7}, {3, 8}, {4, 9}, {
5, 10}}}, {VertexLabels -> {Automatic}, VertexCoordinates -> {{
Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2]) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
Rational[
1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2] (-1 + 5^Rational[1, 2])}, {
0, Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {
Rational[-1,
2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2]) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {0,
Rational[1, 2]}, {
Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2] +
Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 2] (Rational[1, 8] (-1 - 5^Rational[1, 2]) +
Rational[1, 8] (-1 + 5^Rational[1, 2]))}, {
Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2] (Rational[1, 2] +
Rational[1, 8] (-1 + 5^Rational[1, 2]))}, {
Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 2] (Rational[1, 2] +
Rational[1, 8] (-1 + 5^Rational[1, 2]))}, {
Rational[1, 2] (
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2] +
Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 2] (Rational[1, 8] (-1 - 5^Rational[1, 2]) +
Rational[1, 8] (-1 + 5^Rational[1, 2]))}, {
0, Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0,
Rational[-1, 4]}, {
Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAB/aVq4t5VrI+27/iy/TZ5Y9f2vMGL+Q9demC
Pbo8lL8fjQ+Xj4sqZVE+f8keYs5NHOYxMDxhduPusHhtjy7/P8RFmC//nn3A
S33z98cO41K/H5d5DCjgAQ71CPejy0Pt349qP0I91H/7Yf5D9++663e6Jebf
gOo7gCEPcxmMj+5fdP3o8hD+OfuQX6fP7v54BcO/RMrvh8mj+5eQPNR9+9H8
tx/N/zjl0f2P3b/noP7dvB/dPxDzDkHD8ySGe6Hy+2Hy6O6BqYeZj+4e1PC6
gMFHdx8O+f3o7ofx0d2Pg78fFx/dfAARLaTW
"], 0.019434941751084317`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{0.5, -0.6881909602355868}, 0.019434941751084317],
InsetBox["1",
Offset[{2, 2}, {0.5194349417510843, -0.6687560184845025}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 0.2628655560595668},
0.019434941751084317],
InsetBox["2",
Offset[{2, 2}, {0.8284519361260317, 0.28230049781065114}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 0.8506508083520399}, 0.019434941751084317],
InsetBox["3",
Offset[{2, 2}, {0.019434941751084317, 0.8700857501031242}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 0.2628655560595668},
0.019434941751084317],
InsetBox["4",
Offset[{2, 2}, {-0.7895820526238632, 0.28230049781065114}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, -0.6881909602355868}, 0.019434941751084317],
InsetBox["5",
Offset[{2, 2}, {-0.4805650582489157, -0.6687560184845025}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.29389262614623657`, -0.4045084971874737},
0.019434941751084317],
InsetBox["6",
Offset[{2, 2}, {0.31332756789732086, -0.38507355543638944}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.47552825814757677`, 0.15450849718747373`},
0.019434941751084317],
InsetBox["7",
Offset[{2, 2}, {0.4949631998986611, 0.17394343893855804}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.019434941751084317],
InsetBox["8",
Offset[{2, 2}, {0.019434941751084317, 0.5194349417510843}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.47552825814757677`, 0.15450849718747373`},
0.019434941751084317],
InsetBox["9",
Offset[{2, 2}, {-0.4560933163964924, 0.17394343893855804}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.29389262614623657`, -0.4045084971874737},
0.019434941751084317],
InsetBox["10",
Offset[{2, 2}, {-0.2744576843951523, -0.38507355543638944}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.38471044214690664`, -0.125}, 0.019434941751084317],
InsetBox["11",
Offset[{2, 2}, {0.40414538389799093, -0.10556505824891568}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.23776412907378838`, 0.32725424859373686`},
0.019434941751084317],
InsetBox["12",
Offset[{2, 2}, {0.2571990708248727, 0.34668919034482115}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.23776412907378838`, 0.32725424859373686`},
0.019434941751084317],
InsetBox["13",
Offset[{2, 2}, {-0.21832918732270407, 0.34668919034482115}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.38471044214690664`, -0.125}, 0.019434941751084317],
InsetBox["14",
Offset[{2, 2}, {-0.36527550039582235, -0.10556505824891568}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -0.4045084971874737}, 0.019434941751084317],
InsetBox["15",
Offset[{2, 2}, {0.019434941751084317, -0.38507355543638944}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -0.25}, 0.019434941751084317],
InsetBox["16",
Offset[{2, 2}, {0.019434941751084317, -0.23056505824891568}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.23776412907378838`, -0.07725424859373686},
0.019434941751084317],
InsetBox["17",
Offset[{2, 2}, {0.2571990708248727, -0.057819306842652546}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.14694631307311828`, 0.20225424859373686`},
0.019434941751084317],
InsetBox["18",
Offset[{2, 2}, {0.1663812548242026, 0.22168919034482118}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.14694631307311828`, 0.20225424859373686`},
0.019434941751084317],
InsetBox["19",
Offset[{2, 2}, {-0.12751137132203397, 0.22168919034482118}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.23776412907378838`, -0.07725424859373686},
0.019434941751084317],
InsetBox["20",
Offset[{2, 2}, {-0.21832918732270407, -0.057819306842652546}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[5]=",ExpressionUUID->"512a5081-3e74-433a-9dc1-d0df3860c10a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "@", "g"}]], "Input",
CellLabel->"In[22]:=",ExpressionUUID->"77ca0b0f-6250-48b9-9b0a-b1b50158c6a0"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \
time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[22]:=",ExpressionUUID->"bc120d34-edbc-4c3b-b951-73b91c97a3ea"],
Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \
cache (first time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[22]:=",ExpressionUUID->"737d2373-8ab9-450b-ba84-d5f8032574e8"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Building default Association of length \"\>",
"\[InvisibleSpace]", "12433", "\[InvisibleSpace]", "\<\"...\"\>"}],
SequenceForm["Building default Association of length ", 12433, "..."],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[22]:=",ExpressionUUID->"8b2f3ba9-f045-4cf4-a6ec-f1c52ca2f47d"]
}, Open ]],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->"Out[22]=",ExpressionUUID->"67b71a61-faf3-41b5-9e89-afb5cb80c1e4"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["All", "Subsubsection",ExpressionUUID->"99dc9a1f-6677-443b-a40f-4dc3008776eb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[13]:=",ExpressionUUID->"4fb6db46-aa12-4631-9e90-aa8297ef9833"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483],
DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483],
DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483],
DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483],
DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483],
DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483],
DiskBox[13, 0.09709139882090483],
DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483],
DiskBox[16, 0.09709139882090483],
DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483],
DiskBox[19, 0.09709139882090483],
DiskBox[20, 0.09709139882090483]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 8] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 8] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]}, {
Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (3 + 5^Rational[1, 2])}, {
Rational[1, 8] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 16] (1 + 5^Rational[1, 2])}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
Root[5 - 80 #^2 + 256 #^4& , 2, 0],
Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
0, Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0,
Rational[1, 2]}, {
Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (3 + 5^Rational[1, 2])}, {
Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, {
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-1, 8] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]}, {0,
Rational[-1, 4]}, {
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7CtXF/OsZH22Pz6qlEX5/KH9K75Mn13++KQ9
hH65nzd4Ie+pSxfs11+/0y0x/4Y9RN+B/f9DXIT58s/tD/l1+uzuj1fsofrt
YfphNjxlduPusHhtD1F/zz7gpb75+2OH7ePA6i9B7bu5H6YenQ9zJ9Q+e5h9
MPsh5m2Gqn+wH9U/l+xh5kH9Y4/mn/0w/6DadwHqv3v7Ye6F2Q+zDwALcY1w
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.033494257641235356`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.033494257641235356], DiskBox[2, 0.033494257641235356],
DiskBox[3, 0.033494257641235356],
DiskBox[4, 0.033494257641235356], DiskBox[5, 0.033494257641235356],
DiskBox[6, 0.033494257641235356],
DiskBox[7, 0.033494257641235356], DiskBox[8, 0.033494257641235356],
DiskBox[9, 0.033494257641235356],
DiskBox[10, 0.033494257641235356],
DiskBox[11, 0.033494257641235356],
DiskBox[12, 0.033494257641235356],
DiskBox[13, 0.033494257641235356],
DiskBox[14, 0.033494257641235356],
DiskBox[15, 0.033494257641235356],
DiskBox[16, 0.033494257641235356],
DiskBox[17, 0.033494257641235356],
DiskBox[18, 0.033494257641235356],
DiskBox[19, 0.033494257641235356],
DiskBox[20, 0.033494257641235356]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 8] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 8] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Root[5 - 80 #^2 + 256 #^4& , 2, 0],
Rational[1, 8] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {0,
Rational[-1, 2]}, {
Root[5 - 80 #^2 + 256 #^4& , 2, 0],
Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 8] (1 + 5^Rational[1, 2])}, {0,
Rational[1, 2]}, {
Rational[-1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] Root[5 - 5 #^2 + #^4& , 3, 0],
Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Rational[-1, 4]}, {
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, {
Rational[1, 8] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, {
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7CtXF/OsZH22Pz6qlEX5/KH9K75Mn13++KT9
/xAXYb78e/YBL/XN3x87DBV/uZ83eCHvqUsX7KHq7WHq48D8S1B1N9H128Ns
fMrsxt1h8RrOh7pjP5p+qHsu2cPMQ1MPNf/cfoj5m9HV74eZC/Mf1P32MPej
mndhP9S9+2H+hZpvDzMfTd4eAN+njEY=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.033494257641235356`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.033494257641235356], DiskBox[2, 0.033494257641235356],
DiskBox[3, 0.033494257641235356],
DiskBox[4, 0.033494257641235356], DiskBox[5, 0.033494257641235356],
DiskBox[6, 0.033494257641235356],
DiskBox[7, 0.033494257641235356], DiskBox[8, 0.033494257641235356],
DiskBox[9, 0.033494257641235356],
DiskBox[10, 0.033494257641235356],
DiskBox[11, 0.033494257641235356],
DiskBox[12, 0.033494257641235356],
DiskBox[13, 0.033494257641235356],
DiskBox[14, 0.033494257641235356],
DiskBox[15, 0.033494257641235356],
DiskBox[16, 0.033494257641235356],
DiskBox[17, 0.033494257641235356],
DiskBox[18, 0.033494257641235356],
DiskBox[19, 0.033494257641235356],
DiskBox[20, 0.033494257641235356]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 8] (-1 + 5^Rational[1, 2]),
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (1 - 5^Rational[1, 2]),
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {1, 0}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, {
Rational[1, 8] (1 + 5^Rational[1, 2]), Rational[1, 4]
Root[5 - 5 #^2 + #^4& , 3, 0]}, {
Rational[-1, 2], 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (-1 + 5^Rational[1, 2]),
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (-1 - 5^Rational[1, 2]), Rational[1, 4]
Root[5 - 5 #^2 + #^4& , 3, 0]}, {
Rational[1, 8] (1 + 5^Rational[1, 2]),
Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, {
Rational[1, 8] (1 - 5^Rational[1, 2]),
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], 0}, {Rational[1, 8] (-1 - 5^Rational[1, 2]),
Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scP2/0NchPny7+2H8vdD+fYMYPABSjMw
rPgyfXb545f746JKWZTPP9oP4d+0jwfzL0HVPdiPpt4eph5i/mWo+e/2o9lv
DzVvP8w8mPkQ/ZfQ3YduHsx+NPfe3I+q/7I9qv1wvj2a/+zR3A8LD7j/AIYY
kNA=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.041401179300458654`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041401179300458654], DiskBox[2, 0.041401179300458654],
DiskBox[3, 0.041401179300458654],
DiskBox[4, 0.041401179300458654], DiskBox[5, 0.041401179300458654],
DiskBox[6, 0.041401179300458654],
DiskBox[7, 0.041401179300458654], DiskBox[8, 0.041401179300458654],
DiskBox[9, 0.041401179300458654],
DiskBox[10, 0.041401179300458654],
DiskBox[11, 0.041401179300458654],
DiskBox[12, 0.041401179300458654],
DiskBox[13, 0.041401179300458654],
DiskBox[14, 0.041401179300458654],
DiskBox[15, 0.041401179300458654],
DiskBox[16, 0.041401179300458654],
DiskBox[17, 0.041401179300458654],
DiskBox[18, 0.041401179300458654],
DiskBox[19, 0.041401179300458654],
DiskBox[20, 0.041401179300458654]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 0}, {0, 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {
0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/
/HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/
/3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ
lwg=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247],
DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247],
DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247],
DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247],
DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247],
DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247],
DiskBox[13, 0.05374005336484247],
DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247],
DiskBox[16, 0.05374005336484247],
DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247],
DiskBox[19, 0.05374005336484247],
DiskBox[20, 0.05374005336484247]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 44] (
11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[-1, 8]
11^Rational[-1, 2] (
6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), (
Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^
Rational[1, 2] +
Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] +
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 4] (
Rational[1, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8]
11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] +
6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4]
11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 44] (22^Rational[1, 2] - 110^
Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 88] (-110^Rational[1, 2] -
10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 4]
11^Rational[-1, 2] (
2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 +
22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] +
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 4] (
Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8]
11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] +
3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (403 + 125 5^Rational[1, 2] -
12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 88] (
2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 88] (-22^Rational[1, 2] -
2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 8]
11^Rational[-1, 2] (-4 + 2 5^Rational[1, 2] +
3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 8]
11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] +
3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 176] (3 22^Rational[1, 2] (-3 + 5^Rational[1, 2]) +
4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4]
11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 4] (
Rational[1, 11] (157 + 58 5^Rational[1, 2] -
4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 8]
11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]), Rational[-1, 8]
11^Rational[-1, 2] ((63 - 11 5^Rational[1, 2])^Rational[1, 2] +
6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] +
12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[
1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 +
121 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6
v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7
ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72
0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF
8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/
7aH+3Y8eXgCx06o/
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487],
DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487],
DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487],
DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487],
DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487],
DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487],
DiskBox[13, 0.05496546668806487],
DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487],
DiskBox[16, 0.05496546668806487],
DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487],
DiskBox[19, 0.05496546668806487],
DiskBox[20, 0.05496546668806487]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K
L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3
7Edzz3409eju24/mPnT/70fz/34AINyj3g==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856],
DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856],
DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856],
DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856],
DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856],
DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856],
DiskBox[13, 0.05155676257133856],
DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856],
DiskBox[16, 0.05155676257133856],
DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856],
DiskBox[19, 0.05155676257133856],
DiskBox[20, 0.05155676257133856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 10] (125 + 47 5^Rational[1, 2] +
4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] +
13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] +
4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] -
4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]
5^Rational[-1, 2] (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]
5^Rational[-1, 2] (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 20] ((30 (5 + 5^Rational[1, 2]))^
Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[
1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4
3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] +
4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 40] (
2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/
3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/
6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH
V2ePzof61x7qXww+AB9DsJQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215],
DiskBox[3, 0.055830735019350215],
DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215],
DiskBox[6, 0.055830735019350215],
DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215],
DiskBox[9, 0.055830735019350215],
DiskBox[10, 0.055830735019350215],
DiskBox[11, 0.055830735019350215],
DiskBox[12, 0.055830735019350215],
DiskBox[13, 0.055830735019350215],
DiskBox[14, 0.055830735019350215],
DiskBox[15, 0.055830735019350215],
DiskBox[16, 0.055830735019350215],
DiskBox[17, 0.055830735019350215],
DiskBox[18, 0.055830735019350215],
DiskBox[19, 0.055830735019350215],
DiskBox[20, 0.055830735019350215]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2],
0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u
/vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh
8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA
fV6fmg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524],
DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524],
DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524],
DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524],
DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524],
DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524],
DiskBox[13, 0.05725601845709524],
DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524],
DiskBox[16, 0.05725601845709524],
DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524],
DiskBox[19, 0.05725601845709524],
DiskBox[20, 0.05725601845709524]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2],
0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7
P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k
L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv
QvxrD/M/Gn8/AODtoHo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127],
DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127],
DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127],
DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127],
DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127],
DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127],
DiskBox[13, 0.05479908867915127],
DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127],
DiskBox[16, 0.05479908867915127],
DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127],
DiskBox[19, 0.05479908867915127],
DiskBox[20, 0.05479908867915127]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224],
DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224],
DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224],
DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224],
DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224],
DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224],
DiskBox[13, 0.05526026899519224],
DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224],
DiskBox[16, 0.05526026899519224],
DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224],
DiskBox[19, 0.05526026899519224],
DiskBox[20, 0.05526026899519224]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
Rational[1, 4]
5^Rational[-1, 2] (2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv
3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h
v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/
uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y
enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758],
DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758],
DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758],
DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758],
DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758],
DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758],
DiskBox[13, 0.08280002173912758],
DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758],
DiskBox[16, 0.08280002173912758],
DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758],
DiskBox[19, 0.08280002173912758],
DiskBox[20, 0.08280002173912758]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {
2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {-
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {-
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {-
Cos[Rational[3, 20] Pi],
Sin[
Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3
xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz
0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.041904067400022615`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615],
DiskBox[3, 0.041904067400022615],
DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615],
DiskBox[6, 0.041904067400022615],
DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615],
DiskBox[9, 0.041904067400022615],
DiskBox[10, 0.041904067400022615],
DiskBox[11, 0.041904067400022615],
DiskBox[12, 0.041904067400022615],
DiskBox[13, 0.041904067400022615],
DiskBox[14, 0.041904067400022615],
DiskBox[15, 0.041904067400022615],
DiskBox[16, 0.041904067400022615],
DiskBox[17, 0.041904067400022615],
DiskBox[18, 0.041904067400022615],
DiskBox[19, 0.041904067400022615],
DiskBox[20, 0.041904067400022615]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq
Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+
/QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/
7GH+QbPPAU1+P7q9AMNXjqA=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq
Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+
/QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/
7GH+QbPPAU1+P7q9AMNXjqA=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.1297526801341691]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.1297526801341691], DiskBox[2, 0.1297526801341691],
DiskBox[3, 0.1297526801341691], DiskBox[4, 0.1297526801341691],
DiskBox[5, 0.1297526801341691], DiskBox[6, 0.1297526801341691],
DiskBox[7, 0.1297526801341691], DiskBox[8, 0.1297526801341691],
DiskBox[9, 0.1297526801341691], DiskBox[10, 0.1297526801341691],
DiskBox[11, 0.1297526801341691], DiskBox[12, 0.1297526801341691],
DiskBox[13, 0.1297526801341691], DiskBox[14, 0.1297526801341691],
DiskBox[15, 0.1297526801341691], DiskBox[16, 0.1297526801341691],
DiskBox[17, 0.1297526801341691], DiskBox[18, 0.1297526801341691],
DiskBox[19, 0.1297526801341691],
DiskBox[20, 0.1297526801341691]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 3}, {4, 2}, {1, 3}, {5, 0}, {2, 2}, {4,
1}, {1, 1}, {3, 0}, {3, 4}, {5, 4}, {2, 1}, {3, 1}, {4, 3}, {1,
4}, {6, 1}, {1, 0}, {3, 3}, {5, 3}, {2, 3}, {5, 1}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo4HCC0AJRmgNIf7FHlRWDyDKjqYDRMP0wfOg0z
B5e9Imh8XO6A8WHqcIlL4HAPuv3o/oO7E4f8B3sAn3kVMA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.10816653826391967`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.10816653826391967], DiskBox[2, 0.10816653826391967],
DiskBox[3, 0.10816653826391967], DiskBox[4, 0.10816653826391967],
DiskBox[5, 0.10816653826391967], DiskBox[6, 0.10816653826391967],
DiskBox[7, 0.10816653826391967], DiskBox[8, 0.10816653826391967],
DiskBox[9, 0.10816653826391967], DiskBox[10, 0.10816653826391967],
DiskBox[11, 0.10816653826391967], DiskBox[12, 0.10816653826391967],
DiskBox[13, 0.10816653826391967],
DiskBox[14, 0.10816653826391967], DiskBox[15, 0.10816653826391967],
DiskBox[16, 0.10816653826391967],
DiskBox[17, 0.10816653826391967], DiskBox[18, 0.10816653826391967],
DiskBox[19, 0.10816653826391967],
DiskBox[20, 0.10816653826391967]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7
FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt
pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHbvm7L/hoO37f7bZcr
sJ3v+bo/lfWzwbuWH/YVbqpqyUsf2vvqhexqmfXe/tyMc3I34y/t1+KeoHOU
9ed+r8i5E1ZK3LVfc+4//+nv7/YXWfWHV3te2896wlD5489X9kvPXetkld+7
H+ofe5h/wt5oLF76/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX
9m+Clj9Trj9sf2PNC8sXx1/tT5/x89QnvlX7756r3rGB+5d9v8H8zUe+Pd//
p3L6ojmXbu4HAJB/qlE=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw
rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w
PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {1, 0}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf
Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe
TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2,
0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1,
0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB
ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N
D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 - (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/
f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69
7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb
Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu
sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044],
DiskBox[3, 0.025587335982012044],
DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044],
DiskBox[6, 0.025587335982012044],
DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044],
DiskBox[9, 0.025587335982012044],
DiskBox[10, 0.025587335982012044],
DiskBox[11, 0.025587335982012044],
DiskBox[12, 0.025587335982012044],
DiskBox[13, 0.025587335982012044],
DiskBox[14, 0.025587335982012044],
DiskBox[15, 0.025587335982012044],
DiskBox[16, 0.025587335982012044],
DiskBox[17, 0.025587335982012044],
DiskBox[18, 0.025587335982012044],
DiskBox[19, 0.025587335982012044],
DiskBox[20, 0.025587335982012044]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164],
DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164],
DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164],
DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164],
DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164],
DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164],
DiskBox[13, 0.06701916846996164],
DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164],
DiskBox[16, 0.06701916846996164],
DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164],
DiskBox[19, 0.06701916846996164],
DiskBox[20, 0.06701916846996164]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575],
DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575],
DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575],
DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575],
DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575],
DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575],
DiskBox[13, 0.06522520940839575],
DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575],
DiskBox[16, 0.06522520940839575],
DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575],
DiskBox[19, 0.06522520940839575],
DiskBox[20, 0.06522520940839575]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809],
DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809],
DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809],
DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809],
DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809],
DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809],
DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809],
DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809],
DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809],
DiskBox[19, 0.0476951806600809],
DiskBox[20, 0.0476951806600809]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795],
DiskBox[3, 0.054218794707743795],
DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795],
DiskBox[6, 0.054218794707743795],
DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795],
DiskBox[9, 0.054218794707743795],
DiskBox[10, 0.054218794707743795],
DiskBox[11, 0.054218794707743795],
DiskBox[12, 0.054218794707743795],
DiskBox[13, 0.054218794707743795],
DiskBox[14, 0.054218794707743795],
DiskBox[15, 0.054218794707743795],
DiskBox[16, 0.054218794707743795],
DiskBox[17, 0.054218794707743795],
DiskBox[18, 0.054218794707743795],
DiskBox[19, 0.054218794707743795],
DiskBox[20, 0.054218794707743795]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998],
DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998],
DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998],
DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998],
DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998],
DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998],
DiskBox[13, 0.06025728525421998],
DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998],
DiskBox[16, 0.06025728525421998],
DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998],
DiskBox[19, 0.06025728525421998],
DiskBox[20, 0.06025728525421998]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[13]=",ExpressionUUID->"b3a3fdf7-f777-4739-82c5-4aa7aa531c4d"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Inexact", "Subsubsection",ExpressionUUID->"42ca6f6b-8aa2-4475-9f15-30dc033ae241"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Select", "[",
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], ",",
RowBox[{"(",
RowBox[{
RowBox[{"!",
RowBox[{"FreeQ", "[",
RowBox[{
RowBox[{"GraphEmbedding", "[", "#", "]"}], ",",
RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}], ")"}]}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[12]:=",ExpressionUUID->"1fe60508-c88b-4a93-bcde-32f1df616dfa"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483],
DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483],
DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483],
DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483],
DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483],
DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483],
DiskBox[13, 0.09709139882090483],
DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483],
DiskBox[16, 0.09709139882090483],
DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483],
DiskBox[19, 0.09709139882090483],
DiskBox[20, 0.09709139882090483]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224],
DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224],
DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224],
DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224],
DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224],
DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224],
DiskBox[13, 0.05526026899519224],
DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224],
DiskBox[16, 0.05526026899519224],
DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224],
DiskBox[19, 0.05526026899519224],
DiskBox[20, 0.05526026899519224]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758],
DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758],
DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758],
DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758],
DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758],
DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758],
DiskBox[13, 0.08280002173912758],
DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758],
DiskBox[16, 0.08280002173912758],
DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758],
DiskBox[19, 0.08280002173912758],
DiskBox[20, 0.08280002173912758]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq
Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+
/QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/
7GH+QbPPAU1+P7q9AMNXjqA=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbTs7dP7qtSf231Vha5zqvHu/Ul9poTQv6wEGKPjq
Fdlmce2uPZTe353z/PfKj1/2Q2Qf2O+61fU3tZzDAUofgOp3YEADr4u3iv4+
/QZd/3408+3R1MP5v2Nyj/4zYj4AsweNhtnvYHntaK5Jw3l7qH/g7kb3B5p/
7GH+QbPPAU1+P7q9AMNXjqA=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.1297526801341691]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.1297526801341691], DiskBox[2, 0.1297526801341691],
DiskBox[3, 0.1297526801341691], DiskBox[4, 0.1297526801341691],
DiskBox[5, 0.1297526801341691], DiskBox[6, 0.1297526801341691],
DiskBox[7, 0.1297526801341691], DiskBox[8, 0.1297526801341691],
DiskBox[9, 0.1297526801341691], DiskBox[10, 0.1297526801341691],
DiskBox[11, 0.1297526801341691], DiskBox[12, 0.1297526801341691],
DiskBox[13, 0.1297526801341691], DiskBox[14, 0.1297526801341691],
DiskBox[15, 0.1297526801341691], DiskBox[16, 0.1297526801341691],
DiskBox[17, 0.1297526801341691], DiskBox[18, 0.1297526801341691],
DiskBox[19, 0.1297526801341691],
DiskBox[20, 0.1297526801341691]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7
FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt
pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHbvm7L/hoO37f7bZcr
sJ3v+bo/lfWzwbuWH/YVbqpqyUsf2vvqhexqmfXe/tyMc3I34y/t1+KeoHOU
9ed+r8i5E1ZK3LVfc+4//+nv7/YXWfWHV3te2896wlD5489X9kvPXetkld+7
H+ofe5h/wt5oLF76/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX
9m+Clj9Trj9sf2PNC8sXx1/tT5/x89QnvlX7756r3rGB+5d9v8H8zUe+Pd//
p3L6ojmXbu4HAJB/qlE=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164],
DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164],
DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164],
DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164],
DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164],
DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164],
DiskBox[13, 0.06701916846996164],
DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164],
DiskBox[16, 0.06701916846996164],
DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164],
DiskBox[19, 0.06701916846996164],
DiskBox[20, 0.06701916846996164]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575],
DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575],
DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575],
DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575],
DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575],
DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575],
DiskBox[13, 0.06522520940839575],
DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575],
DiskBox[16, 0.06522520940839575],
DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575],
DiskBox[19, 0.06522520940839575],
DiskBox[20, 0.06522520940839575]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809],
DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809],
DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809],
DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809],
DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809],
DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809],
DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809],
DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809],
DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809],
DiskBox[19, 0.0476951806600809],
DiskBox[20, 0.0476951806600809]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795],
DiskBox[3, 0.054218794707743795],
DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795],
DiskBox[6, 0.054218794707743795],
DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795],
DiskBox[9, 0.054218794707743795],
DiskBox[10, 0.054218794707743795],
DiskBox[11, 0.054218794707743795],
DiskBox[12, 0.054218794707743795],
DiskBox[13, 0.054218794707743795],
DiskBox[14, 0.054218794707743795],
DiskBox[15, 0.054218794707743795],
DiskBox[16, 0.054218794707743795],
DiskBox[17, 0.054218794707743795],
DiskBox[18, 0.054218794707743795],
DiskBox[19, 0.054218794707743795],
DiskBox[20, 0.054218794707743795]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998],
DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998],
DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998],
DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998],
DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998],
DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998],
DiskBox[13, 0.06025728525421998],
DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998],
DiskBox[16, 0.06025728525421998],
DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998],
DiskBox[19, 0.06025728525421998],
DiskBox[20, 0.06025728525421998]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[12]=",ExpressionUUID->"d180ff1a-2ad4-4f38-a6e5-4eb8184f5f2d"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Embedding types", "Subsubsection",ExpressionUUID->"10029b6f-dd88-4dbb-88d1-a23d7f426fe6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphDataEmbeddings", "[",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
"]"}]], "Input",
CellLabel->
"In[129]:=",ExpressionUUID->"9845f8e1-6b8c-4095-b4bc-3455ea219da2"],
Cell[BoxData[
GraphicsBox[{{}, {{InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "SpringElectricalEmbedding", PlotLabel ->
"SpringElectricalEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Sv8aEYr/y/7xBeNTgeefbA39ry9pMeCxWHvAtMj
0xJ/21s8Uk7vMHlu38jMJy9t89v+kOXKC3M1f9kzQMG91YeWJjP8ss/ovB78
IOef/TuBcPc31iwObJZ5ycfFvti/nHbbWcHzuf36s2z5Nz59tn/7ueRo6cuf
9mxCP5++WMbu4CR10/gkJ5fD8bM3b0lu+WD/7P6W3B/HWB0WdB1rPfllu/2B
bbZmS/9zOly5/u3/1dv/7Bkc5Pearimzf7Q5fpt70Qf7FUuyGiZUPrQX+N6q
c1VzK9xdB/ZeMHk1+5/9po0MFjIhjA4NKpFq6gaX7e1C/wUsmfPRPsHqWtTk
25fsXauvHtpvw+jApqLBlOHH6rBL/MCH7Rkf7ZeUR+7OcWZ1EIn11ju9mtWB
ee5U95C/bA5+wUEfrNgf2m/T9Hmy/DmbAwB5u5Xq
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}},
0.032039153491364866`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.032039153491364866],
DiskBox[2, 0.032039153491364866],
DiskBox[3, 0.032039153491364866],
DiskBox[4, 0.032039153491364866],
DiskBox[5, 0.032039153491364866],
DiskBox[6, 0.032039153491364866],
DiskBox[7, 0.032039153491364866],
DiskBox[8, 0.032039153491364866],
DiskBox[9, 0.032039153491364866],
DiskBox[10, 0.032039153491364866],
DiskBox[11, 0.032039153491364866],
DiskBox[12, 0.032039153491364866],
DiskBox[13, 0.032039153491364866],
DiskBox[14, 0.032039153491364866],
DiskBox[15, 0.032039153491364866],
DiskBox[16, 0.032039153491364866],
DiskBox[17, 0.032039153491364866],
DiskBox[18, 0.032039153491364866],
DiskBox[19, 0.032039153491364866],
DiskBox[20, 0.032039153491364866]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"SpringElectricalEmbedding\"", TraditionalForm]],
TraditionalForm], {194.4, -222.525}, {Center, Center}, {360.00000000000006, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "SpringEmbedding", PlotLabel ->
"SpringEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbVOpvL9pyR/7qO5zaZXz/tmLrEvXrAh/YP85cItm
ket3+7d3Zb+xLWZwaLPbwvxFit3h7Z2N+tuKmB1e/cs0XJz4zr5J1UWzRuWX
feVu50e7fD/YX2PTfbD+7Gf7A7nLtQ6eXmhf/zKm5lQYm8O3e/aCS959tw/9
+yW/xfytffXm413RPAwOG06l/mKLe2GfM03nbuTUW/YX9HU2p3z8a39Ass5p
T/Mme4/9zy9/WXXevkpTXDwi54F9XU/QoQ4nToe8Two8GzcxOXB9LRK/uZLD
YVJ2jr3lyS/24VUc0z1sWRxqpJ8/XyjJ4pAe92TxzCpGBwYoWLVR53DHbg6H
0BJ3fRuvR/YwcZuwmieVfMwOv5kO3O9s+2j/wkf4vWoOqwOD793fpbNu2Qcl
z2tfK/3Tnrms7mTW7+/2Ds++TTt8l80BAMYak7c=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.03135835718639103]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03135835718639103],
DiskBox[2, 0.03135835718639103],
DiskBox[3, 0.03135835718639103],
DiskBox[4, 0.03135835718639103],
DiskBox[5, 0.03135835718639103],
DiskBox[6, 0.03135835718639103],
DiskBox[7, 0.03135835718639103],
DiskBox[8, 0.03135835718639103],
DiskBox[9, 0.03135835718639103],
DiskBox[10, 0.03135835718639103],
DiskBox[11, 0.03135835718639103],
DiskBox[12, 0.03135835718639103],
DiskBox[13, 0.03135835718639103],
DiskBox[14, 0.03135835718639103],
DiskBox[15, 0.03135835718639103],
DiskBox[16, 0.03135835718639103],
DiskBox[17, 0.03135835718639103],
DiskBox[18, 0.03135835718639103],
DiskBox[19, 0.03135835718639103],
DiskBox[20, 0.03135835718639103]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"SpringEmbedding\"", TraditionalForm]],
TraditionalForm], {583.2, -222.525}, {Center, Center}, {360.00000000000006, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "LayeredEmbedding", PlotLabel ->
"LayeredEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQLVh8SnLiwkv2EJrJ4Sq/bcJXz+/2EJrdgQEKZq5Z
vyzy02+oukf2MD6MFkATh6j7ZM+ABmDmwuRh9sHsh4mjmw+jYebA1MHcg26f
AJo4unqYfPFBZtvDX1kcUO1ncoDZB3Mvqr8Q7gQAJmiK3w==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}},
0.029598672627332637`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.029598672627332637],
DiskBox[2, 0.029598672627332637],
DiskBox[3, 0.029598672627332637],
DiskBox[4, 0.029598672627332637],
DiskBox[5, 0.029598672627332637],
DiskBox[6, 0.029598672627332637],
DiskBox[7, 0.029598672627332637],
DiskBox[8, 0.029598672627332637],
DiskBox[9, 0.029598672627332637],
DiskBox[10, 0.029598672627332637],
DiskBox[11, 0.029598672627332637],
DiskBox[12, 0.029598672627332637],
DiskBox[13, 0.029598672627332637],
DiskBox[14, 0.029598672627332637],
DiskBox[15, 0.029598672627332637],
DiskBox[16, 0.029598672627332637],
DiskBox[17, 0.029598672627332637],
DiskBox[18, 0.029598672627332637],
DiskBox[19, 0.029598672627332637],
DiskBox[20, 0.029598672627332637]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"LayeredEmbedding\"", TraditionalForm]],
TraditionalForm], {972., -222.525}, {Center, Center}, {360., 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "LayeredDigraphEmbedding", PlotLabel ->
"LayeredDigraphEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxtlgtQVFUYgM/C8n6tLComYWK6icSARYRj/GdEMB0CpkTRitTQFPFR9kBF
IwMVNEcFJ2AVEwkfUeFS5AM9KoFCorGVoSihEIrLY1kexjvu69zh6D/L3Pn4
77n7n/Pt+e+ZuGzdm8vNEEI1w3/cdWS4YOFqJMJVJbI1HslSSP9HTN4ITx/H
3k+vF5n8RSaPRrJU5xN1iVdXhqX5SHWx85Dy0vOeqFO6j5mXxFKw82Sf88Q4
kV3w05mtV2KpXrm+Ex803++6oaYclWs/826WzPZFS+yKlshccvBhROJEmbfy
A5wpQ1NaYFOazMrwXxp3BMt8LcXRwtU0inJWJhcyP+KGB8ocsKf+1T318rqn
7uRC5uptLw5/ZI7ozQ3vzXWibGzlwpEy/7hXZfbmH+BAufIaF/aU+eUZL3Pv
0n3TjR/bUU7ivr7alpmvzJvLvKOHim2Y+cnM315BfaN8H80MlyXWeIgPK/zW
jepSw2FpPtb41Ovj4s/6OWGFyK5xl8bEXXKk+eSAqiMoSOb+Am6AA+Wtes0W
vUZmy+y1lU677ClnqJ+19Wmwo/wSH3a0nipu+BZbmv/I7cqHbldsaD3qUVzY
0HyBxdvDH/l3LfixotzG+7GkLPiRWfBjQZnXc01J61nB+1HSvODHnNYj+DGj
ecGPzJt4PwrKgh+ZBT/yPhT8yH1opB/E+EGMH8T4QYwfxPhBjB/E+EHUj8Qj
/SDGD2L8IMYPYvwgxg9i/CDGD6J+JB7pBzF+EOMHMX4Q4wcxfhDjBzF+jDCf
92NFWcf7sRK/3whjeT+WNL+d9yPzAO/HgrLgR2Zr3o+Scibvx5zyy7wfc+zV
+KtNVU0b7H0mzIpsM8OFGWrN7HVtEPPANnjjXQXeP7Z54aKzrfBT5qrmpUEK
fGVZ2EHV+RZI8I0diP8J4YWbZnSu+qwZzv9gH3/BB2EcXfDe8qZH0O6Rczpm
/RBscyyoNVM3weLCtfNPHBgE910BH87qbIQix89L5lUNgOrP0LHPf9UASr8/
LOZOGoDQMz1H9OOqYao/zJ9h3gfW5n1VU+9cBN+CCYcuO/RAc//q9pKjv5Bx
33xcd2/WY+i86uQIBj25bxnonpHTBTk1z4X+lVFLdjdsXvCvVyccHT+n5lZ8
A3EN8E4pv2cCU8t3U1p6H5IkZWTR7EvtcK4hcGeuvpnoQ4x3F/xmhPFrY0OS
fVW4fNK0DV0HrXCxLmyV02oV3pm17MV7U61wQ2X+yux8FQ6IyfMuybPE+0jS
7OndKlyb2P2pVm2JS3fc7K+YMwp/anzTMna9Bd46JWffyiOjsLLw3B3v80p8
QfvAzM7cGSdd9elt6jHHSQ/yInRxzrjHRxetnWKOf7ep2xRd64yXNoNtUJAZ
jtWdvK8Zr8bTg501aUSBswpSUyoi1LgtJCW720+B31Umrgv5XI0z2nPXr8lD
WPd9aro2T409g5cfeqxCOCv/5H/lZWoc8WX6XE/DILgq6rRV/6ixx/VjDruP
D4DmO8+tunY1vhqr3OGyuB8qTqYejutX4zmLTv5cMtQrvp9d8Ao+uqFczJ/O
i5w3E3XBFHG8/4G+eMO3HfT5db5Rpg0LTaAVv78gYXXRXy7tINUXZYhNnVjc
Bu+I9ecExL02b0ULSPOb1XA7efILBogT5+9nKHq/UNEE0vpsDkN/d5gaQVo/
t5n+yfuX1wMR17ft7syxUa51kCiuf+MHHs+kjLkNZaKf0ISVlT8m/An7RX8a
09d7Xy+7DpLfzcWZoyvTSuG86N/9x/y3bpecBTfx95Ht4O939PJxep45ln1q
198wRHkZ105WD4JCZKEfDdC8/YacIMX2fspC/+mTmWt34b3y/cOnnwljeij7
cu3k6mPKkh+Jj/LDOynz7XFPB61nkgcXJppfascdqOTzmXBeaqVcfI4LA2Xh
/POQMn8cs2ukLPT/esr88qyro3zdaVf6F8dqaD1Cv7tJ81w3BC895eP8gec3
yulcu20qoVzXdHP4lXWG8qAnd6I7Ts+XTL8lTL8lTL8lTL8lTL8lTL8lTL8l
TL8lUr99Y0Fkf0x9G4n+w3Oye6IZfmVRZHvaV21EW7GluEuvwGet0T+7B1uJ
0dWr58w0Bb4ZE1ka/koribrgVxObOvyeWxOZe+flFpL/iV+pqnYI7nughJd6
DUTvVuQ+uXAQbiRFhs7f/oh4fNRy2Tl9AKLSIkfDrYdE+0nNqVuJ/SDuGxKo
STRs3NgH4r4hjtnaWeW6HhD3DelZm23nZf8fiPuG9GXuDMlJ7gZx3xD1hMUd
0yZ0gbhvSPCgs3N5dQeI+4bs9S/M2agzgbhviKlixrev5beDuG/ImtMnxo0u
M8L/uQEdtA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{1, 2}, 0.05783410138248847],
ArrowBox[{1, 3}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{1, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
4}], 0.05783410138248847],
ArrowBox[{2, 9}, 0.05783410138248847],
ArrowBox[{2, 17}, 0.05783410138248847],
ArrowBox[{3, 12}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{3, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
18}], 0.05783410138248847],
ArrowBox[{4, 10}, 0.05783410138248847],
ArrowBox[{4, 13}, 0.05783410138248847],
ArrowBox[{5, 6}, 0.05783410138248847],
ArrowBox[{5, 7}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{5, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 8}], 0.05783410138248847],
ArrowBox[{6, 11}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{6, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
127, 128, 129, 130, 131, 132, 15}], 0.05783410138248847],
ArrowBox[{7, 14}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{7, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 16}], 0.05783410138248847],
ArrowBox[{8, 19}, 0.05783410138248847],
ArrowBox[{8, 20}, 0.05783410138248847],
ArrowBox[{9, 10}, 0.05783410138248847],
ArrowBox[{9, 11}, 0.05783410138248847],
ArrowBox[{10, 15}, 0.05783410138248847],
ArrowBox[{11, 19}, 0.05783410138248847],
ArrowBox[{12, 13}, 0.05783410138248847],
ArrowBox[{12, 14}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{13, 168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 16}], 0.05783410138248847],
ArrowBox[{14, 20}, 0.05783410138248847],
ArrowBox[{15, 16}, 0.05783410138248847],
ArrowBox[{17, 18}, 0.05783410138248847],
ArrowBox[
BezierCurveBox[{17, 194, 195, 196, 197, 198, 199, 200, 201,
202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 19}], 0.05783410138248847],
ArrowBox[{18, 20}, 0.05783410138248847]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05783410138248847],
DiskBox[2, 0.05783410138248847],
DiskBox[3, 0.05783410138248847],
DiskBox[4, 0.05783410138248847],
DiskBox[5, 0.05783410138248847],
DiskBox[6, 0.05783410138248847],
DiskBox[7, 0.05783410138248847],
DiskBox[8, 0.05783410138248847],
DiskBox[9, 0.05783410138248847],
DiskBox[10, 0.05783410138248847],
DiskBox[11, 0.05783410138248847],
DiskBox[12, 0.05783410138248847],
DiskBox[13, 0.05783410138248847],
DiskBox[14, 0.05783410138248847],
DiskBox[15, 0.05783410138248847],
DiskBox[16, 0.05783410138248847],
DiskBox[17, 0.05783410138248847],
DiskBox[18, 0.05783410138248847],
DiskBox[19, 0.05783410138248847],
DiskBox[20, 0.05783410138248847]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"LayeredDigraphEmbedding\"", TraditionalForm]],
TraditionalForm], {1360.8000000000002, -222.525}, {Center, Center}, {359.9999999999998, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, {
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "RadialEmbedding", PlotLabel ->
"RadialEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQnfBuXpTV1Q/2JzbyfVju9dV+9ZFfJiw1X+2NIvMz
1Wd/sm8U3qPOLPvB/hSrutzuF7+h8k/tTaDydWB5BgcGKMg4d+NEa9dfqPwl
+2aw/AP7cJe5YT3vWBzyoPJceY41h9wZHGD28QUk7vCpeGVfD7XPDKz/kf2V
Uksn1tu/oO55ZH8dzH9lzw3Vvwas/6q9KdQ9a6HuMwTzmRwuQdXbQd0DcydM
/Y9ZYfznlH7ZH4P6vwHqH0Oo/A2o/Seh/hfLiV7XfIYJLg8Ajv+IpQ==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}},
0.027424532118482878`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.027424532118482878],
DiskBox[2, 0.027424532118482878],
DiskBox[3, 0.027424532118482878],
DiskBox[4, 0.027424532118482878],
DiskBox[5, 0.027424532118482878],
DiskBox[6, 0.027424532118482878],
DiskBox[7, 0.027424532118482878],
DiskBox[8, 0.027424532118482878],
DiskBox[9, 0.027424532118482878],
DiskBox[10, 0.027424532118482878],
DiskBox[11, 0.027424532118482878],
DiskBox[12, 0.027424532118482878],
DiskBox[13, 0.027424532118482878],
DiskBox[14, 0.027424532118482878],
DiskBox[15, 0.027424532118482878],
DiskBox[16, 0.027424532118482878],
DiskBox[17, 0.027424532118482878],
DiskBox[18, 0.027424532118482878],
DiskBox[19, 0.027424532118482878],
DiskBox[20, 0.027424532118482878]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"RadialEmbedding\"", TraditionalForm]],
TraditionalForm], {194.4, -667.575}, {Center, Center}, {360.00000000000006, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "HighDimensionalEmbedding", PlotLabel ->
"HighDimensionalEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQLeCm6vdz/Wl7aXXGt50TftunnFp+9NvxD/ZzKudd
PDTzk73Xpcn3edqf2XcdLeabosvmwAAFHb4zMxs1P9iX6rLN336Tw4Fz73/L
DpNP9i69zH8+f2Jx+DBh6sIF87bZL5kjcnG3AZNDR1ZSqL/2b/trjS+Mt0/h
cpgzLX3vhNl/7WM2bYgv7P1qH/AvzmxR+y572XgWpxMxz+wb7gtp2oc222sI
xiSvc2FxWJGg6cDddNh++yFDJ2WHl/Ycd2rjM1axOjhYTtQ5v/yavbn57JP8
L37aBwQqcPyd/d9eoeosow8fm8PbcAHGtIPf7WHu1soIm1EW8cU+PXfmgkdX
39sf9N37vDqDwaFAd8s1hVt/7fevPpDGkfHXXqioQbjzEZvDuqgwv7372R3e
rkmNZbr72Z4/K1259S+Lg1F8+BXj82wOACPUjfg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.03250923883572904]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03250923883572904],
DiskBox[2, 0.03250923883572904],
DiskBox[3, 0.03250923883572904],
DiskBox[4, 0.03250923883572904],
DiskBox[5, 0.03250923883572904],
DiskBox[6, 0.03250923883572904],
DiskBox[7, 0.03250923883572904],
DiskBox[8, 0.03250923883572904],
DiskBox[9, 0.03250923883572904],
DiskBox[10, 0.03250923883572904],
DiskBox[11, 0.03250923883572904],
DiskBox[12, 0.03250923883572904],
DiskBox[13, 0.03250923883572904],
DiskBox[14, 0.03250923883572904],
DiskBox[15, 0.03250923883572904],
DiskBox[16, 0.03250923883572904],
DiskBox[17, 0.03250923883572904],
DiskBox[18, 0.03250923883572904],
DiskBox[19, 0.03250923883572904],
DiskBox[20, 0.03250923883572904]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"HighDimensionalEmbedding\"", TraditionalForm]],
TraditionalForm], {583.2, -667.575}, {Center, Center}, {360.00000000000006, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "CircularEmbedding", PlotLabel ->
"CircularEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfNS3/z9scv7GUNdhPny39nXxt5YszHx5B4GMPhg
7wyRt/8TApFPjiplUT7/aP/aL9Nnlz9+aQ9TxyR+tKcz88qefxB1++2g5v6F
6rOBmrMGqi8Nag4T1N5kqPpIiLj9Iqi6JRB6fxhUPZRvD+Xbr4bKp0L5KVB6
HVQc6r79jd1Jx46YXLKB+nN/ItQ9rlB7of7bX18y19L69FEbmD6oe/ZD3bM/
CqoP6u79AIDMntg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.02261146496815286]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02261146496815286],
DiskBox[2, 0.02261146496815286],
DiskBox[3, 0.02261146496815286],
DiskBox[4, 0.02261146496815286],
DiskBox[5, 0.02261146496815286],
DiskBox[6, 0.02261146496815286],
DiskBox[7, 0.02261146496815286],
DiskBox[8, 0.02261146496815286],
DiskBox[9, 0.02261146496815286],
DiskBox[10, 0.02261146496815286],
DiskBox[11, 0.02261146496815286],
DiskBox[12, 0.02261146496815286],
DiskBox[13, 0.02261146496815286],
DiskBox[14, 0.02261146496815286],
DiskBox[15, 0.02261146496815286],
DiskBox[16, 0.02261146496815286],
DiskBox[17, 0.02261146496815286],
DiskBox[18, 0.02261146496815286],
DiskBox[19, 0.02261146496815286],
DiskBox[20, 0.02261146496815286]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"CircularEmbedding\"", TraditionalForm]],
TraditionalForm], {972., -667.575}, {Center, Center}, {360., 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "SpiralEmbedding", PlotLabel ->
"SpiralEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQLV5plpJv8MaeAQpgfK89+Ytc5/yxj9y44fWSGW/s
Xyy5uuWE1G/7rqfW9/77f7FXKFt485z4Dvt3vOd6GBN/2se55/67IvLV/sUh
Fa3LQi/s11zmnHBI9p6979UpjE90f9gfjGN/Ezjtm33ayl/aFZLX7GdJWCrf
Fvxk73+TrYxz/Qf7v/qXBSImf7Y/dWG798EvV+3beq2Pe8/8ab9v+Qxes3Xf
oOof2evcby8S+fzKXhls/w/7CZKul3LWvLFXAfNPwP1hwTjfNG7CB/uKvdl+
nN3noPI37IU2H7gutOwy1LxL9vceXszJVfwBNe+FvY3aYouXu1/bPwf797W9
30UGbc3Hv+3jwf57ai8hsWlfPtdZqP/e2QMAEoqaYA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}}, 0.02086903877872509]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02086903877872509],
DiskBox[2, 0.02086903877872509],
DiskBox[3, 0.02086903877872509],
DiskBox[4, 0.02086903877872509],
DiskBox[5, 0.02086903877872509],
DiskBox[6, 0.02086903877872509],
DiskBox[7, 0.02086903877872509],
DiskBox[8, 0.02086903877872509],
DiskBox[9, 0.02086903877872509],
DiskBox[10, 0.02086903877872509],
DiskBox[11, 0.02086903877872509],
DiskBox[12, 0.02086903877872509],
DiskBox[13, 0.02086903877872509],
DiskBox[14, 0.02086903877872509],
DiskBox[15, 0.02086903877872509],
DiskBox[16, 0.02086903877872509],
DiskBox[17, 0.02086903877872509],
DiskBox[18, 0.02086903877872509],
DiskBox[19, 0.02086903877872509],
DiskBox[20, 0.02086903877872509]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"SpiralEmbedding\"", TraditionalForm]],
TraditionalForm], {1360.8000000000002, -667.575}, {Center, Center}, {359.9999999999998, 414.00000000000006},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, {
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "LinearEmbedding", PlotLabel ->
"LinearEmbedding"}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{19., 0.}, {18., 1.}, {17., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{19., 0.}, {15., 4.}, {11., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{19., 0.}, {13.5, 5.5}, {8., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{17., 0.}, {11.5, 5.5}, {6., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{17., 0.}, {10.5, 6.5}, {4., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{11., 0.}, {7., 4.}, {3., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{11., 0.}, {11.5, 0.5}, {12., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{8., 0.}, {6.5, 1.5}, {5., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{8., 0.}, {9., 1.}, {10., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{2., 0.}, {10., 8.}, {18., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{2., 0.}, {5.5, 3.5}, {9., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{2., 0.}, {11., 9.}, {20., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{18., 0.}, {9.5, 8.5}, {1., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{18., 0.}, {16.5, 1.5}, {15., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{9., 0.}, {11.5, 2.5}, {14., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{9., 0.}, {8., 1.}, {7., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{20., 0.}, {18., 2.}, {16., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{20., 0.}, {16.5, 3.5}, {13., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{6., 0.}, {5.5, 0.5}, {5., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{6., 0.}, {3.5, 2.5}, {1., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{5., 0.}, {10., 5.}, {15., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{1., 0.}, {8.5, 7.5}, {16., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{3., 0.}, {6.5, 3.5}, {10., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{3., 0.}, {8.5, 5.5}, {14., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{10., 0.}, {8.5, 1.5}, {7., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{14., 0.}, {13.5, 0.5}, {13., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{15., 0.}, {11., 4.}, {7., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{4., 0.}, {8., 4.}, {12., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{4., 0.}, {10., 6.}, {16., 0.}}],
0.08883792048929665]},
{Arrowheads[0.],
ArrowBox[BezierCurveBox[{{12., 0.}, {12.5, 0.5}, {13., 0.}}],
0.08883792048929665]}},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{19., 0.}, 0.08883792048929665],
DiskBox[{17., 0.}, 0.08883792048929665],
DiskBox[{11., 0.}, 0.08883792048929665],
DiskBox[{8., 0.}, 0.08883792048929665],
DiskBox[{2., 0.}, 0.08883792048929665],
DiskBox[{18., 0.}, 0.08883792048929665],
DiskBox[{9., 0.}, 0.08883792048929665],
DiskBox[{20., 0.}, 0.08883792048929665],
DiskBox[{6., 0.}, 0.08883792048929665],
DiskBox[{5., 0.}, 0.08883792048929665],
DiskBox[{1., 0.}, 0.08883792048929665],
DiskBox[{3., 0.}, 0.08883792048929665],
DiskBox[{10., 0.}, 0.08883792048929665],
DiskBox[{14., 0.}, 0.08883792048929665],
DiskBox[{15., 0.}, 0.08883792048929665],
DiskBox[{7., 0.}, 0.08883792048929665],
DiskBox[{4., 0.}, 0.08883792048929665],
DiskBox[{12., 0.}, 0.08883792048929665],
DiskBox[{16., 0.}, 0.08883792048929665],
DiskBox[{13., 0.}, 0.08883792048929665]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"LinearEmbedding\"", TraditionalForm]],
TraditionalForm], {194.4, -1112.625}, {Center, Center}, {360.00000000000006, 414.},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
FormBox[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9,
10, 17, 18}, {
Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {
7, 16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17,
18}, {17, 2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8,
20}, {19, 11}, {20, 14}}}, {
GraphLayout -> "RandomEmbedding", PlotLabel ->
"RandomEmbedding"}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAgKCSCmJchz9cD3epN1HdPwBLMWHl
o+o/Tr/tXTKe6D9Ul7a1MzniP/LjHmjE0u8/9KnhZN8W5z+Wa2Zh+2PnPzRS
clKiONs/oAfKnT2t6D9QYLx8kBnmP5AI4xNCocI/XDRozXkQ0T/YIh9WFRjT
P8xvlP4gO9s/skk8vRLj7j+QUqIVXWK4PwD+XdmLQ20/iJtQ4+xK6T+M6m6R
0h3gPwCPYApYSdk/QD7hSzRRzz8sWKHLxS3vPyggx9oSieg/Er3JM1Ia6j/E
Rs/YVd3fP24hVY1wZ+I/INVLPkg22j/2K1Ip8DnjP1CRXiimU7w/sncBGJHQ
6T+Yf1eDjg7uPyYHiYglcug/3NWJKfFl2D+grkEMCvPnP8D8P3aQNN0/nCo+
aSE76z8kLxSooDHYPyhWenmaLss/oPCLrF6h6z+/WZi9
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3,
18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {
10, 15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {
15, 16}, {17, 18}, {17, 19}, {18, 20}},
0.012614235569643141`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.012614235569643141],
DiskBox[2, 0.012614235569643141],
DiskBox[3, 0.012614235569643141],
DiskBox[4, 0.012614235569643141],
DiskBox[5, 0.012614235569643141],
DiskBox[6, 0.012614235569643141],
DiskBox[7, 0.012614235569643141],
DiskBox[8, 0.012614235569643141],
DiskBox[9, 0.012614235569643141],
DiskBox[10, 0.012614235569643141],
DiskBox[11, 0.012614235569643141],
DiskBox[12, 0.012614235569643141],
DiskBox[13, 0.012614235569643141],
DiskBox[14, 0.012614235569643141],
DiskBox[15, 0.012614235569643141],
DiskBox[16, 0.012614235569643141],
DiskBox[17, 0.012614235569643141],
DiskBox[18, 0.012614235569643141],
DiskBox[19, 0.012614235569643141],
DiskBox[20, 0.012614235569643141]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotLabel->FormBox["\"RandomEmbedding\"", TraditionalForm]],
TraditionalForm], {583.2, -1112.625}, {Center, Center}, {360.00000000000006, 414.},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
TagBox[InsetBox["", {972., -1112.625}, {Center, Center}, {360., 414.},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
"InsetString"],
TagBox[
InsetBox["", {1360.8000000000002, -1112.625}, {Center, Center}, {359.9999999999998, 414.},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
"InsetString"]}}, {}},
ImageSize->800,
PlotRangePadding->{6, 5}]], "Output",
CellLabel->
"Out[129]=",ExpressionUUID->"73e77f01-9592-4c45-a3d0-5df8f2006dcb"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Default embedding", "Subsubsection",ExpressionUUID->"ce415c54-1933-47fa-bd4d-310fe8d96dae"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphPlot", "@",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->
"In[130]:=",ExpressionUUID->"faf94607-dcf0-4929-8292-8493117db0a9"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Sv8aEYr/y/7xBeNTgeefbA39ry9pMeCxWHvAtMj
0xJ/21s8Uk7vMHlu38jMJy9t89v+kOXKC3M1f9kzQMG91YeWJjP8ss/ovB78
IOef/TuBcPc31iwObJZ5ycfFvti/nHbbWcHzuf36s2z5Nz59tn/7ueRo6cuf
9mxCP5++WMbu4CR10/gkJ5fD8bM3b0lu+WD/7P6W3B/HWB0WdB1rPfllu/2B
bbZmS/9zOly5/u3/1dv/7Bkc5Pearimzf7Q5fpt70Qf7FUuyGiZUPrQX+N6q
c1VzK9xdB/ZeMHk1+5/9po0MFjIhjA4NKpFq6gaX7e1C/wUsmfPRPsHqWtTk
25fsXauvHtpvw+jApqLBlOHH6rBL/MCH7Rkf7ZeUR+7OcWZ1EIn11ju9mtWB
ee5U95C/bA5+wUEfrNgf2m/T9Hmy/DmbAwB5u5Xq
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3, 12}, {3, 18}, {4,
10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6, 15}, {7, 14}, {7,
16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {10, 15}, {11, 19}, {12, 13}, {
12, 14}, {13, 16}, {14, 20}, {15, 16}, {17, 18}, {17, 19}, {18, 20}},
0.032039153491364866`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.032039153491364866], DiskBox[2, 0.032039153491364866],
DiskBox[3, 0.032039153491364866], DiskBox[4, 0.032039153491364866],
DiskBox[5, 0.032039153491364866], DiskBox[6, 0.032039153491364866],
DiskBox[7, 0.032039153491364866], DiskBox[8, 0.032039153491364866],
DiskBox[9, 0.032039153491364866], DiskBox[10, 0.032039153491364866],
DiskBox[11, 0.032039153491364866], DiskBox[12, 0.032039153491364866],
DiskBox[13, 0.032039153491364866], DiskBox[14, 0.032039153491364866],
DiskBox[15, 0.032039153491364866], DiskBox[16, 0.032039153491364866],
DiskBox[17, 0.032039153491364866], DiskBox[18, 0.032039153491364866],
DiskBox[19, 0.032039153491364866], DiskBox[20, 0.032039153491364866]}}],
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[130]=",ExpressionUUID->"b03b9712-39b8-4b3b-9e83-91b23617dd06"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"v", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"Length", "[", "v", "]"}], "]"}], ",",
RowBox[{"UndirectedEdge", "@@@",
RowBox[{"{", "}"}]}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input",Exp\
ressionUUID->"549ab679-60f0-4eaa-be2d-b62e39876ae2"],
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",
CellLabel->
"In[175]:=",ExpressionUUID->"622071e2-8b9f-4aed-82c1-dde3957bf88a"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, {
16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {
12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, {
17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17,
19}, {18, 20}}, 0.039375630966373094`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094],
DiskBox[3, 0.039375630966373094], DiskBox[4, 0.039375630966373094],
DiskBox[5, 0.039375630966373094], DiskBox[6, 0.039375630966373094],
DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094],
DiskBox[9, 0.039375630966373094], DiskBox[10, 0.039375630966373094],
DiskBox[11, 0.039375630966373094], DiskBox[12, 0.039375630966373094],
DiskBox[13, 0.039375630966373094],
DiskBox[14, 0.039375630966373094], DiskBox[15, 0.039375630966373094],
DiskBox[16, 0.039375630966373094],
DiskBox[17, 0.039375630966373094], DiskBox[18, 0.039375630966373094],
DiskBox[19, 0.039375630966373094],
DiskBox[20, 0.039375630966373094]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]], "Input",ExpressionUUID->"15d45042-c1bf-4a9e-a80e-\
002135bb4d19"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"v", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"UnitCirclePoints", "[", "5", "]"}], ",",
RowBox[{"CirclePoints", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "2"}], ",",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "10"}], "]"}], ",",
RowBox[{"CirclePoints", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"1", "/", "4"}], ",",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}]}], "}"}], ",", "5"}], "]"}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"Length", "[", "v", "]"}], "]"}], ",",
RowBox[{"UndirectedEdge", "@@@",
RowBox[{"{",
RowBox[{
RowBox[{"e", "[",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",", "1", ",",
RowBox[{"{",
RowBox[{"7", ",", "15"}], "}"}], ",", "6", ",", "7"}], "]"}], ",",
RowBox[{"e", "[",
RowBox[{"6", ",",
RowBox[{"{",
RowBox[{"16", ",", "20"}], "}"}], ",", "16"}], "]"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "15"}], "}"}]}], "}"}]}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "Automatic"}]}], "]"}]}]}], "Input",
CellLabel->"In[20]:=",ExpressionUUID->"9612ae56-7004-42c1-855f-894dc93883c5"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 7}, {7, 8}, {
8, 9}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14, 15}, {15,
6}, {6, 7}, {6, 16}, {16, 17}, {17, 18}, {18, 19}, {19, 20}, {20,
16}, {8, 17}, {2, 9}, {10, 18}, {3, 11}, {12, 19}, {4, 13}, {14, 20}, {
5, 15}}}, {VertexLabels -> {Automatic}, VertexCoordinates -> {{
Rational[1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2]) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
Rational[
1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2] (-1 + 5^Rational[1, 2])}, {
0, Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {
Rational[-1,
2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 8] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2],
Rational[1, 8] (-1 - 5^
Rational[1, 2]) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {0,
Rational[-1, 2]}, {
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (1 + 5^Rational[1, 2])}, {0,
Rational[1, 2]}, {
Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (1 - 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 8] (-1 - 5^Rational[1, 2])}, {0,
Rational[-1, 4]}, {
Rational[1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 16] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAB/aVq4t5VrI+27/iy/TZ5Y9f2vMGL+Q9demC
Pbo8lL8fjQ+Xj4sqZVE+f8keYs5NHOYxMDxhduPusHhtjy7/P8RFmC//nn3A
S33z98cO41K/H5d5DCjgAQ71CPejy0Pt349qP0I91H/7Yf5Dsw/D/zjkcepH
5V/AMA8tfAjx0cMTKn8Oyt+MoR7NPgw+evhiV38Iyj+JS/1+NPPhfPTwx67+
0H6Y+ejq0fj70fno4Y9d/bn9sPBBjw/08MMhvx81fBHq0cMHB38/Lj66+QBA
k6Fb
"], 0.019434941751084317`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{0.5, -0.6881909602355868}, 0.019434941751084317],
InsetBox["1",
Offset[{2, 2}, {0.5194349417510843, -0.6687560184845025}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 0.2628655560595668},
0.019434941751084317],
InsetBox["2",
Offset[{2, 2}, {0.8284519361260317, 0.28230049781065114}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 0.8506508083520399}, 0.019434941751084317],
InsetBox["3",
Offset[{2, 2}, {0.019434941751084317, 0.8700857501031242}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 0.2628655560595668},
0.019434941751084317],
InsetBox["4",
Offset[{2, 2}, {-0.7895820526238632, 0.28230049781065114}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, -0.6881909602355868}, 0.019434941751084317],
InsetBox["5",
Offset[{2, 2}, {-0.4805650582489157, -0.6687560184845025}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., -0.5}, 0.019434941751084317],
InsetBox["6",
Offset[{2, 2}, {0.019434941751084317, -0.4805650582489157}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.29389262614623657`, -0.4045084971874737},
0.019434941751084317],
InsetBox["7",
Offset[{2, 2}, {0.31332756789732086, -0.38507355543638944}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.47552825814757677`, -0.15450849718747373`},
0.019434941751084317],
InsetBox["8",
Offset[{2, 2}, {0.4949631998986611, -0.1350735554363894}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.47552825814757677`, 0.15450849718747373`},
0.019434941751084317],
InsetBox["9",
Offset[{2, 2}, {0.4949631998986611, 0.17394343893855804}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.29389262614623657`, 0.4045084971874737},
0.019434941751084317],
InsetBox["10",
Offset[{2, 2}, {0.31332756789732086, 0.423943438938558}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 0.5}, 0.019434941751084317],
InsetBox["11",
Offset[{2, 2}, {0.019434941751084317, 0.5194349417510843}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.29389262614623657`, 0.4045084971874737},
0.019434941751084317],
InsetBox["12",
Offset[{2, 2}, {-0.2744576843951523, 0.423943438938558}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.47552825814757677`, 0.15450849718747373`},
0.019434941751084317],
InsetBox["13",
Offset[{2, 2}, {-0.4560933163964924, 0.17394343893855804}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.47552825814757677`, -0.15450849718747373`},
0.019434941751084317],
InsetBox["14",
Offset[{2, 2}, {-0.4560933163964924, -0.1350735554363894}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.29389262614623657`, -0.4045084971874737},
0.019434941751084317],
InsetBox["15",
Offset[{2, 2}, {-0.2744576843951523, -0.38507355543638944}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -0.25}, 0.019434941751084317],
InsetBox["16",
Offset[{2, 2}, {0.019434941751084317, -0.23056505824891568}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.23776412907378838`, -0.07725424859373686},
0.019434941751084317],
InsetBox["17",
Offset[{2, 2}, {0.2571990708248727, -0.057819306842652546}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.14694631307311828`, 0.20225424859373686`},
0.019434941751084317],
InsetBox["18",
Offset[{2, 2}, {0.1663812548242026, 0.22168919034482118}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.14694631307311828`, 0.20225424859373686`},
0.019434941751084317],
InsetBox["19",
Offset[{2, 2}, {-0.12751137132203397, 0.22168919034482118}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.23776412907378838`, -0.07725424859373686},
0.019434941751084317],
InsetBox["20",
Offset[{2, 2}, {-0.21832918732270407, -0.057819306842652546}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[21]=",ExpressionUUID->"dcaecd19-f03f-4f5b-b8df-2da51347baa3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",
CellLabel->"In[23]:=",ExpressionUUID->"853ee9d2-2e8f-4295-a778-451de8f984e7"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->"Out[23]=",ExpressionUUID->"db918082-ec36-4ef1-885b-34a30adb2c3f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Degenerate", "Subsubsection",ExpressionUUID->"05a4b6fc-bbcc-4f97-9c21-efa80de85f9f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[17]:=",ExpressionUUID->"69a228bf-34f5-4594-b28e-d855859d6967"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 0}, {0, 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {
0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/
/HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/
/3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ
lwg=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247],
DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247],
DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247],
DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247],
DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247],
DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247],
DiskBox[13, 0.05374005336484247],
DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247],
DiskBox[16, 0.05374005336484247],
DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247],
DiskBox[19, 0.05374005336484247],
DiskBox[20, 0.05374005336484247]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 44] (
11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[-1, 8]
11^Rational[-1, 2] (
6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), (
Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^
Rational[1, 2] +
Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] +
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 4] (
Rational[1, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8]
11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] +
6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4]
11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 44] (22^Rational[1, 2] - 110^
Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 88] (-110^Rational[1, 2] -
10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 4]
11^Rational[-1, 2] (
2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 +
22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] +
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 4] (
Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8]
11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] +
3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (403 + 125 5^Rational[1, 2] -
12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 88] (
2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 88] (-22^Rational[1, 2] -
2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 8]
11^Rational[-1, 2] (-4 + 2 5^Rational[1, 2] +
3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 8]
11^Rational[-1, 2] (4 + 2 5^Rational[1, 2] +
3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 176] (3 22^Rational[1, 2] (-3 + 5^Rational[1, 2]) +
4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4]
11^Rational[-1, 2] (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 4] (
Rational[1, 11] (157 + 58 5^Rational[1, 2] -
4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 8]
11^Rational[-1, 2] (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]), Rational[-1, 8]
11^Rational[-1, 2] ((63 - 11 5^Rational[1, 2])^Rational[1, 2] +
6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] +
12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[
1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 +
121 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6
v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7
ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72
0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF
8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/
7aH+3Y8eXgCx06o/
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487],
DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487],
DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487],
DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487],
DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487],
DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487],
DiskBox[13, 0.05496546668806487],
DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487],
DiskBox[16, 0.05496546668806487],
DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487],
DiskBox[19, 0.05496546668806487],
DiskBox[20, 0.05496546668806487]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K
L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3
7Edzz3409eju24/mPnT/70fz/34AINyj3g==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856],
DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856],
DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856],
DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856],
DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856],
DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856],
DiskBox[13, 0.05155676257133856],
DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856],
DiskBox[16, 0.05155676257133856],
DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856],
DiskBox[19, 0.05155676257133856],
DiskBox[20, 0.05155676257133856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 10] (125 + 47 5^Rational[1, 2] +
4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] +
13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] +
4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] -
4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]
5^Rational[-1, 2] (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 8]
5^Rational[-1, 2] (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 20] ((30 (5 + 5^Rational[1, 2]))^
Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[
1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4
3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] +
4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 40] (
2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/
3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/
6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH
V2ePzof61x7qXww+AB9DsJQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215],
DiskBox[3, 0.055830735019350215],
DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215],
DiskBox[6, 0.055830735019350215],
DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215],
DiskBox[9, 0.055830735019350215],
DiskBox[10, 0.055830735019350215],
DiskBox[11, 0.055830735019350215],
DiskBox[12, 0.055830735019350215],
DiskBox[13, 0.055830735019350215],
DiskBox[14, 0.055830735019350215],
DiskBox[15, 0.055830735019350215],
DiskBox[16, 0.055830735019350215],
DiskBox[17, 0.055830735019350215],
DiskBox[18, 0.055830735019350215],
DiskBox[19, 0.055830735019350215],
DiskBox[20, 0.055830735019350215]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2],
0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7
P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k
L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv
QvxrD/M/Gn8/AODtoHo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127],
DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127],
DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127],
DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127],
DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127],
DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127],
DiskBox[13, 0.05479908867915127],
DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127],
DiskBox[16, 0.05479908867915127],
DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127],
DiskBox[19, 0.05479908867915127],
DiskBox[20, 0.05479908867915127]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[17]=",ExpressionUUID->"273334b7-a07d-4ae8-8a90-d144f6774965"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Bilateral", "Subsubsection",ExpressionUUID->"11f68b86-6819-4502-ac72-73629a85d1e5"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[6]:=",ExpressionUUID->"2b2cc173-03d3-4a4a-9ea7-f28632aabea8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 8] (-1 + 5^Rational[1, 2]),
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (1 - 5^Rational[1, 2]),
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {1, 0}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, {
Rational[1, 8] (1 + 5^Rational[1, 2]), Rational[1, 4]
Root[5 - 5 #^2 + #^4& , 3, 0]}, {
Rational[-1, 2], 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[5 - 20 #^2 + 16 #^4& , 2, 0]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (-1 + 5^Rational[1, 2]),
Rational[1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 8] (-1 - 5^Rational[1, 2]), Rational[1, 4]
Root[5 - 5 #^2 + #^4& , 3, 0]}, {
Rational[1, 8] (1 + 5^Rational[1, 2]),
Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, {
Rational[1, 8] (1 - 5^Rational[1, 2]),
Rational[-1, 4] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], 0}, {Rational[1, 8] (-1 - 5^Rational[1, 2]),
Root[5 - 80 #^2 + 256 #^4& , 2, 0]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scP2/0NchPny7+2H8vdD+fYMYPABSjMw
rPgyfXb545f746JKWZTPP9oP4d+0jwfzL0HVPdiPpt4eph5i/mWo+e/2o9lv
DzVvP8w8mPkQ/ZfQ3YduHsx+NPfe3I+q/7I9qv1wvj2a/+zR3A8LD7j/AIYY
kNA=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.041401179300458654`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041401179300458654], DiskBox[2, 0.041401179300458654],
DiskBox[3, 0.041401179300458654],
DiskBox[4, 0.041401179300458654], DiskBox[5, 0.041401179300458654],
DiskBox[6, 0.041401179300458654],
DiskBox[7, 0.041401179300458654], DiskBox[8, 0.041401179300458654],
DiskBox[9, 0.041401179300458654],
DiskBox[10, 0.041401179300458654],
DiskBox[11, 0.041401179300458654],
DiskBox[12, 0.041401179300458654],
DiskBox[13, 0.041401179300458654],
DiskBox[14, 0.041401179300458654],
DiskBox[15, 0.041401179300458654],
DiskBox[16, 0.041401179300458654],
DiskBox[17, 0.041401179300458654],
DiskBox[18, 0.041401179300458654],
DiskBox[19, 0.041401179300458654],
DiskBox[20, 0.041401179300458654]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 0}, {0, 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {
0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/
/HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/
/3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ
lwg=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247],
DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247],
DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247],
DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247],
DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247],
DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247],
DiskBox[13, 0.05374005336484247],
DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247],
DiskBox[16, 0.05374005336484247],
DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247],
DiskBox[19, 0.05374005336484247],
DiskBox[20, 0.05374005336484247]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K
L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3
7Edzz3409eju24/mPnT/70fz/34AINyj3g==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856],
DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856],
DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856],
DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856],
DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856],
DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856],
DiskBox[13, 0.05155676257133856],
DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856],
DiskBox[16, 0.05155676257133856],
DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856],
DiskBox[19, 0.05155676257133856],
DiskBox[20, 0.05155676257133856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2],
0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u
/vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh
8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA
fV6fmg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524],
DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524],
DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524],
DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524],
DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524],
DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524],
DiskBox[13, 0.05725601845709524],
DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524],
DiskBox[16, 0.05725601845709524],
DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524],
DiskBox[19, 0.05725601845709524],
DiskBox[20, 0.05725601845709524]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2],
0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7
P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k
L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv
QvxrD/M/Gn8/AODtoHo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127],
DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127],
DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127],
DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127],
DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127],
DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127],
DiskBox[13, 0.05479908867915127],
DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127],
DiskBox[16, 0.05479908867915127],
DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127],
DiskBox[19, 0.05479908867915127],
DiskBox[20, 0.05479908867915127]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEP7JsPnFrouu21PZS/H8rfjya/X3fT3PfLjz3e
b33fv3d63j97ND5U/Yf9MJP5wAqu7YfR4jfPfQ9+/HO/eadjwtMLn6D2MTjA
1EPl7WHyaOph5h5AM98eZj7Ufpi5DFD32cPci+YeezT79qOZZ4+mHxYesPCx
BwB4bZGA
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280002173912758]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280002173912758], DiskBox[2, 0.08280002173912758],
DiskBox[3, 0.08280002173912758], DiskBox[4, 0.08280002173912758],
DiskBox[5, 0.08280002173912758], DiskBox[6, 0.08280002173912758],
DiskBox[7, 0.08280002173912758], DiskBox[8, 0.08280002173912758],
DiskBox[9, 0.08280002173912758], DiskBox[10, 0.08280002173912758],
DiskBox[11, 0.08280002173912758], DiskBox[12, 0.08280002173912758],
DiskBox[13, 0.08280002173912758],
DiskBox[14, 0.08280002173912758], DiskBox[15, 0.08280002173912758],
DiskBox[16, 0.08280002173912758],
DiskBox[17, 0.08280002173912758], DiskBox[18, 0.08280002173912758],
DiskBox[19, 0.08280002173912758],
DiskBox[20, 0.08280002173912758]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {
2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {-
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {-
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {-
Cos[Rational[3, 20] Pi],
Sin[
Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3
xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz
0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.041904067400022615`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615],
DiskBox[3, 0.041904067400022615],
DiskBox[4, 0.041904067400022615], DiskBox[5, 0.041904067400022615],
DiskBox[6, 0.041904067400022615],
DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615],
DiskBox[9, 0.041904067400022615],
DiskBox[10, 0.041904067400022615],
DiskBox[11, 0.041904067400022615],
DiskBox[12, 0.041904067400022615],
DiskBox[13, 0.041904067400022615],
DiskBox[14, 0.041904067400022615],
DiskBox[15, 0.041904067400022615],
DiskBox[16, 0.041904067400022615],
DiskBox[17, 0.041904067400022615],
DiskBox[18, 0.041904067400022615],
DiskBox[19, 0.041904067400022615],
DiskBox[20, 0.041904067400022615]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw
rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w
PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {1, 0}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf
Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe
TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2,
0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1,
0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB
ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N
D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[6]=",ExpressionUUID->"2bac46a8-e2ff-4f28-b046-42ed914e146b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["GeneralizedPetersen", "Subsubsection",ExpressionUUID->"5ba8f7d4-b117-478b-b597-31ecbe308535"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->
"In[131]:=",ExpressionUUID->"88054afc-1d53-4388-8d6e-5214c8f6255b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"10", ",", "2"}], "}"}]], "Output",
CellLabel->
"Out[131]=",ExpressionUUID->"bee96356-f190-47e9-b8bf-bf43d0b60856"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"fd954b66-6b6f-480a-b4b1-0dffd74e9b41"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"84bc0978-5a6b-465c-8149-eecaa03d3202"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["IntegerCoordinates", "Subsubsection",ExpressionUUID->"2994d932-2236-42a5-bd96-339becf954fa"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[90]:=",ExpressionUUID->"eed3e15e-9f4f-40c6-9be3-8778de8b3d9a"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 3}, {4, 2}, {1, 3}, {5, 0}, {2, 2}, {4,
1}, {1, 1}, {3, 0}, {3, 4}, {5, 4}, {2, 1}, {3, 1}, {4, 3}, {1, 4}, {
6, 1}, {1, 0}, {3, 3}, {5, 3}, {2, 3}, {5, 1}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo4HCC0AJRmgNIf7FHlRWDyDKjqYDRMP0wfOg0z
B5e9Imh8XO6A8WHqcIlL4HAPuv3o/oO7E4f8B3sAn3kVMA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {
17, 19}, {18, 20}}, 0.10816653826391967`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.10816653826391967], DiskBox[2, 0.10816653826391967],
DiskBox[3, 0.10816653826391967], DiskBox[4, 0.10816653826391967],
DiskBox[5, 0.10816653826391967], DiskBox[6, 0.10816653826391967],
DiskBox[7, 0.10816653826391967], DiskBox[8, 0.10816653826391967],
DiskBox[9, 0.10816653826391967], DiskBox[10, 0.10816653826391967],
DiskBox[11, 0.10816653826391967], DiskBox[12, 0.10816653826391967],
DiskBox[13, 0.10816653826391967], DiskBox[14, 0.10816653826391967],
DiskBox[15, 0.10816653826391967], DiskBox[16, 0.10816653826391967],
DiskBox[17, 0.10816653826391967], DiskBox[18, 0.10816653826391967],
DiskBox[19, 0.10816653826391967],
DiskBox[20, 0.10816653826391967]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[90]=",ExpressionUUID->"0491aaa8-2131-40b5-9970-081a8d1eda59"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Integral", "Subsubsection",ExpressionUUID->"5829c57d-da56-4119-8132-31b11beec275"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[91]:=",ExpressionUUID->"be3f2e8b-86c0-486a-a8c1-27fbf42699c5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 4]
5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
0}, {(Rational[1, 4] 5^Rational[-1, 2]) (
2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv
3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h
v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/
uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y
enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7
FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt
pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X
YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co
68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93
P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX
9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd//
p3L6ojmXbu4HAIRjq20=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^
Rational[-1, 2]}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/
f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69
7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb
Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu
sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044],
DiskBox[3, 0.025587335982012044],
DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044],
DiskBox[6, 0.025587335982012044],
DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044],
DiskBox[9, 0.025587335982012044],
DiskBox[10, 0.025587335982012044],
DiskBox[11, 0.025587335982012044],
DiskBox[12, 0.025587335982012044],
DiskBox[13, 0.025587335982012044],
DiskBox[14, 0.025587335982012044],
DiskBox[15, 0.025587335982012044],
DiskBox[16, 0.025587335982012044],
DiskBox[17, 0.025587335982012044],
DiskBox[18, 0.025587335982012044],
DiskBox[19, 0.025587335982012044],
DiskBox[20, 0.025587335982012044]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[91]=",ExpressionUUID->"ba70ecbc-2c32-46dd-b3f8-06ed3db46184"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"IntegralDrawing", "/@",
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[94]:=",ExpressionUUID->"98f8815a-8964-42ae-a81a-1cf37783b792"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 4]
5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
0}, {(Rational[1, 4] 5^Rational[-1, 2]) (
2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979,
0.4472135954999579}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"4363589d-591a-4fb0-bc6c-95ed03b31576"],
Text[1, Background -> GrayLevel[1]]], {0.260944095661969, 0.6368005784302776},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979, 0.4472135954999579}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9eabd59d-b49d-4c3e-b716-ac118de7d0eb"],
Text[1, Background -> GrayLevel[1]]], {0.686269499837989, -0.051390381805309165},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979, 0.4472135954999579}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b9f244b6-1b47-447a-969f-4364d1f3ea20"],
Text[1, Background -> GrayLevel[1]]], {1.170820393249937, 0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \
{-0.648932201925999, 0.5499943591105763}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"536f5b35-b23c-4cec-aaee-c9b48f3517bf"],
Text[1, Background -> GrayLevel[1]]], {-0.686269499837989, 0.051390381805309165},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, {
0.20171860642604098`, -0.8263875613605973}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d77885a2-24b1-419c-9d57-c9739b603826"],
Text[1, Background -> GrayLevel[1]]], {-0.260944095661969, -0.6368005784302776},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \
{-1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"934491f1-7352-460f-a2d9-6b0bc6a90107"],
Text[1, Background -> GrayLevel[1]]], {-1.170820393249937, -0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {1.3090169943749475`,
0.9510565162951535}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"f7b95980-551e-4708-8275-e98594f2d097"],
Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, 1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"98e3d722-7493-448a-9c5d-a98be589fa68"],
Text[1, Background -> GrayLevel[1]]], {0.1491406967869795, 1.182614664974112},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"18ff70f1-5787-4b19-987a-1ee6197b89c6"],
Text[1, Background -> GrayLevel[1]]], {0., 1.5388417685876268},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, -1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6d78b5c2-6f89-4a83-b5a6-46d5f21d2e76"],
Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, -1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, -1.5388417685876268`}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"44058e8a-4fb1-4fb7-88b4-7c7fb4bafbc7"],
Text[1, Background -> GrayLevel[1]]], {0.5744661009629994, -1.0444180638491014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.5, -1.5388417685876268`}, {-0.5, -1.5388417685876268`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ef4c2662-1a8c-4ce1-97a8-8c0b34999cf5"],
Text[1, Background -> GrayLevel[1]]], {0., -1.5388417685876268},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {
0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3f063ff7-5baa-44ed-bca9-d4f20640588b"],
Text[1, Background -> GrayLevel[1]]], {-0.16319378068029863, 0.6685615810807929},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"083e08c7-a9ce-498b-a97a-a782930e1c3e"],
Text[1, Background -> GrayLevel[1]]], {-0.5744661009629994, 1.0444180638491014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.20171860642604098`, -0.8263875613605973}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"de0d7059-9828-4bfe-99ad-74b9c219a81f"],
Text[1, Background -> GrayLevel[1]]], {0.5249971795552881, -0.4449547833308139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.20171860642604098`, -0.8263875613605973}, {-0.5, \
-1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ade291c2-f2a2-48e4-82ee-ecfd042b8d21"],
Text[1, Background -> GrayLevel[1]]], {-0.1491406967869795, -1.182614664974112},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, {
0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8d4f80cf-6429-45e0-9c61-a00e46db8ed4"],
Text[1, Background -> GrayLevel[1]]], {0.8157808174701746, 0.8690926596730815},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9fa373fb-758b-4ffb-9f86-73d91443d947"],
Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, 0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b2d794eb-4d57-4832-b23f-672b03731fe7"],
Text[1, Background -> GrayLevel[1]]], {1.0786463735297414, -0.507289260798092},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"f8286fff-a2fb-42c3-9c39-3dd7d9c02e52"],
Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, -0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-0.3225446405654017, -0.7871288030510095}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"82d3bb8b-5840-432c-a311-8b3cfb579e9f"],
Text[1, Background -> GrayLevel[1]]], {-0.5854101966249685, -0.3618033988749895},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"38cd8609-3211-4de3-a8de-ab29b07d50a9"],
Text[1, Background -> GrayLevel[1]]], {-0.5249971795552881, 0.4449547833308139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-1.3090169943749475`, 0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"788c7722-7c90-4036-bb1c-a55f15612eb8"],
Text[1, Background -> GrayLevel[1]]], {-1.0786463735297414, 0.507289260798092},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"228bc062-c3b6-4e0a-809b-7fdf0dcd99ec"],
Text[1, Background -> GrayLevel[1]]], {0.16319378068029863, -0.6685615810807929},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, \
{-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8fbdef48-5354-4185-ae51-f48c71c6c21d"],
Text[1, Background -> GrayLevel[1]]], {-0.8157808174701746, -0.8690926596730815},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.3225446405654017, 0.7871288030510095}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"068fdd9f-372f-4bc7-8d88-a4d2be05342e"],
Text[1, Background -> GrayLevel[1]]], {0.5854101966249685, 0.3618033988749895},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`,
0.9510565162951535}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"a2bb495c-3145-48cc-9960-5e18a67eef28"],
Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, 0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.618033988749895,
0.}, {-1.3090169943749475`, -0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6ebf98a2-eee4-4082-a659-23882d764402"],
Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, -0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.3090169943749475`, 0.9510565162951535}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"1645d0f8-15d0-4667-b1ef-3216ee674a5c"],
Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, 1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.3090169943749475`, -0.9510565162951535}, {-0.5, \
-1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"fdffb86d-122f-4de8-a9b1-d3450553c894"],
Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, -1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{0.723606797749979, 0.4472135954999579},
0.06698851528247071],
DiskBox[{-0.723606797749979, -0.4472135954999579},
0.06698851528247071],
DiskBox[{0.5, 1.5388417685876268}, 0.06698851528247071],
DiskBox[{0.5, -1.5388417685876268}, 0.06698851528247071],
DiskBox[{-0.648932201925999, 0.5499943591105763},
0.06698851528247071],
DiskBox[{0.20171860642604098, -0.8263875613605973},
0.06698851528247071],
DiskBox[{1.3090169943749475, 0.9510565162951535},
0.06698851528247071],
DiskBox[{1.3090169943749475, -0.9510565162951535},
0.06698851528247071],
DiskBox[{-0.8482757526845353, 0.0635220053010305},
0.06698851528247071],
DiskBox[{-0.3225446405654017, -0.7871288030510095},
0.06698851528247071],
DiskBox[{0.3225446405654017, 0.7871288030510095},
0.06698851528247071],
DiskBox[{0.8482757526845353, -0.0635220053010305},
0.06698851528247071],
DiskBox[{-1.618033988749895, 0.}, 0.06698851528247071],
DiskBox[{-0.20171860642604098, 0.8263875613605973},
0.06698851528247071],
DiskBox[{0.648932201925999, -0.5499943591105763},
0.06698851528247071],
DiskBox[{1.618033988749895, 0.}, 0.06698851528247071],
DiskBox[{-1.3090169943749475, 0.9510565162951535},
0.06698851528247071],
DiskBox[{-1.3090169943749475, -0.9510565162951535},
0.06698851528247071],
DiskBox[{-0.5, 1.5388417685876268}, 0.06698851528247071],
DiskBox[{-0.5, -1.5388417685876268}, 0.06698851528247071]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[18, 20] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] ->
Text[0.9999999999989376, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] ->
Text[0.9999999999999998, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] ->
Text[1.0000000000000147`, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[6, 20] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[17, 19] ->
Text[0.9999999999998549, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] ->
Text[1.0000000000134244`, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] ->
Text[1.0000000000000089`, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] ->
Text[0.9999999999998546, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] ->
Text[0.9999999999998551, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[2, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {
1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"eafb276b-5e0b-461f-b6cb-20e7a1d85bc0"],
Text[2, Background -> GrayLevel[1]]], {0., -1.3763819204711736},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {
0.9980037820455708, -1.2870461105649829`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2f796738-0310-47f8-99f6-e7f75ddda94f"],
Text[2, Background -> GrayLevel[1]]], {-0.0009981089772145846, -1.3317140155180782},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {-1.618033988749895,
0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d0c9ba4f-106e-4103-a350-41e25dc4d9f7"],
Text[2, Background -> GrayLevel[1]]], {-1.3090169943749475, -0.42532540417602},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`,
0.7665985155023878}, {-0.6302417791992277, 0.8127727020945811}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"a1e464d0-108d-49e1-b04e-87ca20985b09"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.1307750774831501, 0.7896856087984845},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`,
0.7665985155023878}, {-0.6151465359790604, 0.5875385408830143}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2ac96cc0-df8e-410b-a592-0be1bcfc6434"],
Text[1., Background -> GrayLevel[1]]], {-0.12322745587306644, 0.677068528192701},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {
0.843010491122414, -0.11375460257732557`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"bbc5c2c9-431b-4e00-b22c-851acc75bd05"],
Text[1., Background -> GrayLevel[1]]], {0.6058510576776708, 0.3264219564625311},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895, 0.5257311121191336}, {0.,
1.7013016167040798`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"53ad573c-2bcb-4c65-974a-c24aea258363"],
Text[2, Background -> GrayLevel[1]]], {0.8090169943749475, 1.1135163644116066},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895, 0.5257311121191336}, {
1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"20c98978-eceb-46e8-947d-224154157127"],
Text[2, Background -> GrayLevel[1]]], {1.3090169943749475, -0.42532540417602},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895,
0.5257311121191336}, {-0.05089529731485315,
1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"23944975-b831-478c-94f9-001325ae63cb"],
Text[2, Background -> GrayLevel[1]]], {0.7835693457175209, 1.0767925964644403},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.032140502180179956`, -1.0279937517504376`}, \
{-0.9156534611226071, -1.3468771209104056`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000147`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b40339e7-fb6e-4801-9d61-10f4368b3b54"],
Text[1.0000000000000147`, Background -> GrayLevel[1]]], {-0.4417564794712136, -1.1874354363304216},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.032140502180179956`, -1.0279937517504376`}, {
0.9980037820455708, -1.2870461105649829`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998551`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d39a97d0-f066-4749-8832-1d47053af035"],
Text[0.9999999999998551, Background -> GrayLevel[1]]], {0.5150721421128754, -1.1575199311577102},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.032140502180179956`, -1.0279937517504376`}, \
{-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999998`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"dadcedb6-452b-4702-ac59-ce9aae3a511f"],
Text[0.9999999999999998, Background -> GrayLevel[1]]], {-0.3583662946747835, -0.7157367396433014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6302417791992277,
0.8127727020945811}, {-1.5639087429358225`,
0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000134244`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6fbc22e6-ed2c-4eca-bd71-fb98a6d6072a"],
Text[1.0000000000134244`, Background -> GrayLevel[1]]], {-1.0970752610675252, 0.6337014866336658},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6302417791992277,
0.8127727020945811}, {-0.05089529731485315,
1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"aca27724-fff4-46c8-9b09-68d7680c059e"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.3405685382570405, 1.220313391452164},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6151465359790604,
0.5875385408830143}, {-0.9677481949315356, -0.348234973437605}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"74e6580b-3c0a-47db-b74a-a2cfbe02b271"],
Text[1., Background -> GrayLevel[1]]], {-0.791447365455298, 0.11965178372270463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6151465359790604,
0.5875385408830143}, {-0.7488730915297469, \
-0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"61908b59-f16b-499b-a298-e4ad58a30ac5"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.6820098137544037, 0.09202940667342452},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0., 1.7013016167040798`}, {-1.5639087429358225`,
0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"0fb0ab7b-f791-46d3-a890-58ebd0cccbbc"],
Text[2, Background -> GrayLevel[1]]], {-0.7819543714679112, 1.077965943938415},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0., 1.7013016167040798`}, {-1.618033988749895,
0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"cdde3170-0bae-421a-a53a-f0c80b2c43dc"],
Text[2, Background -> GrayLevel[1]]], {-0.8090169943749475, 1.1135163644116066},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \
{-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998546`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"97bfcbb3-b2f0-4347-904b-f4f933cd1ce1"],
Text[0.9999999999998546, Background -> GrayLevel[1]]], {-0.9417008280270713, -0.8475560471740053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \
{-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"61f50326-56e7-4ab8-a7fb-98f18f208d34"],
Text[2, Background -> GrayLevel[1]]], {-1.266843724936251, -0.410573004395636},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
0.987612117694377, -0.2871001053666874}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999989376`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9e211e1e-2364-4531-bcad-5b6914047a8a"],
Text[0.9999999999989376, Background -> GrayLevel[1]]], {1.2600329185110446, 0.13216938706310183},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6de94cf5-28a1-42f0-a921-d6b9bad86040"],
Text[2, Background -> GrayLevel[1]]], {1.2662268596638562, -0.41247152048914126},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000089`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3272f7b9-c177-4bfa-88d8-7393b658f6bc"],
Text[1.0000000000000089`, Background -> GrayLevel[1]]], {1.0553455367919593, 0.7009975039765199},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.987612117694377, -0.2871001053666874}, {
0.9980037820455708, -1.2870461105649829`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"315aeaa3-80f4-42d3-b78c-031bc10fc12c"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {0.9928079498699739, -0.7870731079658351},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.987612117694377, -0.2871001053666874}, {
0.15231751215346578`, -0.8369027262719113}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"699cb885-63d2-47e7-bb7e-6a34311e65d4"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.5699648149239214, -0.5620014158192994},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.5639087429358225`,
0.45463027117275046`}, {-0.9677481949315356, \
-0.348234973437605}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d38eb9fb-8bb1-4ee9-9f03-9b3a591e85f5"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-1.265828468933679, 0.05319764886757272},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.843010491122414, -0.11375460257732557`}, {
0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2cd4787e-a155-4128-ac10-30957f8609b6"],
Text[1., Background -> GrayLevel[1]]], {0.7106239226893101, 0.3684007629414116},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.843010491122414, -0.11375460257732557`}, {
0.15231751215346578`, -0.8369027262719113}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ee66883a-59e4-4f1b-bcbc-40f7998a2336"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.4976640016379399, -0.47532866442461846},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5782373542562063,
0.8505561284601488}, {-0.05089529731485315,
1.6278540808097468`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998549`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"049a4237-0d51-4fc3-87aa-ccc0e39f0fc5"],
Text[0.9999999999998549, Background -> GrayLevel[1]]], {0.2636710284706766, 1.239205104634948},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.15231751215346578`, -0.8369027262719113}, \
{-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"7c8143be-175e-4be4-b21a-c1bddaf35b61"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.29827778968814056, -0.6201912269040383},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{-1., -1.3763819204711736}, 0.06698851528247071],
DiskBox[{0.36869162423292756, 0.7665985155023878},
0.06698851528247071],
DiskBox[{1.618033988749895, 0.5257311121191336},
0.06698851528247071],
DiskBox[{0.032140502180179956, -1.0279937517504376},
0.06698851528247071],
DiskBox[{-0.6302417791992277, 0.8127727020945811},
0.06698851528247071],
DiskBox[{-0.6151465359790604, 0.5875385408830143},
0.06698851528247071],
DiskBox[{0., 1.7013016167040798}, 0.06698851528247071],
DiskBox[{-0.9156534611226071, -1.3468771209104056},
0.06698851528247071],
DiskBox[{1.5324537193277121, 0.551438879492891},
0.06698851528247071],
DiskBox[{0.987612117694377, -0.2871001053666874},
0.06698851528247071],
DiskBox[{-1.5639087429358225, 0.45463027117275046},
0.06698851528247071],
DiskBox[{-0.9677481949315356, -0.348234973437605},
0.06698851528247071],
DiskBox[{0.843010491122414, -0.11375460257732557},
0.06698851528247071],
DiskBox[{1., -1.3763819204711736}, 0.06698851528247071],
DiskBox[{0.9980037820455708, -1.2870461105649829},
0.06698851528247071],
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.06698851528247071],
DiskBox[{0.5782373542562063, 0.8505561284601488},
0.06698851528247071],
DiskBox[{0.15231751215346578, -0.8369027262719113},
0.06698851528247071],
DiskBox[{-0.05089529731485315, 1.6278540808097468},
0.06698851528247071],
DiskBox[{-0.7488730915297469, -0.40347972753616523},
0.06698851528247071]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^
Rational[-1, 2]}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948,
0.}, {-0.19098300562505255`, -0.5877852522924731}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5a012231-890e-4c77-a3d4-1644a7656ab1"],
Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, -0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"702a1848-6ec8-402e-98ef-075fc0d2bab3"],
Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, 0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948, 0.}, {-0.276393202250021,
0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e957ed27-c5c5-4a58-a405-9f08645576b0"],
Text[1, Background -> GrayLevel[1]]], {0.1708203932499369, 0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {
0.19098300562505255`, -0.5877852522924731}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"a19b72b2-12d2-4ea8-b9c9-c04f880c2512"],
Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, -0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6c16b9c5-8faa-412b-82d4-aa90564b8614"],
Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, 0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {
0.276393202250021, -0.4472135954999579}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5d3c699f-4faf-4dd2-b864-c728c497a542"],
Text[1, Background -> GrayLevel[1]]], {-0.1708203932499369, -0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5,
0.3632712640026804}, {-0.03925875830958783, \
-0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b7707ac0-bbfc-489e-b689-a83d55148a39"],
Text[1, Background -> GrayLevel[1]]], {-0.2696293791547939, -0.08049599149438114},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5,
0.3632712640026804}, {-0.19098300562505255`, \
-0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3631cde8-ee5b-4c41-972d-4942c4044a4b"],
Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, -0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, 0.3632712640026804}, {0.5, 0.3632712640026804}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ae12aae9-9367-43fe-b105-d378edd92658"],
Text[1, Background -> GrayLevel[1]]], {0., 0.3632712640026804},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {
0.4864723538095458, -0.1993435507585363}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"cdbcd51e-e60c-41f6-9952-43dc1394e84b"],
Text[1, Background -> GrayLevel[1]]], {-0.006763823095227106, -0.28130740738060833},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {-0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"299a3c40-cdc7-4c26-bad0-8c9b5f6e337f"],
Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, 0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c41e9fcb-ffd1-4a72-a6d7-81422fb150e8"],
Text[1, Background -> GrayLevel[1]]], {0., -0.3632712640026804},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {
0.33991520755105153`, 0.40106215718457733`}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"88249f5f-419c-438c-b546-162a342c8d93"],
Text[1, Background -> GrayLevel[1]]], {0.26544910658805204, -0.0933615475539479},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {0.5,
0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8a464862-a3e4-4734-8b37-e23cad8b074c"],
Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, -0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`,
0.5877852522924731}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8d5ae44d-8312-499c-b95e-92d2aedb9ca4"],
Text[1, Background -> GrayLevel[1]]], {-0.15987629758796795, 0.23155814867895844},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"39c1a85c-593c-40b9-acf2-4eba100ea783"],
Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, 0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, {
0.33991520755105153`, 0.40106215718457733`}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"05834379-18d5-46f4-9d81-f45254154e1d"],
Text[1, Background -> GrayLevel[1]]], {0.15032822462073187, -0.06160054490343267},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, \
{-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2d5fcc04-c4ba-4ef0-a980-3be0a4dbba69"],
Text[1, Background -> GrayLevel[1]]], {-0.15782598027980443, -0.03852482574574237},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.4864723538095458, -0.1993435507585363}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"7d85b3fa-66e3-4900-9ff1-003575d76d52"],
Text[1, Background -> GrayLevel[1]]], {-0.012131623495721333, -0.1620062528465463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.4864723538095458, -0.1993435507585363}, {-0.276393202250021,
0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c453a2f5-0d6a-400c-866e-bf5b4d0ebd07"],
Text[1, Background -> GrayLevel[1]]], {0.10503957577976239, 0.12393502237071082},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.33991520755105153`, \
-0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"61cbe442-92be-4ac6-8740-cd08197628a7"],
Text[1, Background -> GrayLevel[1]]], {0.08541019662496846, -0.13819660112501053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.19098300562505255`, \
-0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3f12f567-0b88-4c27-9d6c-0c1655b4f79b"],
Text[1, Background -> GrayLevel[1]]], {0.15987629758796795, -0.23155814867895844},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.4864723538095458,
0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"890a03b2-9154-4861-9246-7df46d6ba015"],
Text[1, Background -> GrayLevel[1]]], {0.012131623495721333, 0.1620062528465463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, \
{-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b80827b0-3df1-4eff-b824-27b9772adedc"],
Text[1, Background -> GrayLevel[1]]], {-0.26544910658805204, 0.0933615475539479},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, {
0.03925875830958784, 0.5242632469914427}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"0a6ae6d1-68e8-465f-86e0-6baf69267355"],
Text[1, Background -> GrayLevel[1]]], {-0.15032822462073184, 0.06160054490343267},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.33991520755105153`,
0.40106215718457733`}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"a437fb99-97cc-46dc-81a8-52a953909fdd"],
Text[1, Background -> GrayLevel[1]]], {-0.08541019662496846, 0.13819660112501053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.276393202250021, -0.4472135954999579}, {-0.4864723538095458,
0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6efbc0db-a1a4-493e-b978-0ccfbfffe7b9"],
Text[1, Background -> GrayLevel[1]]], {-0.10503957577976239, -0.12393502237071082},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.276393202250021, -0.4472135954999579}, {
0.03925875830958784, 0.5242632469914427}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"fec3f6b7-03f5-483d-8633-8b80da5f65c6"],
Text[1, Background -> GrayLevel[1]]], {0.15782598027980443, 0.03852482574574237},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.4864723538095458, 0.1993435507585363}, {0.5,
0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6cd3ab5c-26a3-4979-9ebc-d2f23a1ac379"],
Text[1, Background -> GrayLevel[1]]], {0.006763823095227106, 0.28130740738060833},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.03925875830958784, 0.5242632469914427}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e2fc9cb1-4796-43df-a310-5db3c25f41b9"],
Text[1, Background -> GrayLevel[1]]], {0.2696293791547939, 0.08049599149438114},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{0.6180339887498948, 0.}, 0.025587335982012044],
DiskBox[{-0.6180339887498948, 0.}, 0.025587335982012044],
DiskBox[{-0.5, 0.3632712640026804}, 0.025587335982012044],
DiskBox[{-0.5, -0.3632712640026804}, 0.025587335982012044],
DiskBox[{0.19098300562505255, -0.5877852522924731},
0.025587335982012044],
DiskBox[{0.19098300562505255, 0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.03925875830958783, -0.5242632469914427},
0.025587335982012044],
DiskBox[{0.4864723538095458, -0.1993435507585363},
0.025587335982012044],
DiskBox[{0.5107356008009885, 0.12466895493455628},
0.025587335982012044],
DiskBox[{-0.33991520755105153, -0.40106215718457733},
0.025587335982012044],
DiskBox[{0.33991520755105153, 0.40106215718457733},
0.025587335982012044],
DiskBox[{-0.5107356008009885, -0.12466895493455628},
0.025587335982012044],
DiskBox[{0.276393202250021, -0.4472135954999579},
0.025587335982012044],
DiskBox[{-0.19098300562505255, -0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.19098300562505255, 0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.276393202250021, 0.4472135954999579},
0.025587335982012044],
DiskBox[{-0.4864723538095458, 0.1993435507585363},
0.025587335982012044],
DiskBox[{0.03925875830958784, 0.5242632469914427},
0.025587335982012044],
DiskBox[{0.5, 0.3632712640026804}, 0.025587335982012044],
DiskBox[{0.5, -0.3632712640026804}, 0.025587335982012044]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[94]=",ExpressionUUID->"b0c537ec-50c0-4f49-8ce2-aa7e25d11e9a"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["IGraph", "Subsubsection",ExpressionUUID->"1e04846a-ca31-4c7f-aedb-c57ba4f8c70b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]], "Input",
CellLabel->
"In[103]:=",ExpressionUUID->"3803e134-dd2d-47a4-8431-b7d92a7a5f7a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"10", ",", "1", ",", "2"}], "}"}]], "Output",
CellLabel->
"Out[103]=",ExpressionUUID->"66a3c90f-7ac6-4a4e-b216-44b24a949017"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[73]:=",ExpressionUUID->"3a3b45b0-a78a-4504-ba33-04c5cc86e6f2"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8
VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO
h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9
/nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY
bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll
P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY
OSBXuG5jhvqPyQEAhBuTKA==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8
VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO
h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9
/nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY
bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll
P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY
OSBXuG5jhvqPyQEAhBuTKA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.07228422026971032]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.07228422026971032], DiskBox[2, 0.07228422026971032],
DiskBox[3, 0.07228422026971032], DiskBox[4, 0.07228422026971032],
DiskBox[5, 0.07228422026971032], DiskBox[6, 0.07228422026971032],
DiskBox[7, 0.07228422026971032], DiskBox[8, 0.07228422026971032],
DiskBox[9, 0.07228422026971032], DiskBox[10, 0.07228422026971032],
DiskBox[11, 0.07228422026971032], DiskBox[12, 0.07228422026971032],
DiskBox[13, 0.07228422026971032],
DiskBox[14, 0.07228422026971032], DiskBox[15, 0.07228422026971032],
DiskBox[16, 0.07228422026971032],
DiskBox[17, 0.07228422026971032], DiskBox[18, 0.07228422026971032],
DiskBox[19, 0.07228422026971032],
DiskBox[20, 0.07228422026971032]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {-1, 0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSjMw
rPgyfXb545f746JKWZTPP9qPpt8eTR6mzwFV/0+o/Kf9UL49jA8x7zHU/n8w
PtT8f/Zo+u3R1MPst0dz335U/8HNQ7cf5t4DaP61R/XPh/0weQDkiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {1, 0}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {-2,
0}, {Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {2, 0}, {
Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {-1,
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fZo8vYrvkyf
Xf745f64qFIW5fOP0Pn7GcDggz0DFED0P4bq/wdV/xOq/hNM3QGYeqi8PUwe
TT3UfAYHNPP3w8yH2r8f1byX9jD3orlnP5p9+9HM24+mHz189gMA87yREA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {1, 0}, {-2,
0}, {Rational[1, 2] (1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (-1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (
Rational[1, 2] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 +
5^Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 - 5^
Rational[1, 2]), -(Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {2, 0}, {-1,
0}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfBS3/z9scv2/0NchPny3+2H8vdD+fYMYPABSsPB
ARgDov4xVP0/+xVfps8uf/zSPi6qlEX5/KP9UP5+GB+q3h5V/U+o/CcY3x6N
D5PfjyaP7l50++zR7NuP5l97NPfvR3M/zN8OqN7/sB/GAgAqiJEQ
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.08280235860091731]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.08280235860091731], DiskBox[2, 0.08280235860091731],
DiskBox[3, 0.08280235860091731], DiskBox[4, 0.08280235860091731],
DiskBox[5, 0.08280235860091731], DiskBox[6, 0.08280235860091731],
DiskBox[7, 0.08280235860091731], DiskBox[8, 0.08280235860091731],
DiskBox[9, 0.08280235860091731], DiskBox[10, 0.08280235860091731],
DiskBox[11, 0.08280235860091731], DiskBox[12, 0.08280235860091731],
DiskBox[13, 0.08280235860091731],
DiskBox[14, 0.08280235860091731], DiskBox[15, 0.08280235860091731],
DiskBox[16, 0.08280235860091731],
DiskBox[17, 0.08280235860091731], DiskBox[18, 0.08280235860091731],
DiskBox[19, 0.08280235860091731],
DiskBox[20, 0.08280235860091731]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[102]=",ExpressionUUID->"e41a355d-19f5-4e8f-a877-608715087e43"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Circular", "Subsubsection",ExpressionUUID->"6a198bb2-a69f-4490-8f66-a524a74f29bc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[81]:=",ExpressionUUID->"d5794f9b-5a18-4c50-887c-b90030af168e"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {-
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {-
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {-
Cos[Rational[3, 20] Pi],
Sin[
Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3
xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz
0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {
17, 19}, {18, 20}}, 0.041904067400022615`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615],
DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615],
DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615],
DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615],
DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615],
DiskBox[11, 0.041904067400022615],
DiskBox[12, 0.041904067400022615],
DiskBox[13, 0.041904067400022615],
DiskBox[14, 0.041904067400022615],
DiskBox[15, 0.041904067400022615],
DiskBox[16, 0.041904067400022615],
DiskBox[17, 0.041904067400022615],
DiskBox[18, 0.041904067400022615],
DiskBox[19, 0.041904067400022615],
DiskBox[20, 0.041904067400022615]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[81]=",ExpressionUUID->"a1bbe989-425c-4b1e-855d-93cd58129174"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Planar", "Subsubsection",ExpressionUUID->"787cdfd2-064b-48d3-b032-1eb5d86bb9e4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[128]:=",ExpressionUUID->"737a7248-2894-47c0-ae6c-d728eca79c2a"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[128]=",ExpressionUUID->"4c4a204b-a2c0-477d-9ac7-744793136e19"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->
"In[129]:=",ExpressionUUID->"79e9a92e-e973-406c-b2f7-43c8ab65322f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483],
DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483],
DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483],
DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483],
DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483],
DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483],
DiskBox[13, 0.09709139882090483],
DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483],
DiskBox[16, 0.09709139882090483],
DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483],
DiskBox[19, 0.09709139882090483],
DiskBox[20, 0.09709139882090483]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.039375630966373094`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094],
DiskBox[3, 0.039375630966373094],
DiskBox[4, 0.039375630966373094], DiskBox[5, 0.039375630966373094],
DiskBox[6, 0.039375630966373094],
DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094],
DiskBox[9, 0.039375630966373094],
DiskBox[10, 0.039375630966373094],
DiskBox[11, 0.039375630966373094],
DiskBox[12, 0.039375630966373094],
DiskBox[13, 0.039375630966373094],
DiskBox[14, 0.039375630966373094],
DiskBox[15, 0.039375630966373094],
DiskBox[16, 0.039375630966373094],
DiskBox[17, 0.039375630966373094],
DiskBox[18, 0.039375630966373094],
DiskBox[19, 0.039375630966373094],
DiskBox[20, 0.039375630966373094]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7
FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt
pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X
YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co
68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93
P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX
9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd//
p3L6ojmXbu4HAIRjq20=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[129]=",ExpressionUUID->"fa7f5635-527b-42e1-9715-b285f1729971"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Tutte embeddings", "Subsubsection",ExpressionUUID->"a1dc7eff-6a41-46b8-843e-0877d9ace473"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"faces", "=",
RowBox[{"ReverseSort", "@",
RowBox[{"SymmetricallyDistinctFaces", "[",
RowBox[{"GraphData", "[", "\"\\"", "]"}],
"]"}]}]}]], "Input",
CellLabel->
"In[130]:=",ExpressionUUID->"8c20b6ec-46ee-4fcc-bee9-ade6f3d5877a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"1", ",", "14", ",", "9", ",", "10", ",", "15"}], "}"}],
"}"}]], "Output",
CellLabel->
"Out[130]=",ExpressionUUID->"2d43832e-2d15-48da-bd3b-8be9f75519ec"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Tally", "[",
RowBox[{"ReverseSort", "[",
RowBox[{"Length", "/@", "faces"}], "]"}], "]"}]], "Input",
CellLabel->
"In[131]:=",ExpressionUUID->"3d3faf88-f6b4-45e9-aaf6-d417c9211c25"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"5", ",", "1"}], "}"}], "}"}]], "Output",
CellLabel->
"Out[131]=",ExpressionUUID->"b1a91e56-0e3f-4a0d-aed5-54b0c4d908bd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"IGLayoutTutte", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"\"\\"", "->", "#"}]}], "]"}], "&"}], "/@",
"faces"}]], "Input",
CellLabel->
"In[133]:=",ExpressionUUID->"11912f5a-bfa6-4dcb-8a39-82ffafe003a8"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
PlotRange -> All, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQHRdVyqJ8/pH9ii/TZ5c/frlfVMxBw/TL5v0NU95a
3SjbbX/5gXLdwhX37L/F2lREvjlsH7+uvGrHp0v7t2W0bSkUuQVTb18PVf/+
+abSBSoH9teI88eJ/V6yPzmsJu2x5WV7CzWLDff/7NjPAAENLu6hv3TNr8D4
UPDB/n+IizBf/rv9AS/1zd8fu2z/AWKefS3UPIi6AptDHM+4fX8e2G/tcvbW
ycPH9xustXh5LuoCTL89TD/Uf/th/oO63x7mfph7dllm/HCRewDz7/7vUP9a
Qcy314eaD/XPfnOofwAp/5wx
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHRdVyqJ8/pH9ii/TZ5c/frlfVMxBw/TL5v0NU95a
3SjbbX/5gXLdwhX37L/F2lREvjlsH7+uvGrHp0v7t2W0bSkUuQVTb18PVf/+
+abSBSoH9teI88eJ/V6yPzmsJu2x5WV7CzWLDff/7NjPAAENLu6hv3TNr8D4
UPDB/n+IizBf/rv9AS/1zd8fu2z/AWKefS3UPIi6AptDHM+4fX8e2G/tcvbW
ycPH9xustXh5LuoCTL89TD/Uf/th/oO63x7mfph7dllm/HCRewDz7/7vUP9a
Qcy314eaD/XPfnOofwAp/5wx
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {
17, 19}, {18, 20}}, 0.021812234931106983`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.021812234931106983], DiskBox[2, 0.021812234931106983],
DiskBox[3, 0.021812234931106983], DiskBox[4, 0.021812234931106983],
DiskBox[5, 0.021812234931106983], DiskBox[6, 0.021812234931106983],
DiskBox[7, 0.021812234931106983], DiskBox[8, 0.021812234931106983],
DiskBox[9, 0.021812234931106983], DiskBox[10, 0.021812234931106983],
DiskBox[11, 0.021812234931106983],
DiskBox[12, 0.021812234931106983],
DiskBox[13, 0.021812234931106983],
DiskBox[14, 0.021812234931106983],
DiskBox[15, 0.021812234931106983],
DiskBox[16, 0.021812234931106983],
DiskBox[17, 0.021812234931106983],
DiskBox[18, 0.021812234931106983],
DiskBox[19, 0.021812234931106983],
DiskBox[20, 0.021812234931106983]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None,
PlotRange->All], "}"}]], "Output",
CellLabel->
"Out[133]=",ExpressionUUID->"31b4492e-2d7d-46b6-8e89-4a98b485a65d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"gs", "=",
RowBox[{
RowBox[{
RowBox[{"Annotate", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{
RowBox[{"VertexLabels", "->", "None"}], ",",
RowBox[{"ImageSize", "->", "Tiny"}]}], "}"}]}], "]"}], "&"}], "/@",
RowBox[{"{", "}"}]}]}]], "Input",
CellLabel->
"In[134]:=",ExpressionUUID->"920e6827-848d-4e71-b342-73d65792670e"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[134]=",ExpressionUUID->"e76b0052-c200-4377-af06-0be33ab05bf9"]
}, Open ]],
Cell[BoxData[
RowBox[{"RecognizeGraph", "/@", "gs"}]], "Input",ExpressionUUID->"84346213-9d36-416e-b47f-386e63e1d99c"]
}, Closed]],
Cell[CellGroupData[{
Cell["MinimalCrossing", "Subsubsection",ExpressionUUID->"74fd435e-2046-4023-b2ec-04d2d3a4954c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input",
CellLabel->"In[74]:=",ExpressionUUID->"9699808a-8b75-4e9b-bc81-05f95871883e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]], "Output",
CellLabel->"Out[74]=",ExpressionUUID->"a898329d-0681-4cd1-b17f-f831454d083c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[75]:=",ExpressionUUID->"bd7f5768-1b6c-49ca-9c0b-d5b859a7099b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.09709139882090483]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.09709139882090483], DiskBox[2, 0.09709139882090483],
DiskBox[3, 0.09709139882090483], DiskBox[4, 0.09709139882090483],
DiskBox[5, 0.09709139882090483], DiskBox[6, 0.09709139882090483],
DiskBox[7, 0.09709139882090483], DiskBox[8, 0.09709139882090483],
DiskBox[9, 0.09709139882090483], DiskBox[10, 0.09709139882090483],
DiskBox[11, 0.09709139882090483], DiskBox[12, 0.09709139882090483],
DiskBox[13, 0.09709139882090483],
DiskBox[14, 0.09709139882090483], DiskBox[15, 0.09709139882090483],
DiskBox[16, 0.09709139882090483],
DiskBox[17, 0.09709139882090483], DiskBox[18, 0.09709139882090483],
DiskBox[19, 0.09709139882090483],
DiskBox[20, 0.09709139882090483]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQo+2MNYxmBweb+EWjDr4knX9kvPi9M8LXDfvvi6
0CfH84/sxW+e+x78+OX+Lvnkd1FOl/ZfuBr2Rn/39v2o+h9D5R9B5Y/D9O+H
6Yeabw8zH6reHqYeTT+6e2D22+Ow317WIt0lM/+dve6mue+XH7sM4++H8UNK
VKb/n3AMav95dPv3Q+X3w+TR3LsfAH2ej9c=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.039375630966373094`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.039375630966373094], DiskBox[2, 0.039375630966373094],
DiskBox[3, 0.039375630966373094],
DiskBox[4, 0.039375630966373094], DiskBox[5, 0.039375630966373094],
DiskBox[6, 0.039375630966373094],
DiskBox[7, 0.039375630966373094], DiskBox[8, 0.039375630966373094],
DiskBox[9, 0.039375630966373094],
DiskBox[10, 0.039375630966373094],
DiskBox[11, 0.039375630966373094],
DiskBox[12, 0.039375630966373094],
DiskBox[13, 0.039375630966373094],
DiskBox[14, 0.039375630966373094],
DiskBox[15, 0.039375630966373094],
DiskBox[16, 0.039375630966373094],
DiskBox[17, 0.039375630966373094],
DiskBox[18, 0.039375630966373094],
DiskBox[19, 0.039375630966373094],
DiskBox[20, 0.039375630966373094]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[
1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEf9leuLuZZyfptv987iYNLZly3d7qmPudn+wv7
FV+mzy5//NOeN3gh76lLD+wfhVZ77yhZYP9Uq2XyyqIP+xUrj5/7oPVkv2rt
pafWTK/sIx6fOOm+/vH+jFz3BbJnH9nDbHjC7MbdYfHb/tmW/TUcvm/32y5X
YDvf83X/fotPBu9afthXuKmqJS99aO+rF7KrZdZ7+3MzzsndjL+0Pye9T+co
68/9XpFzJ6yUuGu/5tx//tPf3+0vsuoPr/a8tp/1hKHyx5+v7Jeeu9bJKr93
P9Q/9jD/bLSwK1z6/r29vuLUlXunf9kP9c9+mH8UUnbPf93wyN7lUErNQfPX
9m+Clj9Trj9sf2PNC8sXx1/tz5jx89QnvlX7756r3rGB+5d9v8H8zUe+Pd//
p3L6ojmXbu4HAIRjq20=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[75]=",ExpressionUUID->"bf43147e-773f-44c1-a979-333fcf9c925a"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MinimalIntegral", "Subsubsection",ExpressionUUID->"5525967c-2e88-47dc-8007-b1a2db96a83e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[95]:=",ExpressionUUID->"d821c3f0-dd8b-4f1e-a5b7-ecedf6e9ad8c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 4]
5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
0}, {(Rational[1, 4] 5^Rational[-1, 2]) (
2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv
3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h
v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/
uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y
enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^
Rational[-1, 2]}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/
f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69
7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb
Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu
sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044],
DiskBox[3, 0.025587335982012044],
DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044],
DiskBox[6, 0.025587335982012044],
DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044],
DiskBox[9, 0.025587335982012044],
DiskBox[10, 0.025587335982012044],
DiskBox[11, 0.025587335982012044],
DiskBox[12, 0.025587335982012044],
DiskBox[13, 0.025587335982012044],
DiskBox[14, 0.025587335982012044],
DiskBox[15, 0.025587335982012044],
DiskBox[16, 0.025587335982012044],
DiskBox[17, 0.025587335982012044],
DiskBox[18, 0.025587335982012044],
DiskBox[19, 0.025587335982012044],
DiskBox[20, 0.025587335982012044]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[95]=",ExpressionUUID->"8f950747-9dce-4eb4-901d-e15eba5188ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"IntegralDrawing", "/@",
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[96]:=",ExpressionUUID->"81c30224-37e7-4a46-9382-efd774429692"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 4]
5^Rational[-1, 2]) (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
0}, {(Rational[1, 4] 5^Rational[-1, 2]) (
2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979,
0.4472135954999579}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"82506a6d-c511-4506-aac4-a78a3b37f394"],
Text[1, Background -> GrayLevel[1]]], {0.260944095661969, 0.6368005784302776},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979, 0.4472135954999579}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b4a31e15-4429-420d-8bca-3be1e643feec"],
Text[1, Background -> GrayLevel[1]]], {0.686269499837989, -0.051390381805309165},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.723606797749979, 0.4472135954999579}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"be94d9f8-cdba-483c-b1a2-c2851883f700"],
Text[1, Background -> GrayLevel[1]]], {1.170820393249937, 0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \
{-0.648932201925999, 0.5499943591105763}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3fc4e6bf-5ec5-42d0-8f1c-e3dcbf22b3ed"],
Text[1, Background -> GrayLevel[1]]], {-0.686269499837989, 0.051390381805309165},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, {
0.20171860642604098`, -0.8263875613605973}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8e2bb0c1-682d-40ae-8a62-4812af3b2205"],
Text[1, Background -> GrayLevel[1]]], {-0.260944095661969, -0.6368005784302776},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.723606797749979, -0.4472135954999579}, \
{-1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2f57d620-f5cf-4f50-a7e6-f1b32bcf7d80"],
Text[1, Background -> GrayLevel[1]]], {-1.170820393249937, -0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {1.3090169943749475`,
0.9510565162951535}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9259e6cd-3ab2-4e5d-8f29-08ade0f415e5"],
Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, 1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"52e84938-abae-4bef-b848-5cd0a69076b1"],
Text[1, Background -> GrayLevel[1]]], {0.1491406967869795, 1.182614664974112},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, 1.5388417685876268`}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"08b2faa7-146c-4be8-b68d-4aaefe3946d4"],
Text[1, Background -> GrayLevel[1]]], {0., 1.5388417685876268},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, -1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c273dc77-7aba-4b50-9c54-eb150a7e76e0"],
Text[1, Background -> GrayLevel[1]]], {0.9045084971874737, -1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5, -1.5388417685876268`}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"0e3b3331-0076-4e1b-bc61-dc7908f5c35e"],
Text[1, Background -> GrayLevel[1]]], {0.5744661009629994, -1.0444180638491014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.5, -1.5388417685876268`}, {-0.5, -1.5388417685876268`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3aab6498-1dee-40de-ac77-e4e6f356c922"],
Text[1, Background -> GrayLevel[1]]], {0., -1.5388417685876268},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {
0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e360eb62-182c-450a-b7be-7afb6f652b9e"],
Text[1, Background -> GrayLevel[1]]], {-0.16319378068029863, 0.6685615810807929},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.648932201925999, 0.5499943591105763}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2be547ad-9be9-45fe-8ba9-7fafd2e0718a"],
Text[1, Background -> GrayLevel[1]]], {-0.5744661009629994, 1.0444180638491014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.20171860642604098`, -0.8263875613605973}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"fa7e0682-a8e4-42e4-b3fe-cd2494b74d2b"],
Text[1, Background -> GrayLevel[1]]], {0.5249971795552881, -0.4449547833308139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.20171860642604098`, -0.8263875613605973}, {-0.5, \
-1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3dc3fd69-e2ce-4f30-8ffb-5e58e0e85d36"],
Text[1, Background -> GrayLevel[1]]], {-0.1491406967869795, -1.182614664974112},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, {
0.3225446405654017, 0.7871288030510095}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6c956975-97af-46ad-b244-454449cbdac1"],
Text[1, Background -> GrayLevel[1]]], {0.8157808174701746, 0.8690926596730815},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, 0.9510565162951535}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"1de37199-eebb-4436-b272-bc5a3e6aedb5"],
Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, 0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"777e2d0c-be86-429f-841c-26a439210196"],
Text[1, Background -> GrayLevel[1]]], {1.0786463735297414, -0.507289260798092},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.3090169943749475`, -0.9510565162951535}, {
1.618033988749895, 0.}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"99bde08a-8d20-4745-993a-fc3e4a34bd14"],
Text[1, Background -> GrayLevel[1]]], {1.4635254915624212, -0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-0.3225446405654017, -0.7871288030510095}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"f1f077c7-3364-44d6-b493-b7d1f60f986f"],
Text[1, Background -> GrayLevel[1]]], {-0.5854101966249685, -0.3618033988749895},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-0.20171860642604098`,
0.8263875613605973}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5076ea9f-fa62-4d93-911e-837e4e49bb11"],
Text[1, Background -> GrayLevel[1]]], {-0.5249971795552881, 0.4449547833308139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.8482757526845353,
0.0635220053010305}, {-1.3090169943749475`, 0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9235b3fd-9860-43e1-be11-1b4a1eff35df"],
Text[1, Background -> GrayLevel[1]]], {-1.0786463735297414, 0.507289260798092},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, {
0.648932201925999, -0.5499943591105763}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"564644b1-c893-4d55-864d-6ec05bf9723f"],
Text[1, Background -> GrayLevel[1]]], {0.16319378068029863, -0.6685615810807929},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.3225446405654017, -0.7871288030510095}, \
{-1.3090169943749475`, -0.9510565162951535}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"4cbc7ce6-5908-4880-affe-5a650e2d38c9"],
Text[1, Background -> GrayLevel[1]]], {-0.8157808174701746, -0.8690926596730815},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.3225446405654017, 0.7871288030510095}, {
0.8482757526845353, -0.0635220053010305}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"723c5dba-498c-4a56-bef9-0852627f1471"],
Text[1, Background -> GrayLevel[1]]], {0.5854101966249685, 0.3618033988749895},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.618033988749895, 0.}, {-1.3090169943749475`,
0.9510565162951535}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"cbcddf8b-0469-4a03-89d6-2683818c1cc7"],
Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, 0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.618033988749895,
0.}, {-1.3090169943749475`, -0.9510565162951535}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"770d2629-851b-4966-9ba4-44d508b30f26"],
Text[1, Background -> GrayLevel[1]]], {-1.4635254915624212, -0.47552825814757677},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.3090169943749475`, 0.9510565162951535}, {-0.5,
1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"97a867c6-b263-4ed8-9207-d0aae8de7b2d"],
Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, 1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.3090169943749475`, -0.9510565162951535}, {-0.5, \
-1.5388417685876268`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"480d52b2-2c72-4c68-afad-f83cfcb675a8"],
Text[1, Background -> GrayLevel[1]]], {-0.9045084971874737, -1.24494914244139},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{0.723606797749979, 0.4472135954999579},
0.06698851528247071],
DiskBox[{-0.723606797749979, -0.4472135954999579},
0.06698851528247071],
DiskBox[{0.5, 1.5388417685876268}, 0.06698851528247071],
DiskBox[{0.5, -1.5388417685876268}, 0.06698851528247071],
DiskBox[{-0.648932201925999, 0.5499943591105763},
0.06698851528247071],
DiskBox[{0.20171860642604098, -0.8263875613605973},
0.06698851528247071],
DiskBox[{1.3090169943749475, 0.9510565162951535},
0.06698851528247071],
DiskBox[{1.3090169943749475, -0.9510565162951535},
0.06698851528247071],
DiskBox[{-0.8482757526845353, 0.0635220053010305},
0.06698851528247071],
DiskBox[{-0.3225446405654017, -0.7871288030510095},
0.06698851528247071],
DiskBox[{0.3225446405654017, 0.7871288030510095},
0.06698851528247071],
DiskBox[{0.8482757526845353, -0.0635220053010305},
0.06698851528247071],
DiskBox[{-1.618033988749895, 0.}, 0.06698851528247071],
DiskBox[{-0.20171860642604098, 0.8263875613605973},
0.06698851528247071],
DiskBox[{0.648932201925999, -0.5499943591105763},
0.06698851528247071],
DiskBox[{1.618033988749895, 0.}, 0.06698851528247071],
DiskBox[{-1.3090169943749475, 0.9510565162951535},
0.06698851528247071],
DiskBox[{-1.3090169943749475, -0.9510565162951535},
0.06698851528247071],
DiskBox[{-0.5, 1.5388417685876268}, 0.06698851528247071],
DiskBox[{-0.5, -1.5388417685876268}, 0.06698851528247071]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[18, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[6, 20] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[17, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] -> Text[1, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[1, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (
2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^
Rational[-1, 2]}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 - (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {(Rational[1, 4]
5^Rational[-1, 2]) (-2 + (10 - 2 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948,
0.}, {-0.19098300562505255`, -0.5877852522924731}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9463b8b0-8d00-49e9-904b-45a50fec4361"],
Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, -0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948, 0.}, {-0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"383cb622-2081-4ae3-88a8-72260fae419e"],
Text[1, Background -> GrayLevel[1]]], {0.21352549156242112, 0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.6180339887498948, 0.}, {-0.276393202250021,
0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"789dba99-7c69-4b52-a800-09c358e56536"],
Text[1, Background -> GrayLevel[1]]], {0.1708203932499369, 0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {
0.19098300562505255`, -0.5877852522924731}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"a54e2a1b-0d64-4fb3-b86f-3f09ce2e0126"],
Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, -0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"56e3d8c0-2e54-48fe-b6ac-bc4776718b91"],
Text[1, Background -> GrayLevel[1]]], {-0.21352549156242112, 0.29389262614623657},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6180339887498948, 0.}, {
0.276393202250021, -0.4472135954999579}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"0dc92056-15c7-40ab-962c-eb0957e5ff56"],
Text[1, Background -> GrayLevel[1]]], {-0.1708203932499369, -0.22360679774997896},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5,
0.3632712640026804}, {-0.03925875830958783, \
-0.5242632469914427}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c337310a-e3f1-4d65-931c-aec8689f2b67"],
Text[1, Background -> GrayLevel[1]]], {-0.2696293791547939, -0.08049599149438114},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5,
0.3632712640026804}, {-0.19098300562505255`, \
-0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"366fad08-2853-49c2-bfb8-c9a543fb48ec"],
Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, -0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, 0.3632712640026804}, {0.5, 0.3632712640026804}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5a76c234-3993-4954-a839-2bb86395af01"],
Text[1, Background -> GrayLevel[1]]], {0., 0.3632712640026804},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {
0.4864723538095458, -0.1993435507585363}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c6eae345-efb9-4e0c-9419-12e99dc5672f"],
Text[1, Background -> GrayLevel[1]]], {-0.006763823095227106, -0.28130740738060833},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {-0.19098300562505255`,
0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2709f9a5-40cd-42d5-8677-a556f2c1b610"],
Text[1, Background -> GrayLevel[1]]], {-0.3454915028125263, 0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.5, -0.3632712640026804}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"edb81e42-f2bb-4c5f-a72a-c7c50a8fe223"],
Text[1, Background -> GrayLevel[1]]], {0., -0.3632712640026804},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {
0.33991520755105153`, 0.40106215718457733`}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"76b701fb-9ac6-4abd-b233-b69600679a4a"],
Text[1, Background -> GrayLevel[1]]], {0.26544910658805204, -0.0933615475539479},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, -0.5877852522924731}, {0.5,
0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"7072f0e8-50ef-4fd0-adf8-17894dcc8ca9"],
Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, -0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`,
0.5877852522924731}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"92cfe237-bb10-4621-998f-97affa09ac47"],
Text[1, Background -> GrayLevel[1]]], {-0.15987629758796795, 0.23155814867895844},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.19098300562505255`, 0.5877852522924731}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"af4a22c9-b79b-4e4c-a0f5-40f9fdcb4e97"],
Text[1, Background -> GrayLevel[1]]], {0.3454915028125263, 0.11225699414489637},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, {
0.33991520755105153`, 0.40106215718457733`}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"091b2dad-54ac-4ca4-b2cc-9f12ab4bf434"],
Text[1, Background -> GrayLevel[1]]], {0.15032822462073187, -0.06160054490343267},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.03925875830958783, -0.5242632469914427}, \
{-0.276393202250021, 0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c6eaab41-e38f-45e1-ab71-fd7337fe5a08"],
Text[1, Background -> GrayLevel[1]]], {-0.15782598027980443, -0.03852482574574237},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.4864723538095458, -0.1993435507585363}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b208d446-f3b5-4920-a9e7-6131cea092ef"],
Text[1, Background -> GrayLevel[1]]], {-0.012131623495721333, -0.1620062528465463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.4864723538095458, -0.1993435507585363}, {-0.276393202250021,
0.4472135954999579}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"7a272775-ae70-4889-8774-59217715bdb9"],
Text[1, Background -> GrayLevel[1]]], {0.10503957577976239, 0.12393502237071082},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.33991520755105153`, \
-0.40106215718457733`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e7ed95d9-ed81-4b4f-a442-a3b259f00cd7"],
Text[1, Background -> GrayLevel[1]]], {0.08541019662496846, -0.13819660112501053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.19098300562505255`, \
-0.5877852522924731}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"1a0a2901-1ad0-4ecc-9d87-88e93de0e8ed"],
Text[1, Background -> GrayLevel[1]]], {0.15987629758796795, -0.23155814867895844},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5107356008009885,
0.12466895493455628`}, {-0.4864723538095458,
0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6e77d3ba-67d9-4fe0-b279-ca2abee1e59e"],
Text[1, Background -> GrayLevel[1]]], {0.012131623495721333, 0.1620062528465463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, \
{-0.19098300562505255`, 0.5877852522924731}}, 0.025587335982012044`]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"42b31f56-8648-4bfa-b9b6-6c77024b2749"],
Text[1, Background -> GrayLevel[1]]], {-0.26544910658805204, 0.0933615475539479},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.33991520755105153`, -0.40106215718457733`}, {
0.03925875830958784, 0.5242632469914427}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"de6030b5-3ab1-4653-83cf-0015e9f150e5"],
Text[1, Background -> GrayLevel[1]]], {-0.15032822462073184, 0.06160054490343267},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.33991520755105153`,
0.40106215718457733`}, {-0.5107356008009885, \
-0.12466895493455628`}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"56cc19f1-90fd-4d11-ba18-e4e8738db544"],
Text[1, Background -> GrayLevel[1]]], {-0.08541019662496846, 0.13819660112501053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.276393202250021, -0.4472135954999579}, {-0.4864723538095458,
0.1993435507585363}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"6194b61e-9ab9-49c1-b3d1-f4806f35f80c"],
Text[1, Background -> GrayLevel[1]]], {-0.10503957577976239, -0.12393502237071082},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.276393202250021, -0.4472135954999579}, {
0.03925875830958784, 0.5242632469914427}},
0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e1b2bb83-646c-46f8-a017-1e5914cfdb02"],
Text[1, Background -> GrayLevel[1]]], {0.15782598027980443, 0.03852482574574237},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.4864723538095458, 0.1993435507585363}, {0.5,
0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ffa6fb4f-2842-4b1c-b608-375b16e016b3"],
Text[1, Background -> GrayLevel[1]]], {0.006763823095227106, 0.28130740738060833},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.03925875830958784, 0.5242632469914427}, {
0.5, -0.3632712640026804}}, 0.025587335982012044`]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"92568256-4759-4f27-9109-f13e82c2cefa"],
Text[1, Background -> GrayLevel[1]]], {0.2696293791547939, 0.08049599149438114},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{0.6180339887498948, 0.}, 0.025587335982012044],
DiskBox[{-0.6180339887498948, 0.}, 0.025587335982012044],
DiskBox[{-0.5, 0.3632712640026804}, 0.025587335982012044],
DiskBox[{-0.5, -0.3632712640026804}, 0.025587335982012044],
DiskBox[{0.19098300562505255, -0.5877852522924731},
0.025587335982012044],
DiskBox[{0.19098300562505255, 0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.03925875830958783, -0.5242632469914427},
0.025587335982012044],
DiskBox[{0.4864723538095458, -0.1993435507585363},
0.025587335982012044],
DiskBox[{0.5107356008009885, 0.12466895493455628},
0.025587335982012044],
DiskBox[{-0.33991520755105153, -0.40106215718457733},
0.025587335982012044],
DiskBox[{0.33991520755105153, 0.40106215718457733},
0.025587335982012044],
DiskBox[{-0.5107356008009885, -0.12466895493455628},
0.025587335982012044],
DiskBox[{0.276393202250021, -0.4472135954999579},
0.025587335982012044],
DiskBox[{-0.19098300562505255, -0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.19098300562505255, 0.5877852522924731},
0.025587335982012044],
DiskBox[{-0.276393202250021, 0.4472135954999579},
0.025587335982012044],
DiskBox[{-0.4864723538095458, 0.1993435507585363},
0.025587335982012044],
DiskBox[{0.03925875830958784, 0.5242632469914427},
0.025587335982012044],
DiskBox[{0.5, 0.3632712640026804}, 0.025587335982012044],
DiskBox[{0.5, -0.3632712640026804}, 0.025587335982012044]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[96]=",ExpressionUUID->"b7cf392b-5178-4191-a0fe-7b5d8960eaee"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MinimalPlanarIntegral", "Subsubsection",ExpressionUUID->"ac93d627-0451-4c27-908a-785f50630a27"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"IntegralDrawing", "/@",
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}]}], "//",
"StyleGraphs"}]], "Input",
CellLabel->"In[98]:=",ExpressionUUID->"a0c5ff72-2f86-4402-82d2-566215e717e6"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
EdgeLabels -> {
UndirectedEdge[7, 11] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[1, 14] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[8, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[3, 7] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[13, 17] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[18, 20] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[9, 10] ->
Text[0.9999999999998551, Background -> GrayLevel[1]],
UndirectedEdge[4, 20] ->
Text[0.9999999999999998, Background -> GrayLevel[1]],
UndirectedEdge[3, 14] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[10, 15] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[1, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[4, 8] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[6, 12] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[6, 20] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[1, 15] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[2, 13] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[17, 19] ->
Text[0.9999999999998549, Background -> GrayLevel[1]],
UndirectedEdge[11, 12] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[5, 11] ->
Text[0.9999999999998549, Background -> GrayLevel[1]],
UndirectedEdge[5, 19] ->
Text[1.0000000000000087`, Background -> GrayLevel[1]],
UndirectedEdge[2, 5] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[9, 17] ->
Text[1.0000000000000089`, Background -> GrayLevel[1]],
UndirectedEdge[8, 12] ->
Text[0.9999999999998549, Background -> GrayLevel[1]],
UndirectedEdge[10, 18] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[13, 18] ->
Text[0.9999999999999999, Background -> GrayLevel[1]],
UndirectedEdge[2, 6] -> Text[1., Background -> GrayLevel[1]],
UndirectedEdge[7, 16] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[3, 19] -> Text[2, Background -> GrayLevel[1]],
UndirectedEdge[4, 15] ->
Text[0.9999999999998551, Background -> GrayLevel[1]],
UndirectedEdge[9, 14] -> Text[2, Background -> GrayLevel[1]]},
EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {0.36869162423292756`, 0.7665985155023878}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0.032140502180179956`, -1.0279937517504376`}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604, 0.5875385408830143}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 +
640064865285 #^3 + 2147481021445 #^4 + 643399686400 #^5 -
753293721600 #^6 - 213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 -
858980052465 #^3 - 532674325755 #^4 + 860669542400 #^5 +
213072281600 #^6 - 429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
0.987612117694377, -0.2871001053666874}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 +
858988220160 #^3 - 532674325755 #^4 - 860661356800 #^5 +
211396198400 #^6 + 428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.843010491122414, -0.11375460257732557`}, {
1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 -
633789772815 #^3 + 2139107152645 #^4 - 645501747200 #^5 -
749941555200 #^6 + 215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {0.5782373542562063,
0.8505561284601488}, {0.15231751215346578`, -0.8369027262719113}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^
Rational[1, 2]}, {-0.7488730915297469, -0.40347972753616523`}}}]]},
TagBox[GraphicsGroupBox[{
{GrayLevel[0], Opacity[0.7], {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {1., -1.3763819204711736`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"8ef8bfd1-54bf-4ff2-9f45-722309cfddf5"],
Text[2, Background -> GrayLevel[1]]], {0., -1.3763819204711736},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {
0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ed40b097-9d8f-43d9-ad08-f5e6e425ac59"],
Text[2, Background -> GrayLevel[1]]], {-0.0009981089772145846, -1.3317140155180782},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1., -1.3763819204711736`}, {-1.618033988749895,
0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"ea5d14b3-4125-45b6-beff-8b584fe1f895"],
Text[2, Background -> GrayLevel[1]]], {-1.3090169943749475, -0.42532540417602},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`,
0.7665985155023878}, {-0.6302417791992277, 0.8127727020945811}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"673e14e8-77b5-4fb1-87b7-2ca7381dbfc4"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.1307750774831501, 0.7896856087984845},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`,
0.7665985155023878}, {-0.6151465359790604, 0.5875385408830143}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"c2f2a74f-9e7d-4ea7-81a2-e339a3e8de65"],
Text[1., Background -> GrayLevel[1]]], {-0.12322745587306644, 0.677068528192701},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.36869162423292756`, 0.7665985155023878}, {
0.843010491122414, -0.11375460257732557`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5116c3ac-976c-4975-9012-853788c3b1fd"],
Text[1., Background -> GrayLevel[1]]], {0.6058510576776708, 0.3264219564625311},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895, 0.5257311121191336}, {0.,
1.7013016167040798`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"115d2745-72e0-41e2-8134-e38e7372f763"],
Text[2, Background -> GrayLevel[1]]], {0.8090169943749475, 1.1135163644116066},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895, 0.5257311121191336}, {
1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"58c7628e-ae80-4a84-8ba3-734007cb145f"],
Text[2, Background -> GrayLevel[1]]], {1.3090169943749475, -0.42532540417602},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.618033988749895,
0.5257311121191336}, {-0.05089529731485315, 1.6278540808097468`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d68b67bc-596e-43b2-9695-700ba7f1ea21"],
Text[2, Background -> GrayLevel[1]]], {0.7835693457175209, 1.0767925964644403},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.032140502180179956`, -1.0279937517504376`}, \
{-0.9156534611226071, -1.3468771209104056`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"d179434d-81f0-46f6-8db1-9cd88c185f83"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.4417564794712136, -1.1874354363304216},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.032140502180179956`, -1.0279937517504376`}, {
0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998551`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"876e8924-615c-48a7-a542-ea6b21ddef6e"],
Text[0.9999999999998551, Background -> GrayLevel[1]]], {0.5150721421128754, -1.1575199311577102},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.032140502180179956`, -1.0279937517504376`}, \
{-0.7488730915297469, -0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999998`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"95a4768d-105c-4f47-b72b-d32b6a1abae8"],
Text[0.9999999999999998, Background -> GrayLevel[1]]], {-0.3583662946747835, -0.7157367396433014},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6302417791992277,
0.8127727020945811}, {-1.5639087429358225`,
0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998549`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"9d15b9cc-4057-4dcd-8be2-48f9c5b95d5f"],
Text[0.9999999999998549, Background -> GrayLevel[1]]], {-1.0970752610675252, 0.6337014866336658},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6302417791992277,
0.8127727020945811}, {-0.05089529731485315, 1.6278540808097468`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"59e2a5d9-48a8-4edb-9c1a-95684821db41"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-0.3405685382570405, 1.220313391452164},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6151465359790604,
0.5875385408830143}, {-0.9677481949315356, -0.348234973437605}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"81458279-6ceb-41db-821f-9d9accf4ec4e"],
Text[1., Background -> GrayLevel[1]]], {-0.791447365455298, 0.11965178372270463},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.6151465359790604,
0.5875385408830143}, {-0.7488730915297469, \
-0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"996933b7-3bf3-4871-86fd-57a33e3ad2eb"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.6820098137544037, 0.09202940667342452},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0., 1.7013016167040798`}, {-1.5639087429358225`,
0.45463027117275046`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"5aaa01b7-5a04-43f3-8143-184f38f7a20d"],
Text[2, Background -> GrayLevel[1]]], {-0.7819543714679112, 1.077965943938415},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0., 1.7013016167040798`}, {-1.618033988749895,
0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"25420fb0-26cb-4396-aa5f-2456a543ee97"],
Text[2, Background -> GrayLevel[1]]], {-0.8090169943749475, 1.1135163644116066},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \
{-0.9677481949315356, -0.348234973437605}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998549`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"339a4b60-ea22-4f1d-8931-e164b73eff15"],
Text[0.9999999999998549, Background -> GrayLevel[1]]], {-0.9417008280270713, -0.8475560471740053},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-0.9156534611226071, -1.3468771209104056`}, \
{-1.618033988749895, 0.5257311121191336}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3461ca37-fb11-470c-8799-cc53b83095a5"],
Text[2, Background -> GrayLevel[1]]], {-1.266843724936251, -0.410573004395636},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
0.987612117694377, -0.2871001053666874}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998551`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b3a632f2-f7d6-4ddd-9c27-84bb211ff065"],
Text[0.9999999999998551, Background -> GrayLevel[1]]], {1.2600329185110446, 0.13216938706310183},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
1., -1.3763819204711736`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["2", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"3bc2659f-90c8-4427-bb99-21f60c498083"],
Text[2, Background -> GrayLevel[1]]], {1.2662268596638562, -0.41247152048914126},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{1.5324537193277121`, 0.551438879492891}, {
0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000089`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"1574e1ca-876c-4b13-80aa-b4b82154b84b"],
Text[1.0000000000000089`, Background -> GrayLevel[1]]], {1.0553455367919593, 0.7009975039765199},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.987612117694377, -0.2871001053666874}, {
0.9980037820455708, -1.2870461105649829`}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"2d475d93-919e-4ac8-8977-1ca9327ca66b"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {0.9928079498699739, -0.7870731079658351},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.987612117694377, -0.2871001053666874}, {
0.15231751215346578`, -0.8369027262719113}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"e3a558d3-c47f-4363-8556-7075b9b63d2f"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.5699648149239214, -0.5620014158192994},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{-1.5639087429358225`,
0.45463027117275046`}, {-0.9677481949315356, -0.348234973437605}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.0000000000000087`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"b37b5fe7-f025-4f5c-908e-dfe45dab444b"],
Text[1.0000000000000087`, Background -> GrayLevel[1]]], {-1.265828468933679, 0.05319764886757272},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.843010491122414, -0.11375460257732557`}, {
0.5782373542562063, 0.8505561284601488}}, 0.06698851528247071]},
InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["1.`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"21fb70e9-f1fd-458a-85b8-e1ef736d1064"],
Text[1., Background -> GrayLevel[1]]], {0.7106239226893101, 0.3684007629414116},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.843010491122414, -0.11375460257732557`}, {
0.15231751215346578`, -0.8369027262719113}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"bd6db22c-0fa5-4430-aa59-0f75194e6de5"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {0.4976640016379399, -0.47532866442461846},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{0.5782373542562063,
0.8505561284601488}, {-0.05089529731485315, 1.6278540808097468`}},
0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999998549`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"34582d1d-1427-4c17-84d7-b98a4c136fe5"],
Text[0.9999999999998549, Background -> GrayLevel[1]]], {0.2636710284706766, 1.239205104634948},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}, {
{Arrowheads[0.],
ArrowBox[{{
0.15231751215346578`, -0.8369027262719113}, {-0.7488730915297469, \
-0.40347972753616523`}}, 0.06698851528247071]}, InsetBox[
InterpretationBox[Cell[BoxData[
FormBox["0.9999999999999999`", TextForm]], "InlineText",
Background->GrayLevel[1],ExpressionUUID->
"22512f72-6dc1-449e-b9a4-0ba260487769"],
Text[0.9999999999999999, Background -> GrayLevel[1]]], {-0.29827778968814056, -0.6201912269040383},
ImageScaled[{0.5, 0.5}],
BaseStyle->"Graphics"]}},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[{-1., -1.3763819204711736}, 0.06698851528247071],
DiskBox[{0.36869162423292756, 0.7665985155023878},
0.06698851528247071],
DiskBox[{1.618033988749895, 0.5257311121191336},
0.06698851528247071],
DiskBox[{0.032140502180179956, -1.0279937517504376},
0.06698851528247071],
DiskBox[{-0.6302417791992277, 0.8127727020945811},
0.06698851528247071],
DiskBox[{-0.6151465359790604, 0.5875385408830143},
0.06698851528247071],
DiskBox[{0., 1.7013016167040798}, 0.06698851528247071],
DiskBox[{-0.9156534611226071, -1.3468771209104056},
0.06698851528247071],
DiskBox[{1.5324537193277121, 0.551438879492891},
0.06698851528247071],
DiskBox[{0.987612117694377, -0.2871001053666874},
0.06698851528247071],
DiskBox[{-1.5639087429358225, 0.45463027117275046},
0.06698851528247071],
DiskBox[{-0.9677481949315356, -0.348234973437605},
0.06698851528247071],
DiskBox[{0.843010491122414, -0.11375460257732557},
0.06698851528247071],
DiskBox[{1., -1.3763819204711736}, 0.06698851528247071],
DiskBox[{0.9980037820455708, -1.2870461105649829},
0.06698851528247071],
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.06698851528247071],
DiskBox[{0.5782373542562063, 0.8505561284601488},
0.06698851528247071],
DiskBox[{0.15231751215346578, -0.8369027262719113},
0.06698851528247071],
DiskBox[{-0.05089529731485315, 1.6278540808097468},
0.06698851528247071],
DiskBox[{-0.7488730915297469, -0.40347972753616523},
0.06698851528247071]}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[98]=",ExpressionUUID->"8dabffce-229c-4f7c-a6fb-a9584d50f537"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Circulant", "Subsubsection",ExpressionUUID->"451f4e4b-88c7-4117-a304-c05606209c00"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[7]:=",ExpressionUUID->"9a4c91e2-ba13-449b-974f-cfdad45bdcfb"],
Cell[BoxData["False"], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"7e05193a-49eb-4ee4-8966-966edc62fd88"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[8]:=",ExpressionUUID->"0217e9bd-dbd8-4f12-9ab3-68e2b7f13305"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->"Out[8]=",ExpressionUUID->"62665c00-aa61-4bfa-bf31-7b0100c22594"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Halin", "Subsubsection",ExpressionUUID->"c61aca9c-f6a0-481d-801a-24b5c30742c0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",\
CellLabel->"In[9]:=",ExpressionUUID->"a3f731b7-fea3-43d3-9f47-dc037a7eca9a"],
Cell[BoxData["False"], "Output",
CellLabel->"Out[9]=",ExpressionUUID->"3ff1636f-5f81-4c4f-957d-5d486bd11728"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[10]:=",ExpressionUUID->"79143728-c29b-4ca6-b1f1-e7a9c60e5a23"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->"Out[10]=",ExpressionUUID->"75af72d6-4da8-4e9b-8637-b5f2014c08b9"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["LCF", "Subsubsection",ExpressionUUID->"94a8e40c-195c-4d28-bd2c-d7b8bce59cd1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",
CellLabel->"In[76]:=",ExpressionUUID->"46089590-a5dd-45a0-9497-bcf21c76c02a"],
Cell[BoxData["True"], "Output",
CellLabel->"Out[76]=",ExpressionUUID->"6b7e4cdf-1964-492a-89d5-9fa7fa8da618"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[77]:=",ExpressionUUID->"e9ade6fb-032d-4c22-a9ef-5f9a1aa0ca29"],
Cell[BoxData["30"], "Output",
CellLabel->"Out[77]=",ExpressionUUID->"333da5e2-1c10-4a0c-ae5d-107941880283"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[78]:=",ExpressionUUID->"867bf96c-1bee-4e28-96cc-92e3abdf7540"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "}"}]], "Output",
CellLabel->"Out[78]=",ExpressionUUID->"13e8d7aa-371c-4aeb-a1bf-536ab3b2cd0e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",", "\"\\""}],
"]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[79]:=",ExpressionUUID->"31a6ad5b-7397-4db0-b337-b9f8b1d8ff56"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {-
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {-
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {-
Cos[Rational[3, 20] Pi],
Sin[
Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {-
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2aPR+GD9Xx1ZWofnNfsZ7Ltp6fHf3
xzzRn6Iy+719afCKdG62I/Ywcag6DHNg6mD60PTvR9MPUw+zB50Pcw+6vTBz
0N2/H009nIaJo9ljj+ZeDHeg6d8PAAaSkEo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {
17, 19}, {18, 20}}, 0.041904067400022615`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615],
DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615],
DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615],
DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615],
DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615],
DiskBox[11, 0.041904067400022615],
DiskBox[12, 0.041904067400022615],
DiskBox[13, 0.041904067400022615],
DiskBox[14, 0.041904067400022615],
DiskBox[15, 0.041904067400022615],
DiskBox[16, 0.041904067400022615],
DiskBox[17, 0.041904067400022615],
DiskBox[18, 0.041904067400022615],
DiskBox[19, 0.041904067400022615],
DiskBox[20, 0.041904067400022615]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[79]=",ExpressionUUID->"749f138f-7c3d-434b-8800-e6fed358da32"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Tally", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"LCFFromEmbedding", "[", "#", "]"}], "[",
RowBox[{"[", "2", "]"}], "]"}], "&"}], "/@", "%"}], "]"}]], "Input",
CellLabel->"In[80]:=",ExpressionUUID->"bd0a5c4d-13bd-4b9a-a767-b95e06878eb0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "}"}]], "Output",
CellLabel->"Out[80]=",ExpressionUUID->"64f48760-4974-46a4-8714-aefd8fa45ee3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["LCF compute", "Subsubsection",ExpressionUUID->"0f59d380-1dc6-4198-b941-a401158b595e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Length", "[",
RowBox[{
RowBox[{"FindHamiltonianCycle", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
"All"}], "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "All", ",", "1"}], "]"}], "]"}], "]"}], "//",
"Timing"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"de92e3d0-310a-4c4f-9e71-017d45b50089"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"10.041154`", ",", "30"}], "}"}]], "Output",
CellLabel->"Out[3]=",ExpressionUUID->"3916dbc6-b2b6-4019-ab83-7a429adf9e1b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Tally", "[",
RowBox[{
RowBox[{"(",
RowBox[{"lcf", "=",
RowBox[{"LCF", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
"All"}], "]"}]}], ")"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}], "//",
"Timing"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"c1f97f9a-1f88-4d92-b3c0-6898d0cce313"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.006485`", ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"ccdd64ee-f450-4168-8188-59760475a9cf"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"LCFGraph", "@@@", "lcf"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[5]:=",ExpressionUUID->"63905200-494a-4826-880b-92cffa70b78c"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4,
5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8,
9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13,
20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {18, 19}, {19,
20}}}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {
2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {2^Rational[-1, 2], 2^Rational[-1, 2]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {-Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Cos[Rational[1, 20] Pi], -
Sin[Rational[1, 20] Pi]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^
Rational[-1, 2]}, {-Sin[Rational[3, 20] Pi], -
Cos[Rational[3, 20] Pi]}, {-Sin[Rational[1, 20] Pi], -
Cos[Rational[1, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXRq8Ip2b7Yh9zBP9KSqz3+9nvOeircd31z5Xx1ZW
ofnN/jPW9WnzFjyzh9L7oeL2UHX7ofrsoeag8+3R1NujmWePZp89mnswzIXZ
C1MPcxfMPJi7YebC/IXuT5i5aOr3o5m3H82+/Wju2Q8A7XeQSg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3,
10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7,
14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13,
14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {
18, 19}, {19, 20}}, 0.041904067400022615`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.041904067400022615], DiskBox[2, 0.041904067400022615],
DiskBox[3, 0.041904067400022615], DiskBox[4, 0.041904067400022615],
DiskBox[5, 0.041904067400022615], DiskBox[6, 0.041904067400022615],
DiskBox[7, 0.041904067400022615], DiskBox[8, 0.041904067400022615],
DiskBox[9, 0.041904067400022615], DiskBox[10, 0.041904067400022615],
DiskBox[11, 0.041904067400022615],
DiskBox[12, 0.041904067400022615],
DiskBox[13, 0.041904067400022615],
DiskBox[14, 0.041904067400022615],
DiskBox[15, 0.041904067400022615],
DiskBox[16, 0.041904067400022615],
DiskBox[17, 0.041904067400022615],
DiskBox[18, 0.041904067400022615],
DiskBox[19, 0.041904067400022615],
DiskBox[20, 0.041904067400022615]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[5]=",ExpressionUUID->"485cc936-f57f-418b-bf4b-56995d91f40a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"gs", "=",
RowBox[{"Flatten", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{"all", " ",
RowBox[{"LCF", "'"}], "s", " ", "with", " ", "order"}], " ", ">",
"1"}], ",", " ",
RowBox[{
"sorted", " ", "by", " ", "order", " ", "and", " ", "with", " ",
"bilateral", " ", "graphs", " ", "first"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}], ",",
RowBox[{
RowBox[{"Cases", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"_Missing", ",", "_"}], "}"}]}], "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "]"}], "&"}], "/@",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"BilateralLCFEmbedding", "[", "#", "]"}], ",", "#"}],
"}"}], "&"}], ",",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"LCFGraph", "@@", "#"}], "&"}], ",",
RowBox[{"SplitBy", "[",
RowBox[{
RowBox[{"DeleteCases", "[",
RowBox[{"lcf", ",",
RowBox[{"{",
RowBox[{"_", ",", "1"}], "}"}]}], "]"}], ",", "Last"}], "]"}],
",",
RowBox[{"{", "2", "}"}]}], "]"}], ",",
RowBox[{"{", "2", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"order", "-",
RowBox[{"1", " ", "bilateral", " ", "only"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"DeleteMissing", "[",
RowBox[{"BilateralLCFEmbedding", "/@",
RowBox[{"LCFGraph", "@@@",
RowBox[{"Cases", "[",
RowBox[{"lcf", ",",
RowBox[{"{",
RowBox[{"_", ",", "1"}], "}"}]}], "]"}]}]}], "]"}]}], "}"}],
"]"}]}]], "Input",
CellLabel->"In[6]:=",ExpressionUUID->"4ced435d-99b4-485e-ad67-f57134cd1885"],
Cell[BoxData[
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3, 10}, {4,
5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7, 14}, {8,
9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {13,
20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {18, 19}, {19,
20}}}, {VertexCoordinates -> {{2^Rational[-1, 2], 2^Rational[-1, 2]}, {
Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {
Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {-Sin[Rational[1, 20] Pi],
Cos[Rational[1, 20] Pi]}, {-Sin[Rational[3, 20] Pi],
Cos[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], 2^
Rational[-1, 2]}, {-Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}, {-Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {-Cos[Rational[1, 20] Pi], -
Sin[Rational[1, 20] Pi]}, {-Cos[Rational[3, 20] Pi], -
Sin[Rational[3, 20] Pi]}, {-2^Rational[-1, 2], -2^
Rational[-1, 2]}, {-Sin[Rational[3, 20] Pi], -
Cos[Rational[3, 20] Pi]}, {-Sin[Rational[1, 20] Pi], -
Cos[Rational[1, 20] Pi]}, {
Sin[Rational[1, 20] Pi], -Cos[Rational[1, 20] Pi]}, {
Sin[Rational[3, 20] Pi], -Cos[Rational[3, 20] Pi]}, {
2^Rational[-1, 2], -2^Rational[-1, 2]}, {
Cos[Rational[3, 20] Pi], -Sin[Rational[3, 20] Pi]}, {
Cos[Rational[1, 20] Pi], -Sin[Rational[1, 20] Pi]}, {
Cos[Rational[1, 20] Pi],
Sin[Rational[1, 20] Pi]}, {
Cos[Rational[3, 20] Pi],
Sin[Rational[3, 20] Pi]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfca6Pm3egmf2MJrxnou2Ht9d+1wdW1mF5jf2pcEr
0rnZjtjHPNGfojL7PYy/H8aHqt8PUw81Zz/MPKj4fpi5UH370cyF8fejqd+P
Zt5+NPv2o7kHw1w0/+xH8y/c3TBzcfkTZi6aensAbCSQSg==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 11}, {1, 20}, {2, 3}, {2, 18}, {3, 4}, {3,
10}, {4, 5}, {4, 17}, {5, 6}, {5, 9}, {6, 7}, {6, 16}, {7, 8}, {7,
14}, {8, 9}, {8, 12}, {9, 10}, {10, 11}, {11, 12}, {12, 13}, {13,
14}, {13, 20}, {14, 15}, {15, 16}, {15, 19}, {16, 17}, {17, 18}, {
18, 19}, {19, 20}}, 0.02241135950500589]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02241135950500589], DiskBox[2, 0.02241135950500589],
DiskBox[3, 0.02241135950500589], DiskBox[4, 0.02241135950500589],
DiskBox[5, 0.02241135950500589], DiskBox[6, 0.02241135950500589],
DiskBox[7, 0.02241135950500589], DiskBox[8, 0.02241135950500589],
DiskBox[9, 0.02241135950500589], DiskBox[10, 0.02241135950500589],
DiskBox[11, 0.02241135950500589], DiskBox[12, 0.02241135950500589],
DiskBox[13, 0.02241135950500589], DiskBox[14, 0.02241135950500589],
DiskBox[15, 0.02241135950500589], DiskBox[16, 0.02241135950500589],
DiskBox[17, 0.02241135950500589], DiskBox[18, 0.02241135950500589],
DiskBox[19, 0.02241135950500589],
DiskBox[20, 0.02241135950500589]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], "}"}]], "Output",
CellLabel->"Out[6]=",ExpressionUUID->"3716d496-ad91-4c66-8fa2-d850251cac25"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Perspective", "Subsubsection",ExpressionUUID->"d44c7d2f-a5f3-4262-9181-b7d3e1d9096b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"a8a9f883-78ca-4cef-927a-3f6394caebc3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8
VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO
h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9
/nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY
bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll
P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY
OSBXuG5jhvqPyQEAhBuTKA==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNzjihsKMr4af+uxt40bhe3g2ZM/6GvGn/sr1a8
VDPk+GB/3Nu80zHho30aGHyD0iwO6oYca2SiWB1aXwfukGv9bb/O/WGVyDoO
h/qsPSWTJdgcQCRL2Dt7oOET39YwOgAVp1jf/2gPNj6Gy2HZbJDFX+xh7sh9
/nvlx0vf7ZcU2HJdX/zC/ua578GPl/63zxdqPnBqIYvD0wtKt3/WMTokCURY
bjnB5QAxl9MhbpcnD5P2c/s/QN2+STfse6fnAXU8sv+w/BjQ5S/tQb7y5Pll
P825O+f574tQmsXh7BkQYHIAeg5o9Gr7ffOl9O+qsDj8qgN54JM92Nh2BgeY
OSBXuG5jhvqPyQEAhBuTKA==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.07228422026971032]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.07228422026971032], DiskBox[2, 0.07228422026971032],
DiskBox[3, 0.07228422026971032], DiskBox[4, 0.07228422026971032],
DiskBox[5, 0.07228422026971032], DiskBox[6, 0.07228422026971032],
DiskBox[7, 0.07228422026971032], DiskBox[8, 0.07228422026971032],
DiskBox[9, 0.07228422026971032], DiskBox[10, 0.07228422026971032],
DiskBox[11, 0.07228422026971032], DiskBox[12, 0.07228422026971032],
DiskBox[13, 0.07228422026971032],
DiskBox[14, 0.07228422026971032], DiskBox[15, 0.07228422026971032],
DiskBox[16, 0.07228422026971032],
DiskBox[17, 0.07228422026971032], DiskBox[18, 0.07228422026971032],
DiskBox[19, 0.07228422026971032],
DiskBox[20, 0.07228422026971032]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{0, 0}, {0, 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 +
5^Rational[1, 2])}, {
Rational[
1, 2], (Rational[-1, 2] 3^Rational[-1, 2]) (2 +
5^Rational[1, 2])}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {
0, -(Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, (Rational[1, 6] (3 + 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 36 #^2 + 144 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiE/Dp9dvfHL/vZzFoCda4ds4fy7WH8FV+mzy5/
/HK/ol9Q3t4nd2F8ezT+frG1Mf+Ytn2Ay8P4EFse7L9h3NtxYsLn/VC+PRp/
/3UIH6beHpXPwCAPtu/tfph9EP5dGN8exkdTj+6+/Wju24/m//1o/t8PAKCQ
lwg=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05374005336484247]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05374005336484247], DiskBox[2, 0.05374005336484247],
DiskBox[3, 0.05374005336484247], DiskBox[4, 0.05374005336484247],
DiskBox[5, 0.05374005336484247], DiskBox[6, 0.05374005336484247],
DiskBox[7, 0.05374005336484247], DiskBox[8, 0.05374005336484247],
DiskBox[9, 0.05374005336484247], DiskBox[10, 0.05374005336484247],
DiskBox[11, 0.05374005336484247], DiskBox[12, 0.05374005336484247],
DiskBox[13, 0.05374005336484247],
DiskBox[14, 0.05374005336484247], DiskBox[15, 0.05374005336484247],
DiskBox[16, 0.05374005336484247],
DiskBox[17, 0.05374005336484247], DiskBox[18, 0.05374005336484247],
DiskBox[19, 0.05374005336484247],
DiskBox[20, 0.05374005336484247]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[1, 44] (
11^Rational[1, 2] + (110 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 44] (110^Rational[1, 2] - (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}, {(Rational[-1, 8] 11^Rational[-1, 2]) (
6 + (425 + 181 5^Rational[1, 2])^Rational[1, 2]), (
Rational[45, 176] + Rational[9, 88] 5^Rational[1, 2])^
Rational[1, 2] +
Rational[-1, 8] (Rational[63, 11] + 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 8] (Rational[1, 11] (621 + 245 5^Rational[1, 2] +
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 8] (Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 4] (
Rational[1, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 8]
11^Rational[-1, 2]) (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]),
Rational[1, 88] ((693 - 121 5^Rational[1, 2])^Rational[1, 2] +
6 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[-1, 4]
11^Rational[-1, 2]) (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 44] (22^Rational[1, 2] - 110^
Rational[1, 2] + (1595 + 682 5^Rational[1, 2])^
Rational[1, 2])}, {
Rational[
1, 4] (Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[1, 88] (-110^Rational[1, 2] -
10 (55 + 22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2], (Rational[-1, 4] 11^Rational[-1, 2]) (
2 (3 + 5^Rational[1, 2])^Rational[1, 2] + (65 +
22 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (Rational[1, 11] (121 + 40 5^Rational[1, 2] -
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 11] (77 + 26 5^Rational[1, 2] +
4 (305 + 131 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 4] (
Rational[5, 22] (15 + 2 5^Rational[1, 2] -
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[5, 22] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 8] 11^Rational[-1, 2]) (4 +
2 5^Rational[1, 2] + 3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (403 + 125 5^Rational[1, 2] -
12 (25 + 11 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 88] (
2 55^Rational[1, 2] - (22 (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 88] (-22^Rational[1, 2] -
2 (55 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[-1, 8] 11^Rational[-1, 2]) (-4 + 2 5^Rational[1, 2] +
3 (65 + 29 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 8] (
Rational[1, 11] (83 + 19 5^Rational[1, 2] -
12 (5 + 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[-1, 8] 11^Rational[-1, 2]) (4 + 2 5^Rational[1, 2] +
3 (5 - 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 176] ((3 22^Rational[1, 2]) (-3 + 5^Rational[1, 2]) +
4 (935 + 418 5^Rational[1, 2])^Rational[1, 2])}, {(
Rational[1, 4] 11^Rational[-1, 2]) (1 + 2 5^Rational[1, 2] +
2 (5 + 5^Rational[1, 2])^Rational[1, 2]),
Rational[-1, 4] (
Rational[1, 11] (157 + 58 5^Rational[1, 2] -
4 (125 + 41 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[-1, 8]
11^Rational[-1, 2]) (-6 + (205 + 71 5^Rational[1, 2])^
Rational[1, 2]), (Rational[-1, 8]
11^Rational[-1, 2]) ((63 - 11 5^Rational[1, 2])^Rational[1, 2] +
6 (5 + 2 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 8] (Rational[1, 11] (461 + 181 5^Rational[1, 2] +
12 (425 + 181 5^Rational[1, 2])^Rational[1, 2]))^
Rational[1, 2],
Rational[
1, 88] ((-6) (55 + 22 5^Rational[1, 2])^Rational[1, 2] + (693 +
121 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[-1, 4] (
Rational[1, 11] (51 + 20 5^Rational[1, 2] +
2 (50 + 20 5^Rational[1, 2])^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 44] (-110^Rational[1, 2] + (55 + 22 5^Rational[1, 2])^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbS1v8sLp8cv9pdutJ7vIVe2H8u2hfHsrNP5P5vk6
v/982a+2ze956ver9rJPCjXVn32x/+F4/2iV53X7b4omR5+XF+3X7TAq1vN7
ZF/U6GVm3nHfftfG3z7r9721P/neo11J99X+Up/5egImn+w3/9Ws/Lq0xV72
0JMU//Iv+9f7yXsmz3y5/8nho9t9Mj7B+PZQPkz9fqh6+z8BUxwWWz+wXxfF
8EG27u1+fWWw/fZQ+/dD3bcf6r79UPX710PUw9xjD3XPfqh79++EuHf/D4h/
7aH+3Y8eXgCx06o/
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05496546668806487]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05496546668806487], DiskBox[2, 0.05496546668806487],
DiskBox[3, 0.05496546668806487], DiskBox[4, 0.05496546668806487],
DiskBox[5, 0.05496546668806487], DiskBox[6, 0.05496546668806487],
DiskBox[7, 0.05496546668806487], DiskBox[8, 0.05496546668806487],
DiskBox[9, 0.05496546668806487], DiskBox[10, 0.05496546668806487],
DiskBox[11, 0.05496546668806487], DiskBox[12, 0.05496546668806487],
DiskBox[13, 0.05496546668806487],
DiskBox[14, 0.05496546668806487], DiskBox[15, 0.05496546668806487],
DiskBox[16, 0.05496546668806487],
DiskBox[17, 0.05496546668806487], DiskBox[18, 0.05496546668806487],
DiskBox[19, 0.05496546668806487],
DiskBox[20, 0.05496546668806487]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> {{0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQO8wQt5T126YI/G3x/y6/TZ3R+/7IfJQ/n2MP6K
L9Nnlz9+uR+NjyG/NYy789uFj3B5GB9i2wOY/H4o3x6Nvx9NPZp+BgaYejT3
7Edzz3409eju24/mPnT/70fz/34AINyj3g==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05155676257133856]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05155676257133856], DiskBox[2, 0.05155676257133856],
DiskBox[3, 0.05155676257133856], DiskBox[4, 0.05155676257133856],
DiskBox[5, 0.05155676257133856], DiskBox[6, 0.05155676257133856],
DiskBox[7, 0.05155676257133856], DiskBox[8, 0.05155676257133856],
DiskBox[9, 0.05155676257133856], DiskBox[10, 0.05155676257133856],
DiskBox[11, 0.05155676257133856], DiskBox[12, 0.05155676257133856],
DiskBox[13, 0.05155676257133856],
DiskBox[14, 0.05155676257133856], DiskBox[15, 0.05155676257133856],
DiskBox[16, 0.05155676257133856],
DiskBox[17, 0.05155676257133856], DiskBox[18, 0.05155676257133856],
DiskBox[19, 0.05155676257133856],
DiskBox[20, 0.05155676257133856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (
Rational[1, 10] (125 + 47 5^Rational[1, 2] +
4 (30 (3 + 5^Rational[1, 2]))^Rational[1, 2]))^Rational[1, 2],
Rational[
1, 4] (Rational[1, 10] (55 - 20 3^Rational[1, 2] +
13 5^Rational[1, 2] - 4 15^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 40] ((50 - 10 5^Rational[1, 2])^Rational[1, 2] +
4 (75 + 30 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] -
4 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 4] (
2 + (Rational[1, 5] (13 + 4 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 40] (-(30 (5 - 5^Rational[1, 2]))^Rational[1, 2] + (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {(Rational[5, 32] +
Rational[11, 32] 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 40] (
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2] + (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], (
Rational[-1, 8] 5^Rational[-1, 2]) (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 6 5^Rational[-1, 2])^Rational[1, 2] +
Rational[-1, 40] (250 + 110 5^Rational[1, 2])^Rational[1, 2], (
Rational[-1, 8] 5^Rational[-1, 2]) (
2 (5 + 2 5^Rational[1, 2])^Rational[1, 2] + (150 +
66 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 20] ((30 (5 + 5^Rational[1, 2]))^
Rational[1, 2] + (Rational[5, 2] (25 + 11 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[
1, 4] (Rational[19, 2] - 8 Rational[3, 5]^Rational[1, 2] - 4
3^Rational[1, 2] + Rational[37, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 4] (Rational[17, 2] + 8 Rational[3, 5]^Rational[1, 2] +
4 3^Rational[1, 2] + Rational[23, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 40] (
2 (10 (5 + 5^Rational[1, 2]))^Rational[1, 2] - (750 +
330 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (4 +
3 Rational[3, 5]^Rational[1, 2] + (Rational[31, 5] +
8 Rational[3, 5]^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2],
Rational[
1, 4] (8 +
16 5^Rational[-1, 2] - (
Rational[6, 5] (7 + 3 5^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[
1, 4] (2 + 2 Rational[3, 5]^Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[
1, 40] ((30 (5 - 5^Rational[1, 2]))^Rational[1, 2] - (
10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfZIbfUWna/7m3cVKHVU3rWH8u1bIPz9DLX2jwP/
3N8/y79Yat+GPgz+2zOOIfLLX9m/XeLWclvyJSYfVRyD/0G4jM1PbMn+7b8/
6gW//2KPzn8A4dtvg/D3o/MlRPdu+rjxi/0+efZLvfYP7dHsweCLQ9Tvh6pH
V2ePzof61x7qXww+AB9DsJQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.055830735019350215`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.055830735019350215], DiskBox[2, 0.055830735019350215],
DiskBox[3, 0.055830735019350215],
DiskBox[4, 0.055830735019350215], DiskBox[5, 0.055830735019350215],
DiskBox[6, 0.055830735019350215],
DiskBox[7, 0.055830735019350215], DiskBox[8, 0.055830735019350215],
DiskBox[9, 0.055830735019350215],
DiskBox[10, 0.055830735019350215],
DiskBox[11, 0.055830735019350215],
DiskBox[12, 0.055830735019350215],
DiskBox[13, 0.055830735019350215],
DiskBox[14, 0.055830735019350215],
DiskBox[15, 0.055830735019350215],
DiskBox[16, 0.055830735019350215],
DiskBox[17, 0.055830735019350215],
DiskBox[18, 0.055830735019350215],
DiskBox[19, 0.055830735019350215],
DiskBox[20, 0.055830735019350215]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (13 + 19 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 4] (17 + 31 5^Rational[-1, 2])^Rational[1, 2],
0}, {(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 4] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/endnQlHuj/tZ4ACKN8exo9SmCJwW+X+/pBfp8/u
/vhlPxrf3mOpx7s6+8f2K75Mn13++OV+NL49RP37/TB5ND5U/2WofQ/2o/Fh
8vvR5GF8e96W29+uWnyDuxdq/34098Dtg6rfj+q/9/Zo7kNz/317NP/D+PYA
fV6fmg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05725601845709524]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05725601845709524], DiskBox[2, 0.05725601845709524],
DiskBox[3, 0.05725601845709524], DiskBox[4, 0.05725601845709524],
DiskBox[5, 0.05725601845709524], DiskBox[6, 0.05725601845709524],
DiskBox[7, 0.05725601845709524], DiskBox[8, 0.05725601845709524],
DiskBox[9, 0.05725601845709524], DiskBox[10, 0.05725601845709524],
DiskBox[11, 0.05725601845709524], DiskBox[12, 0.05725601845709524],
DiskBox[13, 0.05725601845709524],
DiskBox[14, 0.05725601845709524], DiskBox[15, 0.05725601845709524],
DiskBox[16, 0.05725601845709524],
DiskBox[17, 0.05725601845709524], DiskBox[18, 0.05725601845709524],
DiskBox[19, 0.05725601845709524],
DiskBox[20, 0.05725601845709524]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[-1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[1, 4] (5 + 11 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Root[1 - 80 #^2 + 320 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 2] +
5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[-1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 4] (13 + 29 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2],
0}, {-(Rational[1, 2] + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(Rational[1, 2] + 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 - 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 2] - 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfTEp77+O0cv9DFAA5dvD+DdWfNHvzti7P+TX6bO7
P36xR+Pvj1KYInBb5b39ii/TZ5c/fmmPxt/vsdTjXZ39Y7g8Gn9/veUdZ9+k
L1D7H9ij8WHy9mjyMP5+1W/TXHacOg53P9T+/WjugfFh6uH+g7pnP5r74Opv
QvxrD/M/Gn8/AODtoHo=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05479908867915127]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05479908867915127], DiskBox[2, 0.05479908867915127],
DiskBox[3, 0.05479908867915127], DiskBox[4, 0.05479908867915127],
DiskBox[5, 0.05479908867915127], DiskBox[6, 0.05479908867915127],
DiskBox[7, 0.05479908867915127], DiskBox[8, 0.05479908867915127],
DiskBox[9, 0.05479908867915127], DiskBox[10, 0.05479908867915127],
DiskBox[11, 0.05479908867915127], DiskBox[12, 0.05479908867915127],
DiskBox[13, 0.05479908867915127],
DiskBox[14, 0.05479908867915127], DiskBox[15, 0.05479908867915127],
DiskBox[16, 0.05479908867915127],
DiskBox[17, 0.05479908867915127], DiskBox[18, 0.05479908867915127],
DiskBox[19, 0.05479908867915127],
DiskBox[20, 0.05479908867915127]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.05526026899519224]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.05526026899519224], DiskBox[2, 0.05526026899519224],
DiskBox[3, 0.05526026899519224], DiskBox[4, 0.05526026899519224],
DiskBox[5, 0.05526026899519224], DiskBox[6, 0.05526026899519224],
DiskBox[7, 0.05526026899519224], DiskBox[8, 0.05526026899519224],
DiskBox[9, 0.05526026899519224], DiskBox[10, 0.05526026899519224],
DiskBox[11, 0.05526026899519224], DiskBox[12, 0.05526026899519224],
DiskBox[13, 0.05526026899519224],
DiskBox[14, 0.05526026899519224], DiskBox[15, 0.05526026899519224],
DiskBox[16, 0.05526026899519224],
DiskBox[17, 0.05526026899519224], DiskBox[18, 0.05526026899519224],
DiskBox[19, 0.05526026899519224],
DiskBox[20, 0.05526026899519224]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"6e09960d-9813-43a5-9b97-eaacf9b7f1cb"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UnitDistance", "Subsubsection",ExpressionUUID->"76e1f70f-a12a-4637-88f7-190cd792c722"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[160]:=",ExpressionUUID->"5de9c8f4-df04-4a60-9dcd-188c7f456afd"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[160]=",ExpressionUUID->"1fd2bd9c-d999-47ef-ae17-bd8b52bdeedc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"UnitDistanceGraphQ", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"Debug", "->", "True"}]}], "]"}], "//", "Timing"}]], "Input",
CellLabel->
"In[161]:=",ExpressionUUID->"92c48c81-9270-430e-8f93-835df9d7a393"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Skipping computation and checking of blocks\"\>"], "Print",
CellLabel->
"During evaluation of \
In[161]:=",ExpressionUUID->"2e008220-2f9b-4263-a6aa-0e6ec15fae46"],
Cell[BoxData["\<\"Checking presence of unit-distance forbidden \
graphs...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[161]:=",ExpressionUUID->"74da8381-df03-4c13-bab8-0ccaf4fd7b0c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Original graph contains no forbidden subgraph but not all \
forbidden subgraphs are known for size \"\>", "\[InvisibleSpace]", "20",
"\[InvisibleSpace]", "\<\", so graph UD status is unknown\"\>"}],
SequenceForm[
"Original graph contains no forbidden subgraph but not all forbidden \
subgraphs are known for size ", 20, ", so graph UD status is unknown"],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[161]:=",ExpressionUUID->"2b51dfd8-e175-4893-9a37-37954461bc99"],
Cell[BoxData["\<\"Checking presence of special unit-distance forbidden graph \
classes...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[161]:=",ExpressionUUID->"390420dc-cd09-4eb1-94d1-3ba6c9401acf"],
Cell[BoxData["\<\"Original graph contains no member of a special forbidden \
subgraph class, so UD status is unknown\"\>"], "Print",
CellLabel->
"During evaluation of \
In[161]:=",ExpressionUUID->"fe3313c0-5bb0-4f9e-a328-cd8c78cb302c"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.112119`", ",", "$Failed"}], "}"}]], "Output",
CellLabel->
"Out[161]=",ExpressionUUID->"6da59cd2-99a2-4c20-ab67-5c2bc01b97dd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->
"In[162]:=",ExpressionUUID->"e019868d-d4e0-4fb0-b388-b5b72a62503d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
Rational[1, 10] (5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 10] (-5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 - (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 + (2 (5 + 5^Rational[1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 + 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (-5 - 3
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (-5 - 5^
Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 20] (5 +
3 5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 20] (5 +
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
Rational[1, 4]
5^Rational[-1, 2] (2 - (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] +
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (2 + (2 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 4] (1 - 5^Rational[-1, 2] -
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXf47v/Ck+nP7m2/3H1Wdf8ceyt8P5e9nAIMH9uuv
3+mWmP/DHo2/P/OvUDnvkSf7TVZqH+2d+dD+veSZgFcXT9rvW7s7+Ejhq/0h
v06f3f3xi/3/EBdhvvx39mj8/TsW/TAQVn29f5diRPovpw324fPXuU1acmX/
uv9R+zQMXu6H8u2hfHuoenuo+v0rvkyfXf74J9SdDAxQ+/dD7beHus8e6j6Y
enuYeqh79qO5D8aH+X8/mv9h/P0Ar1upGg==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06698851528247071]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06698851528247071], DiskBox[2, 0.06698851528247071],
DiskBox[3, 0.06698851528247071], DiskBox[4, 0.06698851528247071],
DiskBox[5, 0.06698851528247071], DiskBox[6, 0.06698851528247071],
DiskBox[7, 0.06698851528247071], DiskBox[8, 0.06698851528247071],
DiskBox[9, 0.06698851528247071], DiskBox[10, 0.06698851528247071],
DiskBox[11, 0.06698851528247071], DiskBox[12, 0.06698851528247071],
DiskBox[13, 0.06698851528247071],
DiskBox[14, 0.06698851528247071], DiskBox[15, 0.06698851528247071],
DiskBox[16, 0.06698851528247071],
DiskBox[17, 0.06698851528247071], DiskBox[18, 0.06698851528247071],
DiskBox[19, 0.06698851528247071],
DiskBox[20, 0.06698851528247071]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]},
VertexCoordinates -> {{
2/(1 + 5^Rational[1, 2]), 0}, {(-2)/(1 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (
5^Rational[-1, 2] - (Rational[1, 2] (1 - 5^Rational[-1, 2]))^
Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (-5 +
3 5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (-5 +
5^Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] + (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 20] (5 - 3
5^Rational[1, 2] - (10 (5 + 5^Rational[1, 2]))^Rational[1, 2]),
Rational[1, 20] (5 - 5^
Rational[1, 2] - (50 - 10 5^Rational[1, 2])^Rational[1, 2])}, {
Rational[1, 10] (5 - 5^Rational[1, 2]), -5^Rational[-1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 10] (-5 + 5^Rational[1, 2]), 5^Rational[-1, 2]}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 - (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] -
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 4]
5^Rational[-1, 2] (-2 + (10 - 2 5^Rational[1, 2])^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[-1, 2] +
2 (1 - 2 5^Rational[-1, 2])^Rational[1, 2])}, {
Rational[1, 2],
Rational[1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 - 2 5^Rational[1, 2])^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7f9S3/z9scf2DFAA5e9nQAEP9jt9nSt7zf66PRp/
f4LugomKRSfs46JKWZTPP0Ln27M85ArbKblkv3pY1/bDxx7s/+XZ+CFG6b69
7dRpz8VaTu5X+X1K/1P4A3teK9c/vq/22zcJftumffDq/unhhnMYVt/cD+Xb
Q/n2UPX7oer3C3MqyOZuuGh/8+3+o6rz78Ds34/mHhjfHqp+P1S9PdQ9+6Hu
sWeFuNce6l6Yf+3R/A/j7wcAdO2SHQ==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.025587335982012044`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.025587335982012044], DiskBox[2, 0.025587335982012044],
DiskBox[3, 0.025587335982012044],
DiskBox[4, 0.025587335982012044], DiskBox[5, 0.025587335982012044],
DiskBox[6, 0.025587335982012044],
DiskBox[7, 0.025587335982012044], DiskBox[8, 0.025587335982012044],
DiskBox[9, 0.025587335982012044],
DiskBox[10, 0.025587335982012044],
DiskBox[11, 0.025587335982012044],
DiskBox[12, 0.025587335982012044],
DiskBox[13, 0.025587335982012044],
DiskBox[14, 0.025587335982012044],
DiskBox[15, 0.025587335982012044],
DiskBox[16, 0.025587335982012044],
DiskBox[17, 0.025587335982012044],
DiskBox[18, 0.025587335982012044],
DiskBox[19, 0.025587335982012044],
DiskBox[20, 0.025587335982012044]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164],
DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164],
DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164],
DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164],
DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164],
DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164],
DiskBox[13, 0.06701916846996164],
DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164],
DiskBox[16, 0.06701916846996164],
DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164],
DiskBox[19, 0.06701916846996164],
DiskBox[20, 0.06701916846996164]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575],
DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575],
DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575],
DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575],
DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575],
DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575],
DiskBox[13, 0.06522520940839575],
DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575],
DiskBox[16, 0.06522520940839575],
DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575],
DiskBox[19, 0.06522520940839575],
DiskBox[20, 0.06522520940839575]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809],
DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809],
DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809],
DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809],
DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809],
DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809],
DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809],
DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809],
DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809],
DiskBox[19, 0.0476951806600809],
DiskBox[20, 0.0476951806600809]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795],
DiskBox[3, 0.054218794707743795],
DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795],
DiskBox[6, 0.054218794707743795],
DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795],
DiskBox[9, 0.054218794707743795],
DiskBox[10, 0.054218794707743795],
DiskBox[11, 0.054218794707743795],
DiskBox[12, 0.054218794707743795],
DiskBox[13, 0.054218794707743795],
DiskBox[14, 0.054218794707743795],
DiskBox[15, 0.054218794707743795],
DiskBox[16, 0.054218794707743795],
DiskBox[17, 0.054218794707743795],
DiskBox[18, 0.054218794707743795],
DiskBox[19, 0.054218794707743795],
DiskBox[20, 0.054218794707743795]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998],
DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998],
DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998],
DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998],
DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998],
DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998],
DiskBox[13, 0.06025728525421998],
DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998],
DiskBox[16, 0.06025728525421998],
DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998],
DiskBox[19, 0.06025728525421998],
DiskBox[20, 0.06025728525421998]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[162]=",ExpressionUUID->"076b5209-b4bc-4974-b540-74de99e80bfe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Select", "[",
RowBox[{"%", ",",
RowBox[{
RowBox[{"!",
RowBox[{"FreeQ", "[",
RowBox[{
RowBox[{"GraphEmbedding", "[", "#", "]"}], ",",
RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}]}],
"]"}]], "Input",
CellLabel->
"In[163]:=",ExpressionUUID->"104b91d1-3f3b-4862-b3a5-8cb0392c7ce6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAVfUmStmZ+T+yCYyYMeLgP2la0V3V
j/W/NGWWYP4T3L/gRY49TAaJv1IhInTGWfs/7+yGaETU7z+bwAfPYw32v+Xf
dKJf4/m/UGeiedjE4D992knjTBXwv5vAB89jDfa/OJuo8tA42L9s+Rlawezo
PwMMicuUtec/wsqh68pN2r+nsH6mGY/CvxlmYTnIWes/LnI9Ym+t5z9rRhh5
n+TYPzVLYwTz8+q/IAkskIhmu7+cYhUYYsXEv5jEeP0/4+q/WJBeY3KL2L+m
ghj9KYnmv8z8APbJ/uk/K2Pn/m1M8j+gtPrkDQP1PzZXFDFBi9u/ID5NWJ0+
4z94dIgm+ojiP7S6U/eq6Ou/Wrujue+IxT+4zkv894/jP7U3eXurSeO/Fjq8
KtxL67/eS1LZXbDyP4BmLINXlXW/mpm5Roo99r/AkbKO
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06701916846996164]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06701916846996164], DiskBox[2, 0.06701916846996164],
DiskBox[3, 0.06701916846996164], DiskBox[4, 0.06701916846996164],
DiskBox[5, 0.06701916846996164], DiskBox[6, 0.06701916846996164],
DiskBox[7, 0.06701916846996164], DiskBox[8, 0.06701916846996164],
DiskBox[9, 0.06701916846996164], DiskBox[10, 0.06701916846996164],
DiskBox[11, 0.06701916846996164], DiskBox[12, 0.06701916846996164],
DiskBox[13, 0.06701916846996164],
DiskBox[14, 0.06701916846996164], DiskBox[15, 0.06701916846996164],
DiskBox[16, 0.06701916846996164],
DiskBox[17, 0.06701916846996164], DiskBox[18, 0.06701916846996164],
DiskBox[19, 0.06701916846996164],
DiskBox[20, 0.06701916846996164]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQrc53/sjC9c37PRZstTltfMJe2fwEiG+ftRDM35/L
657bLv93/5QrytG6P+7bT2Uycu65+Mee++EBi1ymB/YmSWpWjG2v9t+xbP+j
Xvt8/x5rP4865df26cdawHzfh30abZwf9le9zt710Oij/bkE/zkHW97b95i9
7t5j/9Gef/KpxYcYHuwPOXThQCD3qf2u5penSvy7b/9qrsKHiten9v+dAebv
nykI5tuvTQKrtxf3vAhSb6/4ZcrPPrUm+8sxqjKVbJ/3+xuD7d+v9xdsv318
Fth99q+ZwO6zP6Y2AaR+/yqIevtvvmD37A+3ALtn/7JXYPfaJ78Eu3f/s++G
IP/uF4D4d7+9BDg87OdCwmM/AIzdqaQ=
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06522520940839575]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06522520940839575], DiskBox[2, 0.06522520940839575],
DiskBox[3, 0.06522520940839575], DiskBox[4, 0.06522520940839575],
DiskBox[5, 0.06522520940839575], DiskBox[6, 0.06522520940839575],
DiskBox[7, 0.06522520940839575], DiskBox[8, 0.06522520940839575],
DiskBox[9, 0.06522520940839575], DiskBox[10, 0.06522520940839575],
DiskBox[11, 0.06522520940839575], DiskBox[12, 0.06522520940839575],
DiskBox[13, 0.06522520940839575],
DiskBox[14, 0.06522520940839575], DiskBox[15, 0.06522520940839575],
DiskBox[16, 0.06522520940839575],
DiskBox[17, 0.06522520940839575], DiskBox[18, 0.06522520940839575],
DiskBox[19, 0.06522520940839575],
DiskBox[20, 0.06522520940839575]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAkULKfvtm9L9HI51Zcyjgv+6Lq8qI
WvQ/4DCEWvE84D9ngLy6+XzDv0rsbMNUha+/1oNp1ewj678/DTBdMot3P4kI
8D6nb9U/ZxmDrQ5n6z+NsVQZwxbwP1f3HqVgNd2/zMgRfSgD8b+V8uq90lTe
v2OQwPiBhdm/4Iox6mjF7D8kMAX+Wl3dvxL5XL+DN9i/72f9gFJR4T847Vy/
gzfYv0rEgkPucOG/YUi7IWVn2D/3memPER7dP371XL+DN9g/etNXPM759D8M
hiItuXnfvzdgqOieGvC/LuS/69FU3T/oIYoHZ6XVv03ZQ7ffV+u/2qw7ctoC
9b8ysHo7O6PfP2bvwLOHYNk/pZ0HUsSv7L/df17CNvfwPzyfWwxWe94/MEnP
U8kS6z9wLYlZsR9qv14cVd3EPMM/VnxE6kOlrz9W9q6i
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0476951806600809]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0476951806600809], DiskBox[2, 0.0476951806600809],
DiskBox[3, 0.0476951806600809], DiskBox[4, 0.0476951806600809],
DiskBox[5, 0.0476951806600809], DiskBox[6, 0.0476951806600809],
DiskBox[7, 0.0476951806600809], DiskBox[8, 0.0476951806600809],
DiskBox[9, 0.0476951806600809], DiskBox[10, 0.0476951806600809],
DiskBox[11, 0.0476951806600809], DiskBox[12, 0.0476951806600809],
DiskBox[13, 0.0476951806600809], DiskBox[14, 0.0476951806600809],
DiskBox[15, 0.0476951806600809], DiskBox[16, 0.0476951806600809],
DiskBox[17, 0.0476951806600809], DiskBox[18, 0.0476951806600809],
DiskBox[19, 0.0476951806600809],
DiskBox[20, 0.0476951806600809]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAChdMP8ck4D99GjXQjGC5v1UmS8HS
JOC/UeLzyQNhuT9vhcumfzbiP8AqfiGf0k298Txq/gk70z/eIe66wZjfP0uI
O6ANtd8/1xVbL6eavD8AN1z+rifTP3HSupLBut+/52A2CS4b+T+Gfvr8/dt3
P7A5RxcMRck/krxNWwAI4L92i0YXDEXJv+Lyunky79+/+kzLaq3W8b8Fquwt
AbLsv0VjvMrF1vE/XylhIPex7D/ckUYXDEXJP96GZEn/798/YeaL42bq8b9S
npwWQmbsP+pNtbA7J9O/LCfkMJq73z+IpJg3JbXfv1cqFV55mby/1CKybk7q
8T+8TS5oUGbsv0MeRxcMRcm/joYiw2YI4D8c2Q4FMBv5v3a35A517ne/zpcg
ao4707/9mFsy55ffvxYcpNWDNuK/vHunqIAFXj0NBqZT
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.054218794707743795`]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.054218794707743795], DiskBox[2, 0.054218794707743795],
DiskBox[3, 0.054218794707743795],
DiskBox[4, 0.054218794707743795], DiskBox[5, 0.054218794707743795],
DiskBox[6, 0.054218794707743795],
DiskBox[7, 0.054218794707743795], DiskBox[8, 0.054218794707743795],
DiskBox[9, 0.054218794707743795],
DiskBox[10, 0.054218794707743795],
DiskBox[11, 0.054218794707743795],
DiskBox[12, 0.054218794707743795],
DiskBox[13, 0.054218794707743795],
DiskBox[14, 0.054218794707743795],
DiskBox[15, 0.054218794707743795],
DiskBox[16, 0.054218794707743795],
DiskBox[17, 0.054218794707743795],
DiskBox[18, 0.054218794707743795],
DiskBox[19, 0.054218794707743795],
DiskBox[20, 0.054218794707743795]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {EdgeStyle -> {
GrayLevel[0]}, VertexSize -> {{"Scaled", 0.03}}, VertexStyle -> {
RGBColor[1, 0, 0]}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXWXXWni4/Jx9Z0CeQHbPHfsLtmD+/vykxPol3+7Z
p1Z/P6NW9nD/B9YU3sNTHtjvVfv4QfX2D/vchnfOalfu729MCznHbvBm/6to
7UsW/z/br4KaV3ZFYNGKwJv7m359uJMhc8e+9tqT0g2i1+z311wUP+v2zV7h
TM7M9tD79ntPfJqXzPZy/wKW5zJ3o7/sL1JmumC85vb+E9c3rZ9UeXV/a/e2
tqJXD/dHrv25/0X8ZfuGPXPzlxfctJ8q770w9N0je4GYudcuLbu5n3+/1Y5s
8Qf7p0LdX/GMWfDR7tv79WIYmHO2PbR/sQ8iX6L+reGo5Et7Yeb1bzd2frH3
0hc5q5P5bT/bmf8p/Or39zfH6r17+v+h/dQ9NYdtGM/tZ/EK+jh114/9Zqef
CXGLPbB3nx65ouH8K3vXmd2GVxQ/7wcAJzGxDw==
"], {
{GrayLevel[0], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.06025728525421998]},
{RGBColor[1, 0, 0], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.06025728525421998], DiskBox[2, 0.06025728525421998],
DiskBox[3, 0.06025728525421998], DiskBox[4, 0.06025728525421998],
DiskBox[5, 0.06025728525421998], DiskBox[6, 0.06025728525421998],
DiskBox[7, 0.06025728525421998], DiskBox[8, 0.06025728525421998],
DiskBox[9, 0.06025728525421998], DiskBox[10, 0.06025728525421998],
DiskBox[11, 0.06025728525421998], DiskBox[12, 0.06025728525421998],
DiskBox[13, 0.06025728525421998],
DiskBox[14, 0.06025728525421998], DiskBox[15, 0.06025728525421998],
DiskBox[16, 0.06025728525421998],
DiskBox[17, 0.06025728525421998], DiskBox[18, 0.06025728525421998],
DiskBox[19, 0.06025728525421998],
DiskBox[20, 0.06025728525421998]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[163]=",ExpressionUUID->"c170660f-0740-4391-9ab6-4d4c8740a56e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UnitDistance by refinement", "Subsubsection",ExpressionUUID->"b6649de6-e28f-41cb-ab19-46f3c4aa6322"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"UnitDistanceEmbeddingRefine", "[",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
",",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}],
"]"}], "]"}]], "Input",
CellLabel->
"In[153]:=",ExpressionUUID->"59465ab2-7193-42ec-a7b1-f20950059c2f"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAXeZBQtsI8j8RvT2AnB8JQG5v4lcT
cQNAU0OAemgX2j9X+BRk80gDQJLEoT2xTARAJZTe4su+6z9tlIOdgWMAQB7R
nrZVSfs/NnAlx8qL8T/IG1XN43b3P8AI0BGdAMI/eBRLOCeZ9j+2PwRRgcYE
QOIuMYlPIJg/cUKNP80u+D9EvfOd0ogGQOOJXEYrggZA2KZjQ0r9BEC7t0Ul
dFH9P+pTg9zyoe0/rTiLTR+S+z/BEZS4p6vlP09TSvLfJeg/MonqRzU3CUDJ
eYEg8JjxP1x9qTDOjABAMn8I3UvRC0BYQUd8/9X8P9bFF4S3OANA1pjhzIlU
2z9Ai6F4TWkDQF6ZKVj2swtAcFjXIvdmAEBpqgngJ1ABQI3L/wAeN+4/hXzn
imTBBECpuOFALN/4P7Y3+ia10PI/YL836liP8T94YJa3
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAXeZBQtsI8j8RvT2AnB8JQG5v4lcT
cQNAU0OAemgX2j9X+BRk80gDQJLEoT2xTARAJZTe4su+6z9tlIOdgWMAQB7R
nrZVSfs/NnAlx8qL8T/IG1XN43b3P8AI0BGdAMI/eBRLOCeZ9j+2PwRRgcYE
QOIuMYlPIJg/cUKNP80u+D9EvfOd0ogGQOOJXEYrggZA2KZjQ0r9BEC7t0Ul
dFH9P+pTg9zyoe0/rTiLTR+S+z/BEZS4p6vlP09TSvLfJeg/MonqRzU3CUDJ
eYEg8JjxP1x9qTDOjABAMn8I3UvRC0BYQUd8/9X8P9bFF4S3OANA1pjhzIlU
2z9Ai6F4TWkDQF6ZKVj2swtAcFjXIvdmAEBpqgngJ1ABQI3L/wAeN+4/hXzn
imTBBECpuOFALN/4P7Y3+ia10PI/YL836liP8T94YJa3
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {
6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9,
14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17,
19}, {18, 20}}, 0.03330919795128186]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03330919795128186], DiskBox[2, 0.03330919795128186],
DiskBox[3, 0.03330919795128186], DiskBox[4, 0.03330919795128186],
DiskBox[5, 0.03330919795128186], DiskBox[6, 0.03330919795128186],
DiskBox[7, 0.03330919795128186], DiskBox[8, 0.03330919795128186],
DiskBox[9, 0.03330919795128186], DiskBox[10, 0.03330919795128186],
DiskBox[11, 0.03330919795128186], DiskBox[12, 0.03330919795128186],
DiskBox[13, 0.03330919795128186], DiskBox[14, 0.03330919795128186],
DiskBox[15, 0.03330919795128186], DiskBox[16, 0.03330919795128186],
DiskBox[17, 0.03330919795128186], DiskBox[18, 0.03330919795128186],
DiskBox[19, 0.03330919795128186],
DiskBox[20, 0.03330919795128186]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[153]=",ExpressionUUID->"585ed9a2-2683-4631-8518-ee4051eae404"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"UnitDistanceGraphEmbeddingQ", "[", "%", "]"}]], "Input",
CellLabel->
"In[154]:=",ExpressionUUID->"a2ff7ddc-05a1-4b98-b90e-507ac06feb6e"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[154]=",ExpressionUUID->"c10d05b3-8cfe-465c-906c-bcc38990573f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"UnitDistanceEmbeddingRefine", "[",
RowBox[{"Annotate", "[",
RowBox[{"#", ",",
RowBox[{"VertexCoordinates", "\[Rule]",
RowBox[{"N", "[",
RowBox[{"GraphEmbedding", "[", "#", "]"}], "]"}]}]}], "]"}], "]"}],
"&"}], "/@",
RowBox[{"Complement", "@@",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\"", ",", "#"}],
"]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}],
")"}]}]}]], "Input",
CellLabel->
"In[155]:=",ExpressionUUID->"dad7bc69-939d-4305-97d3-7e8af13a5b32"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ
N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU
yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw
vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo
6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A
F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT
97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5
XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ
N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU
yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw
vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo
6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A
F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT
97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5
XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03256507176826082]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03256507176826082], DiskBox[2, 0.03256507176826082],
DiskBox[3, 0.03256507176826082], DiskBox[4, 0.03256507176826082],
DiskBox[5, 0.03256507176826082], DiskBox[6, 0.03256507176826082],
DiskBox[7, 0.03256507176826082], DiskBox[8, 0.03256507176826082],
DiskBox[9, 0.03256507176826082], DiskBox[10, 0.03256507176826082],
DiskBox[11, 0.03256507176826082], DiskBox[12, 0.03256507176826082],
DiskBox[13, 0.03256507176826082],
DiskBox[14, 0.03256507176826082], DiskBox[15, 0.03256507176826082],
DiskBox[16, 0.03256507176826082],
DiskBox[17, 0.03256507176826082], DiskBox[18, 0.03256507176826082],
DiskBox[19, 0.03256507176826082],
DiskBox[20, 0.03256507176826082]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr
ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD
OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S
P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+
rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G
vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS
67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX
Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr
ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD
OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S
P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+
rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G
vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS
67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX
Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.030419773839202163`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.030419773839202163], DiskBox[2, 0.030419773839202163],
DiskBox[3, 0.030419773839202163],
DiskBox[4, 0.030419773839202163], DiskBox[5, 0.030419773839202163],
DiskBox[6, 0.030419773839202163],
DiskBox[7, 0.030419773839202163], DiskBox[8, 0.030419773839202163],
DiskBox[9, 0.030419773839202163],
DiskBox[10, 0.030419773839202163],
DiskBox[11, 0.030419773839202163],
DiskBox[12, 0.030419773839202163],
DiskBox[13, 0.030419773839202163],
DiskBox[14, 0.030419773839202163],
DiskBox[15, 0.030419773839202163],
DiskBox[16, 0.030419773839202163],
DiskBox[17, 0.030419773839202163],
DiskBox[18, 0.030419773839202163],
DiskBox[19, 0.030419773839202163],
DiskBox[20, 0.030419773839202163]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ
He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+
/pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2
v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI
BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q
uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI
lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl
Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ
He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+
/pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2
v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI
BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q
uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI
lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl
Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.029950563020255824`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.029950563020255824], DiskBox[2, 0.029950563020255824],
DiskBox[3, 0.029950563020255824],
DiskBox[4, 0.029950563020255824], DiskBox[5, 0.029950563020255824],
DiskBox[6, 0.029950563020255824],
DiskBox[7, 0.029950563020255824], DiskBox[8, 0.029950563020255824],
DiskBox[9, 0.029950563020255824],
DiskBox[10, 0.029950563020255824],
DiskBox[11, 0.029950563020255824],
DiskBox[12, 0.029950563020255824],
DiskBox[13, 0.029950563020255824],
DiskBox[14, 0.029950563020255824],
DiskBox[15, 0.029950563020255824],
DiskBox[16, 0.029950563020255824],
DiskBox[17, 0.029950563020255824],
DiskBox[18, 0.029950563020255824],
DiskBox[19, 0.029950563020255824],
DiskBox[20, 0.029950563020255824]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m
kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7
nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo
PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN
syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r
bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh
tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7
QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m
kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7
nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo
PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN
syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r
bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh
tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7
QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03400041734095223]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03400041734095223], DiskBox[2, 0.03400041734095223],
DiskBox[3, 0.03400041734095223], DiskBox[4, 0.03400041734095223],
DiskBox[5, 0.03400041734095223], DiskBox[6, 0.03400041734095223],
DiskBox[7, 0.03400041734095223], DiskBox[8, 0.03400041734095223],
DiskBox[9, 0.03400041734095223], DiskBox[10, 0.03400041734095223],
DiskBox[11, 0.03400041734095223], DiskBox[12, 0.03400041734095223],
DiskBox[13, 0.03400041734095223],
DiskBox[14, 0.03400041734095223], DiskBox[15, 0.03400041734095223],
DiskBox[16, 0.03400041734095223],
DiskBox[17, 0.03400041734095223], DiskBox[18, 0.03400041734095223],
DiskBox[19, 0.03400041734095223],
DiskBox[20, 0.03400041734095223]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn
KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS
HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC
QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw
SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY
mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu
A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP
zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn
KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS
HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC
QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw
SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY
mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu
A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP
zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03264723421002344]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03264723421002344], DiskBox[2, 0.03264723421002344],
DiskBox[3, 0.03264723421002344], DiskBox[4, 0.03264723421002344],
DiskBox[5, 0.03264723421002344], DiskBox[6, 0.03264723421002344],
DiskBox[7, 0.03264723421002344], DiskBox[8, 0.03264723421002344],
DiskBox[9, 0.03264723421002344], DiskBox[10, 0.03264723421002344],
DiskBox[11, 0.03264723421002344], DiskBox[12, 0.03264723421002344],
DiskBox[13, 0.03264723421002344],
DiskBox[14, 0.03264723421002344], DiskBox[15, 0.03264723421002344],
DiskBox[16, 0.03264723421002344],
DiskBox[17, 0.03264723421002344], DiskBox[18, 0.03264723421002344],
DiskBox[19, 0.03264723421002344],
DiskBox[20, 0.03264723421002344]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+
jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN
v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/
9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA
/P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg
++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/
bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+
jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN
v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/
9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA
/P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg
++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/
bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0346622522350771]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0346622522350771], DiskBox[2, 0.0346622522350771],
DiskBox[3, 0.0346622522350771], DiskBox[4, 0.0346622522350771],
DiskBox[5, 0.0346622522350771], DiskBox[6, 0.0346622522350771],
DiskBox[7, 0.0346622522350771], DiskBox[8, 0.0346622522350771],
DiskBox[9, 0.0346622522350771], DiskBox[10, 0.0346622522350771],
DiskBox[11, 0.0346622522350771], DiskBox[12, 0.0346622522350771],
DiskBox[13, 0.0346622522350771], DiskBox[14, 0.0346622522350771],
DiskBox[15, 0.0346622522350771], DiskBox[16, 0.0346622522350771],
DiskBox[17, 0.0346622522350771], DiskBox[18, 0.0346622522350771],
DiskBox[19, 0.0346622522350771],
DiskBox[20, 0.0346622522350771]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8
YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv
X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/
P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp
ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P
OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S
7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec
srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8
YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv
X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/
P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp
ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P
OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S
7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec
srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.024514873793595265`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.024514873793595265], DiskBox[2, 0.024514873793595265],
DiskBox[3, 0.024514873793595265],
DiskBox[4, 0.024514873793595265], DiskBox[5, 0.024514873793595265],
DiskBox[6, 0.024514873793595265],
DiskBox[7, 0.024514873793595265], DiskBox[8, 0.024514873793595265],
DiskBox[9, 0.024514873793595265],
DiskBox[10, 0.024514873793595265],
DiskBox[11, 0.024514873793595265],
DiskBox[12, 0.024514873793595265],
DiskBox[13, 0.024514873793595265],
DiskBox[14, 0.024514873793595265],
DiskBox[15, 0.024514873793595265],
DiskBox[16, 0.024514873793595265],
DiskBox[17, 0.024514873793595265],
DiskBox[18, 0.024514873793595265],
DiskBox[19, 0.024514873793595265],
DiskBox[20, 0.024514873793595265]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK
UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC
7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9
P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49
t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT
9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo
5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK
zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK
UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC
7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9
P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49
t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT
9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo
5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK
zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.033118014664531875`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.033118014664531875], DiskBox[2, 0.033118014664531875],
DiskBox[3, 0.033118014664531875],
DiskBox[4, 0.033118014664531875], DiskBox[5, 0.033118014664531875],
DiskBox[6, 0.033118014664531875],
DiskBox[7, 0.033118014664531875], DiskBox[8, 0.033118014664531875],
DiskBox[9, 0.033118014664531875],
DiskBox[10, 0.033118014664531875],
DiskBox[11, 0.033118014664531875],
DiskBox[12, 0.033118014664531875],
DiskBox[13, 0.033118014664531875],
DiskBox[14, 0.033118014664531875],
DiskBox[15, 0.033118014664531875],
DiskBox[16, 0.033118014664531875],
DiskBox[17, 0.033118014664531875],
DiskBox[18, 0.033118014664531875],
DiskBox[19, 0.033118014664531875],
DiskBox[20, 0.033118014664531875]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI
ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d
4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0
wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H
on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD
1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t
gQ==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI
ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d
4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0
wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H
on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD
1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t
gQ==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03483956815247931]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03483956815247931], DiskBox[2, 0.03483956815247931],
DiskBox[3, 0.03483956815247931], DiskBox[4, 0.03483956815247931],
DiskBox[5, 0.03483956815247931], DiskBox[6, 0.03483956815247931],
DiskBox[7, 0.03483956815247931], DiskBox[8, 0.03483956815247931],
DiskBox[9, 0.03483956815247931], DiskBox[10, 0.03483956815247931],
DiskBox[11, 0.03483956815247931], DiskBox[12, 0.03483956815247931],
DiskBox[13, 0.03483956815247931],
DiskBox[14, 0.03483956815247931], DiskBox[15, 0.03483956815247931],
DiskBox[16, 0.03483956815247931],
DiskBox[17, 0.03483956815247931], DiskBox[18, 0.03483956815247931],
DiskBox[19, 0.03483956815247931],
DiskBox[20, 0.03483956815247931]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r
fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L
Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq
P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM
yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G
R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT
5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp
Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r
fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L
Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq
P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM
yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G
R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT
5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp
Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03179806210229294]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03179806210229294], DiskBox[2, 0.03179806210229294],
DiskBox[3, 0.03179806210229294], DiskBox[4, 0.03179806210229294],
DiskBox[5, 0.03179806210229294], DiskBox[6, 0.03179806210229294],
DiskBox[7, 0.03179806210229294], DiskBox[8, 0.03179806210229294],
DiskBox[9, 0.03179806210229294], DiskBox[10, 0.03179806210229294],
DiskBox[11, 0.03179806210229294], DiskBox[12, 0.03179806210229294],
DiskBox[13, 0.03179806210229294],
DiskBox[14, 0.03179806210229294], DiskBox[15, 0.03179806210229294],
DiskBox[16, 0.03179806210229294],
DiskBox[17, 0.03179806210229294], DiskBox[18, 0.03179806210229294],
DiskBox[19, 0.03179806210229294],
DiskBox[20, 0.03179806210229294]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0
Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL
YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN
P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU
3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/
I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l
4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr
aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0
Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL
YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN
P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU
3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/
I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l
4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr
aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03000277645089902]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03000277645089902], DiskBox[2, 0.03000277645089902],
DiskBox[3, 0.03000277645089902], DiskBox[4, 0.03000277645089902],
DiskBox[5, 0.03000277645089902], DiskBox[6, 0.03000277645089902],
DiskBox[7, 0.03000277645089902], DiskBox[8, 0.03000277645089902],
DiskBox[9, 0.03000277645089902], DiskBox[10, 0.03000277645089902],
DiskBox[11, 0.03000277645089902], DiskBox[12, 0.03000277645089902],
DiskBox[13, 0.03000277645089902],
DiskBox[14, 0.03000277645089902], DiskBox[15, 0.03000277645089902],
DiskBox[16, 0.03000277645089902],
DiskBox[17, 0.03000277645089902], DiskBox[18, 0.03000277645089902],
DiskBox[19, 0.03000277645089902],
DiskBox[20, 0.03000277645089902]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F
wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK
6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU
7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg
vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n
IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH
gqnQ
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F
wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK
6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU
7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg
vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n
IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH
gqnQ
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.035669724190910856`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.035669724190910856], DiskBox[2, 0.035669724190910856],
DiskBox[3, 0.035669724190910856],
DiskBox[4, 0.035669724190910856], DiskBox[5, 0.035669724190910856],
DiskBox[6, 0.035669724190910856],
DiskBox[7, 0.035669724190910856], DiskBox[8, 0.035669724190910856],
DiskBox[9, 0.035669724190910856],
DiskBox[10, 0.035669724190910856],
DiskBox[11, 0.035669724190910856],
DiskBox[12, 0.035669724190910856],
DiskBox[13, 0.035669724190910856],
DiskBox[14, 0.035669724190910856],
DiskBox[15, 0.035669724190910856],
DiskBox[16, 0.035669724190910856],
DiskBox[17, 0.035669724190910856],
DiskBox[18, 0.035669724190910856],
DiskBox[19, 0.035669724190910856],
DiskBox[20, 0.035669724190910856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+
5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x
Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78
a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37
9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus
Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW
2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c
iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+
5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x
Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78
a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37
9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus
Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW
2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c
iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.034862409283267545`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.034862409283267545], DiskBox[2, 0.034862409283267545],
DiskBox[3, 0.034862409283267545],
DiskBox[4, 0.034862409283267545], DiskBox[5, 0.034862409283267545],
DiskBox[6, 0.034862409283267545],
DiskBox[7, 0.034862409283267545], DiskBox[8, 0.034862409283267545],
DiskBox[9, 0.034862409283267545],
DiskBox[10, 0.034862409283267545],
DiskBox[11, 0.034862409283267545],
DiskBox[12, 0.034862409283267545],
DiskBox[13, 0.034862409283267545],
DiskBox[14, 0.034862409283267545],
DiskBox[15, 0.034862409283267545],
DiskBox[16, 0.034862409283267545],
DiskBox[17, 0.034862409283267545],
DiskBox[18, 0.034862409283267545],
DiskBox[19, 0.034862409283267545],
DiskBox[20, 0.034862409283267545]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc
jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm
tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e
v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v
/nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K
lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC
8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI
a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc
jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm
tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e
v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v
/nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K
lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC
8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI
a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.026982758224417175`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.026982758224417175], DiskBox[2, 0.026982758224417175],
DiskBox[3, 0.026982758224417175],
DiskBox[4, 0.026982758224417175], DiskBox[5, 0.026982758224417175],
DiskBox[6, 0.026982758224417175],
DiskBox[7, 0.026982758224417175], DiskBox[8, 0.026982758224417175],
DiskBox[9, 0.026982758224417175],
DiskBox[10, 0.026982758224417175],
DiskBox[11, 0.026982758224417175],
DiskBox[12, 0.026982758224417175],
DiskBox[13, 0.026982758224417175],
DiskBox[14, 0.026982758224417175],
DiskBox[15, 0.026982758224417175],
DiskBox[16, 0.026982758224417175],
DiskBox[17, 0.026982758224417175],
DiskBox[18, 0.026982758224417175],
DiskBox[19, 0.026982758224417175],
DiskBox[20, 0.026982758224417175]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv
r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T
RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/
kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs
O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza
T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/
gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a
1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv
r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T
RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/
kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs
O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza
T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/
gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a
1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.034872889013465455`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.034872889013465455], DiskBox[2, 0.034872889013465455],
DiskBox[3, 0.034872889013465455],
DiskBox[4, 0.034872889013465455], DiskBox[5, 0.034872889013465455],
DiskBox[6, 0.034872889013465455],
DiskBox[7, 0.034872889013465455], DiskBox[8, 0.034872889013465455],
DiskBox[9, 0.034872889013465455],
DiskBox[10, 0.034872889013465455],
DiskBox[11, 0.034872889013465455],
DiskBox[12, 0.034872889013465455],
DiskBox[13, 0.034872889013465455],
DiskBox[14, 0.034872889013465455],
DiskBox[15, 0.034872889013465455],
DiskBox[16, 0.034872889013465455],
DiskBox[17, 0.034872889013465455],
DiskBox[18, 0.034872889013465455],
DiskBox[19, 0.034872889013465455],
DiskBox[20, 0.034872889013465455]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY
b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um
ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc
nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4
uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26
p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3
4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC
CwD11bPG
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY
b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um
ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc
nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4
uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26
p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3
4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC
CwD11bPG
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.027713568895903762`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.027713568895903762], DiskBox[2, 0.027713568895903762],
DiskBox[3, 0.027713568895903762],
DiskBox[4, 0.027713568895903762], DiskBox[5, 0.027713568895903762],
DiskBox[6, 0.027713568895903762],
DiskBox[7, 0.027713568895903762], DiskBox[8, 0.027713568895903762],
DiskBox[9, 0.027713568895903762],
DiskBox[10, 0.027713568895903762],
DiskBox[11, 0.027713568895903762],
DiskBox[12, 0.027713568895903762],
DiskBox[13, 0.027713568895903762],
DiskBox[14, 0.027713568895903762],
DiskBox[15, 0.027713568895903762],
DiskBox[16, 0.027713568895903762],
DiskBox[17, 0.027713568895903762],
DiskBox[18, 0.027713568895903762],
DiskBox[19, 0.027713568895903762],
DiskBox[20, 0.027713568895903762]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB
1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy
UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU
v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1
HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92
jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b
77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC
PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB
1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy
UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU
v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1
HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92
jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b
77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC
PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03629224785635807]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03629224785635807], DiskBox[2, 0.03629224785635807],
DiskBox[3, 0.03629224785635807], DiskBox[4, 0.03629224785635807],
DiskBox[5, 0.03629224785635807], DiskBox[6, 0.03629224785635807],
DiskBox[7, 0.03629224785635807], DiskBox[8, 0.03629224785635807],
DiskBox[9, 0.03629224785635807], DiskBox[10, 0.03629224785635807],
DiskBox[11, 0.03629224785635807], DiskBox[12, 0.03629224785635807],
DiskBox[13, 0.03629224785635807],
DiskBox[14, 0.03629224785635807], DiskBox[15, 0.03629224785635807],
DiskBox[16, 0.03629224785635807],
DiskBox[17, 0.03629224785635807], DiskBox[18, 0.03629224785635807],
DiskBox[19, 0.03629224785635807],
DiskBox[20, 0.03629224785635807]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3
m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb
Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/
Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu
MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f
n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf
+1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3
m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb
Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/
Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu
MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f
n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf
+1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03200989897193118]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03200989897193118], DiskBox[2, 0.03200989897193118],
DiskBox[3, 0.03200989897193118], DiskBox[4, 0.03200989897193118],
DiskBox[5, 0.03200989897193118], DiskBox[6, 0.03200989897193118],
DiskBox[7, 0.03200989897193118], DiskBox[8, 0.03200989897193118],
DiskBox[9, 0.03200989897193118], DiskBox[10, 0.03200989897193118],
DiskBox[11, 0.03200989897193118], DiskBox[12, 0.03200989897193118],
DiskBox[13, 0.03200989897193118],
DiskBox[14, 0.03200989897193118], DiskBox[15, 0.03200989897193118],
DiskBox[16, 0.03200989897193118],
DiskBox[17, 0.03200989897193118], DiskBox[18, 0.03200989897193118],
DiskBox[19, 0.03200989897193118],
DiskBox[20, 0.03200989897193118]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[155]=",ExpressionUUID->"5cc8663b-e7b6-43c9-9cc2-4cdb8db5d864"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Select", "[",
RowBox[{"%", ",", "UnitDistanceGraphEmbeddingQ"}], "]"}]], "Input",
CellLabel->
"In[156]:=",ExpressionUUID->"5cc40b95-385f-4b9b-a4e6-69543c88a179"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ
N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU
yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw
vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo
6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A
F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT
97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5
XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHO/iMTsT+r9h2XkM8mjiP0udjIdZ
N/s/elN5/9ryzr/sqcPlgGTiv8kv5uqooKi/1QVmOaiAyb+WOA7u59bxP4RU
yNd+7/E/07fC5ebm8L+3L4oUvo/nP9BVckaYKeC/xc86EMFB5r9TF8vBC6fw
vxGEMhjbMui/+JpeKys00j/3K7T+R63QP95ZIAvvU+U/mQ3yJytDw78zAddo
6D/5Pz1uygLTxMo/ObwktIF497+KK7T+R63Qv3DGF6jvsOK/XS4OZqfo+D8A
F9kSp+3nP9+3yhKYZ+a/jtQpG1E17j8xiFY3xEXyv+iOfstpLPc/pGw7zzCT
97+rxPL02GTavyt9Wb/Eme4/eLd7Bg2Lqr9vkheZK+fqPzkielvnIfc/68r5
XgI3yD+ICSsWKjDmv86pw+WAZOI/x0jlQajV3j80H7H5
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03256507176826082]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03256507176826082], DiskBox[2, 0.03256507176826082],
DiskBox[3, 0.03256507176826082], DiskBox[4, 0.03256507176826082],
DiskBox[5, 0.03256507176826082], DiskBox[6, 0.03256507176826082],
DiskBox[7, 0.03256507176826082], DiskBox[8, 0.03256507176826082],
DiskBox[9, 0.03256507176826082], DiskBox[10, 0.03256507176826082],
DiskBox[11, 0.03256507176826082], DiskBox[12, 0.03256507176826082],
DiskBox[13, 0.03256507176826082],
DiskBox[14, 0.03256507176826082], DiskBox[15, 0.03256507176826082],
DiskBox[16, 0.03256507176826082],
DiskBox[17, 0.03256507176826082], DiskBox[18, 0.03256507176826082],
DiskBox[19, 0.03256507176826082],
DiskBox[20, 0.03256507176826082]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr
ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD
OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S
P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+
rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G
vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS
67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX
Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5jFlqlbdpz8H3PnfHmnwvz1LwTCr
ouE/HblIHfQm2z95vtRZEUDiPwjPc4Gnhds/mmJWeLGWnz8VpZzFYMHwv3LD
OisPi9y/DTcT9X4D4D+u8SU5lGnbv2Zeaqc2ecw/a7oCaDfe2r9qUper143S
P6mNZTU1kem/vfxD1gyv+b8ewSh1LbD5P19D8fahvck/FQydeBiA8T+TQnn+
rA7lv9gmGpzutva/MDy7yFBw0T+szv8Py/fuv9eVBUyd0+O/V+pd1FW18D/G
vMLBFIbcv79CxOZH9Ow/GFL7Xkhl4L8GNepQdRDrP+icdi9dB/q/Qs6y8mqS
67+dIvcZMW7jvyNMdTENjuQ/Vdv8WUEU3j8JBV6xDde5P885D7mF4ei/TOdX
Ix0jvz+KiLZ09C31P6fRSiV7j+y/5ju7UJ455b/Up6sL
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.030419773839202163`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.030419773839202163], DiskBox[2, 0.030419773839202163],
DiskBox[3, 0.030419773839202163],
DiskBox[4, 0.030419773839202163], DiskBox[5, 0.030419773839202163],
DiskBox[6, 0.030419773839202163],
DiskBox[7, 0.030419773839202163], DiskBox[8, 0.030419773839202163],
DiskBox[9, 0.030419773839202163],
DiskBox[10, 0.030419773839202163],
DiskBox[11, 0.030419773839202163],
DiskBox[12, 0.030419773839202163],
DiskBox[13, 0.030419773839202163],
DiskBox[14, 0.030419773839202163],
DiskBox[15, 0.030419773839202163],
DiskBox[16, 0.030419773839202163],
DiskBox[17, 0.030419773839202163],
DiskBox[18, 0.030419773839202163],
DiskBox[19, 0.030419773839202163],
DiskBox[20, 0.030419773839202163]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ
He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+
/pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2
v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI
BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q
uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI
lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl
Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAvWwWbzHE7b93wvyQCgDev4I5PWhQ
He2/1YdJTFob6b85cIT3+ST8vyo4pM5xqPW/8gNv1nFk+r+tousueq3BP/i+
/pg0nqw/0s8of+W08L/SAiqoyqrMv25irFftHK2/p6Bg+xxQ6L+IXUJRQ0f2
v1wZbrTptO6/HxgGmI6+4r8FnVQdnePqv+ZehQorTN2/6ZhX924Ptj8oxwnI
BdW0v7jGLBh3pvK+HAqhmD5XAMCiAAFgz0Oyv6EDeRzsuPC/ZgjxPnww17+Q
uU7HqLyqP0QHjtsMdOi/qDAEmihH97++uIWDfhHnv0Y5BLCDSuA/5S+W/nPI
lz/0dAvo+abovxwklTRCFLU/5+7hCLj96r8wcnb4D9rBP5mDD+q6We0/h5sl
Kt9Z7b8qEcgLBQvqvy+WUCDG9uq/HKQKe0xS5z+5pKr5
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.029950563020255824`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.029950563020255824], DiskBox[2, 0.029950563020255824],
DiskBox[3, 0.029950563020255824],
DiskBox[4, 0.029950563020255824], DiskBox[5, 0.029950563020255824],
DiskBox[6, 0.029950563020255824],
DiskBox[7, 0.029950563020255824], DiskBox[8, 0.029950563020255824],
DiskBox[9, 0.029950563020255824],
DiskBox[10, 0.029950563020255824],
DiskBox[11, 0.029950563020255824],
DiskBox[12, 0.029950563020255824],
DiskBox[13, 0.029950563020255824],
DiskBox[14, 0.029950563020255824],
DiskBox[15, 0.029950563020255824],
DiskBox[16, 0.029950563020255824],
DiskBox[17, 0.029950563020255824],
DiskBox[18, 0.029950563020255824],
DiskBox[19, 0.029950563020255824],
DiskBox[20, 0.029950563020255824]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m
kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7
nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo
PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN
syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r
bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh
tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7
QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAK1d3ZmiLxj+rRKJMXeHQv6zW8d7m
kJG/Fo3J5nls1T/pAGltra/4v0SxscOENt8/zxlLIoei/D8cW1tzmhbiPwt7
nvDpEPC/yJEyD3NBxj/B2E1zxQjvP96TMg9zQcY/3AyQ+16f5L8dF6cuuOGo
PwHTU6okZOw/5mFFAn02wT+cgS8w5unfvwI5iIOPbfK/CLxhk9un3j+x2nmN
syDuv50l+VljC+C/cpNOd+uc8D+ErRjztubfP8DWMDKa5PA/eeIN8ABDtz/r
bhbs0xnlv1BI+cQ/T+q/Nd2oj7xOyr83SUarJs7yP/Hx7E+lpMy/axALRUHh
tT8VATXhlG3nP8/oDNXOdum/mhOQChk0yb8n7zwCuGHrP6TBSS/ZBo+/O8L7
QjcH/L8kEoi0GWDfv+4i/sR/N/w/eBqr9TLN279Xcqrg
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03400041734095223]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03400041734095223], DiskBox[2, 0.03400041734095223],
DiskBox[3, 0.03400041734095223], DiskBox[4, 0.03400041734095223],
DiskBox[5, 0.03400041734095223], DiskBox[6, 0.03400041734095223],
DiskBox[7, 0.03400041734095223], DiskBox[8, 0.03400041734095223],
DiskBox[9, 0.03400041734095223], DiskBox[10, 0.03400041734095223],
DiskBox[11, 0.03400041734095223], DiskBox[12, 0.03400041734095223],
DiskBox[13, 0.03400041734095223],
DiskBox[14, 0.03400041734095223], DiskBox[15, 0.03400041734095223],
DiskBox[16, 0.03400041734095223],
DiskBox[17, 0.03400041734095223], DiskBox[18, 0.03400041734095223],
DiskBox[19, 0.03400041734095223],
DiskBox[20, 0.03400041734095223]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn
KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS
HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC
QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw
SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY
mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu
A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP
zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA5ckp0HloCkDWSD08xs3+PwB7OPmn
KwpAap54wfWZAUBen6EAJf4AQGX7zrvjqgpAjc8WwWFvEEBjvPkxJ3fuP9GS
HaKZCgVAB8w4vo3s9j/a1dqdImkFQALm3zjNV/Y/FAVZ4Z9P/j9zK8fHoOEC
QBYZt1tH9QhA+r8xosa76T8igCKbJQ8QQMfCuv+1qQdAIGS0Zt3kE0DVtegw
SGMFQEXLLu0JGPo/ADuLIhdU9j/0240mFzwBQCjf4xY/ZOE/Mi/DqT6lEECY
mYa1iz8FQJFssGnbIwhAetuX8NsSB0D2BiUtNDQRQI0d+t8z7/4/EMy/n6gu
A0BNVhb59O/3P4cqJh0/nAlA4s0zOqoCA0ANtfbAJ1kSQHxNRFbBBPw/ddyP
zN6dAUBcpJCvILECQLwwXxtntQxAy85U1cDl/D+WiJMN
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03264723421002344]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03264723421002344], DiskBox[2, 0.03264723421002344],
DiskBox[3, 0.03264723421002344], DiskBox[4, 0.03264723421002344],
DiskBox[5, 0.03264723421002344], DiskBox[6, 0.03264723421002344],
DiskBox[7, 0.03264723421002344], DiskBox[8, 0.03264723421002344],
DiskBox[9, 0.03264723421002344], DiskBox[10, 0.03264723421002344],
DiskBox[11, 0.03264723421002344], DiskBox[12, 0.03264723421002344],
DiskBox[13, 0.03264723421002344],
DiskBox[14, 0.03264723421002344], DiskBox[15, 0.03264723421002344],
DiskBox[16, 0.03264723421002344],
DiskBox[17, 0.03264723421002344], DiskBox[18, 0.03264723421002344],
DiskBox[19, 0.03264723421002344],
DiskBox[20, 0.03264723421002344]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+
jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN
v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/
9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA
/P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg
++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/
bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQLZuY/c5+bbN988aLh7mMT9ivk20A8fezrwfz94u+
jIvoufhn/6LKJsY8pgf2OWkHbtTK/7VvN/3fqvPjvv2nEO+wVOXX+9efWjqN
v/b5/k8J18J+t76yX+OwHMzfpsC36VLL+/1uHtsfn7D/aD/n98fPrZwf7Fc/
9b/xzuij/e+uptni/+7vv7t7Cu+j16f233horneY4YF9dnK4/k3uU/vtSyxA
/P3JJ0NBfPvA5EaQevuQ1Gkg9fbzY3S/Bao07a9kEOdNZPu8n98DbP9+k+dg
++1b8sDusw9XAbvPfu4va5B6+2sQ9fYq98Hu2f/nNdg9+yWiwO6153IGu3f/
bFewf/cLm4H9u38SZzwoPOyfQMJjPwBRN6s8
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0346622522350771]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0346622522350771], DiskBox[2, 0.0346622522350771],
DiskBox[3, 0.0346622522350771], DiskBox[4, 0.0346622522350771],
DiskBox[5, 0.0346622522350771], DiskBox[6, 0.0346622522350771],
DiskBox[7, 0.0346622522350771], DiskBox[8, 0.0346622522350771],
DiskBox[9, 0.0346622522350771], DiskBox[10, 0.0346622522350771],
DiskBox[11, 0.0346622522350771], DiskBox[12, 0.0346622522350771],
DiskBox[13, 0.0346622522350771], DiskBox[14, 0.0346622522350771],
DiskBox[15, 0.0346622522350771], DiskBox[16, 0.0346622522350771],
DiskBox[17, 0.0346622522350771], DiskBox[18, 0.0346622522350771],
DiskBox[19, 0.0346622522350771],
DiskBox[20, 0.0346622522350771]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8
YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv
X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/
P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp
ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P
OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S
7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec
srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA99URWuIxo78AsH7kAsboP2nvKcr8
YZ+/oBoq1wHWlr913tQFai7uvy4JIp+rxNA/B45TC5u82D+jH97qdo3lv5wv
X2TGc++/cGMwgrgd0j+8FZirqs6LvbraYXlrWfC/wux/8xU0qD+0jYV9gsG/
P1DXBDctluO/inkzDSnb47/FAr40abPpPyhc2Er0yNA/OqytqqTnyL9tr6hp
ZO7IPxNC1ZLYIuO/lcQ05RV65L/u5xIGpiTKP9Tk/zBq+KW/Yevb9sJC7T+P
OSaMIH/TP6V8/9c657G/Fl2BIbTWzL8nF44AgL/pP7AL08pmEM4/HGalME/S
7b+EbXoYDe3UP75cGBSjHOA/FxuagwR28z8BkGMcDEbcP+hIcV/Ac+K/64ec
srCo37/p8CTkHH7yP/Mq7a44AN2/htMRE6awwL/izqw2
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.024514873793595265`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.024514873793595265], DiskBox[2, 0.024514873793595265],
DiskBox[3, 0.024514873793595265],
DiskBox[4, 0.024514873793595265], DiskBox[5, 0.024514873793595265],
DiskBox[6, 0.024514873793595265],
DiskBox[7, 0.024514873793595265], DiskBox[8, 0.024514873793595265],
DiskBox[9, 0.024514873793595265],
DiskBox[10, 0.024514873793595265],
DiskBox[11, 0.024514873793595265],
DiskBox[12, 0.024514873793595265],
DiskBox[13, 0.024514873793595265],
DiskBox[14, 0.024514873793595265],
DiskBox[15, 0.024514873793595265],
DiskBox[16, 0.024514873793595265],
DiskBox[17, 0.024514873793595265],
DiskBox[18, 0.024514873793595265],
DiskBox[19, 0.024514873793595265],
DiskBox[20, 0.024514873793595265]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK
UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC
7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9
P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49
t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT
9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo
5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK
zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAS78dcypv1z+73wm9ZFj8P9eDloOK
UApAMeXUDOZa+D/zxmRl3zn2P17QRFmuKew/pFdXwbOB8T9LwqClGeYCQLtC
7vwZ0QJABvK5L0Pv/T/16aBFrKgIQMJo7h0bAQRAmiufAiuP8j+vJW5X06f9
P08J1BOQEfg/5R6ZVPAxCkBaROhlJozyPwewSC0tQ8A/vDVJkybt/z+Pix49
t53lP8KmT2OU6Ps/zdw+OOZRBUAuL0+4AwcEQL2GD9n9hgpAREnlUVxqBkDT
9OX4rsTkP72TK258R9k/bi/aFjG06D8TR9N2kpb0P0nqWG3iGPY/Znb6RBpo
5T9KL5+SDcwFQL15AB/HEgFA8GNbALRpuL8XgTcY/W0DQCISas5cOvk/AKqK
zdwcA0DZY9XLIeTrP6EZrUjiqABA3OjulYAeBEDtmJd2
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.033118014664531875`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.033118014664531875], DiskBox[2, 0.033118014664531875],
DiskBox[3, 0.033118014664531875],
DiskBox[4, 0.033118014664531875], DiskBox[5, 0.033118014664531875],
DiskBox[6, 0.033118014664531875],
DiskBox[7, 0.033118014664531875], DiskBox[8, 0.033118014664531875],
DiskBox[9, 0.033118014664531875],
DiskBox[10, 0.033118014664531875],
DiskBox[11, 0.033118014664531875],
DiskBox[12, 0.033118014664531875],
DiskBox[13, 0.033118014664531875],
DiskBox[14, 0.033118014664531875],
DiskBox[15, 0.033118014664531875],
DiskBox[16, 0.033118014664531875],
DiskBox[17, 0.033118014664531875],
DiskBox[18, 0.033118014664531875],
DiskBox[19, 0.033118014664531875],
DiskBox[20, 0.033118014664531875]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI
ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d
4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0
wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H
on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD
1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t
gQ==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXTmnsGZT4XP767HnGifwvrJvhPD3n4Xw97dA5RdI
ZB842f96/4WHJQK1L+/vj/FZLqgT9tc+4Gpkiw/Tg/15XPyV66f92T9T/E/d
4gfH9zuuO/1ysvIMe4M2Dda+ypP7HxgGvk68d39/eizTxKtGH/dviWSO2+H0
wZ5jVsED4T+f7PuuGOVMFZm+/9e7oqU+bh/tX8RNuJAn8d7+P4S//x6Ev58H
on7/gatg9fb5Fx8aTLp02l537kzHPP4H+6sh9tu/XAO2f787xH32xRD32XdD
1O83hqi3T4W4x349xD37hSDutX8Lca/9Poh/7UMh/t3fBQ2fNZDwsAcATd6t
gQ==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03483956815247931]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03483956815247931], DiskBox[2, 0.03483956815247931],
DiskBox[3, 0.03483956815247931], DiskBox[4, 0.03483956815247931],
DiskBox[5, 0.03483956815247931], DiskBox[6, 0.03483956815247931],
DiskBox[7, 0.03483956815247931], DiskBox[8, 0.03483956815247931],
DiskBox[9, 0.03483956815247931], DiskBox[10, 0.03483956815247931],
DiskBox[11, 0.03483956815247931], DiskBox[12, 0.03483956815247931],
DiskBox[13, 0.03483956815247931],
DiskBox[14, 0.03483956815247931], DiskBox[15, 0.03483956815247931],
DiskBox[16, 0.03483956815247931],
DiskBox[17, 0.03483956815247931], DiskBox[18, 0.03483956815247931],
DiskBox[19, 0.03483956815247931],
DiskBox[20, 0.03483956815247931]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r
fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L
Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq
P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM
yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G
R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT
5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp
Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAfdLLSYK3+j80GCCoQrfMP8v4RE0r
fPa/UC5ybH55x78kUzmhClrTP1Z6D6WM6/o/jacLRscs5z/K97H6X5r4v94L
Se+T5/e/9Ziy91EB6j/8Cs51Ut3zvyD7gJbgt/K/K4vvYx9Izb+vNywvHrrq
P2XWBknX4uQ/CWIbQbtJ4b+5Tu+1TAyOPzw0XwDMvOs/8adcAwuQ6T/I6rQM
yITPP8yBwiKDH+u/qmKKbORxqT+CmrtHKBnUv0u3yAVceem/rqOrMyY14L+G
R6+59eTjvxWd9IUoJPA/+1iweCkx7z++kHf3GWPzPx9G1z8HROW/0BEnVTxT
5j/fO/tC9lvdP8+mxcFTceq/RkcK7mvZ1D8ENNAq6FzfP6O3Py54jua/aiGp
Td7047+8qB8NVeH0PzR8OY5JsdC/Bdcef3TY9b+lvqtN
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03179806210229294]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03179806210229294], DiskBox[2, 0.03179806210229294],
DiskBox[3, 0.03179806210229294], DiskBox[4, 0.03179806210229294],
DiskBox[5, 0.03179806210229294], DiskBox[6, 0.03179806210229294],
DiskBox[7, 0.03179806210229294], DiskBox[8, 0.03179806210229294],
DiskBox[9, 0.03179806210229294], DiskBox[10, 0.03179806210229294],
DiskBox[11, 0.03179806210229294], DiskBox[12, 0.03179806210229294],
DiskBox[13, 0.03179806210229294],
DiskBox[14, 0.03179806210229294], DiskBox[15, 0.03179806210229294],
DiskBox[16, 0.03179806210229294],
DiskBox[17, 0.03179806210229294], DiskBox[18, 0.03179806210229294],
DiskBox[19, 0.03179806210229294],
DiskBox[20, 0.03179806210229294]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0
Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL
YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN
P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU
3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/
I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l
4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr
aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAqEpJDLedp7/IL83IQWrcP1gAhsz0
Xdm/hSE9vMdx3z9x4tcqiyLkv8gSqhP9xd4/MnvIafRo9T/NeXkEtLDfv8zL
YippEPC/B4dxpYSR9D94nx/5eNamv8vS38And9y/9Z551c691T9xEdy64OLN
P3T8u7iWZvU/KV4ypKUn4D+Wtc9PgC3wv9mTpTZNg/S/2hEv0Jbm5L9ykcZU
3UrWv/K9WKlT6uS/eVe8R9RU1j+4Zqi7vp/VP7RVx/4Qq94/Sl+5BvEa5L9/
I+XdeM/ev7oZAIqpeNm/P097cwB+37/8fH976KXVPxZWx/4Qq96/c+bhzP6l
4z9/khUmQB/zP5k9B24VDfq/VAgelrOw37999Od8/sLVPxIHmk7Cp82/8LKr
aRcQ+r9hXjKkpSfgPx+k7tbX2uM/PEwuQZsQ879K57XL
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03000277645089902]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03000277645089902], DiskBox[2, 0.03000277645089902],
DiskBox[3, 0.03000277645089902], DiskBox[4, 0.03000277645089902],
DiskBox[5, 0.03000277645089902], DiskBox[6, 0.03000277645089902],
DiskBox[7, 0.03000277645089902], DiskBox[8, 0.03000277645089902],
DiskBox[9, 0.03000277645089902], DiskBox[10, 0.03000277645089902],
DiskBox[11, 0.03000277645089902], DiskBox[12, 0.03000277645089902],
DiskBox[13, 0.03000277645089902],
DiskBox[14, 0.03000277645089902], DiskBox[15, 0.03000277645089902],
DiskBox[16, 0.03000277645089902],
DiskBox[17, 0.03000277645089902], DiskBox[18, 0.03000277645089902],
DiskBox[19, 0.03000277645089902],
DiskBox[20, 0.03000277645089902]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F
wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK
6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU
7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg
vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n
IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH
gqnQ
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbfpjxbPVBg/2L62vmVq1b5G9LIRvf7AWzN+/fU3F
wu8f7u1vjHoflBfxz17I4+odNot7+5enTNlwdeHP/T9eJfZJ12zdn/XufrXK
6hf2NfKrxc97H7A34Vk0m+HUu/03FMWXMzYvs3dVWvel7MAHewkdCD9DZoOU
7u3n+xOvWNy5Yvxhf5CvRnDipfv2Xz7GKvLyv9lvYJcofm7q/f2nIHz7v7Zg
vn0aRL19OUT9/p8iLMdnGN/f3x0QMbfR+/D+nRD79/tD7LdXg7jP3g/ivv2n
IOrtn0PU2wtA3LO/GOIeewslCN8U4t79v9zB/rXfAPGv/XJIeNgXQcJjPwCH
gqnQ
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.035669724190910856`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.035669724190910856], DiskBox[2, 0.035669724190910856],
DiskBox[3, 0.035669724190910856],
DiskBox[4, 0.035669724190910856], DiskBox[5, 0.035669724190910856],
DiskBox[6, 0.035669724190910856],
DiskBox[7, 0.035669724190910856], DiskBox[8, 0.035669724190910856],
DiskBox[9, 0.035669724190910856],
DiskBox[10, 0.035669724190910856],
DiskBox[11, 0.035669724190910856],
DiskBox[12, 0.035669724190910856],
DiskBox[13, 0.035669724190910856],
DiskBox[14, 0.035669724190910856],
DiskBox[15, 0.035669724190910856],
DiskBox[16, 0.035669724190910856],
DiskBox[17, 0.035669724190910856],
DiskBox[18, 0.035669724190910856],
DiskBox[19, 0.035669724190910856],
DiskBox[20, 0.035669724190910856]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+
5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x
Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78
a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37
9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus
Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW
2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c
iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag==
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQndmbx12gcGj/2xvXFQ3fL7IXmvRkEgPbIfsd6t9+
5MYu3n+f9dt6SY4H+698XHrP2/DP/sYAo8+bb9zff8JdMc0q9q99gAu3t9/x
Z/YC3VYiH6te71/vBOHbHJcOdeZ/af+X58SlwrUf929T6Dl69sG7/T5THX78
a/m4n7v12de4jg/2PhuVt9muPm/P+WASzyX+B/st3Odly7qcsb/+t7h24q37
9mu8T3MmOpzZb5A3xyns1v39cWHXOffsOL/f5j5Yvb1kXnzIbodP9kcNfWus
Ly/c3+EMtn//t9WHd+yTerk/EMq3Wv7vzpKK1/bfzu0o43L5tP+UwO9DLbMW
2gc/69yu1/TRnuFh3DStrg/7Nd/Ecp1a99H+aE3uihl339lzGHYsvHD4vv1c
iH/3izjH37L5ed/+HvtJsQCtP/YAjqOrag==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.034862409283267545`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.034862409283267545], DiskBox[2, 0.034862409283267545],
DiskBox[3, 0.034862409283267545],
DiskBox[4, 0.034862409283267545], DiskBox[5, 0.034862409283267545],
DiskBox[6, 0.034862409283267545],
DiskBox[7, 0.034862409283267545], DiskBox[8, 0.034862409283267545],
DiskBox[9, 0.034862409283267545],
DiskBox[10, 0.034862409283267545],
DiskBox[11, 0.034862409283267545],
DiskBox[12, 0.034862409283267545],
DiskBox[13, 0.034862409283267545],
DiskBox[14, 0.034862409283267545],
DiskBox[15, 0.034862409283267545],
DiskBox[16, 0.034862409283267545],
DiskBox[17, 0.034862409283267545],
DiskBox[18, 0.034862409283267545],
DiskBox[19, 0.034862409283267545],
DiskBox[20, 0.034862409283267545]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc
jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm
tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e
v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v
/nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K
lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC
8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI
a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAd/7lS3tg9L9GnIQGsXffv0Ev8ROc
jPQ/Qa0LdlqW3T/XIeaXVXDHvxR3ketYGiG9NrDmG1Lp6b8wx+SoOGpqv4bm
tuewhtg/ykGfyDCr7D/okft5+hjxP2PVrhztc+C/YPM5GGn28L8o5QNZEL/e
v8MDgMn9xNG/Onx/1q/96j+VWYxcOAHgv0ZfjDYRGta/QyyF4mzy3z/Io20v
/nXYv59n3U4e+Ni/8kEmd4/D0D+Y7TaRzlLjP/mphoRQw9c/3dNn7Hd49D9K
lDtquTThv6By3VSZ7PC/wyxuxUoG3z9om/z8c/fWvwTIxKh5quy/6oaekzSC
8793PTNKFTjgP8s8aOw63tU/Xh7FtoFS7L/1jPt5+hjxP4fWbBlYJtw/SlXI
a84j6j8seHcw7jt1v7wEFj3ZR8g/4+LDfwgGo79uKbLk
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.026982758224417175`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.026982758224417175], DiskBox[2, 0.026982758224417175],
DiskBox[3, 0.026982758224417175],
DiskBox[4, 0.026982758224417175], DiskBox[5, 0.026982758224417175],
DiskBox[6, 0.026982758224417175],
DiskBox[7, 0.026982758224417175], DiskBox[8, 0.026982758224417175],
DiskBox[9, 0.026982758224417175],
DiskBox[10, 0.026982758224417175],
DiskBox[11, 0.026982758224417175],
DiskBox[12, 0.026982758224417175],
DiskBox[13, 0.026982758224417175],
DiskBox[14, 0.026982758224417175],
DiskBox[15, 0.026982758224417175],
DiskBox[16, 0.026982758224417175],
DiskBox[17, 0.026982758224417175],
DiskBox[18, 0.026982758224417175],
DiskBox[19, 0.026982758224417175],
DiskBox[20, 0.026982758224417175]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv
r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T
RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/
kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs
O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza
T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/
gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a
1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/bBlWmmEwwP7S/l9Ji7FN/fzC643XSz2YH9JNphv
r1z9f+qv66/sb/VrRH+KjNrLXqgd07Vto71raMz1N8237RP9Vk/Zeem+fY4T
RD3P8g2yX1g223N/sGafdfHW/nvRy9aGZv+1j/631fqP36T9R//ZeQbk37W/
kLf52bLU+/tF0o5MDbhxe7/+4auVN2If7OdUWSryasPX/VMZ4jfNuvNmP6fs
O76PfN/sO/VeWMpff21/0UkreX7XHfvSAz12CT4P7DfdnOUyRfXbfks1iPza
T5z3CtZu3F++QdE3/PIt+71pd0T86+/v97aE+O/lqaZinY9f7bftaI14BjQ/
gsEe5J798zMVdzrY37cvrwiVnxn6d//adLuNy35M33/v9ZTNQvEb9rsc6Q+a
1np7f/l8r08Fa1/tZxLeH7xQLsYWAHbtq0I=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.034872889013465455`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.034872889013465455], DiskBox[2, 0.034872889013465455],
DiskBox[3, 0.034872889013465455],
DiskBox[4, 0.034872889013465455], DiskBox[5, 0.034872889013465455],
DiskBox[6, 0.034872889013465455],
DiskBox[7, 0.034872889013465455], DiskBox[8, 0.034872889013465455],
DiskBox[9, 0.034872889013465455],
DiskBox[10, 0.034872889013465455],
DiskBox[11, 0.034872889013465455],
DiskBox[12, 0.034872889013465455],
DiskBox[13, 0.034872889013465455],
DiskBox[14, 0.034872889013465455],
DiskBox[15, 0.034872889013465455],
DiskBox[16, 0.034872889013465455],
DiskBox[17, 0.034872889013465455],
DiskBox[18, 0.034872889013465455],
DiskBox[19, 0.034872889013465455],
DiskBox[20, 0.034872889013465455]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY
b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um
ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc
nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4
uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26
p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3
4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC
CwD11bPG
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/XHClYtyy77brwlTfO7188x+f9cPbz9c+bQ/ZDuY
b/8HKn+mEsJfM2FD8Vu+S/s3zTnEEtn+dL/4+5cHTky/uX85q0qSUdJr+9Um
ad48v07uL0j8PiWoPdR24aTHFccVHtp/undBW/jlQ/uT3VNvXPE7vP+uicKc
nOQr9ja7d3s57bu//7bOAdPJXXp7J63TSRU/et/e7eZxjg0t++0FRcxX72c4
uf9aMJi//2qR2tuaxpf2oXc5HCLWuewVqv5cxzHr5P7CkvOVHip37JOVFt26
p/DAflbx244rgU62rpNtNRzyntn//6QMct/+gMrW53c5HtjLJ4HV7w/7ffu3
4ps79jZKYPfsr3+afWTdz7P7910Fu3d/+KMFjZdWPrKXWgb2r70qNHwupEHC
CwD11bPG
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.027713568895903762`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.027713568895903762], DiskBox[2, 0.027713568895903762],
DiskBox[3, 0.027713568895903762],
DiskBox[4, 0.027713568895903762], DiskBox[5, 0.027713568895903762],
DiskBox[6, 0.027713568895903762],
DiskBox[7, 0.027713568895903762], DiskBox[8, 0.027713568895903762],
DiskBox[9, 0.027713568895903762],
DiskBox[10, 0.027713568895903762],
DiskBox[11, 0.027713568895903762],
DiskBox[12, 0.027713568895903762],
DiskBox[13, 0.027713568895903762],
DiskBox[14, 0.027713568895903762],
DiskBox[15, 0.027713568895903762],
DiskBox[16, 0.027713568895903762],
DiskBox[17, 0.027713568895903762],
DiskBox[18, 0.027713568895903762],
DiskBox[19, 0.027713568895903762],
DiskBox[20, 0.027713568895903762]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB
1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy
UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU
v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1
HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92
jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b
77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC
PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHUIwEYkz7r8fmvaU1MbgPyudheQB
1/Y/nPogZZvo3r8MLGj/e0Hiv6sbhmyHdN8/v7gEoK4Mwb8lqV66LY7cvxRy
UkSujeI/DpmQJwA38L8qy3FYrIniP1FPw5zLM/C/9pfnXQ/Sjz9rBgo0PWfU
v91ktMxDreC/JZBz+b7i9b8Sa6E3+knNPwqGRO19wf4/TkW6cEMp4r9ILZU1
HxT1PzmzcR7eX9m/Y5dcVP6t87/3//3nvebRP/scFwOmd/+/Sni0kcQU9D92
jo21ARHgP0rbzraEeuW/bYAYe07I9z+6hNnD0r6sPy1YV9C5JOE/tvUPCL4b
77+MERF/wWvev4jNsGYEedY/rXW5+37A7T/uzNcsEX7UP6iB3Hn2bOs/jqgC
PiWe0D/qU3nbNemwv4EqXI+33ug/bRM9cEWZoL/tjawq
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03629224785635807]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03629224785635807], DiskBox[2, 0.03629224785635807],
DiskBox[3, 0.03629224785635807], DiskBox[4, 0.03629224785635807],
DiskBox[5, 0.03629224785635807], DiskBox[6, 0.03629224785635807],
DiskBox[7, 0.03629224785635807], DiskBox[8, 0.03629224785635807],
DiskBox[9, 0.03629224785635807], DiskBox[10, 0.03629224785635807],
DiskBox[11, 0.03629224785635807], DiskBox[12, 0.03629224785635807],
DiskBox[13, 0.03629224785635807],
DiskBox[14, 0.03629224785635807], DiskBox[15, 0.03629224785635807],
DiskBox[16, 0.03629224785635807],
DiskBox[17, 0.03629224785635807], DiskBox[18, 0.03629224785635807],
DiskBox[19, 0.03629224785635807],
DiskBox[20, 0.03629224785635807]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3
m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb
Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/
Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu
MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f
n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf
+1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbVD34M2mzrf71x+bekCh+pS9HYRvL78PzN9/8CL3
m1dnntjf8pjHMcnhyf4knRVmuoy/9mfqJjKbxdyyj8pas8u9/4f95fSbbDkb
Htkr+rQeP5B0zf68+FO29JmP7eVf5seHnn9u3/to7Qw7s+v27rP1bu97+GH/
Xl5zCZY9n+1lchxd7zHssP/YstDskPKP/St3cz59NPPN/sLP55cnz/+6//Uu
MN9+2ycw3547D6x+/7FWsHr7P9uDygN+HLTPbnN9eqbz1X4Hf7D9+8+Ige3f
n5kJdt9+SYj79otvAqvffwSi3n4OxD32NXxg9+zf+ALs3v2XnoLduz9eG+xf
+1U6YP/uj70MDo/9Ge7g8LAHAEHxsQo=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03200989897193118]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03200989897193118], DiskBox[2, 0.03200989897193118],
DiskBox[3, 0.03200989897193118], DiskBox[4, 0.03200989897193118],
DiskBox[5, 0.03200989897193118], DiskBox[6, 0.03200989897193118],
DiskBox[7, 0.03200989897193118], DiskBox[8, 0.03200989897193118],
DiskBox[9, 0.03200989897193118], DiskBox[10, 0.03200989897193118],
DiskBox[11, 0.03200989897193118], DiskBox[12, 0.03200989897193118],
DiskBox[13, 0.03200989897193118],
DiskBox[14, 0.03200989897193118], DiskBox[15, 0.03200989897193118],
DiskBox[16, 0.03200989897193118],
DiskBox[17, 0.03200989897193118], DiskBox[18, 0.03200989897193118],
DiskBox[19, 0.03200989897193118],
DiskBox[20, 0.03200989897193118]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[156]=",ExpressionUUID->"18805099-ebc7-40ec-9b5a-690973fc6ab9"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UnitDistance by FindUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"4849a62c-2d86-457d-9c8d-ac5a3d7164b1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FindUnitDistanceEmbedding", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"MaxIterations", "->", "5000"}], ",",
RowBox[{"\"\\"", "->", "True"}]}], "]"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[157]:=",ExpressionUUID->"ebbf0780-56ad-487b-a8b3-14db11c991aa"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.011013`", ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAADxKPgDBH8j+un4SXmayQP/ccHoG/
cPk/IEsMgBAG6T+RU1LhXJDmP7Xp7JnNJ9Q/kp7GtYPioz+I2SW9dHHZP53K
5Nf0t+Y/z5lJ/U6o0z8ne3Bq09foP84syn0W0PU/ZrmEiBsXt78tvOdp0nnt
P9xFB8oTn/A/FLKFeoVk2T88Wsf9iSvqP9k+ZC4o1ck/spxoLFmVtb+0Kz54
7kPkP4onYVb0vOo/1EfKsaLJ9D8MY3y6WICyP/XNtqbT5uQ/ruDBNDqA6T/N
N1C3jiLGP0QdkPNle/c/qBRVRP3H7j9mdWyrPWLrP0npZCqmLe8/wYbHxJSD
wj9rsajBZBGqv0y8OtO82GS/Vq4rRt7B6D8JqwImHULoP7HiJvI6wfI/gKHf
UO0qwr+FyjBPobjLv55q2IavoMy/PaZsM7zM9T8TMqzI
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAADxKPgDBH8j+un4SXmayQP/ccHoG/
cPk/IEsMgBAG6T+RU1LhXJDmP7Xp7JnNJ9Q/kp7GtYPioz+I2SW9dHHZP53K
5Nf0t+Y/z5lJ/U6o0z8ne3Bq09foP84syn0W0PU/ZrmEiBsXt78tvOdp0nnt
P9xFB8oTn/A/FLKFeoVk2T88Wsf9iSvqP9k+ZC4o1ck/spxoLFmVtb+0Kz54
7kPkP4onYVb0vOo/1EfKsaLJ9D8MY3y6WICyP/XNtqbT5uQ/ruDBNDqA6T/N
N1C3jiLGP0QdkPNle/c/qBRVRP3H7j9mdWyrPWLrP0npZCqmLe8/wYbHxJSD
wj9rsajBZBGqv0y8OtO82GS/Vq4rRt7B6D8JqwImHULoP7HiJvI6wfI/gKHf
UO0qwr+FyjBPobjLv55q2IavoMy/PaZsM7zM9T8TMqzI
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.02108152388300011]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02108152388300011], DiskBox[2, 0.02108152388300011],
DiskBox[3, 0.02108152388300011], DiskBox[4, 0.02108152388300011],
DiskBox[5, 0.02108152388300011], DiskBox[6, 0.02108152388300011],
DiskBox[7, 0.02108152388300011], DiskBox[8, 0.02108152388300011],
DiskBox[9, 0.02108152388300011], DiskBox[10, 0.02108152388300011],
DiskBox[11, 0.02108152388300011], DiskBox[12, 0.02108152388300011],
DiskBox[13, 0.02108152388300011],
DiskBox[14, 0.02108152388300011], DiskBox[15, 0.02108152388300011],
DiskBox[16, 0.02108152388300011],
DiskBox[17, 0.02108152388300011], DiskBox[18, 0.02108152388300011],
DiskBox[19, 0.02108152388300011],
DiskBox[20, 0.02108152388300011]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[157]=",ExpressionUUID->"eb3092d6-f261-493d-8046-d6c1ff847a4b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"FindUnitDistanceEmbedding", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"MaxIterations", "->", "5000"}], ",",
RowBox[{"\"\\"", "\[Rule]", "False"}]}], "]"}], "//",
"Quiet"}], "//", "Timing"}]], "Input",
CellLabel->
"In[158]:=",ExpressionUUID->"06d84af0-d50d-449b-8345-6fb843b8b308"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.013184`", ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {
Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {3,
14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {
6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexCoordinates -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA3qmA3CDz8z+lcX9eYGHPPwz6f9J/
xLo/i0MOlt4J9j8HmTgtfUvwP/X2xOT0quc/2CfCLg9u4b9gvV/Ve1nxP+SK
hDKYMoK/H4hUR0CR2D9gefiDYyG2P8tom4AqKtg/4VBVHdKxlD/brjVNeZPp
P1JK20b8nc8/THMVI6dM3j8WFaXN9ZTwP500jTaR+uY/9D3oHNVY4z+6jjBt
4YnHv5b5GnJHZ+8/FjpL/zK+4D9cmGNiparlP6k0Od67etu/yDRQvVzg7j8L
1NgN7sPrPxkMz8HildA/LFgCeE2/tj8nVvaXE3TaP1IYL11Nhuk/h463N0AE
7j/Eh0/X7yPzP/Cnh+E/+bk/NMBpOJo+1z/y1vqnqeZbv7Dc6p8fkOM/Uq4W
gEh0zT+tRDG5nK31P9X6dCgAWuy/hoi03HV7wj9i0ajy
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAA3qmA3CDz8z+lcX9eYGHPPwz6f9J/
xLo/i0MOlt4J9j8HmTgtfUvwP/X2xOT0quc/2CfCLg9u4b9gvV/Ve1nxP+SK
hDKYMoK/H4hUR0CR2D9gefiDYyG2P8tom4AqKtg/4VBVHdKxlD/brjVNeZPp
P1JK20b8nc8/THMVI6dM3j8WFaXN9ZTwP500jTaR+uY/9D3oHNVY4z+6jjBt
4YnHv5b5GnJHZ+8/FjpL/zK+4D9cmGNiparlP6k0Od67etu/yDRQvVzg7j8L
1NgN7sPrPxkMz8HildA/LFgCeE2/tj8nVvaXE3TaP1IYL11Nhuk/h463N0AE
7j/Eh0/X7yPzP/Cnh+E/+bk/NMBpOJo+1z/y1vqnqeZbv7Dc6p8fkOM/Uq4W
gEh0zT+tRDG5nK31P9X6dCgAWuy/hoi03HV7wj9i0ajy
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.023680305899773962`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.023680305899773962], DiskBox[2, 0.023680305899773962],
DiskBox[3, 0.023680305899773962],
DiskBox[4, 0.023680305899773962], DiskBox[5, 0.023680305899773962],
DiskBox[6, 0.023680305899773962],
DiskBox[7, 0.023680305899773962], DiskBox[8, 0.023680305899773962],
DiskBox[9, 0.023680305899773962],
DiskBox[10, 0.023680305899773962],
DiskBox[11, 0.023680305899773962],
DiskBox[12, 0.023680305899773962],
DiskBox[13, 0.023680305899773962],
DiskBox[14, 0.023680305899773962],
DiskBox[15, 0.023680305899773962],
DiskBox[16, 0.023680305899773962],
DiskBox[17, 0.023680305899773962],
DiskBox[18, 0.023680305899773962],
DiskBox[19, 0.023680305899773962],
DiskBox[20, 0.023680305899773962]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
FrameTicks->None]}], "}"}]], "Output",
CellLabel->
"Out[158]=",ExpressionUUID->"246c8a06-f822-481b-8633-9af6f47bf599"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UnitDistance by FindSubgraphUnitDistanceEmbedding", "Subsubsection",ExpressionUUID->"7dd8109a-647f-426d-a3a5-d68ecf6d8363"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{"\"\\"", ",",
RowBox[{"l", "=",
RowBox[{
RowBox[{"FindSubgraphUnitDistanceEmbedding", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"TimeConstraint", "->", "300"}], ",",
RowBox[{"\"\\"", "->", "All"}]}], "]"}], "//",
"Timing"}]}]}], "}"}]], "Input",ExpressionUUID->"5ef270fe-df9a-4c09-984c-\
149aa5af5ab5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"DodecahedralGraph\"\>", ",",
RowBox[{"{",
RowBox[{"19589.109375`", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"DeGreyGraph\"\>", ",",
RowBox[{"{",
RowBox[{"157.796875`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 275, 3, 216, 327, 273, 7, 329, 4, 41, 218, 331, 205,
2, 6, 5, 212, 96, 386, 209}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2],
Rational[1, 4]}, {
2 + Rational[1, 96] (5 3^Rational[1, 2] - 57
7^Rational[1, 2] + 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (19 + 15 21^Rational[1, 2] +
33^Rational[1, 2] + 3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (-3^Rational[1, 2] - 9
7^Rational[1, 2]),
Rational[-3, 16] (-1 + 21^Rational[1, 2])}, {
2 + Rational[1, 48] (3 3^Rational[1, 2] - 30
7^Rational[1, 2] + 11^Rational[1, 2]),
Rational[1, 48] (10 + 9 21^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 75
7^Rational[1, 2] + 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (25 - 3 21^Rational[1, 2] +
33^Rational[1, 2] + 3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (5 3^Rational[1, 2] - 87
7^Rational[1, 2] - 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (29 + 15 21^Rational[1, 2] +
33^Rational[1, 2] - 3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (-3^Rational[1, 2] - 15
7^Rational[1, 2]),
Rational[1, 16] (5 - 3 21^Rational[1, 2])}, {
2 + Rational[1, 48] ((-39) 7^Rational[1, 2] +
11^Rational[1, 2]),
Rational[1, 48] (13 + 3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (3^Rational[1, 2] - 9
7^Rational[1, 2]),
Rational[3, 16] (1 + 21^Rational[1, 2])}, {
2 + Rational[1, 8] (3^Rational[1, 2] - 6
7^Rational[1, 2]),
Rational[1, 8] (2 + 3 21^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 105
7^Rational[1, 2] - 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (35 - 3 21^Rational[1, 2] +
33^Rational[1, 2] - 3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 69
7^Rational[1, 2] - 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (23 - 3 21^Rational[1, 2] +
33^Rational[1, 2] - 3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (7 3^Rational[1, 2] - 57
7^Rational[1, 2] + 11^Rational[1, 2] +
3 231^Rational[1, 2]),
Rational[1, 96] (19 + 21 21^Rational[1, 2] - 33^
Rational[1, 2] + 3 77^Rational[1, 2])}, {
2 + Rational[-3, 8] 7^Rational[1, 2],
Rational[1, 8]}, {
2 + Rational[1, 16] (3^Rational[1, 2] - 15
7^Rational[1, 2]),
Rational[1, 16] (5 + 3 21^Rational[1, 2])}, {
2 + Rational[-9, 8] 7^Rational[1, 2],
Rational[3, 8]}, {
2 + Rational[1, 96] (3^Rational[1, 2] - 39
7^Rational[1, 2] + 11^Rational[1, 2] +
3 231^Rational[1, 2]),
Rational[1, 96] (13 + 3 21^Rational[1, 2] - 33^
Rational[1, 2] + 3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (7 3^Rational[1, 2] - 87
7^Rational[1, 2] - 11^Rational[1, 2] +
3 231^Rational[1, 2]),
Rational[1, 96] (29 + 21 21^Rational[1, 2] - 33^
Rational[1, 2] - 3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 39
7^Rational[1, 2] + 11^Rational[1, 2] - 3
231^Rational[1, 2]),
Rational[1, 96] (13 - 3 21^Rational[1, 2] +
33^Rational[1, 2] + 3 77^Rational[1, 2])}, {
2 + Rational[1, 48] (3 3^Rational[1, 2] - 48
7^Rational[1, 2] + 11^Rational[1, 2]),
Rational[1, 48] (16 + 9 21^Rational[1, 2] +
3 77^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7bDiUYCCwAR7BjC4YH9g08evVw232B/YYHjj/PfP
9jt6tpxUunzT/sTa+aLX6p7uf7HzwoGZhx7Ya00TKFS5/dP+De/q2JILD/YX
pbebTn54xz5l/r3Edyqv9n959PCxzo6X9gz6jyT1rj3aD9H/cP+DoCN3Vi3Y
sr+3rvFMkfkr+47ID3IG1x/bP7l2nit7/wf7DQtLPtXtOAu177/9jY/K+8/t
/bafYZqUYvrqGvsJd8T+7y6/vX9B2LteT9N9+7vzGicc5/xo77tn3eL9i77Z
Bxxd6KCg8AHqnwP2G8xn7Je7eH0/xPxP9jIJpjV29u/3Q+Rv2Euwrz7ob/fd
fsXU6uSg3vv2CbIzGGcsPGrP9+t2FQ/fe/sH55Scpt27aw/x3xX7D2XXq71/
3d0P8f9vewCLw6q1
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.029329452065384246`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.029329452065384246],
DiskBox[2, 0.029329452065384246],
DiskBox[3, 0.029329452065384246],
DiskBox[4, 0.029329452065384246],
DiskBox[5, 0.029329452065384246],
DiskBox[6, 0.029329452065384246],
DiskBox[7, 0.029329452065384246],
DiskBox[8, 0.029329452065384246],
DiskBox[9, 0.029329452065384246],
DiskBox[10, 0.029329452065384246],
DiskBox[11, 0.029329452065384246],
DiskBox[12, 0.029329452065384246],
DiskBox[13, 0.029329452065384246],
DiskBox[14, 0.029329452065384246],
DiskBox[15, 0.029329452065384246],
DiskBox[16, 0.029329452065384246],
DiskBox[17, 0.029329452065384246],
DiskBox[18, 0.029329452065384246],
DiskBox[19, 0.029329452065384246],
DiskBox[20, 0.029329452065384246]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"ExooIsmailescuGraph49\"\>", ",",
RowBox[{"{",
RowBox[{"0.078125`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 37, 2, 32, 15, 24, 4, 28, 7, 6, 14, 36, 29, 3, 20,
12, 25, 19, 17, 22}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, {
0, Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (3 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (9 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (9 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (6 3^Rational[1, 2] +
18 11^Rational[1, 2]), 0}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (9 + 9 33^Rational[1, 2])}, {
0, Rational[1, 36] (18 + 6 33^Rational[1, 2])}, {
3^Rational[-1, 2], 0}, {
Rational[1, 36] (9 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (6 3^Rational[1, 2] - 18
11^Rational[1, 2]), 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (9 + 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, {
Rational[-1, 2] 11^Rational[1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (9 + 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-9 + 9 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5ykmYe4nj1dP+CB45i8wOf74eJOxxs1rFb/M/+
V3Vi6h219/YNTeyRNW5n9++duMg+K+rmfijfXtZ4guvyykv2EF0P9sP4EP3v
oPr/28PMhZq3/8OFpIV5v37BxSH2f4ea9wgufuSUCMsNwy/2MPdB3PsV7k6o
ffth9kH9A1OP7n57k/y/k4s6fqGrh/kfzoe47xO6/+wBTJ+FIQ==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.03442846938951541]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.03442846938951541],
DiskBox[2, 0.03442846938951541],
DiskBox[3, 0.03442846938951541],
DiskBox[4, 0.03442846938951541],
DiskBox[5, 0.03442846938951541],
DiskBox[6, 0.03442846938951541],
DiskBox[7, 0.03442846938951541],
DiskBox[8, 0.03442846938951541],
DiskBox[9, 0.03442846938951541],
DiskBox[10, 0.03442846938951541],
DiskBox[11, 0.03442846938951541],
DiskBox[12, 0.03442846938951541],
DiskBox[13, 0.03442846938951541],
DiskBox[14, 0.03442846938951541],
DiskBox[15, 0.03442846938951541],
DiskBox[16, 0.03442846938951541],
DiskBox[17, 0.03442846938951541],
DiskBox[18, 0.03442846938951541],
DiskBox[19, 0.03442846938951541],
DiskBox[20, 0.03442846938951541]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"ExooIsmailescuGraph51\"\>", ",",
RowBox[{"{",
RowBox[{"1.546875`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 30, 7, 20, 25, 5, 10, 41, 29, 39, 48, 42, 2, 4, 38,
21, 24, 6, 11, 3}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0,
Rational[1, 3]}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (3 - 3 33^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 6]}, {Rational[1, 2] 3^Rational[-1, 2],
Rational[5, 6]}, {
Rational[1, 36] ((-9) 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (3 + 3 33^Rational[1, 2])}, {
0, Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {-3^
Rational[-1, 2],
Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (21 - 3 33^Rational[1, 2])}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, {
Rational[1, 36] ((-15) 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (3 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] +
9 11^Rational[1, 2]),
Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 6]}, {0,
Rational[-2, 3]}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (21 + 3 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[1, 36] (12 - 6 33^Rational[1, 2])}, {
Rational[1, 36] ((-9) 3^Rational[1, 2] - 9
11^Rational[1, 2]),
Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, {
0, Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {-3^
Rational[-1, 2],
Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 6]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQOhYHDVPidp5iGOV0/tX2XrXX/he3P/Kp+IF1Xb
Xu+HyB/dL2s8wXV55SX71atA4JX93omL7LOibtp7db854PnnoT3MPAj/I1T9
o/0w/q/qxNQ7au/tQwPcFsec2GUP5e//ajo9+8uyN/uh9u9fteUE35wj6+3b
qzxfcDfvhrsHph+mHuoeuPtQ/fMUbt5S17IHKv8+2MPcP1XsZuPkH4/3Hzkl
wnLD8AvcPph+iH0v7WHuR+VfsofZBwDgV59d
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.024495335266347784`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.024495335266347784],
DiskBox[2, 0.024495335266347784],
DiskBox[3, 0.024495335266347784],
DiskBox[4, 0.024495335266347784],
DiskBox[5, 0.024495335266347784],
DiskBox[6, 0.024495335266347784],
DiskBox[7, 0.024495335266347784],
DiskBox[8, 0.024495335266347784],
DiskBox[9, 0.024495335266347784],
DiskBox[10, 0.024495335266347784],
DiskBox[11, 0.024495335266347784],
DiskBox[12, 0.024495335266347784],
DiskBox[13, 0.024495335266347784],
DiskBox[14, 0.024495335266347784],
DiskBox[15, 0.024495335266347784],
DiskBox[16, 0.024495335266347784],
DiskBox[17, 0.024495335266347784],
DiskBox[18, 0.024495335266347784],
DiskBox[19, 0.024495335266347784],
DiskBox[20, 0.024495335266347784]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"Hamming\"\>", ",",
RowBox[{"{",
RowBox[{"3", ",", "3"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.0625`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 18, 3, 25, 27, 17, 6, 7, 11, 10, 9, 8, 15, 2, 19, 4,
12, 13, 21, 16}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> {{
Root[3 - 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[1 - 6 # + 8 #^3& , 2, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, {
Root[1 - 6 # + 8 #^3& , 1, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 1, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 3, 0]}, {
Root[-1 + 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 5, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, {
Rational[-1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, {
Root[-1 - 6 # + 8 #^3& , 1, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 4, 0]}, {
Root[-3 + 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, {
Root[-1 - 6 # + 8 #^3& , 3, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, {
Root[-1 + 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 6, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 3, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[-1 - 6 # + 8 #^3& , 2, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, {
Root[3 - 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbRG1pOWN8p39bDNn/NS3v2DfWcxdJ2V1zF6J7aLq
9o579jK6QU7fBN/tn+YzqYjz9Ud7BjB4YH+j6EfB1V9f9zNAAUT/g/3Wbr8O
fHp0Zb/J5Pur7J7cgMsbgvkv7IsWzHO9z3Zx/5TzW/o/Jz+Hyj/YXxckaJ4j
+BhuPoxvGXB+UX7zi/2RX3qTZL0O2suuSL+43fELXD/UffYw9/WJaSr+5vgO
9w/UPfao7nlgv+f00dcPJ26Duw9i3neYfnuY/i5IeOyHhcfjO03z2/qews0D
AG+ClCc=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.029368265417639275`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.029368265417639275],
DiskBox[2, 0.029368265417639275],
DiskBox[3, 0.029368265417639275],
DiskBox[4, 0.029368265417639275],
DiskBox[5, 0.029368265417639275],
DiskBox[6, 0.029368265417639275],
DiskBox[7, 0.029368265417639275],
DiskBox[8, 0.029368265417639275],
DiskBox[9, 0.029368265417639275],
DiskBox[10, 0.029368265417639275],
DiskBox[11, 0.029368265417639275],
DiskBox[12, 0.029368265417639275],
DiskBox[13, 0.029368265417639275],
DiskBox[14, 0.029368265417639275],
DiskBox[15, 0.029368265417639275],
DiskBox[16, 0.029368265417639275],
DiskBox[17, 0.029368265417639275],
DiskBox[18, 0.029368265417639275],
DiskBox[19, 0.029368265417639275],
DiskBox[20, 0.029368265417639275]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph510\"\>", ",",
RowBox[{"{",
RowBox[{"72.75`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 301, 6, 305, 133, 275, 4, 354, 7, 55, 102, 247, 241,
2, 35, 5, 271, 223, 77, 99}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[2, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-9 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (-1 - 33^Rational[1, 2])}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[-1, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (9 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (-7 - 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3
11^Rational[1, 2])}, {-1, 0}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCp/Z4FDUuTN3/bDxF9YL/KJ+JF1bbX+wM+
KHSfX/F5/5/qxNQ7au/3r9pygm/OkfX7ue6nd+yreb4fov/qfjT9+2H6Fzxw
FJsf+H+/rPEE1+WVl9DNtz9gV3P5YMxF+7Yqzxfczbv3e3W/OeD55+H+um0H
6z8+O2C/1LXsgcq/D3D7Vq8CgU/2Z7+sSPLZ8BBq3gd7mH8amtgja9zO7v8F
dS9Ufj9M/tes06ZVwd/so/gKWRXe3rKHuh9q3sf9WS/V6nLY79jD7H+VrXf9
he/N/VD1+wH1OpaI
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.03271725813257968]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.03271725813257968],
DiskBox[2, 0.03271725813257968],
DiskBox[3, 0.03271725813257968],
DiskBox[4, 0.03271725813257968],
DiskBox[5, 0.03271725813257968],
DiskBox[6, 0.03271725813257968],
DiskBox[7, 0.03271725813257968],
DiskBox[8, 0.03271725813257968],
DiskBox[9, 0.03271725813257968],
DiskBox[10, 0.03271725813257968],
DiskBox[11, 0.03271725813257968],
DiskBox[12, 0.03271725813257968],
DiskBox[13, 0.03271725813257968],
DiskBox[14, 0.03271725813257968],
DiskBox[15, 0.03271725813257968],
DiskBox[16, 0.03271725813257968],
DiskBox[17, 0.03271725813257968],
DiskBox[18, 0.03271725813257968],
DiskBox[19, 0.03271725813257968],
DiskBox[20, 0.03271725813257968]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph529\"\>", ",",
RowBox[{"{",
RowBox[{"149.75`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 312, 6, 384, 142, 200, 4, 3, 7, 78, 209, 177, 124,
2, 30, 5, 212, 87, 183, 346}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-3 + 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (7 - 33^Rational[1, 2])}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (9 + 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (3 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3
11^Rational[1, 2])}, {-1, 0}, {
Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WrwKBT/Znv6xI8tnwcD9E9IH9Kp+IF1XbXu9v
aGKPrHE7a/99xe9pJwyP22e9VKvLYb9jX7ftYP3HZwfsQ8HgKLr+/TD9aHx7
NPPtAz4odJ9f8dn+K9R8r+43Bzz/PNwPM/9Vtt71F7437aP4ClkV3t6C2ncV
at9HqPkf7GH+WfDAUWx+4HP73KSZhzhePYXJ74fJQ82HuX//AbuaywdjLtp3
VXm+4G7evR9q336offuh5u1vg8oDAA4sk5I=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.024440582208030248`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.024440582208030248],
DiskBox[2, 0.024440582208030248],
DiskBox[3, 0.024440582208030248],
DiskBox[4, 0.024440582208030248],
DiskBox[5, 0.024440582208030248],
DiskBox[6, 0.024440582208030248],
DiskBox[7, 0.024440582208030248],
DiskBox[8, 0.024440582208030248],
DiskBox[9, 0.024440582208030248],
DiskBox[10, 0.024440582208030248],
DiskBox[11, 0.024440582208030248],
DiskBox[12, 0.024440582208030248],
DiskBox[13, 0.024440582208030248],
DiskBox[14, 0.024440582208030248],
DiskBox[15, 0.024440582208030248],
DiskBox[16, 0.024440582208030248],
DiskBox[17, 0.024440582208030248],
DiskBox[18, 0.024440582208030248],
DiskBox[19, 0.024440582208030248],
DiskBox[20, 0.024440582208030248]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph553\"\>", ",",
RowBox[{"{",
RowBox[{"180.359375`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 16, 6, 179, 419, 15, 4, 110, 7, 55, 111, 382, 117,
2, 10, 5, 90, 166, 535, 89}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-2, 3],
Rational[1, 6] (3 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (5 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[5, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
1, 0}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3
11^Rational[1, 2])}, {-1, 0}, {
Rational[1, 12] (11 - 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^
Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (11 + 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^
Rational[1, 2])}, {
Rational[1, 3],
Rational[1, 6] (3 3^Rational[1, 2] - 11^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fI+v2euzw8zD+83w8RfWC/yifiRdW2
1/tDweDp/l3r47hjea7YfzWdnv1l2Rv7N5kdpa3TvuxfvQoEXtmf/bIiyWfD
Q5j+/aj6j+5Hk4eZb9/QxB5Z43Z2/9cVv6edMDxu/ypb7/oL35v2UXyFrApv
b0H1X7Xfs6BhafLmb/u9ut8c8PzzcH/dtoP1H58dgJr3wR7mnwUPHMXmBz7f
n5s08xDHq6cw+f0w+ayXanU57Hfs66H6D9jVXD4Yc9Eepv7XrNOmVcHf7GPQ
7If5HwDoHZPX
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.0257407422132772]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.0257407422132772],
DiskBox[2, 0.0257407422132772],
DiskBox[3, 0.0257407422132772],
DiskBox[4, 0.0257407422132772],
DiskBox[5, 0.0257407422132772],
DiskBox[6, 0.0257407422132772],
DiskBox[7, 0.0257407422132772],
DiskBox[8, 0.0257407422132772],
DiskBox[9, 0.0257407422132772],
DiskBox[10, 0.0257407422132772],
DiskBox[11, 0.0257407422132772],
DiskBox[12, 0.0257407422132772],
DiskBox[13, 0.0257407422132772],
DiskBox[14, 0.0257407422132772],
DiskBox[15, 0.0257407422132772],
DiskBox[16, 0.0257407422132772],
DiskBox[17, 0.0257407422132772],
DiskBox[18, 0.0257407422132772],
DiskBox[19, 0.0257407422132772],
DiskBox[20, 0.0257407422132772]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph610\"\>", ",",
RowBox[{"{",
RowBox[{"215.921875`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 55, 6, 125, 8, 270, 4, 3, 7, 60, 53, 108, 110, 2,
11, 5, 330, 106, 121, 412}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (-5 + 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (21 - 33^
Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), 3^
Rational[-1, 2]}, {
Rational[1, 2] Rational[11, 3]^Rational[1, 2],
Rational[1, 2] 3^Rational[-1, 2]}, {
Rational[1, 12] (-11 + 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (3 - 33^
Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (3 - 33^Rational[1, 2]), 3^
Rational[-1, 2]}, {
Rational[1, 6] (-3 + 33^Rational[1, 2]), -3^
Rational[-1, 2]}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
1, 0}, {
Rational[-1, 2] Rational[11, 3]^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, {
Rational[1, 12] (11 + 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (3 +
33^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 6] (3 + 33^Rational[1, 2]), -3^
Rational[-1, 2]}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]), (
Rational[1, 12] 3^Rational[-1, 2]) (-3 - 33^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fIenvu++kd+2qe20NEH9iv8ol4UbXt
9f4FDxzF5gd+3y9rPMF1eeUje4eDzTp2i9/ZQ/iX7LNeqtXlsN/ZX7/tYP3H
Zwf2Q/Xvh+lH46Obb9/QxB5Z43YXbj6UDzX/0f5X2XrXX/jetI/iK2RVeHvL
3qv7zQHPPw/t61Ds+2AP8w/UfVDzLsHk98Pkf806bVoV/M0+Bmoe1Pz9UPNh
/oXbD1W/H6p+PwBOrYhf
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.02962578701818075]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.02962578701818075],
DiskBox[2, 0.02962578701818075],
DiskBox[3, 0.02962578701818075],
DiskBox[4, 0.02962578701818075],
DiskBox[5, 0.02962578701818075],
DiskBox[6, 0.02962578701818075],
DiskBox[7, 0.02962578701818075],
DiskBox[8, 0.02962578701818075],
DiskBox[9, 0.02962578701818075],
DiskBox[10, 0.02962578701818075],
DiskBox[11, 0.02962578701818075],
DiskBox[12, 0.02962578701818075],
DiskBox[13, 0.02962578701818075],
DiskBox[14, 0.02962578701818075],
DiskBox[15, 0.02962578701818075],
DiskBox[16, 0.02962578701818075],
DiskBox[17, 0.02962578701818075],
DiskBox[18, 0.02962578701818075],
DiskBox[19, 0.02962578701818075],
DiskBox[20, 0.02962578701818075]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph803\"\>", ",",
RowBox[{"{",
RowBox[{"241.828125`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 259, 4, 82, 273, 136, 3, 5, 6, 83, 144, 295, 211, 2,
11, 7, 128, 43, 103, 42}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[-2, 3], Rational[1, 3] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] +
3 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), -3^
Rational[-1, 2]}, {
Rational[1, 3], Rational[1, 3] 11^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (5 + 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 11^
Rational[1, 2])}, {-1, 0}, {
Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[7, 6], Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 6], Rational[1, 6] 11^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweDp/rNfViT5bPhoDxF9YL/KJ+JF1bbX9q+y
9a6/8L1pH8VXyKrw9tb+X7NOm1YFf9sP5dsveOAoNj/w+f6uKs8X3M27Yfr3
w/Sj8fejmQ8zD26+V/ebA55/Hu6v23aw/uOzA/sh5n/fL2s8wXV55aP9EPde
tUd17wd7mH++mk7P/rLsjf2PLvvTV+vvwOT3w+Sh5ttDzbdfvQoEPkHNewjz
L9x/EPuOwuUBXS+QXw==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.0291745738150109]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.0291745738150109],
DiskBox[2, 0.0291745738150109],
DiskBox[3, 0.0291745738150109],
DiskBox[4, 0.0291745738150109],
DiskBox[5, 0.0291745738150109],
DiskBox[6, 0.0291745738150109],
DiskBox[7, 0.0291745738150109],
DiskBox[8, 0.0291745738150109],
DiskBox[9, 0.0291745738150109],
DiskBox[10, 0.0291745738150109],
DiskBox[11, 0.0291745738150109],
DiskBox[12, 0.0291745738150109],
DiskBox[13, 0.0291745738150109],
DiskBox[14, 0.0291745738150109],
DiskBox[15, 0.0291745738150109],
DiskBox[16, 0.0291745738150109],
DiskBox[17, 0.0291745738150109],
DiskBox[18, 0.0291745738150109],
DiskBox[19, 0.0291745738150109],
DiskBox[20, 0.0291745738150109]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph826\"\>", ",",
RowBox[{"{",
RowBox[{"120.046875`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 322, 4, 82, 25, 154, 5, 240, 6, 23, 170, 241, 321,
2, 166, 3, 298, 79, 13, 152}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 6], 3^Rational[1, 2] +
Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2] Rational[11, 3]^Rational[1, 2],
Rational[1, 2] 3^Rational[-1, 2]}, {
Rational[1, 12] (7 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (13 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (13 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] +
3 11^Rational[1, 2])}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), 2
3^Rational[-1, 2]}, {
Rational[7, 6], 3^Rational[1, 2] +
Rational[1, 6] 11^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] +
3 11^Rational[1, 2])}, {-1, 0}, {2, 3^Rational[1, 2]}, {
Rational[2, 3],
Rational[1, 6] (3 3^Rational[1, 2] +
11^Rational[1, 2])}, {1, 3^Rational[1, 2]}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 11^
Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCofUfytZ4AdyYHiOgD+1U+ES+qtr22dzjY
rGO3+N1+WeMJrssrL9mHBrgtjjmxy/5NZkdp67Qv9l7dbw54/nm4/5Zowo45
M3/aQ/Xvh+lf8MBRbH7gf7h+iPwPuPlcpzKmcEc+to/iK2RVeHsLqv75/qAn
d5atzvsL5X+H6v9kv3oVCHxCc+8He5h/GprYI2vczu7/VZ2YekftPVT8w340
bztA7P9tD/H/U/s9CxqWJm/+BlNvD5NfteUE35wj6/dz3U/v2Ffz3B4ApZSC
Dg==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.03673321499249091]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.03673321499249091],
DiskBox[2, 0.03673321499249091],
DiskBox[3, 0.03673321499249091],
DiskBox[4, 0.03673321499249091],
DiskBox[5, 0.03673321499249091],
DiskBox[6, 0.03673321499249091],
DiskBox[7, 0.03673321499249091],
DiskBox[8, 0.03673321499249091],
DiskBox[9, 0.03673321499249091],
DiskBox[10, 0.03673321499249091],
DiskBox[11, 0.03673321499249091],
DiskBox[12, 0.03673321499249091],
DiskBox[13, 0.03673321499249091],
DiskBox[14, 0.03673321499249091],
DiskBox[15, 0.03673321499249091],
DiskBox[16, 0.03673321499249091],
DiskBox[17, 0.03673321499249091],
DiskBox[18, 0.03673321499249091],
DiskBox[19, 0.03673321499249091],
DiskBox[20, 0.03673321499249091]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"HeuleGraph874\"\>", ",",
RowBox[{"{",
RowBox[{"206.015625`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 30, 6, 135, 87, 26, 4, 355, 7, 69, 349, 122, 149, 2,
114, 5, 189, 73, 90, 108}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (7 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-9 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (3 - 33^Rational[1, 2]), 3^
Rational[-1, 2]}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^
Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1,
0}, {Rational[-1, 2] Rational[11, 3]^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2]}, {-1, 0}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3
11^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCo/dkvK5J8NjzcDxF9YL/KJ+JF1bbX+xua
2CNr3M7u/1WdmHpH7f1+r+43Bzz/PNxft+1g/cdnB+xDA9wWx5zYZf+jy/70
1fo79lD9+2H6Az4odJ9f8RmuH818e4j5d/fLGk9wXV75yP7XrNOmVcHf9kfx
FbIqvL21/1W23vUXvjfh/NWrQOATmns/2MP843CwWcdu8TuoeZdg8vth8lDz
7aHm2R+wq7l8MOaifVeV5wvu5t37s16q1eWw37GH+W/BA0ex+YHP98PkAZE/
kmQ=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.02871996521054035]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.02871996521054035],
DiskBox[2, 0.02871996521054035],
DiskBox[3, 0.02871996521054035],
DiskBox[4, 0.02871996521054035],
DiskBox[5, 0.02871996521054035],
DiskBox[6, 0.02871996521054035],
DiskBox[7, 0.02871996521054035],
DiskBox[8, 0.02871996521054035],
DiskBox[9, 0.02871996521054035],
DiskBox[10, 0.02871996521054035],
DiskBox[11, 0.02871996521054035],
DiskBox[12, 0.02871996521054035],
DiskBox[13, 0.02871996521054035],
DiskBox[14, 0.02871996521054035],
DiskBox[15, 0.02871996521054035],
DiskBox[16, 0.02871996521054035],
DiskBox[17, 0.02871996521054035],
DiskBox[18, 0.02871996521054035],
DiskBox[19, 0.02871996521054035],
DiskBox[20, 0.02871996521054035]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"MixonGraph1577\"\>", ",",
RowBox[{"{",
RowBox[{"155.796875`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 1082, 27, 850, 1290, 1074, 35, 1298, 31, 154, 866,
1282, 830, 23, 39, 43, 842, 370, 1534, 822}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{2, 0}, {
Rational[1, 12] (29 - 33^Rational[1, 2]),
Rational[-1, 12] (86 + 10 33^Rational[1, 2])^
Rational[1, 2]}, {
Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[
7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}, {
Rational[1, 12] (23 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (19 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
2, -3^Rational[1, 2]}, {
Rational[1, 12] (13 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (25 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (29 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {3, 0}, {
Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (35 + 33^Rational[1, 2]), (
Rational[-1, 12] 3^Rational[-1, 2]) (3 +
33^Rational[1, 2])}, {
Rational[1, 12] (19 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (35 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[
4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF
1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX
6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt
LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf
UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.02871996521054035]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.02871996521054035],
DiskBox[2, 0.02871996521054035],
DiskBox[3, 0.02871996521054035],
DiskBox[4, 0.02871996521054035],
DiskBox[5, 0.02871996521054035],
DiskBox[6, 0.02871996521054035],
DiskBox[7, 0.02871996521054035],
DiskBox[8, 0.02871996521054035],
DiskBox[9, 0.02871996521054035],
DiskBox[10, 0.02871996521054035],
DiskBox[11, 0.02871996521054035],
DiskBox[12, 0.02871996521054035],
DiskBox[13, 0.02871996521054035],
DiskBox[14, 0.02871996521054035],
DiskBox[15, 0.02871996521054035],
DiskBox[16, 0.02871996521054035],
DiskBox[17, 0.02871996521054035],
DiskBox[18, 0.02871996521054035],
DiskBox[19, 0.02871996521054035],
DiskBox[20, 0.02871996521054035]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"MixonGraph1585\"\>", ",",
RowBox[{"{",
RowBox[{"155.265625`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 1090, 31, 854, 1298, 1082, 39, 1306, 35, 158, 870,
1290, 834, 27, 43, 47, 846, 374, 1542, 826}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{2, 0}, {
Rational[1, 12] (29 - 33^Rational[1, 2]),
Rational[-1, 12] (86 + 10 33^Rational[1, 2])^
Rational[1, 2]}, {
Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[
7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}, {
Rational[1, 12] (23 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (19 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
2, -3^Rational[1, 2]}, {
Rational[1, 12] (13 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (25 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (29 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^
Rational[1, 2])}, {3, 0}, {
Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (35 + 33^Rational[1, 2]), (
Rational[-1, 12] 3^Rational[-1, 2]) (3 +
33^Rational[1, 2])}, {
Rational[1, 12] (19 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (35 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[
4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF
1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX
6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt
LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf
UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.02871996521054035]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.02871996521054035],
DiskBox[2, 0.02871996521054035],
DiskBox[3, 0.02871996521054035],
DiskBox[4, 0.02871996521054035],
DiskBox[5, 0.02871996521054035],
DiskBox[6, 0.02871996521054035],
DiskBox[7, 0.02871996521054035],
DiskBox[8, 0.02871996521054035],
DiskBox[9, 0.02871996521054035],
DiskBox[10, 0.02871996521054035],
DiskBox[11, 0.02871996521054035],
DiskBox[12, 0.02871996521054035],
DiskBox[13, 0.02871996521054035],
DiskBox[14, 0.02871996521054035],
DiskBox[15, 0.02871996521054035],
DiskBox[16, 0.02871996521054035],
DiskBox[17, 0.02871996521054035],
DiskBox[18, 0.02871996521054035],
DiskBox[19, 0.02871996521054035],
DiskBox[20, 0.02871996521054035]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"TriangularHoneycombObtuseKnight\"\>", ",", "13"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"220.734375`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{2, 72, 18, 22, 63, 82, 27, 32, 26, 31, 41, 48, 52, 10,
12, 13, 40, 60, 34, 47}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{
0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, {
0, Rational[1, 2] Rational[3, 7]^Rational[1, 2]}, {
0, Rational[1, 2] 21^Rational[1, 2]}, {
Rational[-5, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {
Rational[5, 2] 7^Rational[-1, 2], Rational[3, 7]^
Rational[1, 2]}, {Rational[-5, 2] 7^Rational[-1, 2], 0}, {
Rational[5, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {
0, Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {
Rational[3, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2],
Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {
Rational[1, 2] 7^Rational[-1, 2], 2
Rational[3, 7]^Rational[1, 2]}, {(-2) 7^Rational[-1, 2],
Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[3, 2]
Rational[3, 7]^Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[9, 2]
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], 4
Rational[3, 7]^Rational[1, 2]}, {
Rational[1, 2] 7^Rational[-1, 2], 4
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], 2
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], Rational[3, 7]^
Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[5, 2]
Rational[3, 7]^Rational[1, 2]}, {(-3) 7^Rational[-1, 2],
Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNSlZtvspzjcYDxtbbaOL75dMUexm+VE93ZF8Lk
8OBrYMI2m3f79/PfTkzK+W8P5dtD1D+B8ffD9MHkYeph4iWPugOX6/+yf/Pz
b06uyiO4/LPvy59NNLixHyYP4Z+Amv8Fyn8Btf89jG+Pzj/vnXLScyK7A1T/
foh+FgdU81jQ5GHmw/hP4OahuvcT3H4Az6iiGA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.0343970407859782]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.0343970407859782],
DiskBox[2, 0.0343970407859782],
DiskBox[3, 0.0343970407859782],
DiskBox[4, 0.0343970407859782],
DiskBox[5, 0.0343970407859782],
DiskBox[6, 0.0343970407859782],
DiskBox[7, 0.0343970407859782],
DiskBox[8, 0.0343970407859782],
DiskBox[9, 0.0343970407859782],
DiskBox[10, 0.0343970407859782],
DiskBox[11, 0.0343970407859782],
DiskBox[12, 0.0343970407859782],
DiskBox[13, 0.0343970407859782],
DiskBox[14, 0.0343970407859782],
DiskBox[15, 0.0343970407859782],
DiskBox[16, 0.0343970407859782],
DiskBox[17, 0.0343970407859782],
DiskBox[18, 0.0343970407859782],
DiskBox[19, 0.0343970407859782],
DiskBox[20, 0.0343970407859782]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"UnitDistance\"\>", ",",
RowBox[{"{",
RowBox[{"118", ",", "1"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"12.3125`", ",",
RowBox[{"{",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 117, 3, 4, 8, 45, 118, 114, 7, 6, 9, 78, 26, 2, 5,
113, 62, 22, 38, 59}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {
6}, {13}, {7}, {14}, {19}, {8}, {15}, {20}, {2}, {11}, {
19}, {2}, {12}, {20}, {3}, {11}, {16}, {4}, {12}, {16}, {
10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {12}, {6}, {
8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (13 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1,
0}, {Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (7 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (-15 - 33^Rational[1, 2])}, {
Rational[4, 3],
Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[11, 6], Rational[1, 6] 11^Rational[1, 2]}, {-1,
0}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (17 + 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] +
11^Rational[1, 2])}, {
Rational[1, 12] (3 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3
11^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 12] (-9 + 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (1 - 33^Rational[1, 2])}, {
Rational[1, 12] (-3 + 33^Rational[1, 2]),
Root[1 - 87 #^2 + 36 #^4& , 1, 0]}, {
Rational[-1, 3], (Rational[1, 6] 3^Rational[-1, 2]) (9 -
33^Rational[1, 2])}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ6WupY9UPn3w75u28H6j88O7IeIPrBf5RPxomrb
a3sI/4M9TL1X95sDnn8ewtVD9H+w99rl4WH+4f3+UDD4ar9nQcPS5M3f7CH8
v/Znv6xI8tnwEGbeflRXPNgPtW//r1mnTauCv9lH8RWyKry9ZQ/h/7P/0WV/
+mr9nf0LHjiKzQ98bp+bNPMQx6un+9H026O5f//qVSDwCm7/AbuaywdjLu7P
g+pvaGKPrHE7a999veKq44UfUPdf3b9rfRx3LM8VqPuPwvTvBwCLgpGg
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {
5, 11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8,
12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10,
18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}},
0.030021405881908034`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], DiskBox[1, 0.030021405881908034],
DiskBox[2, 0.030021405881908034],
DiskBox[3, 0.030021405881908034],
DiskBox[4, 0.030021405881908034],
DiskBox[5, 0.030021405881908034],
DiskBox[6, 0.030021405881908034],
DiskBox[7, 0.030021405881908034],
DiskBox[8, 0.030021405881908034],
DiskBox[9, 0.030021405881908034],
DiskBox[10, 0.030021405881908034],
DiskBox[11, 0.030021405881908034],
DiskBox[12, 0.030021405881908034],
DiskBox[13, 0.030021405881908034],
DiskBox[14, 0.030021405881908034],
DiskBox[15, 0.030021405881908034],
DiskBox[16, 0.030021405881908034],
DiskBox[17, 0.030021405881908034],
DiskBox[18, 0.030021405881908034],
DiskBox[19, 0.030021405881908034],
DiskBox[20, 0.030021405881908034]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor ->
Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None], "}"}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellTags->"ewwwin (4)",
CellLabel->
"(ewwwin (4)) \
Out[22]=",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"gs", "=",
RowBox[{"SortBy", "[",
RowBox[{
RowBox[{"UniqueEmbeddings", "[", "l", "]"}], ",",
RowBox[{
RowBox[{"Replace", "[",
RowBox[{
RowBox[{"RectilinearCrossingCount", "[", "#", "]"}], ",",
RowBox[{"Infinity", "->", "0"}]}], "]"}], "&"}]}], "]"}]}]], "Input",Ex\
pressionUUID->"1400e62e-a2ef-4a51-8822-369a7deb2916"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 275, 3, 216, 327, 273, 7, 329, 4, 41, 218, 331, 205, 2, 6, 5,
212, 96, 386, 209}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{2 + Rational[-3, 4] 7^Rational[1, 2],
Rational[1, 4]}, {
2 + Rational[1, 96] (5 3^Rational[1, 2] - 57 7^Rational[1, 2] +
11^Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (19 + 15 21^Rational[1, 2] + 33^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (-3^Rational[1, 2] - 9 7^Rational[1, 2]),
Rational[-3, 16] (-1 + 21^Rational[1, 2])}, {
2 + Rational[1, 48] (3 3^Rational[1, 2] - 30 7^Rational[1, 2] +
11^Rational[1, 2]),
Rational[1, 48] (10 + 9 21^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 75 7^Rational[1, 2] +
11^Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (25 - 3 21^Rational[1, 2] + 33^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (5 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^
Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (29 + 15 21^Rational[1, 2] + 33^Rational[1, 2] -
3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (-3^Rational[1, 2] - 15 7^Rational[1, 2]),
Rational[1, 16] (5 - 3 21^Rational[1, 2])}, {
2 + Rational[1, 48] ((-39) 7^Rational[1, 2] + 11^Rational[1, 2]),
Rational[1, 48] (13 + 3 77^Rational[1, 2])}, {
2 + Rational[1, 16] (3^Rational[1, 2] - 9 7^Rational[1, 2]),
Rational[3, 16] (1 + 21^Rational[1, 2])}, {
2 + Rational[1, 8] (3^Rational[1, 2] - 6 7^Rational[1, 2]),
Rational[1, 8] (2 + 3 21^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 105 7^Rational[1, 2] - 11^
Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (35 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3
77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 69 7^Rational[1, 2] - 11^
Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (23 - 3 21^Rational[1, 2] + 33^Rational[1, 2] - 3
77^Rational[1, 2])}, {
2 + Rational[1, 96] (7 3^Rational[1, 2] - 57 7^Rational[1, 2] +
11^Rational[1, 2] + 3 231^Rational[1, 2]),
Rational[1, 96] (19 + 21 21^Rational[1, 2] - 33^Rational[1, 2] +
3 77^Rational[1, 2])}, {2 + Rational[-3, 8] 7^Rational[1, 2],
Rational[1, 8]}, {
2 + Rational[1, 16] (3^Rational[1, 2] - 15 7^Rational[1, 2]),
Rational[1, 16] (5 + 3 21^Rational[1, 2])}, {
2 + Rational[-9, 8] 7^Rational[1, 2],
Rational[3, 8]}, {
2 + Rational[1, 96] (3^Rational[1, 2] - 39 7^Rational[1, 2] +
11^Rational[1, 2] + 3 231^Rational[1, 2]),
Rational[1, 96] (13 + 3 21^Rational[1, 2] - 33^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (7 3^Rational[1, 2] - 87 7^Rational[1, 2] - 11^
Rational[1, 2] + 3 231^Rational[1, 2]),
Rational[1, 96] (29 + 21 21^Rational[1, 2] - 33^Rational[1, 2] -
3 77^Rational[1, 2])}, {
2 + Rational[1, 96] (-3^Rational[1, 2] - 39 7^Rational[1, 2] +
11^Rational[1, 2] - 3 231^Rational[1, 2]),
Rational[1, 96] (13 - 3 21^Rational[1, 2] + 33^Rational[1, 2] +
3 77^Rational[1, 2])}, {
2 + Rational[1, 48] (3 3^Rational[1, 2] - 48 7^Rational[1, 2] +
11^Rational[1, 2]),
Rational[1, 48] (16 + 9 21^Rational[1, 2] +
3 77^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7bDiUYCCwAR7BjC4YH9g08evVw232B/YYHjj/PfP
9jt6tpxUunzT/sTa+aLX6p7uf7HzwoGZhx7Ya00TKFS5/dP+De/q2JILD/YX
pbebTn54xz5l/r3Edyqv9n959PCxzo6X9gz6jyT1rj3aD9H/cP+DoCN3Vi3Y
sr+3rvFMkfkr+47ID3IG1x/bP7l2nit7/wf7DQtLPtXtOAu177/9jY/K+8/t
/bafYZqUYvrqGvsJd8T+7y6/vX9B2LteT9N9+7vzGicc5/xo77tn3eL9i77Z
Bxxd6KCg8AHqnwP2G8xn7Je7eH0/xPxP9jIJpjV29u/3Q+Rv2Euwrz7ob/fd
fsXU6uSg3vv2CbIzGGcsPGrP9+t2FQ/fe/sH55Scpt27aw/x3xX7D2XXq71/
3d0P8f9vewCLw6q1
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.029329452065384246`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.029329452065384246], DiskBox[2, 0.029329452065384246],
DiskBox[3, 0.029329452065384246],
DiskBox[4, 0.029329452065384246], DiskBox[5, 0.029329452065384246],
DiskBox[6, 0.029329452065384246],
DiskBox[7, 0.029329452065384246], DiskBox[8, 0.029329452065384246],
DiskBox[9, 0.029329452065384246],
DiskBox[10, 0.029329452065384246],
DiskBox[11, 0.029329452065384246],
DiskBox[12, 0.029329452065384246],
DiskBox[13, 0.029329452065384246],
DiskBox[14, 0.029329452065384246],
DiskBox[15, 0.029329452065384246],
DiskBox[16, 0.029329452065384246],
DiskBox[17, 0.029329452065384246],
DiskBox[18, 0.029329452065384246],
DiskBox[19, 0.029329452065384246],
DiskBox[20, 0.029329452065384246]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 37, 2, 32, 15, 24, 4, 28, 7, 6, 14, 36, 29, 3, 20, 12, 25,
19, 17, 22}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{0, 0}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, {
0, Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (9 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (9 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (6 3^Rational[1, 2] + 18 11^Rational[1, 2]), 0}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (9 + 9 33^Rational[1, 2])}, {
0, Rational[1, 36] (18 + 6 33^Rational[1, 2])}, {
3^Rational[-1, 2], 0}, {
Rational[1, 36] (9 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (-9 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (6 3^Rational[1, 2] - 18 11^Rational[1, 2]), 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (9 + 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (-9 + 3 33^Rational[1, 2])}, {
Rational[-1, 2] 11^Rational[1, 2], Rational[1, 2]
Rational[11, 3]^Rational[1, 2]}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (9 + 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-9 + 9 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5ykmYe4nj1dP+CB45i8wOf74eJOxxs1rFb/M/+
V3Vi6h219/YNTeyRNW5n9++duMg+K+rmfijfXtZ4guvyykv2EF0P9sP4EP3v
oPr/28PMhZq3/8OFpIV5v37BxSH2f4ea9wgufuSUCMsNwy/2MPdB3PsV7k6o
ffth9kH9A1OP7n57k/y/k4s6fqGrh/kfzoe47xO6/+wBTJ+FIQ==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03442846938951541]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03442846938951541], DiskBox[2, 0.03442846938951541],
DiskBox[3, 0.03442846938951541], DiskBox[4, 0.03442846938951541],
DiskBox[5, 0.03442846938951541], DiskBox[6, 0.03442846938951541],
DiskBox[7, 0.03442846938951541], DiskBox[8, 0.03442846938951541],
DiskBox[9, 0.03442846938951541], DiskBox[10, 0.03442846938951541],
DiskBox[11, 0.03442846938951541], DiskBox[12, 0.03442846938951541],
DiskBox[13, 0.03442846938951541],
DiskBox[14, 0.03442846938951541], DiskBox[15, 0.03442846938951541],
DiskBox[16, 0.03442846938951541],
DiskBox[17, 0.03442846938951541], DiskBox[18, 0.03442846938951541],
DiskBox[19, 0.03442846938951541],
DiskBox[20, 0.03442846938951541]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 30, 7, 20, 25, 5, 10, 41, 29, 39, 48, 42, 2, 4, 38, 21, 24,
6, 11, 3}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0,
Rational[1, 3]}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (3 - 3 33^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 6]}, {Rational[1, 2] 3^Rational[-1, 2],
Rational[5, 6]}, {
Rational[1, 36] ((-9) 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (3 + 3 33^Rational[1, 2])}, {
0, Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {-3^
Rational[-1, 2], Rational[1, 36] (-6 - 6 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (21 - 3 33^Rational[1, 2])}, {
Rational[1, 36] ((-3) 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, {
Rational[1, 36] ((-15) 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (3 - 3 33^Rational[1, 2])}, {
Rational[1, 36] (3 3^Rational[1, 2] + 9 11^Rational[1, 2]),
Rational[1, 36] (-15 - 3 33^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2],
Rational[-1, 6]}, {0,
Rational[-2, 3]}, {
Rational[1, 36] (3 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (21 + 3 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[1, 36] (12 - 6 33^Rational[1, 2])}, {
Rational[1, 36] ((-9) 3^Rational[1, 2] - 9 11^Rational[1, 2]),
Rational[1, 36] (-15 + 3 33^Rational[1, 2])}, {
0, Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {-3^
Rational[-1, 2], Rational[1, 36] (-6 + 6 33^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 6]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQOhYHDVPidp5iGOV0/tX2XrXX/he3P/Kp+IF1Xb
Xu+HyB/dL2s8wXV55SX71atA4JX93omL7LOibtp7db854PnnoT3MPAj/I1T9
o/0w/q/qxNQ7au/tQwPcFsec2GUP5e//ajo9+8uyN/uh9u9fteUE35wj6+3b
qzxfcDfvhrsHph+mHuoeuPtQ/fMUbt5S17IHKv8+2MPcP1XsZuPkH4/3Hzkl
wnLD8AvcPph+iH0v7WHuR+VfsofZBwDgV59d
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.024495335266347784`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.024495335266347784], DiskBox[2, 0.024495335266347784],
DiskBox[3, 0.024495335266347784],
DiskBox[4, 0.024495335266347784], DiskBox[5, 0.024495335266347784],
DiskBox[6, 0.024495335266347784],
DiskBox[7, 0.024495335266347784], DiskBox[8, 0.024495335266347784],
DiskBox[9, 0.024495335266347784],
DiskBox[10, 0.024495335266347784],
DiskBox[11, 0.024495335266347784],
DiskBox[12, 0.024495335266347784],
DiskBox[13, 0.024495335266347784],
DiskBox[14, 0.024495335266347784],
DiskBox[15, 0.024495335266347784],
DiskBox[16, 0.024495335266347784],
DiskBox[17, 0.024495335266347784],
DiskBox[18, 0.024495335266347784],
DiskBox[19, 0.024495335266347784],
DiskBox[20, 0.024495335266347784]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 18, 3, 25, 27, 17, 6, 7, 11, 10, 9, 8, 15, 2, 19, 4, 12, 13,
21, 16}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{
Root[3 - 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[1 - 6 # + 8 #^3& , 2, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, {
Root[1 - 6 # + 8 #^3& , 1, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 1, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 3, 0]}, {
Root[-1 + 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 5, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, {
Rational[-1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 5, 0]}, {
Root[-1 - 6 # + 8 #^3& , 1, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 4, 0]}, {
Root[-3 + 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 1, 0]}, {
Root[-1 - 6 # + 8 #^3& , 3, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 6, 0]}, {
Root[-1 + 12 #^2 + 8 #^3& , 1, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}, {
Rational[1, 2],
Root[-1 + 132 #^2 - 432 #^4 + 192 #^6& , 3, 0]}, {0,
Root[-1 + 6 #^2 - 9 #^4 + 3 #^6& , 6, 0]}, {
Root[1 - 12 #^2 + 8 #^3& , 3, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 4, 0]}, {
Root[-1 - 6 # + 8 #^3& , 2, 0],
Root[-1 + 60 #^2 - 288 #^4 + 192 #^6& , 5, 0]}, {
Root[3 - 12 #^2 + 8 #^3& , 2, 0],
Root[-1 + 24 #^2 - 144 #^4 + 192 #^6& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQbRG1pOWN8p39bDNn/NS3v2DfWcxdJ2V1zF6J7aLq
9o579jK6QU7fBN/tn+4zqYjz9Ud7BjB4YH+j6EfB1V9f9zNAAUT/g/3Wbr8O
fHp0Zb/x5Pur7J7cgMtD+C/sixbMc73PdnH/lPNb+j8nP4fKP9hfFyRoniP4
GG4+jG8ZcH5RfvOL/ZFfepNkvQ7ay65Iv7jd8QtcP9R99jD39YlpKv7m+A73
D9Q99qjueWC/5/TR1w8nboO7D2Led5h+e5j+Lkh47IeFx+M7TfPb+p7CzQMA
cXqUKA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.029368265417639275`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.029368265417639275], DiskBox[2, 0.029368265417639275],
DiskBox[3, 0.029368265417639275],
DiskBox[4, 0.029368265417639275], DiskBox[5, 0.029368265417639275],
DiskBox[6, 0.029368265417639275],
DiskBox[7, 0.029368265417639275], DiskBox[8, 0.029368265417639275],
DiskBox[9, 0.029368265417639275],
DiskBox[10, 0.029368265417639275],
DiskBox[11, 0.029368265417639275],
DiskBox[12, 0.029368265417639275],
DiskBox[13, 0.029368265417639275],
DiskBox[14, 0.029368265417639275],
DiskBox[15, 0.029368265417639275],
DiskBox[16, 0.029368265417639275],
DiskBox[17, 0.029368265417639275],
DiskBox[18, 0.029368265417639275],
DiskBox[19, 0.029368265417639275],
DiskBox[20, 0.029368265417639275]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 301, 6, 305, 133, 275, 4, 354, 7, 55, 102, 247, 241, 2, 35,
5, 271, 223, 77, 99}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {
Rational[2, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-9 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (-1 - 33^Rational[1, 2])}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[-1, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (9 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-7 - 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1,
0}, {Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCp/Z4FDUuTN3/bDxF9YL/KJ+JF1bbX+wM+
KHSfX/F5/5/qxNQ7au/3r9pygm/OkfX7ue6nd+yreb4fov/qfjT9+2H6Fzxw
FJsf+H+/rPEE1+WVl9DNtz9gV3P5YMxF+7Yqzxfczbv3e3W/OeD55+H+um0H
6z8+O2C/1LXsgcq/D3D7Vq8CgU/2Z7+sSPLZ8BBq3gd7mH8amtgja9zO7v8F
dS9Ufj9M/tes06ZVwd/so/gKWRXe3rKHuh9q3sf9WS/V6nLY79jD7H+VrXf9
he/N/VD1+wH1OpaI
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03271725813257968]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03271725813257968], DiskBox[2, 0.03271725813257968],
DiskBox[3, 0.03271725813257968], DiskBox[4, 0.03271725813257968],
DiskBox[5, 0.03271725813257968], DiskBox[6, 0.03271725813257968],
DiskBox[7, 0.03271725813257968], DiskBox[8, 0.03271725813257968],
DiskBox[9, 0.03271725813257968], DiskBox[10, 0.03271725813257968],
DiskBox[11, 0.03271725813257968], DiskBox[12, 0.03271725813257968],
DiskBox[13, 0.03271725813257968],
DiskBox[14, 0.03271725813257968], DiskBox[15, 0.03271725813257968],
DiskBox[16, 0.03271725813257968],
DiskBox[17, 0.03271725813257968], DiskBox[18, 0.03271725813257968],
DiskBox[19, 0.03271725813257968],
DiskBox[20, 0.03271725813257968]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 312, 6, 384, 142, 200, 4, 3, 7, 78, 209, 177, 124, 2, 30, 5,
212, 87, 183, 346}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-3 + 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (7 - 33^Rational[1, 2])}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (9 + 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 3], Rational[-1, 3] 11^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (3 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1,
0}, {Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (5 - 33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WrwKBT/Znv6xI8tnwcD9E9IH9Kp+IF1XbXu9v
aGKPrHE7a/99xe9pJwyP22e9VKvLYb9jX7ftYP3HZwfsQ8HgKLr+/TD9aHx7
NPPtAz4odJ9f8dn+K9R8r+43Bzz/PNwPM/9Vtt71F7437aP4ClkV3t6C2ncV
at9HqPkf7GH+WfDAUWx+4HP73KSZhzhePYXJ74fJQ82HuX//AbuaywdjLtp3
VXm+4G7evR9q336offuh5u1vg8oDAA4sk5I=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.024440582208030248`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.024440582208030248], DiskBox[2, 0.024440582208030248],
DiskBox[3, 0.024440582208030248],
DiskBox[4, 0.024440582208030248], DiskBox[5, 0.024440582208030248],
DiskBox[6, 0.024440582208030248],
DiskBox[7, 0.024440582208030248], DiskBox[8, 0.024440582208030248],
DiskBox[9, 0.024440582208030248],
DiskBox[10, 0.024440582208030248],
DiskBox[11, 0.024440582208030248],
DiskBox[12, 0.024440582208030248],
DiskBox[13, 0.024440582208030248],
DiskBox[14, 0.024440582208030248],
DiskBox[15, 0.024440582208030248],
DiskBox[16, 0.024440582208030248],
DiskBox[17, 0.024440582208030248],
DiskBox[18, 0.024440582208030248],
DiskBox[19, 0.024440582208030248],
DiskBox[20, 0.024440582208030248]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 16, 6, 179, 419, 15, 4, 110, 7, 55, 111, 382, 117, 2, 10, 5,
90, 166, 535, 89}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-2, 3],
Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (5 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[5, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 3],
Rational[1, 6] ((-3) 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {1, 0}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {-1,
0}, {Rational[1, 12] (11 - 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (3 - 33^Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (11 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (-3 - 33^Rational[1, 2])}, {
Rational[1, 3],
Rational[1, 6] (3 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fI+v2euzw8zD+83w8RfWC/yifiRdW2
1/tDweDp/l3r47hjea7YfzWdnv1l2Rv7N5kdpa3TvuxfvQoEXtmf/bIiyWfD
Q5j+/aj6j+5Hk4eZb9/QxB5Z43Z2/9cVv6edMDxu/ypb7/oL35v2UXyFrApv
b0H1X7Xfs6BhafLmb/u9ut8c8PzzcH/dtoP1H58dgJr3wR7mnwUPHMXmBz7f
n5s08xDHq6cw+f0w+ayXanU57Hfs66H6D9jVXD4Yc9Eepv7XrNOmVcHf7GPQ
7If5HwDoHZPX
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0257407422132772]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0257407422132772], DiskBox[2, 0.0257407422132772],
DiskBox[3, 0.0257407422132772], DiskBox[4, 0.0257407422132772],
DiskBox[5, 0.0257407422132772], DiskBox[6, 0.0257407422132772],
DiskBox[7, 0.0257407422132772], DiskBox[8, 0.0257407422132772],
DiskBox[9, 0.0257407422132772], DiskBox[10, 0.0257407422132772],
DiskBox[11, 0.0257407422132772], DiskBox[12, 0.0257407422132772],
DiskBox[13, 0.0257407422132772], DiskBox[14, 0.0257407422132772],
DiskBox[15, 0.0257407422132772], DiskBox[16, 0.0257407422132772],
DiskBox[17, 0.0257407422132772], DiskBox[18, 0.0257407422132772],
DiskBox[19, 0.0257407422132772],
DiskBox[20, 0.0257407422132772]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 55, 6, 125, 8, 270, 4, 3, 7, 60, 53, 108, 110, 2, 11, 5, 330,
106, 121, 412}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (-5 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (21 - 33^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, {
Rational[1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[1, 12] (-11 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (3 - 33^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, {
Rational[1, 6] (-3 + 33^Rational[1, 2]), -3^Rational[-1, 2]}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {1, 0}, {
Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2]}, {-1, 0}, {
Rational[1, 12] (11 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 6] (3 + 33^Rational[1, 2]), -3^Rational[-1, 2]}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (-3 - 33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5WbTnBN+fIenvu++kd+2qe20NEH9iv8ol4UbXt
9f4FDxzF5gd+3y9rPMF1eeUje4eDzTp2i9/ZQ/iX7LNeqtXlsN/ZX7/tYP3H
Zwf2Q/Xvh+lH46Obb9/QxB5Z43YXbj6UDzX/0f5X2XrXX/jetI/iK2RVeHvL
3qv7zQHPPw/t61Ds+2AP8w/UfVDzLsHk98Pkf806bVoV/M0+Bmoe1Pz9UPNh
/oXbD1W/H6p+PwBOrYhf
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.02962578701818075]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02962578701818075], DiskBox[2, 0.02962578701818075],
DiskBox[3, 0.02962578701818075], DiskBox[4, 0.02962578701818075],
DiskBox[5, 0.02962578701818075], DiskBox[6, 0.02962578701818075],
DiskBox[7, 0.02962578701818075], DiskBox[8, 0.02962578701818075],
DiskBox[9, 0.02962578701818075], DiskBox[10, 0.02962578701818075],
DiskBox[11, 0.02962578701818075], DiskBox[12, 0.02962578701818075],
DiskBox[13, 0.02962578701818075],
DiskBox[14, 0.02962578701818075], DiskBox[15, 0.02962578701818075],
DiskBox[16, 0.02962578701818075],
DiskBox[17, 0.02962578701818075], DiskBox[18, 0.02962578701818075],
DiskBox[19, 0.02962578701818075],
DiskBox[20, 0.02962578701818075]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 259, 4, 82, 273, 136, 3, 5, 6, 83, 144, 295, 211, 2, 11, 7,
128, 43, 103, 42}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {
Rational[-2, 3], Rational[1, 3] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] + 3 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), -3^Rational[-1, 2]}, {
Rational[1, 3], Rational[1, 3] 11^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (5 + 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 11^Rational[1, 2])}, {-1,
0}, {Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[7, 6], Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 6], Rational[1, 6] 11^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweDp/rNfViT5bPhoDxF9YL/KJ+JF1bbX9q+y
9a6/8L1pH8VXyKrw9tb+X7NOm1YFf9sP5dsveOAoNj/w+f6uKs8X3M27Yfr3
w/Sj8fejmQ8zD26+V/ebA55/Hu6v23aw/uOzA/sh5n/fL2s8wXV55aP9EPde
tUd17wd7mH++mk7P/rLsjf2PLvvTV+vvwOT3w+Sh5ttDzbdfvQoEPkHNewjz
L9x/EPuOwuUBXS+QXw==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0291745738150109]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0291745738150109], DiskBox[2, 0.0291745738150109],
DiskBox[3, 0.0291745738150109], DiskBox[4, 0.0291745738150109],
DiskBox[5, 0.0291745738150109], DiskBox[6, 0.0291745738150109],
DiskBox[7, 0.0291745738150109], DiskBox[8, 0.0291745738150109],
DiskBox[9, 0.0291745738150109], DiskBox[10, 0.0291745738150109],
DiskBox[11, 0.0291745738150109], DiskBox[12, 0.0291745738150109],
DiskBox[13, 0.0291745738150109], DiskBox[14, 0.0291745738150109],
DiskBox[15, 0.0291745738150109], DiskBox[16, 0.0291745738150109],
DiskBox[17, 0.0291745738150109], DiskBox[18, 0.0291745738150109],
DiskBox[19, 0.0291745738150109],
DiskBox[20, 0.0291745738150109]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 322, 4, 82, 25, 154, 5, 240, 6, 23, 170, 241, 321, 2, 166, 3,
298, 79, 13, 152}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {
Rational[1, 6], 3^Rational[1, 2] +
Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[1, 12] (7 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (13 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (-6 - 33^Rational[1, 2]), Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (13 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] + 3 11^Rational[1, 2])}, {
Rational[1, 6] (-3 - 33^Rational[1, 2]), 2 3^Rational[-1, 2]}, {
Rational[7, 6], 3^Rational[1, 2] +
Rational[1, 6] 11^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 3 11^Rational[1, 2])}, {-1,
0}, {2, 3^Rational[1, 2]}, {
Rational[2, 3],
Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, {
1, 3^Rational[1, 2]}, {
Rational[1, 12] (5 - 33^Rational[1, 2]),
Rational[1, 12] (7 3^Rational[1, 2] - 11^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCofUfytZ4AdyYHiOgD+1U+ES+qtr22dzjY
rGO3+N1+WeMJrssrL9mHBrgtjjmxy/5NZkdp67Qv9l7dbw54/nm4/5Zowo45
M3/aQ/Xvh+lf8MBRbH7gf7h+iPwPuPlcpzKmcEc+to/iK2RVeHsLqv75/qAn
d5atzvsL5X+H6v9kv3oVCHxCc+8He5h/GprYI2vczu7/VZ2YekftPVT8w340
bztA7P9tD/H/U/s9CxqWJm/+BlNvD5NfteUE35wj6/dz3U/v2Ffz3B4ApZSC
Dg==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.03673321499249091]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03673321499249091], DiskBox[2, 0.03673321499249091],
DiskBox[3, 0.03673321499249091], DiskBox[4, 0.03673321499249091],
DiskBox[5, 0.03673321499249091], DiskBox[6, 0.03673321499249091],
DiskBox[7, 0.03673321499249091], DiskBox[8, 0.03673321499249091],
DiskBox[9, 0.03673321499249091], DiskBox[10, 0.03673321499249091],
DiskBox[11, 0.03673321499249091], DiskBox[12, 0.03673321499249091],
DiskBox[13, 0.03673321499249091],
DiskBox[14, 0.03673321499249091], DiskBox[15, 0.03673321499249091],
DiskBox[16, 0.03673321499249091],
DiskBox[17, 0.03673321499249091], DiskBox[18, 0.03673321499249091],
DiskBox[19, 0.03673321499249091],
DiskBox[20, 0.03673321499249091]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 30, 6, 135, 87, 26, 4, 355, 7, 69, 349, 122, 149, 2, 114, 5,
189, 73, 90, 108}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny, VertexCoordinates -> {{0, 0}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (3 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (-1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (7 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (-9 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 6] (3 - 33^Rational[1, 2]), 3^Rational[-1, 2]}, {
Rational[1, 12] (-11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (1 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[7, 6], Rational[-1, 6] 11^Rational[1, 2]}, {1, 0}, {
Rational[-1, 2] Rational[11, 3]^Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2]}, {-1, 0}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (9 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[1, 12] (11 - 33^Rational[1, 2]),
Rational[1, 12] (-3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (-3 - 33^Rational[1, 2]),
Rational[1, 12] (5 3^Rational[1, 2] - 3 11^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ5CweCo/dkvK5J8NjzcDxF9YL/KJ+JF1bbX+xua
2CNr3M7u/1WdmHpH7f1+r+43Bzz/PNxft+1g/cdnB+xDA9wWx5zYZf+jy/70
1fo79lD9+2H6Az4odJ9f8RmuH818e4j5d/fLGk9wXV75yP7XrNOmVcHf9kfx
FbIqvL21/1W23vUXvjfh/NWrQOATmns/2MP843CwWcdu8TuoeZdg8vth8lDz
7aHm2R+wq7l8MOaifVeV5wvu5t37s16q1eWw37GH+W/BA0ex+YHP98PkAZE/
kmQ=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035],
DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035],
DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035],
DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035],
DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035],
DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035],
DiskBox[13, 0.02871996521054035],
DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035],
DiskBox[16, 0.02871996521054035],
DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035],
DiskBox[19, 0.02871996521054035],
DiskBox[20, 0.02871996521054035]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 1082, 27, 850, 1290, 1074, 35, 1298, 31, 154, 866, 1282, 830,
23, 39, 43, 842, 370, 1534, 822}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{2, 0}, {
Rational[1, 12] (29 - 33^Rational[1, 2]),
Rational[-1, 12] (86 + 10 33^Rational[1, 2])^Rational[1, 2]}, {
Rational[5, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[
7, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}, {
Rational[1, 12] (23 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (19 - 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[3, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[11, 6], Rational[-1, 6] 11^Rational[1, 2]}, {
Rational[5, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
2, -3^Rational[1, 2]}, {
Rational[1, 12] (13 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (25 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (29 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] - 11^Rational[1, 2])}, {3,
0}, {
Rational[3, 2], Rational[-1, 2] 3^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (35 + 33^Rational[1, 2]), (Rational[-1, 12]
3^Rational[-1, 2]) (3 + 33^Rational[1, 2])}, {
Rational[1, 12] (19 + 33^Rational[1, 2]),
Rational[1, 12] ((-7) 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (35 - 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[
4, 3], (Rational[-1, 6] 3^Rational[-1, 2]) (9 +
33^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQUOMEbUrk7524z/7b12eXiYf3i/HyLK4rDKJ+JF
1bbX9qtXgQCTw54FDUuTN3/bD1H/3b5u28H6j88O7GdNNTnVuuaj/Y8u+9NX
6+9A9f+wh+kPBYO/9me/rEjy2fAQ3fz9MPdA+L/3c53KmMId+dg+iq+QVeHt
LXuI+T/h/NqzT6X2arI7vMnsKG2d9gWqnwPuHzT7ofIf7GEyEP3cDjEQ8/Zf
UrIuEKpncOC6n96xr+b5ft27R/rfNjA7wPwHcf9Xe5j/AWPzgpg=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.02871996521054035]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.02871996521054035], DiskBox[2, 0.02871996521054035],
DiskBox[3, 0.02871996521054035], DiskBox[4, 0.02871996521054035],
DiskBox[5, 0.02871996521054035], DiskBox[6, 0.02871996521054035],
DiskBox[7, 0.02871996521054035], DiskBox[8, 0.02871996521054035],
DiskBox[9, 0.02871996521054035], DiskBox[10, 0.02871996521054035],
DiskBox[11, 0.02871996521054035], DiskBox[12, 0.02871996521054035],
DiskBox[13, 0.02871996521054035],
DiskBox[14, 0.02871996521054035], DiskBox[15, 0.02871996521054035],
DiskBox[16, 0.02871996521054035],
DiskBox[17, 0.02871996521054035], DiskBox[18, 0.02871996521054035],
DiskBox[19, 0.02871996521054035],
DiskBox[20, 0.02871996521054035]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{2, 72, 18, 22, 63, 82, 27, 32, 26, 31, 41, 48, 52, 10, 12, 13,
40, 60, 34, 47}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{
0, Rational[11, 2] Rational[3, 7]^Rational[1, 2]}, {
0, Rational[1, 2] Rational[3, 7]^Rational[1, 2]}, {
0, Rational[1, 2] 21^Rational[1, 2]}, {
Rational[-5, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {
Rational[5, 2] 7^Rational[-1, 2], Rational[3, 7]^Rational[1, 2]}, {
Rational[-5, 2] 7^Rational[-1, 2], 0}, {
Rational[5, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {
0, Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {
Rational[3, 2] 7^Rational[-1, 2], 3
Rational[3, 7]^Rational[1, 2]}, {-7^Rational[-1, 2],
Rational[5, 2] Rational[3, 7]^Rational[1, 2]}, {
Rational[1, 2] 7^Rational[-1, 2], 2
Rational[3, 7]^Rational[1, 2]}, {(-2) 7^Rational[-1, 2],
Rational[3, 2] Rational[3, 7]^Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[3, 2]
Rational[3, 7]^Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[9, 2]
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], 4
Rational[3, 7]^Rational[1, 2]}, {
Rational[1, 2] 7^Rational[-1, 2], 4
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], 2
Rational[3, 7]^Rational[1, 2]}, {
Rational[-1, 2] 7^Rational[-1, 2], Rational[3, 7]^
Rational[1, 2]}, {
2 7^Rational[-1, 2], Rational[5, 2]
Rational[3, 7]^Rational[1, 2]}, {(-3) 7^Rational[-1, 2],
Rational[3, 2] Rational[3, 7]^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNSlZtvspzjcYDxtbbaOL75dMUexm+VE93ZF8Lk
8OBrYMI2m3f79/PfTkzK+W8P5dtD1D+B8ffD9MHkYeph4iWPugOX6/+yf/Pz
b06uyiO4/LPvy59NNLixHyYP4Z+Amv8Fyn8Btf89jG+Pzj/vnXLScyK7A1T/
foh+FgdU81jQ5GHmw/hP4OahuvcT3H4Az6iiGA==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.0343970407859782]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.0343970407859782], DiskBox[2, 0.0343970407859782],
DiskBox[3, 0.0343970407859782], DiskBox[4, 0.0343970407859782],
DiskBox[5, 0.0343970407859782], DiskBox[6, 0.0343970407859782],
DiskBox[7, 0.0343970407859782], DiskBox[8, 0.0343970407859782],
DiskBox[9, 0.0343970407859782], DiskBox[10, 0.0343970407859782],
DiskBox[11, 0.0343970407859782], DiskBox[12, 0.0343970407859782],
DiskBox[13, 0.0343970407859782], DiskBox[14, 0.0343970407859782],
DiskBox[15, 0.0343970407859782], DiskBox[16, 0.0343970407859782],
DiskBox[17, 0.0343970407859782], DiskBox[18, 0.0343970407859782],
DiskBox[19, 0.0343970407859782],
DiskBox[20, 0.0343970407859782]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny], ",",
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 117, 3, 4, 8, 45, 118, 114, 7, 6, 9, 78, 26, 2, 5, 113, 62,
22, 38, 59}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2},
ImageSize -> Tiny,
VertexCoordinates -> {{0, 0}, {
Rational[1, 12] (13 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2]}, {1, 0}, {
Rational[1, 12] (1 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 11^Rational[1, 2])}, {
Rational[1, 12] (7 + 33^Rational[1, 2]), (Rational[1, 12]
3^Rational[-1, 2]) (-15 - 33^Rational[1, 2])}, {
Rational[4, 3],
Rational[1, 6] (3 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[11, 6], Rational[1, 6] 11^Rational[1, 2]}, {-1, 0}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 12] (11 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (17 + 33^Rational[1, 2]),
Rational[1, 12] ((-5) 3^Rational[1, 2] + 11^Rational[1, 2])}, {
Rational[1, 12] (3 + 33^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 3 11^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[5, 6], Rational[1, 6] 11^Rational[1, 2]}, {
Rational[1, 12] (-9 + 33^Rational[1, 2]), (Rational[1, 4]
3^Rational[-1, 2]) (1 - 33^Rational[1, 2])}, {
Rational[1, 12] (-3 + 33^Rational[1, 2]),
Root[1 - 87 #^2 + 36 #^4& , 1, 0]}, {
Rational[-1, 3], (Rational[1, 6] 3^Rational[-1, 2]) (9 - 33^
Rational[1, 2])}, {
Rational[1, 6], Rational[-1, 6] 11^Rational[1, 2]}}}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQjQ6WupY9UPn3w75u28H6j88O7IeIPrBf5RPxomrb
a3sI/4M9TL1X95sDnn8ewtVD9H+w99rl4WH+4f3+UDD4ar9nQcPS5M3f7CH8
v/Znv6xI8tnwEGbeflRXPNgPtW//r1mnTauCv9lH8RWyKry9ZQ/h/7P/0WV/
+mr9nf0LHjiKzQ98bp+bNPMQx6un+9H026O5f//qVSDwCm7/AbuaywdjLu7P
g+pvaGKPrHE7a999veKq44UfUPdf3b9rfRx3LM8VqPuPwvTvBwCLgpGg
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5,
19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {
13, 18}, {17, 19}, {18, 20}}, 0.030021405881908034`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.030021405881908034], DiskBox[2, 0.030021405881908034],
DiskBox[3, 0.030021405881908034],
DiskBox[4, 0.030021405881908034], DiskBox[5, 0.030021405881908034],
DiskBox[6, 0.030021405881908034],
DiskBox[7, 0.030021405881908034], DiskBox[8, 0.030021405881908034],
DiskBox[9, 0.030021405881908034],
DiskBox[10, 0.030021405881908034],
DiskBox[11, 0.030021405881908034],
DiskBox[12, 0.030021405881908034],
DiskBox[13, 0.030021405881908034],
DiskBox[14, 0.030021405881908034],
DiskBox[15, 0.030021405881908034],
DiskBox[16, 0.030021405881908034],
DiskBox[17, 0.030021405881908034],
DiskBox[18, 0.030021405881908034],
DiskBox[19, 0.030021405881908034],
DiskBox[20, 0.030021405881908034]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->Tiny]}], "}"}]], "Output",
CellLabel->
"Out[188]=",ExpressionUUID->"5be09209-cd4a-4c69-8ecd-a22d5d5dbefc"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Matchstick", "Subsubsection",ExpressionUUID->"2b5e045b-b9ac-438b-a83f-469092230192"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[134]:=",ExpressionUUID->"ec4589ff-c1a9-4c9a-8b6c-3f50068a8bde"],
Cell[BoxData["False"], "Output",
CellLabel->
"Out[134]=",ExpressionUUID->"b4e2c91f-33e5-48e8-ab24-da71e927c16e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], "//", "StyleGraphs"}]], "Input",
CellLabel->
"In[135]:=",ExpressionUUID->"4cf46922-ed30-40b0-969a-60c2b6725144"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[135]=",ExpressionUUID->"f052d6c3-6323-43f0-870c-8c16b39c299f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D default", "Subsubsection",ExpressionUUID->"2fe9222b-fe63-463a-8d45-7d27ed22b1af"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graph3D", "[",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
"]"}]], "Input",
CellLabel->
"In[136]:=",ExpressionUUID->"75395905-d1a4-437a-9f59-78f66595df99"],
Cell[BoxData[
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 14, 15, 16, 2, 5, 6, 13, 3, 7, 19, 4, 8, 20, 11, 12, 9, 10, 17,
18}, {Null, {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}, {9, 10}, {
9, 2}, {9, 11}, {12, 13}, {12, 3}, {12, 14}, {6, 15}, {6, 11}, {7,
16}, {7, 14}, {10, 15}, {10, 4}, {13, 16}, {13, 4}, {17, 18}, {17,
2}, {17, 19}, {18, 3}, {18, 20}, {15, 16}, {8, 19}, {8, 20}, {19,
11}, {20, 14}}}, {GraphLayout -> {"Dimension" -> 3}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJwB8QEO/iFib1JlAgAAABQAAAADAAAA2n83sYMJBEA9DwgsQyf0P46f9zyD
7d8/zlKUs9AR/T/0rFvs/tDiPwhbJCIo3Mw/5uZ2KBq3AECV6w51AFgBQO6n
wzU3V9w/LWDYBa3vBUBezqio2GTxP98bIjW2Rvc/aFFKBY1gzj+bwYMBxtL2
P1bYERXbGQFA8c9TNN3i5D9ve9cMTZbgP+MFHJC+jgFAlilTnH+d7T9AOFL7
48gAQPDpc5OHSQNAAAAAAAAAAADYEor8ypH5P7ydfKLI6PI/sadC10AO+j8A
AAAAAAAAAKobuzilMPA/gagE05OaAUCszhAbfL/TP5K6MGsHXPw/BvvdTCWC
5T94GjO6i4vAP6Vmglw7YPQ/7NFXz26RAEDYNQm+53MEQHGQ/E0I0vU/qmpP
lhHLA0AacFpj9jb+P97+pWwD0/8/ee2rBZPR8T8o+/RsVHwFQFIrmkKl/fk/
g7cIJ1qP+T+bNtv/pSbkP4V4qXf2BgRAxiXfnMlD/D+ktpkx2LD5P0WOlbDA
FwVAjWToQ+Q97z8460eOwknxPwAAAAAAAAAA173++tpP8j+q1IMeO3UAQPDz
g5/APcE/LM58eDM00T/2ooykV4HpP59EjwmOtOQ/DQqT0e5Q4T+wmF+1jwQD
QCdjZENqses/a/Hiow==
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 2}, {1, 3}, {1, 4}, {2, 9}, {2, 17}, {3,
12}, {3, 18}, {4, 10}, {4, 13}, {5, 6}, {5, 7}, {5, 8}, {6, 11}, {6,
15}, {7, 14}, {7, 16}, {8, 19}, {8, 20}, {9, 10}, {9, 11}, {10,
15}, {11, 19}, {12, 13}, {12, 14}, {13, 16}, {14, 20}, {15, 16}, {
17, 18}, {17, 19}, {18, 20}}], 0.05672102614788668]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.05672102614788668],
SphereBox[2, 0.05672102614788668], SphereBox[3, 0.05672102614788668],
SphereBox[4, 0.05672102614788668],
SphereBox[5, 0.05672102614788668], SphereBox[6, 0.05672102614788668],
SphereBox[7, 0.05672102614788668],
SphereBox[8, 0.05672102614788668], SphereBox[9, 0.05672102614788668],
SphereBox[10, 0.05672102614788668],
SphereBox[11, 0.05672102614788668],
SphereBox[12, 0.05672102614788668],
SphereBox[13, 0.05672102614788668],
SphereBox[14, 0.05672102614788668],
SphereBox[15, 0.05672102614788668],
SphereBox[16, 0.05672102614788668],
SphereBox[17, 0.05672102614788668],
SphereBox[18, 0.05672102614788668],
SphereBox[19, 0.05672102614788668],
SphereBox[20, 0.05672102614788668]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output",
CellLabel->
"Out[136]=",ExpressionUUID->"fc61cbab-6965-4e6c-bc56-91ee9f5b2e54"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D All", "Subsubsection",ExpressionUUID->"62dbb921-cc4c-40c6-b11f-8c92dd50d1f2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input",
CellLabel->
"In[137]:=",ExpressionUUID->"6a2d026d-0f8d-4e70-861b-1aba37e84c58"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+
9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m
Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY
DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.04688229301851682]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682],
SphereBox[2, 0.04688229301851682],
SphereBox[3, 0.04688229301851682],
SphereBox[4, 0.04688229301851682],
SphereBox[5, 0.04688229301851682],
SphereBox[6, 0.04688229301851682],
SphereBox[7, 0.04688229301851682],
SphereBox[8, 0.04688229301851682],
SphereBox[9, 0.04688229301851682],
SphereBox[10, 0.04688229301851682],
SphereBox[11, 0.04688229301851682],
SphereBox[12, 0.04688229301851682],
SphereBox[13, 0.04688229301851682],
SphereBox[14, 0.04688229301851682],
SphereBox[15, 0.04688229301851682],
SphereBox[16, 0.04688229301851682],
SphereBox[17, 0.04688229301851682],
SphereBox[18, 0.04688229301851682],
SphereBox[19, 0.04688229301851682],
SphereBox[20, 0.04688229301851682]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2],
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], 0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu
3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH
ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c
HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw==
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206],
SphereBox[2, 0.05687975353745206],
SphereBox[3, 0.05687975353745206],
SphereBox[4, 0.05687975353745206],
SphereBox[5, 0.05687975353745206],
SphereBox[6, 0.05687975353745206],
SphereBox[7, 0.05687975353745206],
SphereBox[8, 0.05687975353745206],
SphereBox[9, 0.05687975353745206],
SphereBox[10, 0.05687975353745206],
SphereBox[11, 0.05687975353745206],
SphereBox[12, 0.05687975353745206],
SphereBox[13, 0.05687975353745206],
SphereBox[14, 0.05687975353745206],
SphereBox[15, 0.05687975353745206],
SphereBox[16, 0.05687975353745206],
SphereBox[17, 0.05687975353745206],
SphereBox[18, 0.05687975353745206],
SphereBox[19, 0.05687975353745206],
SphereBox[20, 0.05687975353745206]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f
N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY
PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw
GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`],
SphereBox[2, 0.028840440412235047`],
SphereBox[3, 0.028840440412235047`],
SphereBox[4, 0.028840440412235047`],
SphereBox[5, 0.028840440412235047`],
SphereBox[6, 0.028840440412235047`],
SphereBox[7, 0.028840440412235047`],
SphereBox[8, 0.028840440412235047`],
SphereBox[9, 0.028840440412235047`],
SphereBox[10, 0.028840440412235047`],
SphereBox[11, 0.028840440412235047`],
SphereBox[12, 0.028840440412235047`],
SphereBox[13, 0.028840440412235047`],
SphereBox[14, 0.028840440412235047`],
SphereBox[15, 0.028840440412235047`],
SphereBox[16, 0.028840440412235047`],
SphereBox[17, 0.028840440412235047`],
SphereBox[18, 0.028840440412235047`],
SphereBox[19, 0.028840440412235047`],
SphereBox[20, 0.028840440412235047`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2], 0}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH
F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc
+lH9i9MfGOEBANi4z38=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`],
SphereBox[2, 0.038869883502168634`],
SphereBox[3, 0.038869883502168634`],
SphereBox[4, 0.038869883502168634`],
SphereBox[5, 0.038869883502168634`],
SphereBox[6, 0.038869883502168634`],
SphereBox[7, 0.038869883502168634`],
SphereBox[8, 0.038869883502168634`],
SphereBox[9, 0.038869883502168634`],
SphereBox[10, 0.038869883502168634`],
SphereBox[11, 0.038869883502168634`],
SphereBox[12, 0.038869883502168634`],
SphereBox[13, 0.038869883502168634`],
SphereBox[14, 0.038869883502168634`],
SphereBox[15, 0.038869883502168634`],
SphereBox[16, 0.038869883502168634`],
SphereBox[17, 0.038869883502168634`],
SphereBox[18, 0.038869883502168634`],
SphereBox[19, 0.038869883502168634`],
SphereBox[20, 0.038869883502168634`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output",
CellLabel->
"Out[137]=",ExpressionUUID->"909e5147-b1e3-4b51-8a8c-a6a5412cdf43"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D UnitDistance", "Subsubsection",ExpressionUUID->"6dc555d2-6057-47a8-b561-239a9bf6c23d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}],
"]"}]], "Input",
CellLabel->
"In[138]:=",ExpressionUUID->"af5395e5-e01a-4884-acdf-f975b09dfe3a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2],
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], 0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu
3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH
ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c
HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw==
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206],
SphereBox[2, 0.05687975353745206],
SphereBox[3, 0.05687975353745206],
SphereBox[4, 0.05687975353745206],
SphereBox[5, 0.05687975353745206],
SphereBox[6, 0.05687975353745206],
SphereBox[7, 0.05687975353745206],
SphereBox[8, 0.05687975353745206],
SphereBox[9, 0.05687975353745206],
SphereBox[10, 0.05687975353745206],
SphereBox[11, 0.05687975353745206],
SphereBox[12, 0.05687975353745206],
SphereBox[13, 0.05687975353745206],
SphereBox[14, 0.05687975353745206],
SphereBox[15, 0.05687975353745206],
SphereBox[16, 0.05687975353745206],
SphereBox[17, 0.05687975353745206],
SphereBox[18, 0.05687975353745206],
SphereBox[19, 0.05687975353745206],
SphereBox[20, 0.05687975353745206]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f
N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY
PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw
GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`],
SphereBox[2, 0.028840440412235047`],
SphereBox[3, 0.028840440412235047`],
SphereBox[4, 0.028840440412235047`],
SphereBox[5, 0.028840440412235047`],
SphereBox[6, 0.028840440412235047`],
SphereBox[7, 0.028840440412235047`],
SphereBox[8, 0.028840440412235047`],
SphereBox[9, 0.028840440412235047`],
SphereBox[10, 0.028840440412235047`],
SphereBox[11, 0.028840440412235047`],
SphereBox[12, 0.028840440412235047`],
SphereBox[13, 0.028840440412235047`],
SphereBox[14, 0.028840440412235047`],
SphereBox[15, 0.028840440412235047`],
SphereBox[16, 0.028840440412235047`],
SphereBox[17, 0.028840440412235047`],
SphereBox[18, 0.028840440412235047`],
SphereBox[19, 0.028840440412235047`],
SphereBox[20, 0.028840440412235047`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2], 0}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH
F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc
+lH9i9MfGOEBANi4z38=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`],
SphereBox[2, 0.038869883502168634`],
SphereBox[3, 0.038869883502168634`],
SphereBox[4, 0.038869883502168634`],
SphereBox[5, 0.038869883502168634`],
SphereBox[6, 0.038869883502168634`],
SphereBox[7, 0.038869883502168634`],
SphereBox[8, 0.038869883502168634`],
SphereBox[9, 0.038869883502168634`],
SphereBox[10, 0.038869883502168634`],
SphereBox[11, 0.038869883502168634`],
SphereBox[12, 0.038869883502168634`],
SphereBox[13, 0.038869883502168634`],
SphereBox[14, 0.038869883502168634`],
SphereBox[15, 0.038869883502168634`],
SphereBox[16, 0.038869883502168634`],
SphereBox[17, 0.038869883502168634`],
SphereBox[18, 0.038869883502168634`],
SphereBox[19, 0.038869883502168634`],
SphereBox[20, 0.038869883502168634`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output",
CellLabel->
"Out[138]=",ExpressionUUID->"9d3a01df-5eed-4bc4-89f1-5894b0745160"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D Polyhedron", "Subsubsection",ExpressionUUID->"95c1d4f7-fa4d-410f-b298-c8888353e44b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[139]:=",ExpressionUUID->"76206053-d8b3-48ac-b4c6-388db81195cd"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[139]=",ExpressionUUID->"a0cd78d3-4ee9-46d7-88f2-916a316c3df3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}],
"]"}]], "Input",
CellLabel->
"In[140]:=",ExpressionUUID->"44f5e6c6-5c35-4a06-9cd4-7611975801eb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+
9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m
Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY
DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.04688229301851682]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682],
SphereBox[2, 0.04688229301851682],
SphereBox[3, 0.04688229301851682],
SphereBox[4, 0.04688229301851682],
SphereBox[5, 0.04688229301851682],
SphereBox[6, 0.04688229301851682],
SphereBox[7, 0.04688229301851682],
SphereBox[8, 0.04688229301851682],
SphereBox[9, 0.04688229301851682],
SphereBox[10, 0.04688229301851682],
SphereBox[11, 0.04688229301851682],
SphereBox[12, 0.04688229301851682],
SphereBox[13, 0.04688229301851682],
SphereBox[14, 0.04688229301851682],
SphereBox[15, 0.04688229301851682],
SphereBox[16, 0.04688229301851682],
SphereBox[17, 0.04688229301851682],
SphereBox[18, 0.04688229301851682],
SphereBox[19, 0.04688229301851682],
SphereBox[20, 0.04688229301851682]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], 0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2],
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], 0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIK5cXcyzkvXbfgYo4A1eyHvq0gV7qLg9mvj+p8xu
3B0Wt/eH/Dp9dvfHL/th6tHE7WHiW8O4O79d+Gi/4sv02eWPX+7HIQ5XD7MH
ph6mDk0crh/izmdQ9z+Aqd+PJm6PJm6Ppt4eTRxuPsRfr+HhADMHRqP5C13c
HjXcXu9HMwfubzT/7kcTh7v/CSSc7dHCH10cbi8AXNXxiw==
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.05687975353745206]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.05687975353745206],
SphereBox[2, 0.05687975353745206],
SphereBox[3, 0.05687975353745206],
SphereBox[4, 0.05687975353745206],
SphereBox[5, 0.05687975353745206],
SphereBox[6, 0.05687975353745206],
SphereBox[7, 0.05687975353745206],
SphereBox[8, 0.05687975353745206],
SphereBox[9, 0.05687975353745206],
SphereBox[10, 0.05687975353745206],
SphereBox[11, 0.05687975353745206],
SphereBox[12, 0.05687975353745206],
SphereBox[13, 0.05687975353745206],
SphereBox[14, 0.05687975353745206],
SphereBox[15, 0.05687975353745206],
SphereBox[16, 0.05687975353745206],
SphereBox[17, 0.05687975353745206],
SphereBox[18, 0.05687975353745206],
SphereBox[19, 0.05687975353745206],
SphereBox[20, 0.05687975353745206]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 2, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 3, 0],
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 100 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 1, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIF6f6Pm7+vSV/QxQ8ITZjbvD4rY9VNweJv4UIr6f
N3gh76lLF+wTdBdMVCw6sR+mHk3cHiZ+o+OTvcGWnfsDXuqbvz92GZc43ByY
PTD1MHVo4vth4hB3HoG6/8H+6xBxezRxezRxe5h6NHNg4nB7If56AA8fmDkw
GuZOmPvQxPejhtsDeHjCzIf5G2YOTD+aONxcaDjvh4U/WrzAxOHuAQDRkeAF
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.028840440412235047`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.028840440412235047`],
SphereBox[2, 0.028840440412235047`],
SphereBox[3, 0.028840440412235047`],
SphereBox[4, 0.028840440412235047`],
SphereBox[5, 0.028840440412235047`],
SphereBox[6, 0.028840440412235047`],
SphereBox[7, 0.028840440412235047`],
SphereBox[8, 0.028840440412235047`],
SphereBox[9, 0.028840440412235047`],
SphereBox[10, 0.028840440412235047`],
SphereBox[11, 0.028840440412235047`],
SphereBox[12, 0.028840440412235047`],
SphereBox[13, 0.028840440412235047`],
SphereBox[14, 0.028840440412235047`],
SphereBox[15, 0.028840440412235047`],
SphereBox[16, 0.028840440412235047`],
SphereBox[17, 0.028840440412235047`],
SphereBox[18, 0.028840440412235047`],
SphereBox[19, 0.028840440412235047`],
SphereBox[20, 0.028840440412235047`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], ",",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2], 0}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2]}, {0, Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[-1, 2]}, {Rational[1, 4] (1 - 5^Rational[1, 2]),
Rational[-1, 2], 0}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (-1 + 5^Rational[1, 2]),
Rational[1, 2], 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (-1 + 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (1 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIA54qW/+/thlewYweLCfAQqg4lD+A3sGFIDgo+lH
F9+/4sv02eWPX8JoezQaXRyXOlw0QfeiiaOrx+VueHjg0k+ku+H+x2Ufujpc
+lH9i9MfGOEBANi4z38=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5,
11}, {5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8,
16}, {9, 10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13,
17}, {13, 18}, {17, 19}, {18, 20}}], 0.038869883502168634`]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.038869883502168634`],
SphereBox[2, 0.038869883502168634`],
SphereBox[3, 0.038869883502168634`],
SphereBox[4, 0.038869883502168634`],
SphereBox[5, 0.038869883502168634`],
SphereBox[6, 0.038869883502168634`],
SphereBox[7, 0.038869883502168634`],
SphereBox[8, 0.038869883502168634`],
SphereBox[9, 0.038869883502168634`],
SphereBox[10, 0.038869883502168634`],
SphereBox[11, 0.038869883502168634`],
SphereBox[12, 0.038869883502168634`],
SphereBox[13, 0.038869883502168634`],
SphereBox[14, 0.038869883502168634`],
SphereBox[15, 0.038869883502168634`],
SphereBox[16, 0.038869883502168634`],
SphereBox[17, 0.038869883502168634`],
SphereBox[18, 0.038869883502168634`],
SphereBox[19, 0.038869883502168634`],
SphereBox[20, 0.038869883502168634`]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]}], "}"}]], "Output",
CellLabel->
"Out[140]=",ExpressionUUID->"8bc08d98-4990-4354-8382-38ccbee68a95"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"FaceForm", "[",
RowBox[{"Green", ",", "Red"}], "]"}], ",",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]}], "}"}], "]"}]], "Input",
CellLabel->
"In[141]:=",ExpressionUUID->"220e9a0a-47d3-4c75-8611-5a899d089108"],
Cell[BoxData[
Graphics3DBox[
{FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]],
PolyhedronBox[
NCache[{{Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}}, {{-1.0514622242382672`, 0,
0.20081141588622728`}, {
1.0514622242382672`,
0, -0.2008114158862273}, {-0.32491969623290634`, -1,
0.20081141588622728`}, {-0.32491969623290634`, 1,
0.20081141588622728`}, {0.8506508083520399, -0.6180339887498949,
0.20081141588622728`}, {0.8506508083520399, 0.6180339887498949,
0.20081141588622728`}, {-0.2008114158862273, -0.6180339887498949,
0.8506508083520399}, {-0.2008114158862273, 0.6180339887498949,
0.8506508083520399}, {-0.5257311121191336, -0.3819660112501051, \
-0.85065080835204}, {-0.5257311121191336,
0.3819660112501051, -0.85065080835204}, {
0.5257311121191336, -0.3819660112501051, 0.8506508083520399}, {
0.5257311121191336, 0.3819660112501051, 0.8506508083520399}, {
0.6498393924658127,
0, -0.85065080835204}, {-0.85065080835204, -0.6180339887498949, \
-0.2008114158862273}, {-0.85065080835204,
0.6180339887498949, -0.2008114158862273}, {-0.6498393924658127, 0,
0.8506508083520399}, {
0.20081141588622728`, -0.6180339887498949, -0.85065080835204}, {
0.20081141588622728`, 0.6180339887498949, -0.85065080835204}, {
0.32491969623290634`, -1, -0.2008114158862273}, {
0.32491969623290634`, 1, -0.2008114158862273}}], {{1, 14, 3, 7, 16}, {
15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {6, 12, 11, 5, 2}, {2, 5, 19, 17,
13}, {13, 18, 20, 6, 2}, {19, 5, 11, 7, 3}, {3, 14, 9, 17, 19}, {4, 8, 12,
6, 20}, {20, 18, 10, 15, 4}, {7, 11, 12, 8, 16}, {9, 10, 18, 13,
17}}]}]], "Output",
CellLabel->
"Out[141]=",ExpressionUUID->"f656b054-9f22-4f97-a235-3cbba1b0f1a0"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D Canonical", "Subsubsection",ExpressionUUID->"d0b1f09b-c8ad-48d7-bfd5-e87bb21a5f99"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\<3D\>\"", ",", "\"\\""}], "}"}]}], "]"}]], "Input",\
CellLabel->
"In[142]:=",ExpressionUUID->"a1fa4da1-e161-40b7-83a3-09a6c6ce8f46"],
Cell[BoxData[
RowBox[{"{",
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {
11}, {16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {
5}, {7}, {12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {
1}, {4}, {10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {
3}, {5}, {17}, {4}, {6}, {18}}}, Pattern}]}, {
GraphLayout -> {"Dimension" -> 3}, VertexCoordinates -> {{
Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0,
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1,
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJxTTMoPSmViYGAQAWJmIOYNXsh76tKH/QxQcL3jk73BlpP2UHF7mPgNiPj+
9Ymev6tPX4Gq/7Afph5N3B4m/oTZjbvD4rV9wEt98/fHHu/HIQ5XD7MHph6m
Dk0crh/izgf7E3QXTFQsurH/KUR8P5q4PZq4PUw9mjkwcbj5EH89gYcDzBwY
DXMnzH1o4vao4fYEHs4w82H+hpkD048mDnc/NJztYeGPFi8wcbi9ADa044U=
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {
5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13,
18}, {17, 19}, {18, 20}}], 0.04688229301851682]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.04688229301851682],
SphereBox[2, 0.04688229301851682],
SphereBox[3, 0.04688229301851682],
SphereBox[4, 0.04688229301851682],
SphereBox[5, 0.04688229301851682],
SphereBox[6, 0.04688229301851682],
SphereBox[7, 0.04688229301851682],
SphereBox[8, 0.04688229301851682],
SphereBox[9, 0.04688229301851682],
SphereBox[10, 0.04688229301851682],
SphereBox[11, 0.04688229301851682],
SphereBox[12, 0.04688229301851682],
SphereBox[13, 0.04688229301851682],
SphereBox[14, 0.04688229301851682],
SphereBox[15, 0.04688229301851682],
SphereBox[16, 0.04688229301851682],
SphereBox[17, 0.04688229301851682],
SphereBox[18, 0.04688229301851682],
SphereBox[19, 0.04688229301851682],
SphereBox[20, 0.04688229301851682]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}], "}"}]], "Output",
CellLabel->
"Out[142]=",ExpressionUUID->"67188992-8845-4ec2-89d3-42f11839e135"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",",
RowBox[{"GraphData", "[",
RowBox[{
"\"\\"", ",", "\"\\"", ",",
"\"\\""}], "]"}], ",", "Yellow", ",",
RowBox[{"Sphere", "[", "]"}]}], "}"}], "]"}]], "Input",
CellLabel->
"In[143]:=",ExpressionUUID->"85b970bd-4370-442b-8820-fdb87e448f98"],
Cell[BoxData[
Graphics3DBox[
{RGBColor[1, 0, 0], Opacity[0.5],
PolyhedronBox[
NCache[{{Root[16 - 20 #^2 + 5 #^4& , 2, 0], 0, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[16 - 20 #^2 + 5 #^4& , 3, 0], 0, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], -1, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 2, 0], 1, Root[
1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 2, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 2, 0], Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (-3 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (3 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 3, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 + 5^Rational[1, 2]),
Root[1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[16 - 40 #^2 + 5 #^4& , 2, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0], Rational[1, 2] (1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 3, 0],
Rational[1, 2] (-1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], -1, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}, {
Root[1 - 10 #^2 + 5 #^4& , 3, 0], 1, Root[
1 - 25 #^2 + 5 #^4& , 2, 0]}}, {{-1.0514622242382672`, 0,
0.20081141588622728`}, {
1.0514622242382672`,
0, -0.2008114158862273}, {-0.32491969623290634`, -1,
0.20081141588622728`}, {-0.32491969623290634`, 1,
0.20081141588622728`}, {0.8506508083520399, -0.6180339887498949,
0.20081141588622728`}, {0.8506508083520399, 0.6180339887498949,
0.20081141588622728`}, {-0.2008114158862273, -0.6180339887498949,
0.8506508083520399}, {-0.2008114158862273, 0.6180339887498949,
0.8506508083520399}, {-0.5257311121191336, -0.3819660112501051, \
-0.85065080835204}, {-0.5257311121191336,
0.3819660112501051, -0.85065080835204}, {
0.5257311121191336, -0.3819660112501051, 0.8506508083520399}, {
0.5257311121191336, 0.3819660112501051, 0.8506508083520399}, {
0.6498393924658127,
0, -0.85065080835204}, {-0.85065080835204, -0.6180339887498949, \
-0.2008114158862273}, {-0.85065080835204,
0.6180339887498949, -0.2008114158862273}, {-0.6498393924658127, 0,
0.8506508083520399}, {
0.20081141588622728`, -0.6180339887498949, -0.85065080835204}, {
0.20081141588622728`, 0.6180339887498949, -0.85065080835204}, {
0.32491969623290634`, -1, -0.2008114158862273}, {
0.32491969623290634`, 1, -0.2008114158862273}}], {{1, 14, 3, 7, 16}, {
15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {6, 12, 11, 5, 2}, {2, 5, 19, 17,
13}, {13, 18, 20, 6, 2}, {19, 5, 11, 7, 3}, {3, 14, 9, 17, 19}, {4, 8, 12,
6, 20}, {20, 18, 10, 15, 4}, {7, 11, 12, 8, 16}, {9, 10, 18, 13, 17}}],
{RGBColor[1, 1, 0], SphereBox[{0, 0, 0}]}}]], "Output",
CellLabel->
"Out[143]=",ExpressionUUID->"bee9a666-bd4c-49d4-b9ec-7967b13505ab"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["3D Canonical construction", "Subsubsection",ExpressionUUID->"22115181-0253-4838-a9c0-1233f52ee399"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"FaceForm", "[",
RowBox[{"Green", ",", "Red"}], "]"}], ",",
RowBox[{"poly", "=",
RowBox[{"GraphPolyhedron", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"-", "1"}]}], "]"}]}]}], "}"}], "]"}]], "Input",
CellLabel->
"In[145]:=",ExpressionUUID->"1df6e35b-48a6-4bc4-acf9-45f09f834136"],
Cell[BoxData[
Graphics3DBox[
{FaceForm[RGBColor[0, 1, 0], RGBColor[1, 0, 0]],
PolyhedronBox[CompressedData["
1:eJwB8QEO/iFib1JlAgAAABQAAAADAAAAczm7QDad5T9QFr9XSkjnv8YhJdFj
vL4/NmfHfzWe5b+zZGgRrUfnP5p9LbJHrb6/1Bv9yEgMuT+pjfPwUUTgvw6u
RWTpYOu/Csa8G3P94D82BuPks/XFP/QBHd46juo/0EcbKiTj2b/7iM/0hNXg
P/nzLK9j8Oe/ZabA+ttuwb+1CYV8YkfuP5ulZPJbyNI/OprWZFig4z/pZter
hIKTvw0T+4drROm/d61OdD0v7D8ec/T2g63ZP+rWubZbGdA//1+2akX53b+S
SbRKaCjsv9Uxpxx1cbQ/TwPMIAtm07+C86He6tjjv8CAr8ndJuc/4ef8C2Fg
0z8hUi5ADtjjP1SxO2bKKOe/OyJAXrD43T8N5vO+uijsP+A1d5OzYrS/IMH2
5jUL778QgW02ecrDP8jqENwq78c/MP1Mzp+BwT8dJxkNskfuv9lWmMv8wdK/
eDBUCCfb2T94L0rqP9Xgv7d3e6288uc/WDrpzaYL7z8NfMCgoMjDv4tVOUGJ
58e/Z0q82j4u7L+VgP2pQq7Zv9dAWkghH9C/taXKVF+h478Q/KYWenGTPw69
pYuiQ+k/1bxoGCf94L+KcbZa5fDFv7QB9hCrjuq/t04YvS34uL/6Hmqb/0Pg
P5A4+MNjYes/BhcKXw==
"], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11,
5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9,
17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {
10, 18, 13, 17, 9}}]}]], "Output",
CellLabel->
"Out[145]=",ExpressionUUID->"3c76a681-4ea7-4a8c-8c4b-310743c2a2de"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"can", "=",
RowBox[{"FindCanonicalPolyhedron", "[",
RowBox[{"poly", ",",
RowBox[{"WorkingPrecision", "->", "50"}], ",",
RowBox[{"MaxIterations", "->", "50000"}], ",",
RowBox[{"PrecisionGoal", "->", "20"}], ",",
RowBox[{"\"\\"", "->", "1000"}], ",",
RowBox[{"\"\\"", "->",
RowBox[{"1", "/", "10"}]}], ",",
RowBox[{"\"\\"", "->",
RowBox[{"1", "/", "10"}]}], ",",
RowBox[{"Debug", "->", "True"}]}], "]"}]}], ")"}], "//",
"Timing"}]], "Input",
CellLabel->
"In[146]:=",ExpressionUUID->"e9b04051-436c-42a7-ba5a-9751d4417478"],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Starting FindCanonicalPolyhedron with maxits: \"\>",
"\[InvisibleSpace]", "50000", "\[InvisibleSpace]", "\<\", prec: \"\>",
"\[InvisibleSpace]", "50", "\[InvisibleSpace]", "\<\", goal: \"\>",
"\[InvisibleSpace]", "20",
"\[InvisibleSpace]", "\<\", tangentfactor: \"\>", "\[InvisibleSpace]",
FractionBox["1", "10"], "\[InvisibleSpace]", "\<\", planarfactor: \"\>",
"\[InvisibleSpace]",
FractionBox["1", "10"]}],
SequenceForm[
"Starting FindCanonicalPolyhedron with maxits: ", 50000, ", prec: ", 50,
", goal: ", 20, ", tangentfactor: ",
Rational[1, 10], ", planarfactor: ",
Rational[1, 10]],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[146]:=",ExpressionUUID->"770699f0-640d-4c6f-9146-65117752c57c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "1000",
"\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]",
InterpretationBox[
StyleBox[
"1.37073173528549391104771550347999269945384299232`36.411077697457216*^-\
11",
ShowStringCharacters->True,
NumberMarks->True],
InputForm[
1.37073173528549391104771550347999269945384299232`36.411077697457216*^-11],
AutoDelete->True,
Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>",
"\[InvisibleSpace]", "4"}],
SequenceForm["it: ", 1000, ", maxChange: ",
InputForm[
1.37073173528549391104771550347999269945384299232`36.411077697457216*^-11],
", dt: ", 4],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[146]:=",ExpressionUUID->"41192d31-f3c8-4059-80e3-3a2f8cc333c5"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "2000",
"\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]",
InterpretationBox[
StyleBox[
"5.61328128160469022587399275024260208591135`31.023342038855127*^-17",
ShowStringCharacters->True,
NumberMarks->True],
InputForm[
5.61328128160469022587399275024260208591135`31.023342038855127*^-17],
AutoDelete->True,
Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>",
"\[InvisibleSpace]", "8"}],
SequenceForm["it: ", 2000, ", maxChange: ",
InputForm[
5.61328128160469022587399275024260208591135`31.023342038855127*^-17],
", dt: ", 8],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[146]:=",ExpressionUUID->"63e315c8-dfa3-4939-99d4-3e05bb93c453"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"it: \"\>", "\[InvisibleSpace]", "2697",
"\[InvisibleSpace]", "\<\", maxChange: \"\>", "\[InvisibleSpace]",
InterpretationBox[
StyleBox["9.8902336741051078439757466448131862638`27.26933178627425*^-21",
ShowStringCharacters->True,
NumberMarks->True],
InputForm[9.8902336741051078439757466448131862638`27.26933178627425*^-21],
AutoDelete->True,
Editable->True], "\[InvisibleSpace]", "\<\", dt: \"\>",
"\[InvisibleSpace]", "10"}],
SequenceForm["it: ", 2697, ", maxChange: ",
InputForm[9.8902336741051078439757466448131862638`27.26933178627425*^-21],
", dt: ", 10],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[146]:=",ExpressionUUID->"7bcadedd-ee5b-47ba-8e59-0ba43f7cb122"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"10.386437`", ",",
InterpretationBox[
RowBox[{
TagBox["Polyhedron",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready",
Typeset`spolyhedron$$ = Quiet[
Polyhedron[{{
0.7231635472939987137541790307472726624302397147252362876872836758045\
057116906`50., \
-0.778754719970331262715376328601079875464588736689347027868947806347376899291\
`50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\
9117512`50.}, \
{-0.72316354729399871391599296659100483465171241996069201848487831591281756377\
992`50., 0.\
77875471997033126265756089847860796146423630990612564913251535666583487646651`\
50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\
5438148`50.}, {
0.1046706078686111452734238546477794287241475234539559343078546974083\
2136509776`50., \
-0.544227081528853538489712943670372758564885084920303341813187708637615306487\
33`50., -0.\
915837857554118308555336588507369576258302332940424207307784139382341287202`\
50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\
39511847`50.,
0.183608829283647503459712866119242135147261474000612043984929536230\
8406973339`50.,
0.888425870477648720607239394532194225382531643878915128509584610295\
27545094946`50.}, \
{-0.43251262302358421341886855415824600200764298981542658141487024603155723400\
036`50., 0.\
56308251958320487883281245903175992880933766688648905721748656330353932274647`\
50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\
5191037`50.}, \
{-0.14601717847605587567221820801799905412366923920383938245181216374094707696\
802`50., 1.\
01290985069806761766531458539973681132412914418132020533662637028923599413417`\
50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\
802181`50.}, {
0.6562633907329057524931724751182066309983894112007376028757958426298\
1574903605`50., \
-0.020410069513121564954951714672287680448257047680534704723918886069318641356\
1`50., -0.\
84545835189945014414697645845322545311419760172161217292687224712814869586564`\
50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\
04947043`50.,
0.429417261601741173660101664908025323157501071705928630523557362245\
56080261942`50.,
0.269637956692778297432602215718467405228487825042080278395216370839\
41815020235`50.}, \
{-0.50132981820742977160769956418530383504117846687088630768742322001416061582\
575`50., -0.\
94195347974085720127831437734894528887488827258173135752722124542549768397809`\
50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\
206489`50.}, \
{-0.32426589585504652087563126243650930418068212067845550995371680864218324449\
629`50., -0.\
66394490004321889863801198596055598486958145395343058456534633489074315070106`\
50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\
805349`50.}, {
0.3242658958550465199360004774773892684307491202176590424731940471836\
13681878`50.,
0.663944900043218898802132437253682562711793731590082756337362315015\
93278020396`50., \
-0.774549438216980210778999518879135262941306742931189157659544540861039365588\
42`50.}, {
0.5013298182074297716105899317789314364967401448899662411206220614977\
963418464`50.,
0.941953479740857201243250952262355718417808012533122993073650816633\
45511261426`50., \
-0.085382018777441624313712682435941193155707258523909876346205115771083384046\
84`50.}, {-1.\
03851304909962512899982979901333892568926278353090267121008806429195466651315`\
50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\
648816`50.,
0.200115051221010444860994071161720832924481287479053496813535055677\
22361277387`50.}, {
0.1460171784760558765873228389571182457591427679717838276470555075378\
804002777`50., \
-1.012909850698067617669544952705676315376870302693452196548754960872750361331\
77`50., -0.\
3139914834816789541755213130558677841815258606060620709452815197370337525032`\
50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\
92951888`50., \
-0.563082519583204878706481832061160765008588338066988138153112209389518497993\
86`50., 0.\
80110482511054948777969154409410651082600489732532587212921687290347456420342`\
50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\
69089304`50., \
-0.165356121371201215022522440574669032938522849035235415887030208337990703527\
83`50., -0.\
20011505122101044455421487980807482532994627794948583777797314478479121162696`\
50.}, {-0.\
94275883528043408899877735675225654094256237281270970807942058193232276514149`\
50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\
0529229`50., \
-0.269637956692778298340688298265210737475683177086239123310069492402136999634\
88`50.}, {-0.\
6562633907329057530454636697333682787203518412502303393689762654431531366201`\
50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\
05725`50.,
0.845458351899450143720039587793490261870792507606058827558266595518\
37559191405`50.}, \
{-0.56822997476852273341670324224611194996684966026181987606913664128462602576\
749`50., -0.\
18360882928364750382526258950980687861177641350666666610120212527677502688164`\
50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\
4763468`50.}, \
{-0.10467060786861114435585351203991618135660677805799489553088918027378231257\
847`50., 0.\
54422708152885353862517195436042557283720772006993595795895817681069976667811`\
50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\
294762`50.}}, {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6,
12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7,
3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11,
12, 8, 16, 7}, {10, 18, 13, 17, 9}}]]},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[CompressedData["
1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ
CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR
1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia
4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34
Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p
5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew
JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU
H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH
75MLig==
"], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16,
1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13,
2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15,
4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17,
9}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["20", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["12", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
Graphics3DBox[{
Directive[
Hue[0.58, 0.4, 1],
Opacity[0.5],
EdgeForm[
GrayLevel[1]]],
PolyhedronBox[CompressedData["
1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ
CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR
1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia
4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34
Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p
5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew
JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU
H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH
75MLig==
"], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16,
1}, {6, 12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13,
2}, {19, 5, 11, 7, 3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15,
4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {10, 18, 13, 17,
9}}]}, ImageSize ->
Dynamic[{5.25, 3.5} (CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification])], Boxed -> False,
Lighting -> {{"Ambient",
RGBColor[0.4, 0.45, 0.5]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 0, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.24, 0.27, 0.3],
ImageScaled[{0, 2, 2}]}}, Method -> {"ShrinkWrap" -> True}],
GridBox[{{
RowBox[{
TagBox["\"Number of points: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["20", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Number of faces: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["12", "SummaryItem"]}]}, {
RowBox[{
TagBox[
"\"Embedding dimension: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["3", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Quiet[
Apply[Region`PolyhedronDump`polyhedronType,
Region`PolyhedronDump`computeType[
Typeset`spolyhedron$$]]], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Bounds: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iRegionBounds[
Typeset`spolyhedron$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Volume: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
Region`PolyhedronDump`iVolume[Typeset`spolyhedron$$],
StandardForm], SynchronousUpdating -> False,
TrackedSymbols :> {}, CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Polyhedron[{{
0.7231635472939987137541790307472726624302397147252362876872836758045057\
116906`50., \
-0.778754719970331262715376328601079875464588736689347027868947806347376899291\
`50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\
9117512`50.}, \
{-0.72316354729399871391599296659100483465171241996069201848487831591281756377\
992`50., 0.\
77875471997033126265756089847860796146423630990612564913251535666583487646651`\
50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\
5438148`50.}, {
0.1046706078686111452734238546477794287241475234539559343078546974083213\
6509776`50., \
-0.544227081528853538489712943670372758564885084920303341813187708637615306487\
33`50., -0.\
915837857554118308555336588507369576258302332940424207307784139382341287202`\
50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\
39511847`50.,
0.183608829283647503459712866119242135147261474000612043984929536230840\
6973339`50.,
0.888425870477648720607239394532194225382531643878915128509584610295275\
45094946`50.}, \
{-0.43251262302358421341886855415824600200764298981542658141487024603155723400\
036`50., 0.\
56308251958320487883281245903175992880933766688648905721748656330353932274647`\
50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\
5191037`50.}, \
{-0.14601717847605587567221820801799905412366923920383938245181216374094707696\
802`50., 1.\
01290985069806761766531458539973681132412914418132020533662637028923599413417`\
50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\
802181`50.}, {
0.6562633907329057524931724751182066309983894112007376028757958426298157\
4903605`50., \
-0.020410069513121564954951714672287680448257047680534704723918886069318641356\
1`50., -0.\
84545835189945014414697645845322545311419760172161217292687224712814869586564`\
50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\
04947043`50.,
0.429417261601741173660101664908025323157501071705928630523557362245560\
80261942`50.,
0.269637956692778297432602215718467405228487825042080278395216370839418\
15020235`50.}, \
{-0.50132981820742977160769956418530383504117846687088630768742322001416061582\
575`50., -0.\
94195347974085720127831437734894528887488827258173135752722124542549768397809`\
50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\
206489`50.}, \
{-0.32426589585504652087563126243650930418068212067845550995371680864218324449\
629`50., -0.\
66394490004321889863801198596055598486958145395343058456534633489074315070106`\
50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\
805349`50.}, {
0.3242658958550465199360004774773892684307491202176590424731940471836136\
81878`50.,
0.663944900043218898802132437253682562711793731590082756337362315015932\
78020396`50., \
-0.774549438216980210778999518879135262941306742931189157659544540861039365588\
42`50.}, {
0.5013298182074297716105899317789314364967401448899662411206220614977963\
418464`50.,
0.941953479740857201243250952262355718417808012533122993073650816633455\
11261426`50., \
-0.085382018777441624313712682435941193155707258523909876346205115771083384046\
84`50.}, {-1.\
03851304909962512899982979901333892568926278353090267121008806429195466651315`\
50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\
648816`50.,
0.200115051221010444860994071161720832924481287479053496813535055677223\
61277387`50.}, {
0.1460171784760558765873228389571182457591427679717838276470555075378804\
002777`50., \
-1.012909850698067617669544952705676315376870302693452196548754960872750361331\
77`50., -0.\
3139914834816789541755213130558677841815258606060620709452815197370337525032`\
50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\
92951888`50., \
-0.563082519583204878706481832061160765008588338066988138153112209389518497993\
86`50., 0.\
80110482511054948777969154409410651082600489732532587212921687290347456420342`\
50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\
69089304`50., \
-0.165356121371201215022522440574669032938522849035235415887030208337990703527\
83`50., -0.\
20011505122101044455421487980807482532994627794948583777797314478479121162696`\
50.}, {-0.\
94275883528043408899877735675225654094256237281270970807942058193232276514149`\
50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\
0529229`50., \
-0.269637956692778298340688298265210737475683177086239123310069492402136999634\
88`50.}, {-0.\
6562633907329057530454636697333682787203518412502303393689762654431531366201`\
50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\
05725`50.,
0.845458351899450143720039587793490261870792507606058827558266595518375\
59191405`50.}, \
{-0.56822997476852273341670324224611194996684966026181987606913664128462602576\
749`50., -0.\
18360882928364750382526258950980687861177641350666666610120212527677502688164`\
50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\
4763468`50.}, \
{-0.10467060786861114435585351203991618135660677805799489553088918027378231257\
847`50., 0.\
54422708152885353862517195436042557283720772006993595795895817681069976667811`\
50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\
294762`50.}}, {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6,
12, 11, 5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7,
3}, {14, 9, 17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12,
8, 16, 7}, {10, 18, 13, 17, 9}}],
Editable->False,
SelectWithContents->True,
Selectable->False]}], "}"}]], "Output",
CellLabel->
"Out[146]=",ExpressionUUID->"5856ab11-f1ab-4081-8601-4e342d3ee7e7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".5", "]"}], ",", "Red", ",", "can", ",",
"Yellow", ",",
RowBox[{"Sphere", "[", "]"}]}], "}"}], "]"}]], "Input",
CellLabel->
"In[147]:=",ExpressionUUID->"78f5799d-496a-4fb2-99dc-390a9afef4fa"],
Cell[BoxData[
Graphics3DBox[
{RGBColor[1, 0, 0], Opacity[0.5], PolyhedronBox[CompressedData["
1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ
CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR
1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia
4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34
Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p
5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew
JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU
H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH
75MLig==
"], {{15, 10, 9, 14, 1}, {16, 8, 4, 15, 1}, {14, 3, 7, 16, 1}, {6, 12, 11,
5, 2}, {13, 18, 20, 6, 2}, {5, 19, 17, 13, 2}, {19, 5, 11, 7, 3}, {14, 9,
17, 19, 3}, {20, 18, 10, 15, 4}, {8, 12, 6, 20, 4}, {11, 12, 8, 16, 7}, {
10, 18, 13, 17, 9}}],
{RGBColor[1, 1, 0], SphereBox[{0, 0, 0}]}}]], "Output",
CellLabel->
"Out[147]=",ExpressionUUID->"e8631154-9a7d-4613-8fd9-cf8c5f887ee2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"lens", "=",
RowBox[{"Mean", "/@",
RowBox[{"Split", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"PolyhedronEdgeLengths", "[", "can", "]"}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"#1", "-", "#2"}], "]"}], "<", "1.*^-10"}], "&"}]}],
"]"}]}]}], ")"}], "//", "N"}]], "Input",
CellLabel->
"In[148]:=",ExpressionUUID->"8911d37f-34df-40a4-afd3-ca8e63226e43"],
Cell[BoxData[
RowBox[{"{", "0.7639320225002103`", "}"}]], "Output",
CellLabel->
"Out[148]=",ExpressionUUID->"a28c3e3d-053f-467c-ae04-8bf33cb6f27f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"PolyhedronCoordinates", "[", "can", "]"}]}], ";"}]], "Input",
CellLabel->
"In[149]:=",ExpressionUUID->"5944530c-cf90-4dd2-a5fd-7c0219fb6320"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"colors", "=",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=",
RowBox[{"Length", "[", "lens", "]"}]}], "}"}], ",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{"i", "/", "n"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}], "]"}]}]], "Input",
CellLabel->
"In[150]:=",ExpressionUUID->"318f6c4f-7708-4a9f-a3ac-7bd48d6b3c42"],
Cell[BoxData[
RowBox[{"{",
TemplateBox[<|"color" -> Hue[0]|>,
"HueColorSwatchTemplate"], "}"}]], "Output",
CellLabel->
"Out[150]=",ExpressionUUID->"e9c3d6a5-e82f-4632-ac9a-07a7f8cb9e8d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"Thick", ",",
RowBox[{"Sequence", "@@",
RowBox[{"Nearest", "[",
RowBox[{
RowBox[{"Thread", "[",
RowBox[{"lens", "->", "colors"}], "]"}], ",",
RowBox[{"EuclideanDistance", "@@",
RowBox[{"v", "[",
RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}]}], ",",
RowBox[{"Line", "[",
RowBox[{"v", "[",
RowBox[{"[", "#", "]"}], "]"}], "]"}]}], "}"}], "&"}], "/@",
RowBox[{"PolyhedronEdges", "[", "can", "]"}]}], ",",
RowBox[{"Boxed", "->", "False"}]}], "]"}]], "Input",
CellLabel->
"In[151]:=",ExpressionUUID->"accccc50-a1dd-49dd-a406-9b973c85ab5d"],
Cell[BoxData[
Graphics3DBox[{
{Hue[0], Thickness[Large],
Line3DBox[{{0.7231635472939987, -0.7787547199703313,
0.1283495373556402}, {
0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.7231635472939987, -0.7787547199703313,
0.1283495373556402}, {0.43251262302358423`, -0.5630825195832049,
0.8011048251105495}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.7231635472939987, -0.7787547199703313,
0.1283495373556402}, {
1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.7231635472939987,
0.7787547199703313, -0.1283495373556402}, {-0.43251262302358423`,
0.5630825195832049, -0.8011048251105495}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.7231635472939987,
0.7787547199703313, -0.1283495373556402}, {-0.1460171784760559,
1.0129098506980676`, 0.31399148348167893`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.7231635472939987,
0.7787547199703313, -0.1283495373556402}, {-1.038513049099625,
0.1653561213712012, 0.20011505122101045`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{
0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, {
0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{
0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, {
0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{
0.10467060786861114`, -0.5442270815288536, -0.9158378575541183}, \
{-0.5682299747685228, -0.1836088292836475, -0.8884258704776488}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.5682299747685228, 0.1836088292836475, 0.8884258704776488}, {
0.9427588352804341, 0.42941726160174115`, 0.2696379566927783}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.5682299747685228, 0.1836088292836475, 0.8884258704776488}, {
0.43251262302358423`, -0.5630825195832049, 0.8011048251105495}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.5682299747685228, 0.1836088292836475,
0.8884258704776488}, {-0.10467060786861114`, 0.5442270815288536,
0.9158378575541183}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.43251262302358423`,
0.5630825195832049, -0.8011048251105495}, {0.3242658958550465,
0.6639449000432189, -0.7745494382169802}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.43251262302358423`,
0.5630825195832049, -0.8011048251105495}, {-0.5682299747685228, \
-0.1836088292836475, -0.8884258704776488}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.1460171784760559, 1.0129098506980676`,
0.31399148348167893`}, {0.5013298182074297,
0.9419534797408572, -0.08538201877744163}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.1460171784760559, 1.0129098506980676`,
0.31399148348167893`}, {-0.10467060786861114`, 0.5442270815288536,
0.9158378575541183}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{
0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}, {
0.3242658958550465, 0.6639449000432189, -0.7745494382169802}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{
0.6562633907329057, -0.020410069513121566`, -0.8454583518994502}, {
1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.9427588352804341, 0.42941726160174115`,
0.2696379566927783}, {0.5013298182074297,
0.9419534797408572, -0.08538201877744163}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.9427588352804341, 0.42941726160174115`,
0.2696379566927783}, {
1.038513049099625, -0.1653561213712012, -0.20011505122101045`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.5013298182074297, -0.9419534797408572,
0.08538201877744163}, {-0.3242658958550465, -0.6639449000432189,
0.7745494382169802}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.5013298182074297, -0.9419534797408572,
0.08538201877744163}, {
0.1460171784760559, -1.0129098506980676`, -0.31399148348167893`}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.5013298182074297, -0.9419534797408572,
0.08538201877744163}, {-0.9427588352804341, -0.42941726160174115`, \
-0.2696379566927783}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.3242658958550465, -0.6639449000432189,
0.7745494382169802}, {0.43251262302358423`, -0.5630825195832049,
0.8011048251105495}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.3242658958550465, -0.6639449000432189,
0.7745494382169802}, {-0.6562633907329057, 0.020410069513121566`,
0.8454583518994502}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{0.3242658958550465,
0.6639449000432189, -0.7745494382169802}, {0.5013298182074297,
0.9419534797408572, -0.08538201877744163}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-1.038513049099625, 0.1653561213712012,
0.20011505122101045`}, {-0.9427588352804341, -0.42941726160174115`, \
-0.2696379566927783}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-1.038513049099625, 0.1653561213712012,
0.20011505122101045`}, {-0.6562633907329057, 0.020410069513121566`,
0.8454583518994502}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.9427588352804341, -0.42941726160174115`, \
-0.2696379566927783}, {-0.5682299747685228, -0.1836088292836475, \
-0.8884258704776488}}]},
{Hue[0], Thickness[Large],
Line3DBox[{{-0.6562633907329057, 0.020410069513121566`,
0.8454583518994502}, {-0.10467060786861114`, 0.5442270815288536,
0.9158378575541183}}]}},
Boxed->False]], "Output",
CellLabel->
"Out[151]=",ExpressionUUID->"98f06e3b-fbd7-4d80-8fed-24afa478718e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"PolyhedronGraph", "[", "can", "]"}]}]], "Input",
CellLabel->
"In[152]:=",ExpressionUUID->"83c5fa11-ddeb-4787-a7dc-a8ac56a4f58d"],
Cell[BoxData[
Graphics3DBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {GraphLayout -> {"Dimension" -> 3},
VertexCoordinates -> {{
0.7231635472939987137541790307472726624302397147252362876872836758045\
057116906`50., \
-0.778754719970331262715376328601079875464588736689347027868947806347376899291\
`50., 0.1283495373556402007593673471475249987223069956839885762784606056859957\
9117512`50.}, \
{-0.72316354729399871391599296659100483465171241996069201848487831591281756377\
992`50., 0.\
77875471997033126265756089847860796146423630990612564913251535666583487646651`\
50., -0.1283495373556402001984467376188272739328508848888195358995498446554102\
5438148`50.}, {
0.1046706078686111452734238546477794287241475234539559343078546974083\
2136509776`50., \
-0.544227081528853538489712943670372758564885084920303341813187708637615306487\
33`50., -0.\
915837857554118308555336588507369576258302332940424207307784139382341287202`\
50.}, {0.568229974768522733129117914934620653155466556264740177059097733468357\
39511847`50.,
0.183608829283647503459712866119242135147261474000612043984929536230\
8406973339`50.,
0.888425870477648720607239394532194225382531643878915128509584610295\
27545094946`50.}, \
{-0.43251262302358421341886855415824600200764298981542658141487024603155723400\
036`50., 0.\
56308251958320487883281245903175992880933766688648905721748656330353932274647`\
50., -0.8011048251105494874128798450497956782732572963333202224673776206336189\
5191037`50.}, \
{-0.14601717847605587567221820801799905412366923920383938245181216374094707696\
802`50., 1.\
01290985069806761766531458539973681132412914418132020533662637028923599413417`\
50., 0.31399148348167895461472423475780650802528978178164436034331899606380065\
802181`50.}, {
0.6562633907329057524931724751182066309983894112007376028757958426298\
1574903605`50., \
-0.020410069513121564954951714672287680448257047680534704723918886069318641356\
1`50., -0.\
84545835189945014414697645845322545311419760172161217292687224712814869586564`\
50.}, {0.942758835280434089469218693129025281825038500479844864299414411943992\
04947043`50.,
0.429417261601741173660101664908025323157501071705928630523557362245\
56080261942`50.,
0.269637956692778297432602215718467405228487825042080278395216370839\
41815020235`50.}, \
{-0.50132981820742977160769956418530383504117846687088630768742322001416061582\
575`50., -0.\
94195347974085720127831437734894528887488827258173135752722124542549768397809`\
50., 0.08538201877744162394385626236355899495703229940972602344615131247722466\
206489`50.}, \
{-0.32426589585504652087563126243650930418068212067845550995371680864218324449\
629`50., -0.\
66394490004321889863801198596055598486958145395343058456534633489074315070106`\
50., 0.77454943821698021052630644081232066777699692661857205274010640275334698\
805349`50.}, {
0.3242658958550465199360004774773892684307491202176590424731940471836\
13681878`50.,
0.663944900043218898802132437253682562711793731590082756337362315015\
93278020396`50., \
-0.774549438216980210778999518879135262941306742931189157659544540861039365588\
42`50.}, {
0.5013298182074297716105899317789314364967401448899662411206220614977\
963418464`50.,
0.941953479740857201243250952262355718417808012533122993073650816633\
45511261426`50., \
-0.085382018777441624313712682435941193155707258523909876346205115771083384046\
84`50.}, {-1.\
03851304909962512899982979901333892568926278353090267121008806429195466651315`\
50., 0.16535612137120121559495365421794045603234961961298449987137186911443421\
648816`50.,
0.200115051221010444860994071161720832924481287479053496813535055677\
22361277387`50.}, {
0.1460171784760558765873228389571182457591427679717838276470555075378\
804002777`50., \
-1.012909850698067617669544952705676315376870302693452196548754960872750361331\
77`50., -0.\
3139914834816789541755213130558677841815258606060620709452815197370337525032`\
50.}, {0.432512623023584212903923920416405487125794655601128819943698976600389\
92951888`50., \
-0.563082519583204878706481832061160765008588338066988138153112209389518497993\
86`50., 0.\
80110482511054948777969154409410651082600489732532587212921687290347456420342`\
50.}, {1.038513049099625129150088997967305811734595636944821889009227648468511\
69089304`50., \
-0.165356121371201215022522440574669032938522849035235415887030208337990703527\
83`50., -0.\
20011505122101044455421487980807482532994627794948583777797314478479121162696`\
50.}, {-0.\
94275883528043408899877735675225654094256237281270970807942058193232276514149`\
50., -0.4294172616017411741227245455522822246825658767430477303056892568219422\
0529229`50., \
-0.269637956692778298340688298265210737475683177086239123310069492402136999634\
88`50.}, {-0.\
6562633907329057530454636697333682787203518412502303393689762654431531366201`\
50., 0.02041006951312156488189223862506033493863697274158629043202599537057798\
05725`50.,
0.845458351899450143720039587793490261870792507606058827558266595518\
37559191405`50.}, \
{-0.56822997476852273341670324224611194996684966026181987606913664128462602576\
749`50., -0.\
18360882928364750382526258950980687861177641350666666610120212527677502688164`\
50., -0.8884258704776487203477548751160526242124601081763189836899697063213110\
4763468`50.}, \
{-0.10467060786861114435585351203991618135660677805799489553088918027378231257\
847`50., 0.\
54422708152885353862517195436042557283720772006993595795895817681069976667811`\
50., 0.91583785755411830857971009880831000316223226639793390813178576023928639\
294762`50.}}}]]},
TagBox[GraphicsGroup3DBox[GraphicsComplex3DBox[CompressedData["
1:eJw1kTFIQgEURX8mRYLUYKTWEkhhUSEENfUoKIpAKmkVKVxCsdpKkMAhosFQ
CyGkEooGMSWUMOtZJPIJAulPfSgVTeWXGNgmkcNzeMsdDvfc17tiWTKKGIaR
1a+5fuERdaZfVQCtMiZ2CEXsU1xXH8xxoBwpB8pxVzg3hp6jML/pKWnXMpia
4TT72m/UHSdPK8NZwDe7zbaThPZPXVfN/AWth2iaC/Boz6XOEuIsTB10HF34
Svh0q/wIBh9RErn8TY9WYPtKE7PIOVAsyjt7mDxIXdNuw6cbhfEN/59UQL8p
5JINluEnHN1zWnlQ69cdOJmCSCzC5SRpNOaiJ1ZVGYfYBaeHD8NLdes+Eeew
JmoytEEeW95nC91ssZED5UA5EgeIA8TBZV+eR28FfexdYHUgAa8TYzd6LwvU
H6g/Un8kXyBfJF8gDhAHidPwQvJC8kLaAWkHoB2AdkbaGWnnxl+Q/gL0F/gH
75MLig==
"], {
{Hue[0.6, 0.2, 0.8], Arrowheads[0.],
Arrow3DBox[TubeBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2,
13}, {3, 7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {
5, 19}, {6, 12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9,
10}, {9, 14}, {9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13,
18}, {17, 19}, {18, 20}}], 0.04646679449579216]},
{Hue[0.6, 0.6, 1], SphereBox[1, 0.04646679449579216],
SphereBox[2, 0.04646679449579216], SphereBox[3, 0.04646679449579216],
SphereBox[4, 0.04646679449579216],
SphereBox[5, 0.04646679449579216], SphereBox[6, 0.04646679449579216],
SphereBox[7, 0.04646679449579216],
SphereBox[8, 0.04646679449579216], SphereBox[9, 0.04646679449579216],
SphereBox[10, 0.04646679449579216],
SphereBox[11, 0.04646679449579216],
SphereBox[12, 0.04646679449579216],
SphereBox[13, 0.04646679449579216],
SphereBox[14, 0.04646679449579216],
SphereBox[15, 0.04646679449579216],
SphereBox[16, 0.04646679449579216],
SphereBox[17, 0.04646679449579216],
SphereBox[18, 0.04646679449579216],
SphereBox[19, 0.04646679449579216],
SphereBox[20, 0.04646679449579216]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
BaseStyle->{Graphics3DBoxOptions -> {Method -> {"ShrinkWrap" -> True}}},
Boxed->False,
DefaultBaseStyle->"NetworkGraphics",
FormatType->TraditionalForm,
Lighting->{{"Directional",
GrayLevel[0.7],
ImageScaled[{1, 1, 0}]}, {"Point",
GrayLevel[0.9],
ImageScaled[{0, 0, 0}], {0, 0, 0.07}}}]], "Output",
CellLabel->
"Out[152]=",ExpressionUUID->"207e38cc-c5f8-44a4-ac82-fe0d9c25a9b9"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Projections", "Section",ExpressionUUID->"188557dc-2d4c-4abe-9380-3f4444f88a9c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"b", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"c", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",
CellLabel->
"In[101]:=",ExpressionUUID->"6d921bf1-a537-41f3-b7d2-f2014d783862"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`a$$ = 1., $CellContext`b$$ =
0., $CellContext`c$$ = -0.005000000000018212, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`a$$], -1, 1}, {
Hold[$CellContext`b$$], -1, 1}, {
Hold[$CellContext`c$$], -1, 1}}, Typeset`size$$ = {360., {206., 211.}},
Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`a$$ = -1, $CellContext`b$$ = -1, \
$CellContext`c$$ = -1}, "ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :>
MathWorld`Graphs`PolyhedronProjectionGraph[
PolyhedronData[
"Dodecahedron",
"Polyhedron"], {$CellContext`a$$, $CellContext`b$$, \
$CellContext`c$$}],
"Specifications" :> {{$CellContext`a$$, -1, 1}, {$CellContext`b$$, -1,
1}, {$CellContext`c$$, -1, 1}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{404., {279., 285.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellLabel->
"Out[101]=",ExpressionUUID->"8130b679-29eb-4af1-ab0a-988ca2c7d189"]
}, Open ]],
Cell[CellGroupData[{
Cell["{1, 0, 0}", "Subsection",ExpressionUUID->"acebe07c-4761-4d7a-ad97-a47939132b4e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0", ",", ".0001", ",",
RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->"In[50]:=",ExpressionUUID->"cbbef6d3-ebf8-48c4-b55f-5da1b70a19c2"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQNOalIR3Fcv7Efj24f8On1298cv9lI79AtrLl/Y
D+Xvh/FXfJk+u/zxS/v0QH/G7xfg/P1ofPuvIqfFhS5+hMvD+BDbHtjnVArE
rbvw0R7K34/Gt8+G8GHq96PyGRgkJ3Ps8r/40R7NPfZo7rGHqZeAqIe77xvE
PXD1MD6a/+3R/G8PABpjnJM=
"]}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIYBJzWpCO6rF/av+DJ9dvnjl/bpgf6M3y9csMch
vx+XPIwvMZljl//Fj/vR5O3RzMclvx+XPIwvCTHfPuTX6bO7P36xl9qhX1hz
GeH+ryKnxYWA9uOSh7kfXR6ND5Pfj6Z/P5r5GPJo5u9HMx/GxxEeD+yzKwXi
1l34iO5eDPdhD68H+9H070fTj2E/zD+47EeVR8Qvenjgsh+Xfph9ORD19jD9
aHy4PPb0iSn/DWIfhnnY0y+mPJp+eHig+w89PWK3H0Mebj66elzxiyYPjz8A
7LLSUQ==
"], 0.02743621557726529]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{0., -0.2630031929371378}, 0.02743621557726529],
InsetBox["1",
Offset[{2, 2}, {0.02743621557726529, -0.23556697735987253}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 0.2630031929371378}, 0.02743621557726529],
InsetBox["2",
Offset[{2, 2}, {0.02743621557726529, 0.2904394085144031}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749475, -0.26290808728561077},
0.02743621557726529],
InsetBox["3",
Offset[{2, 2}, {1.3364532099522128, -0.2354718717083455}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749475, -0.26290808728561077},
0.02743621557726529],
InsetBox["4",
Offset[{2, 2}, {-1.281580778797682, -0.2354718717083455}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, -0.2627542031089178},
0.02743621557726529],
InsetBox["5",
Offset[{2, 2}, {0.8364532099522127, -0.2353179875316525}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, -0.2627542031089178},
0.02743621557726529],
InsetBox["6",
Offset[{2, 2}, {-0.7815807787976822, -0.2353179875316525}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, -1.1135426453996022},
0.02743621557726529],
InsetBox["7",
Offset[{2, 2}, {0.8364532099522127, -1.0861064298223368}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, -1.1135426453996022},
0.02743621557726529],
InsetBox["8",
Offset[{2, 2}, {-0.7815807787976822, -1.0861064298223368}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5, 1.1134475397480754}, 0.02743621557726529],
InsetBox["9",
Offset[{2, 2}, {0.5274362155772653, 1.1408837553253408}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, 1.1134475397480754}, 0.02743621557726529],
InsetBox["10",
Offset[{2, 2}, {-0.4725637844227347, 1.1408837553253408}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5, -1.1134475397480752}, 0.02743621557726529],
InsetBox["11",
Offset[{2, 2}, {0.5274362155772653, -1.0860113241708098}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, -1.1134475397480752}, 0.02743621557726529],
InsetBox["12",
Offset[{2, 2}, {-0.4725637844227347, -1.0860113241708098}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.1136014239247685}, 0.02743621557726529],
InsetBox["13",
Offset[{2, 2}, {0.02743621557726529, 1.1410376395020339}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 0.2627542031089178},
0.02743621557726529],
InsetBox["14",
Offset[{2, 2}, {0.8364532099522127, 0.29019041868618306}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 0.2627542031089178},
0.02743621557726529],
InsetBox["15",
Offset[{2, 2}, {-0.7815807787976822, 0.29019041868618306}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -1.1136014239247682}, 0.02743621557726529],
InsetBox["16",
Offset[{2, 2}, {0.02743621557726529, -1.0861652083475029}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 1.1135426453996025},
0.02743621557726529],
InsetBox["17",
Offset[{2, 2}, {0.8364532099522127, 1.1409788609768678}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 1.1135426453996025},
0.02743621557726529],
InsetBox["18",
Offset[{2, 2}, {-0.7815807787976822, 1.1409788609768678}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749475, 0.26290808728561077},
0.02743621557726529],
InsetBox["19",
Offset[{2, 2}, {1.3364532099522128, 0.29034430286287605}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749475, 0.26290808728561077},
0.02743621557726529],
InsetBox["20",
Offset[{2, 2}, {-1.281580778797682, 0.29034430286287605}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[50]=",ExpressionUUID->"8232163e-8eb0-4cba-900e-5a6a7a02ba60"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "z", ",",
RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->"In[46]:=",ExpressionUUID->"bbcf51e0-9d6b-4930-b57c-4d8d9e5d8be4"],
Cell[BoxData[
TagBox[
DynamicModuleBox[{Typeset`sgraph$$ =
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6, 12}, {6,
20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9, 17}, {10,
15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18, 20}}}, {
VertexLabels -> {"Name"},
VertexCoordinates -> {{
0, ((-(1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
0, ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2,
0]}, {(((Rational[-1, 4] (-3 - 5^Rational[1, 2])) $CellContext`z) (
1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3,
0]}, {(((Rational[-1, 4] (3 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3,
0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) (
1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3,
0]}, {(((Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3,
0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) (
1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) $CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] + ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(((
Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) $CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] + ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {((
Rational[1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^
Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {((
Rational[-1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^
Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {((
Rational[1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^
Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) $CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] + ((Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]}, {((
Rational[-1, 2] $CellContext`z) (1 + Abs[$CellContext`z]^2)^
Rational[-1, 2]) (Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) $CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] + ((Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2]}, {
0, ((Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2] (
1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1,
0]}, {(((Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) (
1 + Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2,
0]}, {(((Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) $CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] + ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {(((
Rational[-1, 4] (-1 - 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], (((-$CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((
Rational[-1, 4] (1 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2], (((-$CellContext`z)/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + ((
1 - (1 + Abs[$CellContext`z]^2)^(-1)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(((
Rational[-1, 4] (-3 - 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2,
0]}, {(((Rational[-1, 4] (3 + 5^Rational[1, 2])) $CellContext`z) (1 +
Abs[$CellContext`z]^2)^Rational[-1, 2]) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1,
2], ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 - (1 + Abs[$CellContext`z]^2)^(-1))) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^
Rational[-1, 2] - (($CellContext`z/(1 +
Abs[$CellContext`z]^2)) (
Abs[$CellContext`z/(1 + Abs[$CellContext`z]^2)]^2 +
Abs[1 - (1 + Abs[$CellContext`z]^2)^(-1)]^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]},
InterpretationBox[
RowBox[{
TagBox["Graph",
"SummaryHead"], "[",
DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ =
"Ready"},
TemplateBox[{
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[
GraphicsComplexBox[{{
0.1, -3.31951456589972}, {-0.14816751450286603`, \
-2.625037331552915}, {0.6310524421714278, -1.3}, {
0.9405108616213151, -2.8841601437046225`}, {
0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \
-1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, {
1.8939086566530445`, -2.50980168725566}, {
1.756629266633539, -3.4622764737192444`}, {
2.119361963550152, -2.99}, {-0.5709741939515942, \
-4.632295267644082}, {
0.20977925607671288`, -4.647162049737781}, \
{-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \
-2.2040562174063485`}}, {
Hue[0.6, 0.7, 0.5],
Opacity[0.7],
Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2,
3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4,
5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627],
Hue[0.6, 0.2, 0.8],
EdgeForm[{
GrayLevel[0],
Opacity[0.7]}],
DiskBox[1, 0.05],
DiskBox[2, 0.05],
DiskBox[3, 0.05],
DiskBox[4, 0.05],
DiskBox[5, 0.05],
DiskBox[6, 0.05],
DiskBox[7, 0.05],
DiskBox[8, 0.05],
DiskBox[9, 0.05],
DiskBox[10, 0.05],
DiskBox[11, 0.05],
DiskBox[12, 0.05],
DiskBox[13, 0.05],
DiskBox[14, 0.05]}], AspectRatio -> 1, Background ->
GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True,
FrameTicks -> None, ImageSize ->
Dynamic[{
Automatic, (3.5 CurrentValue["FontCapHeight"])/
AbsoluteCurrentValue[Magnification]}],
PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}],
GridBox[{{
RowBox[{
TagBox["\"Vertex count: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["20", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Edge count: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, BaseStyle -> {}, Evaluator -> Automatic, Method ->
"Preemptive"], Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic,
3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
GraphicsBox[
GraphicsComplexBox[{{
0.1, -3.31951456589972}, {-0.14816751450286603`, \
-2.625037331552915}, {0.6310524421714278, -1.3}, {
0.9405108616213151, -2.8841601437046225`}, {
0.4967448863824806, -2.092358403567382}, {-0.846735323402297, \
-1.466588600696043}, {0.8846460183439665, -0.5107506168284197}, {
1.8939086566530445`, -2.50980168725566}, {
1.756629266633539, -3.4622764737192444`}, {
2.119361963550152, -2.99}, {-0.5709741939515942, \
-4.632295267644082}, {
0.20977925607671288`, -4.647162049737781}, \
{-1.0861820131541373`, -4.047493574735101}, {-1.2223073729506904`, \
-2.2040562174063485`}}, {
Hue[0.6, 0.7, 0.5],
Opacity[0.7],
Arrowheads[0.],
ArrowBox[{{1, 2}, {1, 4}, {1, 11}, {1, 12}, {1, 13}, {2,
3}, {2, 4}, {2, 5}, {2, 6}, {2, 14}, {3, 4}, {3, 7}, {4,
5}, {4, 8}, {4, 9}, {8, 10}, {9, 10}}, 0.0378698213750627],
Hue[0.6, 0.2, 0.8],
EdgeForm[{
GrayLevel[0],
Opacity[0.7]}],
DiskBox[1, 0.05],
DiskBox[2, 0.05],
DiskBox[3, 0.05],
DiskBox[4, 0.05],
DiskBox[5, 0.05],
DiskBox[6, 0.05],
DiskBox[7, 0.05],
DiskBox[8, 0.05],
DiskBox[9, 0.05],
DiskBox[10, 0.05],
DiskBox[11, 0.05],
DiskBox[12, 0.05],
DiskBox[13, 0.05],
DiskBox[14, 0.05]}], AspectRatio -> 1, Background ->
GrayLevel[0.93], ImagePadding -> 0, FrameStyle -> Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]], Frame -> True,
FrameTicks -> None, ImageSize ->
Dynamic[{
Automatic, (3.5 CurrentValue["FontCapHeight"])/
AbsoluteCurrentValue[Magnification]}],
PlotRange -> {{-1.1, 2.4}, {-4.4, -0.7}}],
GridBox[{{
RowBox[{
TagBox["\"Vertex count: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["20", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Edge count: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["30", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Type: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"undirected graph\"", "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Connected graph: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
ConnectedGraphQ[Typeset`sgraph$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}, {
RowBox[{
TagBox["\"Acyclic graph: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
DynamicBox[
ToBoxes[
AcyclicGraphQ[Typeset`sgraph$$], StandardForm],
SynchronousUpdating -> False, TrackedSymbols :> {},
CachedValue :>
AnimatorBox[
0, {0, Infinity}, AppearanceElements -> "ProgressSlider",
ImageSize -> 20]], "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}]},
Dynamic[Typeset`open$$], ImageSize -> Automatic]},
"SummaryPanel"],
DynamicModuleValues:>{}], "]"}],
Typeset`sgraph$$,
Editable->False,
SelectWithContents->True,
Selectable->False],
DynamicModuleValues:>{}],
Setting[#, {0}]& ]], "Output",
CellLabel->"Out[46]=",ExpressionUUID->"61c0f29b-e278-4177-bad6-dec70e9273b0"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"Lookup", "[",
RowBox[{
RowBox[{"Options", "[", "%", "]"}], ",", "VertexCoordinates"}], "]"}]}],
";"}]], "Input",
CellLabel->"In[47]:=",ExpressionUUID->"320bd543-282e-4207-b1f6-de43095fc926"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Limit", "[",
RowBox[{"v", ",",
RowBox[{"z", "\[Rule]", "0"}], ",",
RowBox[{"Direction", "\[Rule]", "\"\\""}]}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->"In[49]:=",ExpressionUUID->"523e6aa8-3e7c-492f-956d-394d6bb853cf"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.26286555605956679615431426100258249789`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.11351636441160684043438777734991163015`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.11351636441160684043438777734991163015`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.11351636441160684043438777734991163015`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.26286555605956679615431426100258249789`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.26286555605956679615431426100258249789`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox["11",
RowBox[{"8", " ",
SqrtBox["5"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.11351636441160684043438777734991163015`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.11\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.11351636441160684043438777734991163015`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}],
Short[#, 7]& ], -1.1135163644116068`},
"NumericalApproximation"],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.26286555605956679615431426100258249789`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.26286555605956679615431426100258249789`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 2, 0]]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[49]=",ExpressionUUID->"385ea12a-a94a-404d-826b-9660996492b8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetProperty", "[",
RowBox[{"g", ",",
RowBox[{"VertexCoordinates", "\[Rule]", "%49"}]}], "]"}]], "Input",
CellLabel->"In[52]:=",ExpressionUUID->"8969a307-6b74-4b5d-89c4-ca84067de464"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> {{0,
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {0,
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2],
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 2], (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {0,
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIYB3uCFvKcuXbBf8WX67PLHL/dD+ftxyNvjkofx
t4Zxd3678NEeTX4/mvm45O1xycP42yDm7w/5dfrs7o9f9qO7H2Y/LnmYeejy
aHyYvD26/9HMx5DHpR+NjyM8HsDdjy6P7j7s4fXAHk0/QftR4wvTfvT4RDcf
TT+G/bj0w+yDxSdMPxofLo89fWLK4zIPe/rFlEe3H5f/0NMjdvsx5NHt248j
PWOoR48/AD3g6EE=
"], 0.02743621557726529]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{0., 0.2628655560595668}, 0.02743621557726529],
InsetBox["1",
Offset[{2, 2}, {0.02743621557726529, 0.2903017716368321}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -0.2628655560595668}, 0.02743621557726529],
InsetBox["2",
Offset[{2, 2}, {0.02743621557726529, -0.23542934048230152}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749475, 0.2628655560595668},
0.02743621557726529],
InsetBox["3",
Offset[{2, 2}, {-1.281580778797682, 0.2903017716368321}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749475, 0.2628655560595668},
0.02743621557726529],
InsetBox["4",
Offset[{2, 2}, {1.3364532099522128, 0.2903017716368321}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 0.2628655560595668},
0.02743621557726529],
InsetBox["5",
Offset[{2, 2}, {-0.7815807787976822, 0.2903017716368321}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 0.2628655560595668},
0.02743621557726529],
InsetBox["6",
Offset[{2, 2}, {0.8364532099522127, 0.2903017716368321}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, 1.1135163644116066},
0.02743621557726529],
InsetBox["7",
Offset[{2, 2}, {-0.7815807787976822, 1.140952579988872}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, 1.1135163644116066},
0.02743621557726529],
InsetBox["8",
Offset[{2, 2}, {0.8364532099522127, 1.140952579988872}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, -1.1135163644116068}, 0.02743621557726529],
InsetBox["9",
Offset[{2, 2}, {-0.4725637844227347, -1.0860801488343415}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5, -1.1135163644116068}, 0.02743621557726529],
InsetBox["10",
Offset[{2, 2}, {0.5274362155772653, -1.0860801488343415}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5, 1.1135163644116066}, 0.02743621557726529],
InsetBox["11",
Offset[{2, 2}, {-0.4725637844227347, 1.140952579988872}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5, 1.1135163644116066}, 0.02743621557726529],
InsetBox["12",
Offset[{2, 2}, {0.5274362155772653, 1.140952579988872}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -1.1135163644116068}, 0.02743621557726529],
InsetBox["13",
Offset[{2, 2}, {0.02743621557726529, -1.0860801488343415}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, -0.2628655560595668},
0.02743621557726529],
InsetBox["14",
Offset[{2, 2}, {-0.7815807787976822, -0.23542934048230152}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, -0.2628655560595668},
0.02743621557726529],
InsetBox["15",
Offset[{2, 2}, {0.8364532099522127, -0.23542934048230152}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.1135163644116066}, 0.02743621557726529],
InsetBox["16",
Offset[{2, 2}, {0.02743621557726529, 1.140952579988872}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749475, -1.1135163644116068},
0.02743621557726529],
InsetBox["17",
Offset[{2, 2}, {-0.7815807787976822, -1.0860801488343415}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749475, -1.1135163644116068},
0.02743621557726529],
InsetBox["18",
Offset[{2, 2}, {0.8364532099522127, -1.0860801488343415}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749475, -0.2628655560595668},
0.02743621557726529],
InsetBox["19",
Offset[{2, 2}, {-1.281580778797682, -0.23542934048230152}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749475, -0.2628655560595668},
0.02743621557726529],
InsetBox["20",
Offset[{2, 2}, {1.3364532099522128, -0.23542934048230152}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[52]=",ExpressionUUID->"d95d02aa-e9df-4cce-a753-e5e96ab7421b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
RowBox[{"{",
RowBox[{"1", ",", "0", ",",
RowBox[{
RowBox[{"GoldenRatio", "/", "2"}], "-", "1"}]}],
"}"}]],ExpressionUUID->"72b80531-29b7-4479-9e76-4dce4f249e7e"]], \
"Subsection",ExpressionUUID->"969aad1f-1120-4550-a0c5-5d570009f6ad"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
"[",
RowBox[{"[", "1", "]"}], "]"}]], "Input",
CellLabel->
"In[151]:=",ExpressionUUID->"c493e9e1-9518-4614-a05c-582bc8c73392"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], ",", "0", ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}]], "Output",
CellLabel->
"Out[151]=",ExpressionUUID->"e768b64f-6462-4925-92a6-76b8a884f384"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"%", "/",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], "]"}]}]], "Input",
CellLabel->
"In[152]:=",ExpressionUUID->"da1123b5-8b76-4357-95ae-d667bc5b4f5c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0", ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "-",
SqrtBox["5"]}], ")"}]}]}], "}"}]], "Output",
CellLabel->
"Out[152]=",ExpressionUUID->"cac3f34c-6b34-4ef7-b2e2-4397e3ab419d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"In[153]:=",ExpressionUUID->"0f7f8886-efbb-4406-8359-566c093d1b19"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",", "0.`", ",", "0.19098300562505255`"}],
"}"}]], "Output",
CellLabel->
"Out[153]=",ExpressionUUID->"931e897a-a4fe-4edb-9ef5-ee3d1cba931e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"GoldenRatio", "/", "2"}]}], ")"}]], "Input",ExpressionUUID->\
"77b693f1-debc-4f34-88a4-9fac90a76dde"],
Cell[BoxData["0.19098300562505255`"], "Output",
CellLabel->
"Out[142]=",ExpressionUUID->"e83266bf-789c-46fd-9ff3-2a1b33eced24"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0", ",",
RowBox[{
RowBox[{"GoldenRatio", "/", "2"}], "-", "1"}], ",",
RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"31b5bcb9-72a9-408f-8f1f-904e3616ec87"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{
0, ((-(1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
0, ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(
Rational[-1, 4] (-3 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 1,
0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (3 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 1,
0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (-1 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (1 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (-1 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1,
2]), (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2])/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio) + ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(
Rational[-1, 4] (1 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (
1 + (1 + Rational[1, 4] (-1 - 5^
Rational[1, 2]))^2)^(-1))^2)))^Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1,
2]), (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2])/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio) + ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[1, 2] (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2] (
Rational[-1, 4] (
5 ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((
1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[
3, 4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[1, 2] (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio)}, {
Rational[1, 2] (
Rational[-1, 4] (
5 ((1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((
1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[
3, 4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio)}, {
0, (1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) (
Rational[
1, 10] ((5 +
5^Rational[1, 2])/((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)))^
Rational[
1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(
Rational[-1, 4] (-1 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1,
0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(
Rational[-1, 4] (1 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1,
0] - (((1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio)) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
0, (((-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2])/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio) + ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {(
Rational[-1, 4] (-1 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((((-1)/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (1 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((((-1)/(
1 + (1 + Rational[-1, 2] GoldenRatio)^2)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1)) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(
Rational[-1, 4] (-3 - 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(
Rational[-1, 4] (3 + 5^Rational[1, 2])) (
Rational[
1, 4] (5 ((
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1)/((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2)))^
Rational[1, 2] +
Rational[-3,
4] ((1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2) ((1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2 (
1 + (1 + Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-2) + (
1 - (1 + (1 +
Rational[1, 4] (-1 - 5^Rational[1, 2]))^2)^(-1))^2))^
Rational[-1, 2]), ((Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2] (
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^
Rational[-1, 2] - (((
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1) ((
1 - (1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-1))^2 + (
1 + (1 + Rational[-1, 2] GoldenRatio)^2)^(-2) (1 +
Rational[-1, 2] GoldenRatio)^2)^Rational[-1, 2]) (-1 +
Rational[1, 2] GoldenRatio))
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKEYFK2xWf5k+u/zxy/1yfkF5e5/c3Y9D3h6XPIyl
BJZ/a48mvwdmvixEPy55e1zyMJYixPz94b9On9398ct+TrOWQJ1rx+xh5ouv
jfnHtO2DPS55mPvR5dH4MHl7NP32aOZjyKOZb49mPoy/Hz08IHHyYP91496O
ExM+26PLo7sPPbyg+u3R9Nuj6cewH+YfXPbD5NHjFz08cNmPSz+affvR9O9H
l0ePP1zyUPswzEOPH1zyaPrh4YHuP/T0iG4/Dnm4+ejqccUvmjw8/gDR8Mkn
"], 0.02743621557726529]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{0., 1.6653345369377348*^-16}, 0.02743621557726529],
InsetBox["1",
Offset[{2, 2}, {0.02743621557726529, 0.027436215577265458}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -1.6653345369377348*^-16}, 0.02743621557726529],
InsetBox["2",
Offset[{2, 2}, {0.02743621557726529, 0.027436215577265124}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749481, 0.17841104488654505},
0.02743621557726529],
InsetBox["3",
Offset[{2, 2}, {-1.2815807787976827, 0.20584726046381036}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749481, 0.17841104488654505},
0.02743621557726529],
InsetBox["4",
Offset[{2, 2}, {1.3364532099522135, 0.20584726046381036}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749478, 0.4670861794813577},
0.02743621557726529],
InsetBox["5",
Offset[{2, 2}, {-0.7815807787976825, 0.494522395058623}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749478, 0.4670861794813577},
0.02743621557726529],
InsetBox["6",
Offset[{2, 2}, {0.8364532099522131, 0.494522395058623}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749478, 1.0444364486709838},
0.02743621557726529],
InsetBox["7",
Offset[{2, 2}, {-0.7815807787976825, 1.0718726642482492}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749478, 1.0444364486709838},
0.02743621557726529],
InsetBox["8",
Offset[{2, 2}, {0.8364532099522131, 1.0718726642482492}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5000000000000002, -1.2228474935575286},
0.02743621557726529],
InsetBox["9",
Offset[{2, 2}, {-0.47256378442273494, -1.1954112779802633}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5000000000000002, -1.2228474935575286},
0.02743621557726529],
InsetBox["10",
Offset[{2, 2}, {0.5274362155772655, -1.1954112779802633}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.5000000000000002, 1.2228474935575286},
0.02743621557726529],
InsetBox["11",
Offset[{2, 2}, {-0.47256378442273494, 1.250283709134794}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5000000000000002, 1.2228474935575286},
0.02743621557726529],
InsetBox["12",
Offset[{2, 2}, {0.5274362155772655, 1.250283709134794}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., -0.9341723589627159}, 0.02743621557726529],
InsetBox["13",
Offset[{2, 2}, {0.02743621557726529, -0.9067361433854506}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749478, -0.4670861794813578},
0.02743621557726529],
InsetBox["14",
Offset[{2, 2}, {-0.7815807787976825, -0.4396499639040925}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749478, -0.4670861794813578},
0.02743621557726529],
InsetBox["15",
Offset[{2, 2}, {0.8364532099522131, -0.4396499639040925}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 0.934172358962716}, 0.02743621557726529],
InsetBox["16",
Offset[{2, 2}, {0.02743621557726529, 0.9616085745399813}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8090169943749478, -1.0444364486709838},
0.02743621557726529],
InsetBox["17",
Offset[{2, 2}, {-0.7815807787976825, -1.0170002330937185}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8090169943749478, -1.0444364486709838},
0.02743621557726529],
InsetBox["18",
Offset[{2, 2}, {0.8364532099522131, -1.0170002330937185}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3090169943749481, -0.17841104488654505},
0.02743621557726529],
InsetBox["19",
Offset[{2, 2}, {-1.2815807787976827, -0.15097482930927975}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3090169943749481, -0.17841104488654505},
0.02743621557726529],
InsetBox["20",
Offset[{2, 2}, {1.3364532099522135, -0.15097482930927975}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[2]=",ExpressionUUID->"e9015a6c-0815-467f-9ce5-5eb88b3f2877"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{XXX}", "Subsection",ExpressionUUID->"3024dc8c-b30d-416d-b860-e23fec438550"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Mean", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], "]"}], "]"}], "]"}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[162]:=",ExpressionUUID->"3dbe8aef-d531-44eb-bd78-c8de0ead7c0b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "40"]}], " ",
SqrtBox[
RowBox[{"650", "+",
RowBox[{"290", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "8"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]]}], "}"}]], "Output",
CellLabel->
"Out[162]=",ExpressionUUID->"82aa19b4-0194-4065-a0e9-e73948e9b8cc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "40"]}], " ",
SqrtBox[
RowBox[{"650", "+",
RowBox[{"290", " ",
SqrtBox["5"]}]}]]}], ",",
RowBox[{
FractionBox["1", "8"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.263\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.26286555605956679615431426100258249789`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"80", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2628655560595668},
"NumericalApproximation"],
Root[1 - 20 #^2 + 80 #^4& , 3, 0]], ",",
RowBox[{"\[Pi]", "/", "10"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"48563c9c-ed47-45df-88d6-5643d4d2c343"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] - ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] - ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + ((
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((1 + 2 5^Rational[-1, 2])^Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + ((
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-3 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((
Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-3 - 5^Rational[1, 2]))
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (3 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (3 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[-1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) ((Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((
Rational[-1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) ((Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) ((Rational[1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]) (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) ((Rational[1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[-1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) ((Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((
Rational[-1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) ((Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) ((Rational[1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((Rational[1, 640] (-3 - 5^Rational[1, 2]))/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + ((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + ((Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) ((Rational[1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] + (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) ((1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2))) (
Rational[
1, 10] ((5 +
5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2]) + ((Rational[1, 4] (1 - 5^Rational[1, 2]))
Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) ((1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2))) (
Rational[
1, 10] ((5 +
5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2]) + ((
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[
1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 5 #^2 + 5 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + ((
Rational[
1, 4] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]) (1 - 5^Rational[1, 2])) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((Rational[1, 40]
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] + (
Root[1 - 5 #^2 + 5 #^4& , 1, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[
1, 2] ((Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])) (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (-1 - 5^
Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-1 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (1 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 100 #^2 + 80 #^4& , 1, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[1, 2] + (
Root[1 - 20 #^2 + 80 #^4& , 3, 0] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (1 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 100 #^2 + 80 #^4& , 1, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (-3 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[1, 2])) (((
Rational[1, 1280] (-3 - 5^Rational[1, 2])^2)/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (-3 - 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}, {(
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[
1, 2]) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 4] (1 - 5^
Rational[1, 2])) (((Rational[1, 4] (3 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2])), (
Rational[1, 4] (-1 +
5^Rational[
1, 2])) ((((Rational[1, 1280] (-3 - 5^Rational[1, 2])) (3 +
5^Rational[1, 2]))/(Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + (((Rational[1, 40] Root[1 - 20 #^2 + 80 #^4& , 2, 0])
Root[1 - 20 #^2 + 80 #^4& , 3, 0])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)) ((650 +
290 5^Rational[1, 2])/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[
1, 2] + ((Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] (1 +
Rational[-1, 1600] ((650 + 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)^
Rational[-1, 2]) + (
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2]) (((Rational[1, 4] (3 + 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]) ((
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2] +
Root[1 - 20 #^2 + 80 #^4& , 2, 0] (
Rational[
1, 8] (5 ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-1)/(((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2)))^
Rational[1, 2] +
Rational[
3, 8] ((Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (((
Rational[1, 102400] (3 + 5^Rational[1, 2])^2) (650 +
290 5^Rational[1, 2])) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + ((
Rational[1, 1600] (650 + 290 5^Rational[1, 2]))
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2) (
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)^(-2) + (1 +
Rational[1, 1600] ((-650 - 290 5^Rational[1, 2])/(
Rational[1, 64] (3 + 5^Rational[1, 2])^2 +
Rational[1, 1600] (650 + 290 5^Rational[1, 2]) +
Root[1 - 20 #^2 + 80 #^4& , 3, 0]^2)))^2))^
Rational[-1, 2]))}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKLaWN3nh9Pjl/gXbrSe7yFXtV1A2Ofq8vMhet8Oo
WM/v0X50edknhZrqz77s/+F4/2iV53UM+d8BUxwWWz/Yvy6K4YNs3Vt7qLw9
VN4eqt8eqh9DfgHE/v1Q+zHkoebbb4CYv98GKt8AlS9o9DIz77hvv2Pjb5/1
+97ao8uj+w9d/gfzfJ3ff77Yq23ze576/ep+KH8/lG9/4r1Hu5Luq/1lPvP1
BEw+2aPLo4cPujzUvv0NqOEJD491fvKeyTNf2j85fHS7T8YnjPBCdx96eCn8
16z8urRlv9yhJyn+5V8wwhPdfvTwQrcfXR49ftHDA91+dHl0/QkQ9fbyEPX7
ofbvfwqxfz+6PHr8octD7bOH2odhHnr8oMvnQ/y7fxfEv/vRwwPdf+jpEd1+
dHl089HVo8cvunr0+AMA5vj4wQ==
"], 0.027477451508580844`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {
DiskBox[{-0.8089918647028534, -0.006376521941758556},
0.027477451508580844],
InsetBox["1",
Offset[{2, 2}, {-0.7815144131942726, 0.021100929566822288}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8089918647028534, 0.006376521941758556},
0.027477451508580844],
InsetBox["2",
Offset[{2, 2}, {0.8364693162114343, 0.0338539734503394}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8089918647028536, 0.006376521941758528},
0.027477451508580844],
InsetBox["3",
Offset[{2, 2}, {0.8364693162114344, 0.03385397345033937}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3117629759801712, 0.3432249792921048},
0.027477451508580844],
InsetBox["4",
Offset[{2, 2}, {-1.2842855244715903, 0.37070243080068566}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3061896914425752, 0.36385983775565434},
0.027477451508580844],
InsetBox["5",
Offset[{2, 2}, {1.3336671429511562, 0.39133728926423517}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.0045088819054023566, 0.5720436334561377},
0.027477451508580844],
InsetBox["6",
Offset[{2, 2}, {0.022968569603178488, 0.5995210849647186}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.49268894483431946, 0.9295269492700333},
0.027477451508580844],
InsetBox["7",
Offset[{2, 2}, {0.5201663963429003, 0.9570044007786142}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.818009628513658, 1.137710744970517},
0.027477451508580844],
InsetBox["8",
Offset[{2, 2}, {-0.7905321770050772, 1.165188196479098}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.010082166442998364, -1.2791284505038971},
0.027477451508580844],
InsetBox["9",
Offset[{2, 2}, {0.03755961795157921, -1.2516509989953162}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7999741008920489, -1.150463788854034},
0.027477451508580844],
InsetBox["10",
Offset[{2, 2}, {-0.7724966493834681, -1.1229863373454532}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.7999741008920489, 1.1504637888540339},
0.027477451508580844],
InsetBox["11",
Offset[{2, 2}, {0.8274515524006297, 1.1779412403626148}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.010082166442998253, 1.279128450503897},
0.027477451508580844],
InsetBox["12",
Offset[{2, 2}, {0.01739528506558259, 1.3066059020124778}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.50727999318272, -0.9216451346900012},
0.027477451508580844],
InsetBox["13",
Offset[{2, 2}, {0.5347574446913008, -0.8941676831814204}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.0045088819054022455, -0.5720436334561377},
0.027477451508580844],
InsetBox["14",
Offset[{2, 2}, {0.03198633341398309, -0.5445661819475569}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3061896914425752, -0.36385983775565434},
0.027477451508580844],
InsetBox["15",
Offset[{2, 2}, {-1.2787122399339943, -0.3363823862470735}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.50727999318272, 0.921645134690001},
0.027477451508580844],
InsetBox["16",
Offset[{2, 2}, {-0.47980254167413916, 0.9491225861985818}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.818009628513658, -1.137710744970517},
0.027477451508580844],
InsetBox["17",
Offset[{2, 2}, {0.8454870800222388, -1.110233293461936}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.4926889448343194, -0.9295269492700335},
0.027477451508580844],
InsetBox["18",
Offset[{2, 2}, {-0.4652114933257386, -0.9020494977614527}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3117629759801712, -0.3432249792921048},
0.027477451508580844],
InsetBox["19",
Offset[{2, 2}, {1.3392404274887522, -0.315747527783524}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8089918647028536, -0.006376521941758528},
0.027477451508580844],
InsetBox["20",
Offset[{2, 2}, {-0.7815144131942727, 0.021100929566822316}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"7d39f62e-c7f8-41d4-b5b0-f0c2ca1ef90e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{0, 1, 0}", "Subsection",ExpressionUUID->"cf3eb0c3-a1f4-4dda-bcb4-878347f2955a"],
Cell[BoxData[
RowBox[{"<<", "MathWorld`Graphs`"}]], "Input",
CellLabel->
"In[120]:=",ExpressionUUID->"bbcbaad9-4f9f-46d9-9225-f93f89cd5013"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0", ",",
RowBox[{
RowBox[{"-", "\[Pi]"}], "/", "6"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->
"In[124]:=",ExpressionUUID->"7d521d82-7847-41c2-856d-9f83cfa62171"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{
Rational[-1, 2] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[1, 2] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 2]
3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2]
3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 2]
3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2]
3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[
1, 2] (3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[
1, 2] (3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2] (
3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2] (
3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 4] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] +
Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-1, 4] (3 (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] +
Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 2 5^Rational[-1, 2])^Rational[1, 2] + (
Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[
1, 2] (3 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] +
Rational[-1, 2] (
3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2]}, {
Rational[
1, 2] (3 (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2] +
Rational[-1, 2] (
3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[3, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[1, 2]
3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2]
3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[1, 2]
3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[-1, 2]
3^Rational[1, 2]) Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2] + (Rational[1, 2] 3^Rational[1, 2])
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-1, 2] (
3 (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0]}, {
Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 2]
3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[-1, 2]
3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0] + (Rational[1, 2]
3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[-1, 2]
3^Rational[1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[
1, 2] (3 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[
1, 2] (3 (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2]))^
Rational[1, 2] +
Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[-1, 2] (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2] + (Rational[-1, 2] 3^Rational[1, 2])
Root[1 - 20 #^2 + 80 #^4& , 2, 0]}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKA57pLZ6i87X/c27CpQ6Ku/avzvjGCK//NX+d0vc
Wm5LvrQnVV5MdO+mjxu/7N8nz36p1/7hfqi8PVR+/1uIfvs3EP0ky0tAzLeH
mm//r8b+ceCf+/sX+BdL7dvQtx+mD2rOfnR5dPejy0P59lA+zc1H9+8H4TI2
P7El9tt+f9QLfv8FIzyorR/dP+j60eXR45dS/Q8g6vdvh6i3J8RHD18Meag4
VB3F+tH9g85HT4/o+gnJo/PR44eQPADVaRqN
"], 0.02765211202054159]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {
DiskBox[{-1.3234144864674326, 0.46054271090807947},
0.02765211202054159],
InsetBox["1",
Offset[{2, 2}, {-1.2957623744468911, 0.48819482292862104}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3234144864674326, -0.46054271090807947},
0.02765211202054159],
InsetBox["2",
Offset[{2, 2}, {1.3510665984879742, -0.4328905988875379}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.4997753829211006, -0.014985547239497354},
0.02765211202054159],
InsetBox["3",
Offset[{2, 2}, {-0.472123270900559, 0.012666564781044234}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.4997753829211006, -0.014985547239497354},
0.02765211202054159],
InsetBox["4",
Offset[{2, 2}, {-0.472123270900559, 0.012666564781044234}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8329006810803584, -0.7844064315333106},
0.02765211202054159],
InsetBox["5", Offset[{2, 2}, {0.8605527931009, -0.756754319512769}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8329006810803584, -0.7844064315333106},
0.02765211202054159],
InsetBox["6", Offset[{2, 2}, {0.8605527931009, -0.756754319512769}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7844064315333106, -0.8329006810803584},
0.02765211202054159],
InsetBox["7",
Offset[{2, 2}, {-0.756754319512769, -0.8052485690598168}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7844064315333106, -0.8329006810803584},
0.02765211202054159],
InsetBox["8",
Offset[{2, 2}, {-0.756754319512769, -0.8052485690598168}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.039232672013021164, 1.3084289392279354},
0.02765211202054159],
InsetBox["9",
Offset[{2, 2}, {-0.011580559992479575, 1.3360810512484769}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.039232672013021164, 1.3084289392279354},
0.02765211202054159],
InsetBox["10",
Offset[{2, 2}, {-0.011580559992479575, 1.3360810512484769}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.039232672013021275, -1.3084289392279351},
0.02765211202054159],
InsetBox["11",
Offset[{2, 2}, {0.06688478403356286, -1.2807768272073936}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.039232672013021275, -1.3084289392279351},
0.02765211202054159],
InsetBox["12",
Offset[{2, 2}, {0.06688478403356286, -1.2807768272073936}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.293443391988438, 0.5390080549341218},
0.02765211202054159],
InsetBox["13",
Offset[{2, 2}, {1.3210955040089796, 0.5666601669546635}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8329006810803585, 0.7844064315333108},
0.02765211202054159],
InsetBox["14",
Offset[{2, 2}, {-0.8052485690598169, 0.8120585435538524}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8329006810803585, 0.7844064315333108},
0.02765211202054159],
InsetBox["15",
Offset[{2, 2}, {-0.8052485690598169, 0.8120585435538524}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.2934433919884376, -0.5390080549341218},
0.02765211202054159],
InsetBox["16",
Offset[{2, 2}, {-1.265791279967896, -0.5113559429135802}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.7844064315333108, 0.8329006810803585},
0.02765211202054159],
InsetBox["17",
Offset[{2, 2}, {0.8120585435538524, 0.8605527931009002}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.7844064315333108, 0.8329006810803585},
0.02765211202054159],
InsetBox["18",
Offset[{2, 2}, {0.8120585435538524, 0.8605527931009002}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.4997753829211006, 0.014985547239497354},
0.02765211202054159],
InsetBox["19",
Offset[{2, 2}, {0.5274274949416422, 0.04263765926003894}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.4997753829211006, 0.014985547239497354},
0.02765211202054159],
InsetBox["20",
Offset[{2, 2}, {0.5274274949416422, 0.04263765926003894}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[124]=",ExpressionUUID->"1f7fb817-acb5-4f3b-8beb-da6307532064"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{0, 0, 1}", "Subsection",ExpressionUUID->"953ec095-87c6-46f2-99b4-7f2cd7dea229"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->
"In[102]:=",ExpressionUUID->"c4e333e2-2a54-4639-8900-ff19220c622c"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-(1 + 2 5^Rational[-1, 2])^Rational[1, 2],
0}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], 0}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKK5cXcyzkvXbfgYo2BbG3fntwsf9K75Mn13++OV+
AvL26PJPmN24Oyxew/lQeXsYfytEvz2a+bjk7dHln0LMt0e17/b+kF+nz+7+
+GU/b/BC3lOXLsDdjy6P7j90eSjfHo0Pk7dHM98eXR49fNDl0cy3xx4ez6D+
e7AfXR7dfdjDC64f3XwM+9HDC91+7OGJiF/08EC3H3t4oaePZ/th9qHx7dHl
sadPhDzUPvTwhJuHPf0i5NH0o/sHPXzs0dMjuv0E5NHtw4hfdPXo8QcAyFrJ
Dw==
"], 0.02843987676872603]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1.3763819204711736, 0.}, 0.02843987676872603],
InsetBox["1",
Offset[{2, 2}, {-1.3479420437024476, 0.02843987676872603}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3763819204711736, 0.}, 0.02843987676872603],
InsetBox["2",
Offset[{2, 2}, {1.4048217972398995, 0.02843987676872603}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.42532540417601994, -1.3090169943749475},
0.02843987676872603],
InsetBox["3",
Offset[{2, 2}, {-0.3968855274072939, -1.2805771176062215}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.42532540417601994, 1.3090169943749475},
0.02843987676872603],
InsetBox["4",
Offset[{2, 2}, {-0.3968855274072939, 1.3374568711436734}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.1135163644116066, -0.8090169943749475},
0.02843987676872603],
InsetBox["5",
Offset[{2, 2}, {1.1419562411803326, -0.7805771176062214}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.1135163644116066, 0.8090169943749475},
0.02843987676872603],
InsetBox["6",
Offset[{2, 2}, {1.1419562411803326, 0.8374568711436735}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.2628655560595668, -0.8090169943749475},
0.02843987676872603],
InsetBox["7",
Offset[{2, 2}, {-0.23442567929084077, -0.7805771176062214}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.2628655560595668, 0.8090169943749475},
0.02843987676872603],
InsetBox["8",
Offset[{2, 2}, {-0.23442567929084077, 0.8374568711436735}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6881909602355868, -0.5}, 0.02843987676872603],
InsetBox["9",
Offset[{2, 2}, {-0.6597510834668607, -0.47156012323127394}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6881909602355868, 0.5}, 0.02843987676872603],
InsetBox["10",
Offset[{2, 2}, {-0.6597510834668607, 0.5284398767687261}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6881909602355868, -0.5}, 0.02843987676872603],
InsetBox["11",
Offset[{2, 2}, {0.7166308370043128, -0.47156012323127394}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6881909602355868, 0.5}, 0.02843987676872603],
InsetBox["12",
Offset[{2, 2}, {0.7166308370043128, 0.5284398767687261}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.85065080835204, 0.}, 0.02843987676872603],
InsetBox["13",
Offset[{2, 2}, {0.879090685120766, 0.02843987676872603}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.1135163644116068, -0.8090169943749475},
0.02843987676872603],
InsetBox["14",
Offset[{2, 2}, {-1.085076487642881, -0.7805771176062214}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.1135163644116068, 0.8090169943749475},
0.02843987676872603],
InsetBox["15",
Offset[{2, 2}, {-1.085076487642881, 0.8374568711436735}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8506508083520399, 0.}, 0.02843987676872603],
InsetBox["16",
Offset[{2, 2}, {-0.8222109315833138, 0.02843987676872603}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.2628655560595668, -0.8090169943749475},
0.02843987676872603],
InsetBox["17",
Offset[{2, 2}, {0.2913054328282928, -0.7805771176062214}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.2628655560595668, 0.8090169943749475},
0.02843987676872603],
InsetBox["18",
Offset[{2, 2}, {0.2913054328282928, 0.8374568711436735}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.42532540417601994, -1.3090169943749475},
0.02843987676872603],
InsetBox["19",
Offset[{2, 2}, {0.453765280944746, -1.2805771176062215}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.42532540417601994, 1.3090169943749475},
0.02843987676872603],
InsetBox["20",
Offset[{2, 2}, {0.453765280944746, 1.3374568711436734}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[102]=",ExpressionUUID->"de3f19cf-a75b-431e-b269-2583eb97f58a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{1, 0, 1}", "Subsection",ExpressionUUID->"3fd9f6cf-6ab4-4d21-a2fa-65e0d970cb66"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->
"In[105]:=",ExpressionUUID->"d74853fe-7fcc-49be-aeea-c54071215886"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] - 2^Rational[-1, 2]
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
0}, {(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], 0}, {
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (3 +
5^Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^
Rational[
1, 2])}, {-(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] - 2^Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] - 2^Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[
1, 2]}, {(
Rational[1, 2] (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2]))^Rational[1, 2] - (
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2],
Rational[-1,
2]}, {(Rational[1, 2] (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2]))^Rational[1, 2] - (
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2],
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 5] (5 + 5^Rational[1, 2]))^
Rational[1, 2] - 2^Rational[-1, 2]
Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {-(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0}, {(-2^Rational[-1, 2]) Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {(-2^Rational[-1, 2])
Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {(
Rational[1, 2] (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] -
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJyFkqEKAkEURQetIn6BKPgRtldXo5i0CWajzWSzGASDWfAfDFNsYhLTCits
sqy4LBtMCjM74ewuDky4nHnvztw37clsMK0qpZq/XbE7ju7r0yrWyq7e3osW
EupDst3Nw6f+w4W8tvTTWzd12nLJtGfqBf3LuJDXTX+nR61Nw+8Eevg5X47v
RBv9cvcn5/uK6wOBzrigv5Azn+J611+Yh9FXm99Dk/N+zAv17J/zZ170J+d8
mQf9yVnfN+cl84MWcs6PfGz8pITn5kOOer6H+Qj/I/3/cPrl5svznN8XR+zb
fg==
"], 0.028624219028096476`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1.1591230066978224, 0.}, 0.028624219028096476],
InsetBox["1",
Offset[{2, 2}, {-1.130498787669726, 0.028624219028096476}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.1591230066978224, 0.}, 0.028624219028096476],
InsetBox["2",
Offset[{2, 2}, {1.187747225725919, 0.028624219028096476}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.48662449473386504, -1.3090169943749475},
0.028624219028096476],
InsetBox["3",
Offset[{2, 2}, {-0.45800027570576857, -1.280392775346851}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.48662449473386504, 1.3090169943749475},
0.028624219028096476],
InsetBox["4",
Offset[{2, 2}, {-0.45800027570576857, 1.337641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6015009550075456, -0.8090169943749475},
0.028624219028096476],
InsetBox["5",
Offset[{2, 2}, {0.6301251740356422, -0.7803927753468509}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6015009550075456, 0.8090169943749475},
0.028624219028096476],
InsetBox["6",
Offset[{2, 2}, {0.6301251740356422, 0.837641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9732489894677301, -0.8090169943749475},
0.028624219028096476],
InsetBox["7",
Offset[{2, 2}, {-0.9446247704396336, -0.7803927753468509}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9732489894677301, 0.8090169943749475},
0.028624219028096476],
InsetBox["8",
Offset[{2, 2}, {-0.9446247704396336, 0.837641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.30075047750377293, -0.5}, 0.028624219028096476],
InsetBox["9",
Offset[{2, 2}, {0.3293746965318694, -0.4713757809719035}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.30075047750377293, 0.5}, 0.028624219028096476],
InsetBox["10",
Offset[{2, 2}, {0.3293746965318694, 0.5286242190280965}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.3007504775037728, -0.5}, 0.028624219028096476],
InsetBox["11",
Offset[{2, 2}, {-0.27212625847567634, -0.4713757809719035}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.3007504775037728, 0.5}, 0.028624219028096476],
InsetBox["12",
Offset[{2, 2}, {-0.27212625847567634, 0.5286242190280965}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3888759272451838, 0.}, 0.028624219028096476],
InsetBox["13",
Offset[{2, 2}, {1.4175001462732804, 0.028624219028096476}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6015009550075457, -0.8090169943749475},
0.028624219028096476],
InsetBox["14",
Offset[{2, 2}, {-0.5728767359794493, -0.7803927753468509}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6015009550075457, 0.8090169943749475},
0.028624219028096476],
InsetBox["15",
Offset[{2, 2}, {-0.5728767359794493, 0.837641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.3888759272451834, 0.}, 0.028624219028096476],
InsetBox["16",
Offset[{2, 2}, {-1.3602517082170869, 0.028624219028096476}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9732489894677302, -0.8090169943749475},
0.028624219028096476],
InsetBox["17",
Offset[{2, 2}, {1.0018732084958266, -0.7803927753468509}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9732489894677302, 0.8090169943749475},
0.028624219028096476],
InsetBox["18",
Offset[{2, 2}, {1.0018732084958266, 0.837641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.48662449473386504, -1.3090169943749475},
0.028624219028096476],
InsetBox["19",
Offset[{2, 2}, {0.5152487137619615, -1.280392775346851}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.48662449473386504, 1.3090169943749475},
0.028624219028096476],
InsetBox["20",
Offset[{2, 2}, {0.5152487137619615, 1.337641213403044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[105]=",ExpressionUUID->"3ef5dd85-16d4-4e93-82b4-baa763202dfa"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{1, 0, -1}", "Subsection",ExpressionUUID->"bc8f9aef-6c65-471c-a5d8-611edbb0b949"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0", ",",
RowBox[{"-", "1"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->
"In[117]:=",ExpressionUUID->"63e8e1ec-b968-4463-a427-c424c368edcf"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
0}, {(Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0], 0}, {
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 +
5^Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (1 + 2 5^Rational[-1, 2]))^
Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1,
2]}, {(Rational[1, 2] (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2]))^
Rational[1, 2] + (
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2],
Rational[
1, 2]}, {(
Rational[1, 2] (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2]))^
Rational[1, 2] + (
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (Rational[1, 5] (5 + 5^Rational[1, 2]))^
Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0], 0}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
2^Rational[-1, 2] Root[1 - 100 #^2 + 80 #^4& , 1, 0] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^
Rational[1, 2])}, {(
Rational[1, 2] (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (3 +
5^Rational[1, 2])}, {(
Rational[1, 2] (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2]))^Rational[1, 2] +
2^Rational[-1, 2] Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2])}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKL6YlPdfx+jlfgYoiFaYInBb5f3+FV+mzy5//NKe
gPx+dHmVb9Ncdpw6bg/jQ+Xh/CiIfns083HJ70eXh5oPt+/Gii/63Rl794f8
On1298cv9h5LPd7V2T+Gm48uj+4/dHko3x6ND5Pfj2b+fnR59PBBl0czfz96
eNRb3nH2TfoC9e8De3R5dPehhxeafnTzMexHDy90+9Hl0eMXPTzQ7UeXR9ff
AFG/H2YfGn8/ujx6/KHLe0LswyWPET/o8mj60f2DHj770dMjuv0E5NHtw4hf
dPXo8QcAM1neDA==
"], 0.02743621557726529]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-0.7873749722376379, 0.}, 0.02743621557726529],
InsetBox["1",
Offset[{2, 2}, {-0.7599387566603726, 0.02743621557726529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.7873749722376379, 0.}, 0.02743621557726529],
InsetBox["2",
Offset[{2, 2}, {0.8148111878149031, 0.02743621557726529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.11487646027368059, 1.3090169943749475},
0.02743621557726529],
InsetBox["3",
Offset[{2, 2}, {-0.0874402446964153, 1.3364532099522128}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.11487646027368059, -1.3090169943749475},
0.02743621557726529],
InsetBox["4",
Offset[{2, 2}, {-0.0874402446964153, -1.281580778797682}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9732489894677301, 0.8090169943749475},
0.02743621557726529],
InsetBox["5",
Offset[{2, 2}, {1.0006852050449955, 0.8364532099522127}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9732489894677301, -0.8090169943749475},
0.02743621557726529],
InsetBox["6",
Offset[{2, 2}, {1.0006852050449955, -0.7815807787976822}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6015009550075456, 0.8090169943749475},
0.02743621557726529],
InsetBox["7",
Offset[{2, 2}, {0.6289371705848109, 0.8364532099522127}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6015009550075456, -0.8090169943749475},
0.02743621557726529],
InsetBox["8",
Offset[{2, 2}, {0.6289371705848109, -0.7815807787976822}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.2739994669715031, 0.5}, 0.02743621557726529],
InsetBox["9",
Offset[{2, 2}, {-1.2465632513942377, 0.5274362155772653}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.2739994669715031, -0.5}, 0.02743621557726529],
InsetBox["10",
Offset[{2, 2}, {-1.2465632513942377, -0.4725637844227347}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.273999466971503, 0.5}, 0.02743621557726529],
InsetBox["11",
Offset[{2, 2}, {1.3014356825487683, 0.5274362155772653}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.273999466971503, -0.5}, 0.02743621557726529],
InsetBox["12",
Offset[{2, 2}, {1.3014356825487683, -0.4725637844227347}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.18587401723009223, 0.}, 0.02743621557726529],
InsetBox["13",
Offset[{2, 2}, {-0.15843780165282695, 0.02743621557726529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9732489894677302, 0.8090169943749475},
0.02743621557726529],
InsetBox["14",
Offset[{2, 2}, {-0.9458127738904649, 0.8364532099522127}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9732489894677302, -0.8090169943749475},
0.02743621557726529],
InsetBox["15",
Offset[{2, 2}, {-0.9458127738904649, -0.7815807787976822}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.18587401723009223, 0.}, 0.02743621557726529],
InsetBox["16",
Offset[{2, 2}, {0.2133102328073575, 0.02743621557726529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6015009550075457, 0.8090169943749475},
0.02743621557726529],
InsetBox["17",
Offset[{2, 2}, {-0.5740647394302805, 0.8364532099522127}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6015009550075457, -0.8090169943749475},
0.02743621557726529],
InsetBox["18",
Offset[{2, 2}, {-0.5740647394302805, -0.7815807787976822}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.11487646027368059, 1.3090169943749475},
0.02743621557726529],
InsetBox["19",
Offset[{2, 2}, {0.14231267585094587, 1.3364532099522128}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.11487646027368059, -1.3090169943749475},
0.02743621557726529],
InsetBox["20",
Offset[{2, 2}, {0.14231267585094587, -1.281580778797682}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[117]=",ExpressionUUID->"4c23f1fc-b918-4f6a-8472-6d6f36b0e1d8"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["{1.,5/2,5/2,-\[Pi]/8}", "Subsection",ExpressionUUID->"8e7630aa-33de-41f7-89e5-67211777b543"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronProjectionGraph", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}], ",",
RowBox[{"{",
RowBox[{"1.", ",",
RowBox[{"5", "/", "2"}], ",",
RowBox[{"5", "/", "2"}], ",",
RowBox[{
RowBox[{"-", "\[Pi]"}], "/", "8"}]}], "}"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]], "Input",
CellLabel->"In[25]:=",ExpressionUUID->"96d0d904-4944-4e45-b9b5-c2196ef40be3"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3,
7}, {3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {9,
17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {18,
20}}}, {VertexLabels -> {"Name"}, VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/dRmf+OGsq/7v7V7my5Yf80eyreH8vdLSO2cYnbo
8X6rptpj4QHv9u84baf/9/v1/Tlb1n7hnfbOvirmUuDVhpf2tqlBe0oyPu1/
r5Okcdvvnb3DRLsdFf6z7PNWWCxcevvl/ufLQu7zGXza//v6ilPzeZ/ujxC+
/rvcZIk9w7qZWp/DjuxPiF345L7iQ/sNtk8UQt9s2N/0apNBgdEX+x0Qvn0j
hL+fGaLePg6ifn9366fe5WJf7B21vqTMcbpq/xFi/34DiP37ayDu2w91n30n
RP1+e4j6/X8g7rG3gbhnfwHEvfYvIO61h/rXHupfWHjYQ8PDHgDiaLNq
"]}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKH5qs79xQ9nX/d/avU0XrL9m/1EnSeO237v9BhPt
dlT4z9qPLl8TcynwasPL/bapQXtKMj7Zo8t3tn7qXS72Zb+91peUOU5XYfrt
ofL7qyD67aH6MeTfQ+y3d4DYb48u3w0x394RYr69hNTOKWaHHu+3aqo9Fh7w
bn/eCouFS2+/3P98Wch9PoNP+9Hl0f2HLr/jtJ3+3+/X7XO2rP3COw3O3w/l
2/++vuLUfN6n+yOEr/8uN1lijy6PHj7o8lD77KH22aOHxw7bJwqhbzbYN77a
ZFBg9AUjvNDdhx5ezOtman0OO2IfF7vwyX3Fhxjy6Pajhxe6/ejy6PGLHh7o
9qPLo+tngKjfnwBRb78BYv/+Joj99ujy6PGHLv8HYp+9DcS+/ejmoccPunwB
xL/2LyD+tUcPD3T/oadHdPvR5dHNR1ePHr/o6tHjDwDbABbl
"],
0.027921892559131634`]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {
DiskBox[{-1.3414769237750133, 0.35446934895128324},
0.027921892559131634],
InsetBox["1",
Offset[{2, 2}, {-1.3135550312158817, 0.38239124151041487}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.3414769237750133, -0.35446934895128324},
0.027921892559131634],
InsetBox["2",
Offset[{2, 2}, {1.3693988163341448, -0.3265474563921516}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6174576668498188, -0.9473074795496992},
0.027921892559131634],
InsetBox["3",
Offset[{2, 2}, {-0.5895357742906873, -0.9193855869905676}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.3745110474948734, 0.9558172015073416},
0.027921892559131634],
InsetBox["4",
Offset[{2, 2}, {-0.3465891549357418, 0.9837390940664732}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.7969767187195338, -1.150501952774291},
0.027921892559131634],
InsetBox["5",
Offset[{2, 2}, {0.8248986112786654, -1.1225800602151594}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9471259869327734, 0.02569378494776342},
0.027921892559131634],
InsetBox["6",
Offset[{2, 2}, {0.9750478794919051, 0.053615677506895054}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.8080623768667132, -1.1367329334120144},
0.027921892559131634],
InsetBox["7",
Offset[{2, 2}, {-0.7801404843075816, -1.1088110408528828}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6579131086534739, 0.039462804310039956},
0.027921892559131634],
InsetBox["8",
Offset[{2, 2}, {-0.6299912160943422, 0.06738469686917159}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.15890349941342663, 0.5353850808559564},
0.027921892559131634],
InsetBox["9",
Offset[{2, 2}, {-0.130981606854295, 0.563306973415088}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.06610614827172046, 1.262314024190943},
0.027921892559131634],
InsetBox["10",
Offset[{2, 2}, {-0.03818425571258882, 1.2902359167500745}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.06610614827172057, -1.2623140241909427},
0.027921892559131634],
InsetBox["11",
Offset[{2, 2}, {0.0940280408308522, -1.2343921316318112}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.1589034994134267, -0.5353850808559562},
0.027921892559131634],
InsetBox["12",
Offset[{2, 2}, {0.18682539197255835, -0.5074631882968246}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.2555308861559265, 0.3321906076313646},
0.027921892559131634],
InsetBox["13",
Offset[{2, 2}, {1.283452778715058, 0.36011250019049623}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9471259869327736, -0.025693784947763365},
0.027921892559131634],
InsetBox["14",
Offset[{2, 2}, {-0.9192040943736419, 0.0022281076113682685}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.796976718719534, 1.150501952774291},
0.027921892559131634],
InsetBox["15",
Offset[{2, 2}, {-0.7690548261604024, 1.1784238453334226}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.255530886155926, -0.3321906076313645},
0.027921892559131634],
InsetBox["16",
Offset[{2, 2}, {-1.2276089935967944, -0.30426871507223285}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.657913108653474, -0.03946280431003976},
0.027921892559131634],
InsetBox["17",
Offset[{2, 2}, {0.6858350012126055, -0.011540911750908128}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8080623768667134, 1.1367329334120146},
0.027921892559131634],
InsetBox["18",
Offset[{2, 2}, {0.835984269425845, 1.1646548259711462}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.3745110474948734, -0.9558172015073416},
0.027921892559131634],
InsetBox["19",
Offset[{2, 2}, {0.40243294005400504, -0.92789530894821}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.6174576668498188, 0.9473074795496992},
0.027921892559131634],
InsetBox["20", Offset[{2, 2},
{0.6453795594089504, 0.9752293721088308}], ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[25]=",ExpressionUUID->"fcf387ae-b103-4296-87f1-14351fa49c16"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Stereoscopic projections", "Section",ExpressionUUID->"16039d06-ccd4-4310-a720-aafa21f8cb02"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",ExpressionUUID->"927f151d-e8eb-4ffe-9e2e-079776adaa6d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"C2\"\>", ",", "\<\"C3\"\>", ",", "\<\"C5\"\>"}],
"}"}]], "Output",ExpressionUUID->"84e2db5a-415b-48ff-b410-af29b8fd7b3e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Quiet", "@",
RowBox[{"GraphPlot", "[",
RowBox[{
RowBox[{"SkeletonGraph", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",",
"\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",",
RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@",
RowBox[{"Range", "[",
RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\
"4111de57-9857-4f1e-bda9-3e9b8c6c0e82"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfXVcP3Xbxv2M0BBTknN/ATR7fYMaOB89xH+Te+v
w9XJLN6V/uvNa3s0eXs0+f1Q8+HiUPPh5oT8On1298cvUP6D/Wh8++Pqd69P
bzuyH0aHsibyP2W4aA+j0eTt0eTh4mj696Ppt0fTD1cHdY89mvtgfHsANTGF
4A==
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQHfXVcP3Xbxv2M0BBTknN/ATR7fYMaOB89xH+Te+v
w9XJLN6V/uvNa3s0eXs0+f1Q8+HiUPPh5oT8On1298cvUP6D/Wh8++Pqd69P
bzuyH0aHsibyP2W4aA+j0eTt0eTh4mj696Ppt0fTD1cHdY89mvtgfHsANTGF
4A==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQzbrh4OyJd7fvZ4CCW6uaprmxH7ZnQAP13zdumZl1
H66uEcz/b48mb48mvx9qPlwcaj7cnJBfp8/u/vgFyn+wH41vnzVjoZwe85n9
MNopZPcz4ZZ79jAaTd4eTR4ujqZ/P5p+ezT9cHVQ99ijuQ/GtwcAFnuBhg==
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQzbrh4OyJd7fvZ4CCW6uaprmxH7ZnQAP13zdumZl1
H66uEcz/b48mb48mvx9qPlwcaj7cnJBfp8/u/vgFyn+wH41vnzVjoZwe85n9
MNopZPcz4ZZ79jAaTd4eTR4ujqZ/P5p+ezT9cHVQ99ijuQ/GtwcAFnuBhg==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfaUkVbXg6979DFBgc6H+UrfmGXsGNJAuru76Z+4j
uLrQX6fP7v4o4oAmb48mfwBqPlwcaj7cnBCwui9Q/oP9aHz7JVl6n6MVL+6H
0fKb1StjAl/aw2g0eXs0ebg4mv79aPrt0fTD1UHdY4/mPhjfHgBgPn8W
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQfaUkVbXg6979DFBgc6H+UrfmGXsGNJAuru76Z+4j
uLrQX6fP7v4o4oAmb48mfwBqPlwcaj7cnBCwui9Q/oP9aHz7JVl6n6MVL+6H
0fKb1StjAl/aw2g0eXs0ebg4mv79aPrt0fTD1UHdY4/mPhjfHgBgPn8W
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
RowBox[{"GraphPlot", "[",
RowBox[{
InterpretationBox[
StyleBox[
RowBox[{"\[SkeletonIndicator]",
RowBox[{"Graph", ":", "<"}], "30", ",", "20", ",", "Undirected",
RowBox[{">", "\[SkeletonIndicator]"}]}],
ShowAutoStyles->False,
AutoSpacing->False],
Combinatorica`Graph[{{{1, 7}}, {{1, 11}}, {{1, 13}}, {{2, 8}}, {{2,
12}}, {{2, 14}}, {{3, 4}}, {{3, 11}}, {{3, 15}}, {{4, 12}}, {{4,
16}}, {{5, 6}}, {{5, 13}}, {{5, 17}}, {{6, 14}}, {{6, 18}}, {{7,
15}}, {{7, 17}}, {{8, 16}}, {{8, 18}}, {{9, 10}}, {{9, 11}}, {{9,
12}}, {{10, 13}}, {{10, 14}}, {{15, 19}}, {{16, 19}}, {{17, 20}}, {{18,
20}}, {{19,
20}}}, {{{-0.1381966011250105, 0}}, {{0.3090169943749474, 0}}, {{
0, -0.6545084971874737}}, {{Indeterminate,
DirectedInfinity[]}}, {{0, 0.6545084971874737}}, {{Indeterminate,
DirectedInfinity[]}}, {{
0.1381966011250105, 0}}, {{-0.3090169943749474,
0}}, {{-1.3090169943749475`, -0.5}}, {{-1.3090169943749475`,
0.5}}, {{-0.30901699437494745`, -0.30901699437494745`}}, {{
1.3090169943749472`, 1.3090169943749472`}}, {{-0.30901699437494745`,
0.30901699437494745`}}, {{
1.3090169943749472`, -1.3090169943749472`}}, {{
0.30901699437494745`, -0.30901699437494745`}}, {{-1.3090169943749472`,
1.3090169943749472`}}, {{0.30901699437494745`,
0.30901699437494745`}}, {{-1.3090169943749472`, \
-1.3090169943749472`}}, {{1.3090169943749475`, -0.5}}, {{1.3090169943749475`,
0.5}}}],
Editable->False], ",",
RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/VbL5F6J7JH9DFCwRkTcMkvktj0DGlhkf/y75s1n
cHXl3zdumZklfwBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vn9NnphXK
c20/jGa0O6inPYXJAUajydujyR+AiaPpP4Cm3x5NP0z+ANQ99mjug/HtAZjz
bAo=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/VbL5F6J7JH9DFCwRkTcMkvktj0DGlhkf/y75s1n
cHXl3zdumZklfwBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vn9NnphXK
c20/jGa0O6inPYXJAUajydujyR+AiaPpP4Cm3x5NP0z+ANQ99mjug/HtAZjz
bAo=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHW0TMmulz7H9DFAQWO6h/Cr5kT0DGtjhd1gqOv8F
XB1XtVBIS7DQATR5ezR5B6j5cHGo+XBzQn6dPrv74xco/8F+NL79srQ/i9aw
3NgPo1Mfdc9MOi7iAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AC3F
gio=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQHW0TMmulz7H9DFAQWO6h/Cr5kT0DGtjhd1gqOv8F
XB1XtVBIS7DQATR5ezR5B6j5cHGo+XBzQn6dPrv74xco/8F+NL79srQ/i9aw
3NgPo1Mfdc9MOi7iAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AC3F
gio=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQzX2/cfk1txP7GaDgxLyvfY2qL+0Z0IBuvlI73/GX
cHVSi3el/3rDfQBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vHxiqMC94
3839MDoOLB/oAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AO7vi5w=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQzX2/cfk1txP7GaDgxLyvfY2qL+0Z0IBuvlI73/GX
cHVSi3el/3rDfQBN3h5N3gFqPlwcaj7cnJBfp8/u/vgFyn+wH41vHxiqMC94
3839MDoOLB/oAKPR5O3R5A/AxNH0H0DTb4+mHyZ/AOoeezT3wfj2AO7vi5w=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQzTCLfZO+8Kn9DFDw9HI8V9asj/YMaMBDdm/girev
4OrmVra6f+5nP4Amb48m7wA1Hy4ONR9uTsiv02d3f/wC5T/Yj8a3b3XrdPB2
ub0fRqeybf6SyahwAEajydujyTvAxNH0O6Dpt0fTD5N3gLrHHs19ML49APvJ
c7g=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQzTCLfZO+8Kn9DFDw9HI8V9asj/YMaMBDdm/girev
4OrmVra6f+5nP4Amb48m7wA1Hy4ONR9uTsiv02d3f/wC5T/Yj8a3b3XrdPB2
ub0fRqeybf6SyahwAEajydujyTvAxNH0O6Dpt0fTD5N3gLrHHs19ML49APvJ
c7g=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQHZ5qwrxy++n9DFCw/Mv02eWPf9ozoAGpxbvSf715
DVcX8uv02d0fWQ6gydujyTtAzYeLQ81HM+cLlP9gPxrf/ubb/UdV59/ZD6ND
wfICB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwBVw5qy
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQHZ5qwrxy++n9DFCw/Mv02eWPf9ozoAGpxbvSf715
DVcX8uv02d0fWQ6gydujyTtAzYeLQ81HM+cLlP9gPxrf/ubb/UdV59/ZD6ND
wfICB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwBVw5qy
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQzfWm97Sl5dn9DFCgbb1clJOX1YEBDZhU/LBKOvMG
rk4pIED9jRHzATR5ezR5B6j5cHGo+XB9Ib9On9398QvU3Af70fj2x/55Llt5
9e5+GF3Tm7cyv5zjAIxGk7dHk3eAiaPpd0DTb4+mHybvAHWPPZr7YHx7AEyQ
gb4=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQzfWm97Sl5dn9DFCgbb1clJOX1YEBDZhU/LBKOvMG
rk4pIED9jRHzATR5ezR5B6j5cHGo+XB9Ib9On9398QvU3Af70fj2x/55Llt5
9e5+GF3Tm7cyv5zjAIxGk7dHk3eAiaPpd0DTb4+mHybvAHWPPZr7YHx7AEyQ
gb4=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/Z7n7CS+Oef2M0DBzwf/ei4yizkwoIGHNxlnN058
C1d3K+Ny99HPjAfQ5O3R5B2g5sPFoebD9YX8On1298cvUHMf7Efj29exR7G4
vL23H0a7dJz9Zn2X+QCMRpO3R5N3gImj6XdA02+Pph8m7wB1jz2a+2B8ewDO
LoHA
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/Z7n7CS+Oef2M0DBzwf/ei4yizkwoIGHNxlnN058
C1d3K+Ny99HPjAfQ5O3R5B2g5sPFoebD9YX8On1298cvUHMf7Efj29exR7G4
vL23H0a7dJz9Zn2X+QCMRpO3R5N3gImj6XdA02+Pph8m7wB1jz2a+2B8ewDO
LoHA
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ3Wtbxrfh8fn9DFDgrsW8t4k1yIEBDXC2xX/Y6fAO
ri5lt+n0DBbGA2jy9mjyDlDz4eJQ8+H6Qn6dPrv74xeouQ/2o/Htr9340BX1
6v5+GF24aN/d70qMB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwAt
e4uM
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ3Wtbxrfh8fn9DFDgrsW8t4k1yIEBDXC2xX/Y6fAO
ri5lt+n0DBbGA2jy9mjyDlDz4eJQ8+H6Qn6dPrv74xeouQ/2o/Htr9340BX1
6v5+GF24aN/d70qMB2A0mrw9mrwDTBxNvwOafns0/TB5B6h77NHcB+PbAwAt
e4uM
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvWGL1voJnRf2M0CBGd/nrynH5A4woIH85Bm9DXff
wdVVmTTtsfFiOIAmb48m7wA1Hy4ONd8Bxg/5dfrs7o9foOY+2I/Gt1e/Ldnh
nPFgP4zeN/NwO8uqf3AaTd4eTR6m3x5Nvz2afns0/XAa6h57NPfB+PYAs2yD
sg==
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQvWGL1voJnRf2M0CBGd/nrynH5A4woIH85Bm9DXff
wdVVmTTtsfFiOIAmb48m7wA1Hy4ONd8Bxg/5dfrs7o9foOY+2I/Gt1e/Ldnh
nPFgP4zeN/NwO8uqf3AaTd4eTR6m3x5Nvz2afns0/XAa6h57NPfB+PYAs2yD
sg==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQPZX5wstqsYv7GaCg4fvGLTOz+A8woIE6sPj7/aj8
/2j89/Zo8vZQ8+HiUPMdYPyQX6fP7v74BWrOg/1ofPu/vKl3Ei8+2A+jT3+1
tm+V/AOn0eTt0eRh+u3R9Nuj6bdH0w+noe6xR3MfjG8PAAxPj1Y=
"], {
{GrayLevel[0],
LineBox[{{1, 7}, {1, 11}, {1, 13}, {2, 8}, {2, 12}, {2, 14}, {3, 4}, {
3, 11}, {3, 15}, {4, 12}, {4, 16}, {5, 6}, {5, 13}, {5, 17}, {6,
14}, {6, 18}, {7, 15}, {7, 17}, {8, 16}, {8, 18}, {9, 10}, {9, 11}, {
9, 12}, {10, 13}, {10, 14}, {15, 19}, {16, 19}, {17, 20}, {18, 20}, {
19, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQPZX5wstqsYv7GaCg4fvGLTOz+A8woIE6sPj7/aj8
/2j89/Zo8vZQ8+HiUPMdYPyQX6fP7v74BWrOg/1ofPu/vKl3Ei8+2A+jT3+1
tm+V/AOn0eTt0eRh+u3R9Nuj6bdH0w+noe6xR3MfjG8PAAxPj1Y=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\
"def94d1d-b8e4-4da4-8937-b41b86308424"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"GraphPlot", "[",
RowBox[{
RowBox[{"SkeletonGraph", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",",
"\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",",
RowBox[{"Method", "\[Rule]", "None"}]}], "]"}], "&"}], "/@",
RowBox[{"Range", "[",
RowBox[{".2", ",", "2", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\
"95edaba2-bd35-4c29-b487-ebd3f62e713d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiwi2jr7ZM8uF+k2uX499j39mj8/SZWxwqWmW+2
d9xSfbBryQF0vn2tySzTD2wv96/aGMN+OukxOn9//U+Vg/G+b+2vTjpfH/nt
uj0af3/jj0/TD5Vdt/euu/dE2uAwOt8eYt/h/TD3+lvZpHME7bHf+Ngtd1vb
CXs0/n4I/wxc/Qkbi51JXFf2X648NPEr9/n9aHz7k3evfv2XtHo/f03Abg65
m/vR+PYA9DSQ/g==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQiwi2jr7ZM8uF+k2uX499j39mj8/SZWxwqWmW+2
d9xSfbBryQF0vn2tySzTD2wv96/aGMN+OukxOn9//U+Vg/G+b+2vTjpfH/nt
uj0af3/jj0/TD5Vdt/euu/dE2uAwOt8eYt/h/TD3+lvZpHME7bHf+Ngtd1vb
CXs0/n4I/wxc/Qkbi51JXFf2X648NPEr9/n9aHz7k3evfv2XtHo/f03Abg65
m/vR+PYA9DSQ/g==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4/TqWFtFwZb/Z/K3HCs8yOaDxD/Qxnr09dd0u
+5OnZR+WSh/fj8a39zSwCRBj/Ld/0cEFM/fZfkfn78/7/s1k2gRGhyk/pzz3
3PXGHo2//yyHg0TP7Hv2DxUTz81nP4nOt4fYd2o/zL0dZWnWn8RP2P97wi03
8+4VezT+fgj/Bly9+AYu82iVW/sTv7yseWB/ZT8a3/5m0tWWw3c27l/pxGt0
I/HBfjS+PQCgDpS8
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4/TqWFtFwZb/Z/K3HCs8yOaDxD/Qxnr09dd0u
+5OnZR+WSh/fj8a39zSwCRBj/Ld/0cEFM/fZfkfn78/7/s1k2gRGhyk/pzz3
3PXGHo2//yyHg0TP7Hv2DxUTz81nP4nOt4fYd2o/zL0dZWnWn8RP2P97wi03
8+4VezT+fgj/Bly9+AYu82iVW/sTv7yseWB/ZT8a3/5m0tWWw3c27l/pxGt0
I/HBfjS+PQCgDpS8
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjI1pSLmLF+3P//kdIqPwt5BzT+gTNzG86U9R2w
lzRS07dZe2Y/Gt+eK//A0ccvJA48qFKpa/EWdkDjHxD0u+dlqCXrYHfhT/iU
m+wOaPwDV9NMExx5H9m7Zp5jNWg7ux+Nbw+x78J+mHuTDpmIcPZdsv/H+PrA
MsEH9mj8/RD+I7h6h83G77iv3ds/0/jw4c2Pru9H49svz7zjcVtw6345k9DH
T4Me70fj2wMAJeKG5g==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjI1pSLmLF+3P//kdIqPwt5BzT+gTNzG86U9R2w
lzRS07dZe2Y/Gt+eK//A0ccvJA48qFKpa/EWdkDjHxD0u+dlqCXrYHfhT/iU
m+wOaPwDV9NMExx5H9m7Zp5jNWg7ux+Nbw+x78J+mHuTDpmIcPZdsv/H+PrA
MsEH9mj8/RD+I7h6h83G77iv3ds/0/jw4c2Pru9H49svz7zjcVtw6345k9DH
T4Me70fj2wMAJeKG5g==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgU33L5sGQdq4OPX1r/xkfGB9D4DpnzeZs4ow/b
V9zMUTY4fGE/Gt9+4zPGzKbd+g5e2tl1hVM0DqDxHZb3dV6aOtnowJxHhxwe
J8odQOM7rOnaNN3B+on9Pd+PdundF/aj8e0h9l3eD3OvbdUHE8WS2/YTveZ8
7jz23B6Nvx/Cfw1Xr8p1nneO+8P9Um03T7AdvbUfjW9vwSLjrzJ3+/4/mU+Z
zVc83Y/GtwcAMBWIjQ==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgU33L5sGQdq4OPX1r/xkfGB9D4DpnzeZs4ow/b
V9zMUTY4fGE/Gt9+4zPGzKbd+g5e2tl1hVM0DqDxHZb3dV6aOtnowJxHhxwe
J8odQOM7rOnaNN3B+on9Pd+PdundF/aj8e0h9l3eD3OvbdUHE8WS2/YTveZ8
7jz23B6Nvx/Cfw1Xr8p1nneO+8P9Um03T7AdvbUfjW9vwSLjrzJ3+/4/mU+Z
zVc83Y/GtwcAMBWIjQ==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgY/FQV3nL0pb2g+T+lv4vED6DxHe788GoqvXDU
fvql9G6PJ5f2o/HtbeT4Zb/cFnKYZ+z9K8+c9wAa3yH5bvH8VSJiB1qsNnp3
8zEdQOM7lAqn16xieGbPd1LKxuDfxf1ofHuIfVf3w9wbw7/fcaPuE/ukh6Ef
5lV+tEfj74fwv8DVm36f/u/eqUf7G1bt0/4hc3c/Gt/+z8OKd9Hrdu4/vvON
8ZTe5/vR+PYAViaQ+w==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgY/FQV3nL0pb2g+T+lv4vED6DxHe788GoqvXDU
fvql9G6PJ5f2o/HtbeT4Zb/cFnKYZ+z9K8+c9wAa3yH5bvH8VSJiB1qsNnp3
8zEdQOM7lAqn16xieGbPd1LKxuDfxf1ofHuIfVf3w9wbw7/fcaPuE/ukh6Ef
5lV+tEfj74fwv8DVm36f/u/eqUf7G1bt0/4hc3c/Gt/+z8OKd9Hrdu4/vvON
8ZTe5/vR+PYAViaQ+w==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhYa6773qbx0H5ixgkpsUr+A2h8h52P/Tdu/3vc
vvbmTfVHx67sR+PbL1/aEj5ZhtOhhDtwfm8x8wE0vsN3/QLRrWm8Byx3vfsm
wP1jPxrf3mRNvlpixXP7/j7r53mGl/ej8e0h9l3fD3Mv+4+VvFEJ7+w3X5q1
vMXvlz0afz+E/w+uPnEu/5kj3E/2P17LLSnFd38/Gt++r4zh8qOU3fst5yk3
HJF/uR+Nbw8AAwWLQA==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhYa6773qbx0H5ixgkpsUr+A2h8h52P/Tdu/3vc
vvbmTfVHx67sR+PbL1/aEj5ZhtOhhDtwfm8x8wE0vsN3/QLRrWm8Byx3vfsm
wP1jPxrf3mRNvlpixXP7/j7r53mGl/ej8e0h9l3fD3Mv+4+VvFEJ7+w3X5q1
vMXvlz0afz+E/w+uPnEu/5kj3E/2P17LLSnFd38/Gt++r4zh8qOU3fst5yk3
HJF/uR+Nbw8AAwWLQA==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjwrbtQZ19w2/5GYJ2qgRbnATS+w5TDNTd73p20
F3OOMFIvvbYfjW//fomko6gIi8O1nsDa31L/96Px7Tfu+mwg28R+4JbY6rMp
lp/3o/HtHUoUpU9teWHvE1XTpmdyZT8a3x5i3839MPeWdJTO6iz9Yf/u+dKu
ZXqsDmj8AxA+xwGY+otRufeZpZ7uv3kvhT0p4sF+NL596ekFdw2v7dn/n3ux
V2XRq/1ofHsAS4eKgQ==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjwrbtQZ19w2/5GYJ2qgRbnATS+w5TDNTd73p20
F3OOMFIvvbYfjW//fomko6gIi8O1nsDa31L/96Px7Tfu+mwg28R+4JbY6rMp
lp/3o/HtHUoUpU9teWHvE1XTpmdyZT8a3x5i3839MPeWdJTO6iz9Yf/u+dKu
ZXqsDmj8AxA+xwGY+otRufeZpZ7uv3kvhT0p4sF+NL596ekFdw2v7dn/n3ux
V2XRq/1ofHsAS4eKgQ==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjsY/y49cWe6/ZXL59tjzzKegCN7+C/YMNi9zWn
7SPb/SZrfb++H41v/1fvMdftOEYH3Q+mLFwvf+1H49ub+i9UrAhjOVC7PZV7
5cIP+9H49mHzFj97ceilvceNiy3Cglf3o/HtIfbd3g9zr9NsOdHFHuwOVf1h
6gJaIg5o/AMQvvgBmPqL5k8272R4tn91uaaCOPfD/Wh8eyWT31MrBfftP588
6dGCya/3o/HtATBsiLc=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjsY/y49cWe6/ZXL59tjzzKegCN7+C/YMNi9zWn
7SPb/SZrfb++H41v/1fvMdftOEYH3Q+mLFwvf+1H49ub+i9UrAhjOVC7PZV7
5cIP+9H49mHzFj97ceilvceNiy3Cglf3o/HtIfbd3g9zr9NsOdHFHuwOVf1h
6gJaIg5o/AMQvvgBmPqL5k8272R4tn91uaaCOPfD/Wh8eyWT31MrBfftP588
6dGCya/3o/HtATBsiLc=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh0Pf7GL5V71V4hSJZv6jLmA2h8ByuVc4fT7c7a
V/kvOJsVfHM/Gt/+86z7EtOi/9uXlWc7qnj92I/Gt3+9Ms8vL5rpwOTIeVu5
2d7tR+Pb17ty7TVZ88reKXB97e3zV/ej8e0h9t3dD3OvuGkY31lWVYc9cjIH
j5kYOaDxD0D4pgdg6g/XKX3+ffzZfg9N67r8pQ/3o/Ht75va+R9T3L//5UUh
29jeN/vR+PYAe2GDVQ==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh0Pf7GL5V71V4hSJZv6jLmA2h8ByuVc4fT7c7a
V/kvOJsVfHM/Gt/+86z7EtOi/9uXlWc7qnj92I/Gt3+9Ms8vL5rpwOTIeVu5
2d7tR+Pb17ty7TVZ88reKXB97e3zV/ej8e0h9t3dD3OvuGkY31lWVYc9cjIH
j5kYOaDxD0D4pgdg6g/XKX3+ffzZfg9N67r8pQ/3o/Ht75va+R9T3L//5UUh
29jeN/vR+PYAe2GDVQ==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4TDUV9Ltx2b6VX0sxxJjpABrfYV6M2E221efs
c6yueBj039qPxre321H+SJ37r/3G379N7eu/7Ufj25/oS9o8l4HxwEa3DRKX
zr3ej8a356qW8dlV/to+YdtvW6+ya/vR+PYQ++7th7l3QmfCpOI6pQNKqUZ7
1VkMDqDxHSB8IweYemnmuH/nS5/vFxcwEBHVebQfjW+/6/5Ps5XsB/a7v9Y1
tkp/ux+Nbw8A1Zd/bQ==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4TDUV9Ltx2b6VX0sxxJjpABrfYV6M2E221efs
c6yueBj039qPxre321H+SJ37r/3G379N7eu/7Ufj25/oS9o8l4HxwEa3DRKX
zr3ej8a356qW8dlV/to+YdtvW6+ya/vR+PYQ++7th7l3QmfCpOI6pQNKqUZ7
1VkMDqDxHSB8IweYemnmuH/nS5/vFxcwEBHVebQfjW+/6/5Ps5XsB/a7v9Y1
tkp/ux+Nbw8A1Zd/bQ==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQicv/cj98fGS/b7vX57JakyHkDjO0holRlrfD9v
37C/MO3Sutv70fj2VZwvjiTH/LZ3zPi1abLh1/1ofPvpCsYfClgYDlRE/Tia
aPRqPxrfvviigN1VrTf2RzidKg5yXN+PxreH2Hd/P8y9vt35OTyXeQ7cu8Hf
UfhN4gAa3wHCl3GAqb8+ySnhJN+L/dffvo+avOjRfjS+fc4vi3L9ggP7d34S
EP+i9m4/Gt8eAD2wjtA=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQicv/cj98fGS/b7vX57JakyHkDjO0holRlrfD9v
37C/MO3Sutv70fj2VZwvjiTH/LZ3zPi1abLh1/1ofPvpCsYfClgYDlRE/Tia
aPRqPxrfvviigN1VrTf2RzidKg5yXN+PxreH2Hd/P8y9vt35OTyXeQ7cu8Hf
UfhN4gAa3wHCl3GAqb8+ySnhJN+L/dffvo+avOjRfjS+fc4vi3L9ggP7d34S
EP+i9m4/Gt8eAD2wjtA=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjYbTK64H/pov3nvJemThEMB9D4DsGdDuJVky/Y
M9jYvXy19c5+NL69/OJsB37RX/b/t8kasZt82Y/Gt1/vX2GyuPPf/nO+WcW/
frzYj8a3n21psH/VyTf2/01ivy3pur4fjW8Pse/Bfph7Vz5iYfjHyHxgfr39
MqEygQNofAcIX9gBpn5tX2pR0bQX+5lcdias4H68H41vv2O1lvHDMwf2N917
fvvXhXf70fj2ACL1jrQ=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjYbTK64H/pov3nvJemThEMB9D4DsGdDuJVky/Y
M9jYvXy19c5+NL69/OJsB37RX/b/t8kasZt82Y/Gt1/vX2GyuPPf/nO+WcW/
frzYj8a3n21psH/VyTf2/01ivy3pur4fjW8Pse/Bfph7Vz5iYfjHyHxgfr39
MqEygQNofAcIX9gBpn5tX2pR0bQX+5lcdias4H68H41vv2O1lvHDMwf2N917
fvvXhXf70fj2ACL1jrQ=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhkeVn8nal00T6eg6vPPO//fjS+PcP12NpPchft
m2dV7KtZfnc/Gt++9eEkk+fCP+3z7CpeXs35vB+Nby//5cHm3pi/+x9PVvY8
zPRiPxrfPo3x7eKa8Lf2L6eUzJj37/p+ND7U/of7Ye79nTRH6n/O3/2afv16
R6o5D6DxHSB8XgeY+pzlhxMn87/cnzV97enqzMf70fj2z9KXciyVP7j//sPn
4qcz3u9H49sDAL6OltY=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhkeVn8nal00T6eg6vPPO//fjS+PcP12NpPchft
m2dV7KtZfnc/Gt++9eEkk+fCP+3z7CpeXs35vB+Nby//5cHm3pi/+x9PVvY8
zPRiPxrfPo3x7eKa8Lf2L6eUzJj37/p+ND7U/of7Ye79nTRH6n/O3/2afv16
R6o5D6DxHSB8XgeY+pzlhxMn87/cnzV97enqzMf70fj2z9KXciyVP7j//sPn
4qcz3u9H49sDAL6OltY=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgIZHrceTnlgv3+q08XBmX924/Gt3+WvSS7ZP5F
+/Wf1i0UbLu3H41v/6vcmrXL5Ye90rLvvmZnPu1H49vbT/KtOZL5Z79V/J3l
FjbP96Px7e+s9TF6fO2tfZF//bSzaTf2o/Gh9j/cD3PvwWWRy9Nm/9ivGa/7
o8Cf9QAa3wHC53CAqTdzvNaZXPNyf2DGS5Gjex/vR+PbT990c+G/zIP7uQQ0
H2h/fL8fjW8PABCwmPk=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQgIZHrceTnlgv3+q08XBmX924/Gt3+WvSS7ZP5F
+/Wf1i0UbLu3H41v/6vcmrXL5Ye90rLvvmZnPu1H49vbT/KtOZL5Z79V/J3l
FjbP96Px7e+s9TF6fO2tfZF//bSzaTf2o/Gh9j/cD3PvwWWRy9Nm/9ivGa/7
o8Cf9QAa3wHC53CAqTdzvNaZXPNyf2DGS5Gjex/vR+PbT990c+G/zIP7uQQ0
H2h/fL8fjW8PABCwmPk=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhcY3gkYKtwwd7kT7ym/5S/+9H49gqvLjrbiV2y
v376G9vF4Pv70fj2f3dYuZ+Y+d3eMk/45Ef3T/vR+PbGlsXd1xf+3v9NeuaB
XTOe7Ufj2+v5hah+83xnf2i/P9eLIzf2o/Gh9j/aD3Pv8y9bdz1p/bo/a7qu
7tbFTAfQ+A4QPqsDTP2/dPWaNfde7o/cc3TVM84n+9H49ntnbF6itvbgftlz
38J1zT7sR+PbAwA1Dpn7
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhcY3gkYKtwwd7kT7ym/5S/+9H49gqvLjrbiV2y
v376G9vF4Pv70fj2f3dYuZ+Y+d3eMk/45Ef3T/vR+PbGlsXd1xf+3v9NeuaB
XTOe7Ufj2+v5hah+83xnf2i/P9eLIzf2o/Gh9j/aD3Pv8y9bdz1p/bo/a7qu
7tbFTAfQ+A4QPqsDTP2/dPWaNfde7o/cc3TVM84n+9H49ntnbF6itvbgftlz
38J1zT7sR+PbAwA1Dpn7
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhMZf3P/LvmvP28Lg1t5od/9qPx7bmZrRgSWi7Z
H+cNZvTkfLAfjW+/5tqulTu5vtv/PjiDXenmx/1ofPv47VZckb9+7XedKO9+
iP/ZfjS+/bn+mtCsTe/sPxllGARL3dyPxofa/2g/zL2pMTPf2id+3p/K2F09
8QTDATS+A4TP7ABTf6GTJ/Sx+av9gvee9DP6P9mPxrf/In6AUebVwf1Hq3mm
iOZ92I/GtwcACdmF6w==
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQhMZf3P/LvmvP28Lg1t5od/9qPx7bmZrRgSWi7Z
H+cNZvTkfLAfjW+/5tqulTu5vtv/PjiDXenmx/1ofPv47VZckb9+7XedKO9+
iP/ZfjS+/bn+mtCsTe/sPxllGARL3dyPxofa/2g/zL2pMTPf2id+3p/K2F09
8QTDATS+A4TP7ABTf6GTJ/Sx+av9gvee9DP6P9mPxrf/In6AUebVwf1Hq3mm
iOZ92I/GtwcACdmF6w==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4L44MuXjtnH29XWb4PI8/+9H49v7Tv0YffnXJ
PsxNdOuXxAf70fj2p3tdtJUmfrPXkzt57FPVx/1ofHvTQ+dD/2T/2r/IwUEx
fPbT/Wh8+/LlB9qXC763T3sy09Y04+Z+ND7U/kf7Ye5tP9WedfXsx/1zhdKd
067924/Gt4fwGR1g6u/uVIux7ny1n2/2nRPMfU/2o/HtU7elr9ugeGj/gmNX
jPkXftiPxrcHANSlmAk=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQh4L44MuXjtnH29XWb4PI8/+9H49v7Tv0YffnXJ
PsxNdOuXxAf70fj2p3tdtJUmfrPXkzt57FPVx/1ofHvTQ+dD/2T/2r/IwUEx
fPbT/Wh8+/LlB9qXC763T3sy09Y04+Z+ND7U/kf7Ye5tP9WedfXsx/1zhdKd
067924/Gt4fwGR1g6u/uVIux7ny1n2/2nRPMfU/2o/HtU7elr9ugeGj/gmNX
jPkXftiPxrcHANSlmAk=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjkXHK/f8P9nH35HqVDdUd/70fj27M59gYaeV22
t2J41zlry4P9aHx78y0Jgc0a3+yNp7fee6H5cT8a3751nWdu3cef+zu8rI5r
mz/dj8a3V5Vq3Hoj4739LsfY9U3rb+5H40Ptf7wf5l4xp41Hd8z4sP/9xWcN
DPv/7Efj20P4DA4w9XJx+m82X361f9a7eYqbjz/Zj8a3l/7gpjo55ND+3ceX
2ew6/2E/Gt8eAFphlns=
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjkXHK/f8P9nH35HqVDdUd/70fj27M59gYaeV22
t2J41zlry4P9aHx78y0Jgc0a3+yNp7fee6H5cT8a3751nWdu3cef+zu8rI5r
mz/dj8a3V5Vq3Hoj4739LsfY9U3rb+5H40Ptf7wf5l4xp41Hd8z4sP/9xWcN
DPv/7Efj20P4DA4w9XJx+m82X361f9a7eYqbjz/Zj8a3l/7gpjo55ND+3ceX
2ew6/2E/Gt8eAFphlns=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjM3bFuY/vps/YWF/4eqAr+vR+Nb//o8dfAmMWX
7e+qLMi/xPhwPxrfvq5h4rWus1/tQ3n2bSh8/GE/Gt9+UvjxM7/bfu4/1l6v
IPTgyX40vv18t8NxP3a8t5+xwz6e4+PN/Wh8qP2P98Pcm3Nli+tcj/f7gzI8
b64U/70fjW8P4f+3h6k/94Dlp5LE6/1b3NxDtv55sh+Nb+84/ee00OZD+xsm
fj4459eH/Wh8ewDBRKVC
"], {
{GrayLevel[0],
LineBox[{{1, 14}, {1, 15}, {1, 16}, {2, 5}, {2, 6}, {2, 13}, {3, 7}, {
3, 14}, {3, 19}, {4, 8}, {4, 15}, {4, 20}, {5, 11}, {5, 19}, {6,
12}, {6, 20}, {7, 11}, {7, 16}, {8, 12}, {8, 16}, {9, 10}, {9, 14}, {
9, 17}, {10, 15}, {10, 18}, {11, 12}, {13, 17}, {13, 18}, {17, 19}, {
18, 20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQTQjM3bFuY/vps/YWF/4eqAr+vR+Nb//o8dfAmMWX
7e+qLMi/xPhwPxrfvq5h4rWus1/tQ3n2bSh8/GE/Gt9+UvjxM7/bfu4/1l6v
IPTgyX40vv18t8NxP3a8t5+xwz6e4+PN/Wh8qP2P98Pcm3Nli+tcj/f7gzI8
b64U/70fjW8P4f+3h6k/94Dlp5LE6/1b3NxDtv55sh+Nb+84/ee00OZD+xsm
fj4459eH/Wh8ewDBRKVC
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\
"16c0681c-8337-46a6-ba11-f4b5f86ecfc9"]
}, Closed]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Quiet", "@",
RowBox[{"GraphPlot", "[",
RowBox[{
RowBox[{"SkeletonGraph", "[",
RowBox[{
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\\""}], "}"}], ",",
"\"\\""}], "]"}], "//", "Normal"}], ",", "#"}], "]"}], ",",
RowBox[{"Method", "\[Rule]", "None"}]}], "]"}]}], "&"}], "/@",
RowBox[{"Range", "[",
RowBox[{".2", ",", "1.5", ",", ".1"}], "]"}]}]], "Input",ExpressionUUID->\
"78a751de-431d-4448-89fc-af1caef794f0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXdYryiLSdty+w/yJY7Pko/1ofHv5lO5Sac/D+zfF
z8ziZNuDzt/v/PmPo3Q4z4Hs6ze2qkxncUDjH7hq7sX8vFnQgQEKRJMvGTtd
3rWf75rx36jazfvR+PYiKZrrvrE/toep93GvZzCecgDOZ4/7vHTmteNw/gUt
kw0Mp+/tL/khYhQWf20/Gt/+Vllqbcayr/amx1deKFwh4IDGP5B/xa3Lqnyt
fVv4yTevVh+zR+Pvn2i+LE2ubon9jObUiE8d+9H59gAsno1K
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXdYryiLSdty+w/yJY7Pko/1ofHv5lO5Sac/D+zfF
z8ziZNuDzt/v/PmPo3Q4z4Hs6ze2qkxncUDjH7hq7sX8vFnQgQEKRJMvGTtd
3rWf75rx36jazfvR+PYiKZrrvrE/toep93GvZzCecgDOZ4/7vHTmteNw/gUt
kw0Mp+/tL/khYhQWf20/Gt/+Vllqbcayr/amx1deKFwh4IDGP5B/xa3Lqnyt
fVv4yTevVh+zR+Pvn2i+LE2ubon9jObUiE8d+9H59gAsno1K
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQPffNwQuuLGftzz6svVke/Gw/Gt9ee0Fp1T/bC/sv
LnR3fT3zODp/f/AZs5l3/io6xPn2lW5VkTqAxnc4fv5brYat2gEGKPhb83S1
0KZD+zVPfTaYpLV7PxrfnqE2yH9m5XN7mPoP+xeFv5Q+DucfUlhmMkH4Cpy/
YudN6Xt/H+0v/GnBuXXG7f1ofPvdE99mKNZyH5C6vvFRs5rqATS+g5p9V8PN
CzvsOz+ZP2KWuGyPxt8vVhLAUDFhjT3/pA17Y38dRefbAwCAKJu8
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQPffNwQuuLGftzz6svVke/Gw/Gt9ee0Fp1T/bC/sv
LnR3fT3zODp/f/AZs5l3/io6xPn2lW5VkTqAxnc4fv5brYat2gEGKPhb83S1
0KZD+zVPfTaYpLV7PxrfnqE2yH9m5XN7mPoP+xeFv5Q+DucfUlhmMkH4Cpy/
YudN6Xt/H+0v/GnBuXXG7f1ofPvdE99mKNZyH5C6vvFRs5rqATS+g5p9V8PN
CzvsOz+ZP2KWuGyPxt8vVhLAUDFhjT3/pA17Y38dRefbAwCAKJu8
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Tk9xFsi94K9WOayoz/dXu5H49srGsc8+bPhxn7j
iMqc8g8X0fn7F97f9e/8b04HB/v5MpcfMB1A4zvEuhy4zM0vcIABCjgbm8TP
uh/fXz4/uYvn1YH9aHz7pxVNnX8mv7KHqT/176DajmNn4Hz+qMUbtVvvwfni
HdlZXQ1P9xvosN2cYHd/Pxrfvt3sa2jHzc/75wVNW7+mm+8AGt/BiEdU/Nyd
Q/an1+0JOsJ21x6Nv9+D2Znj0YmN9qcDEmZrxZ1G59sDAFbklFI=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Tk9xFsi94K9WOayoz/dXu5H49srGsc8+bPhxn7j
iMqc8g8X0fn7F97f9e/8b04HB/v5MpcfMB1A4zvEuhy4zM0vcIABCjgbm8TP
uh/fXz4/uYvn1YH9aHz7pxVNnX8mv7KHqT/176DajmNn4Hz+qMUbtVvvwfni
HdlZXQ1P9xvosN2cYHd/Pxrfvt3sa2jHzc/75wVNW7+mm+8AGt/BiEdU/Nyd
Q/an1+0JOsJ21x6Nv9+D2Znj0YmN9qcDEmZrxZ1G59sDAFbklFI=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQnX1618Ww6xftl80P7sgseb0fjW9/OEXMuOfTw/1d
gUf3uYjcQufvZ8y8opN1gsnh+sJLspzev9H59g1aizjbzdkPMEDBB56117l8
Tu8v1tBUk7l6eD8a3/7vyg41mXtv7GHqZ5/SZLp57wKcz9QxI0JH/xmcv2WX
Ys3OqOf7P/TtMjrz/cF+NL49oz/vglmb3uzPEtqevVCE7QAa34GzWUP6RvZp
+wcSD7+ZST61R+PvX9nCtjr51hZ7we+598q5L6Dz7QGQqZNj
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQnX1618Ww6xftl80P7sgseb0fjW9/OEXMuOfTw/1d
gUf3uYjcQufvZ8y8opN1gsnh+sJLspzev9H59g1aizjbzdkPMEDBB56117l8
Tu8v1tBUk7l6eD8a3/7vyg41mXtv7GHqZ5/SZLp57wKcz9QxI0JH/xmcv2WX
Ys3OqOf7P/TtMjrz/cF+NL49oz/vglmb3uzPEtqevVCE7QAa34GzWUP6RvZp
+wcSD7+ZST61R+PvX9nCtjr51hZ7we+598q5L6Dz7QGQqZNj
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQfeD6/dPz3l6yv9W9d+oShbf70fj2xnFMd+V3v9zf
WXeq4vLGR+j8/XYChRu0t/6339p40LaC8zs63z6F/cm39TOYDzBAQWH74VUu
N87t/61/pOVnxrH9aHz7pt83biUseGcPU29ctL1JU+AynP+YZ52J0rn3cP6i
zJjL/4+92J/DGlBYyvBoPxrffpOgVPF3ixf7X6zKt1BfzHQAje/Qsj6sVXbF
ZfutuvGiC+3f2aPx91drSQSYTdhub3pPNNZf8RI63x4Ap+uZ6Q==
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQfeD6/dPz3l6yv9W9d+oShbf70fj2xnFMd+V3v9zf
WXeq4vLGR+j8/XYChRu0t/6339p40LaC8zs63z6F/cm39TOYDzBAQWH74VUu
N87t/61/pOVnxrH9aHz7pt83biUseGcPU29ctL1JU+AynP+YZ52J0rn3cP6i
zJjL/4+92J/DGlBYyvBoPxrffpOgVPF3ixf7X6zKt1BfzHQAje/Qsj6sVXbF
ZfutuvGiC+3f2aPx91drSQSYTdhub3pPNNZf8RI63x4Ap+uZ6Q==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQnfKSx0Py1GX73dpFi98Uv9uPxre/YicbuW3xp/1s
Uxz0toi+RufvP6qXsXNJ+x97UQfR8IxdX9D59i3Gs+OfLWQ8wAAFru8427UY
Lu4XfO/kLbjlxH40vr2HZEZ0P9MHe5j6/oUHd09ivgrn67yW19Dk+g7n/+rN
+z/7+cv96hGT81UvPdqPxrdv+DZzc83pp/uVtugH/TzCcACN7/BNxVSkveqO
/d/wTd+qX361R+Pv/1q6ZEnLz532p/+bG7v/uYzOtwcAIP2a0Q==
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQnfKSx0Py1GX73dpFi98Uv9uPxre/YicbuW3xp/1s
Uxz0toi+RufvP6qXsXNJ+x97UQfR8IxdX9D59i3Gs+OfLWQ8wAAFru8427UY
Lu4XfO/kLbjlxH40vr2HZEZ0P9MHe5j6/oUHd09ivgrn67yW19Dk+g7n/+rN
+z/7+cv96hGT81UvPdqPxrdv+DZzc83pp/uVtugH/TzCcACN7/BNxVSkveqO
/d/wTd+qX361R+Pv/1q6ZEnLz532p/+bG7v/uYzOtwcAIP2a0Q==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvdDk3Wex2iv20/x3fohpf78fjW//SFPpyHmJP/vj
/T7qPsr8gs7fv7zq0Ub2zl/2PvM+385x/4zOt998K/9cUBrDAQYomOeuy/4j
89L+u1MizM4cPLUfjW8vwWF4L3byB3uY+l8vvExOHroG5zcFH3udFsvoAONn
KmlEvLz4ar9JS2x+Qs3j/Wh8+2f2T49luj7Zz/T4Yt96w//70fj2B9Zs33Cx
7Km9THis7JVmBgc0/oFmH/ktvkp77H8/u+87a+nV/Wh8ewDywqBA
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQvdDk3Wex2iv20/x3fohpf78fjW//SFPpyHmJP/vj
/T7qPsr8gs7fv7zq0Ub2zl/2PvM+385x/4zOt998K/9cUBrDAQYomOeuy/4j
89L+u1MizM4cPLUfjW8vwWF4L3byB3uY+l8vvExOHroG5zcFH3udFsvoAONn
KmlEvLz4ar9JS2x+Qs3j/Wh8+2f2T49luj7Zz/T4Yt96w//70fj2B9Zs33Cx
7Km9THis7JVmBgc0/oFmH/ktvkp77H8/u+87a+nV/Wh8ewDywqBA
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvanz9llvwav2ax9JfNlm+mE/Gt/equFMyX0T9gNL
D3/85X2HwQGNf+DPjuzSzVo/7QOX9xc99fi0H41vz3Lh8Zm50v/3M0CBa+Ou
3qvrL+9nrbt8wm/2mf1ofPugjsCVLtwf7WHqHbaUPJwcegPOr4g8OzdoPY8D
jK/taz/h1eTX+9P8DEJCOJ/sR+Pbf1r4Wfak5eP9j1Vdsm5O/bsfjW//e9lp
75xdH+15kmstXrlzO6DxD0yaw1CiJ7LPfve7LIN1Ktf3o/HtAZwHnIA=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQvanz9llvwav2ax9JfNlm+mE/Gt/equFMyX0T9gNL
D3/85X2HwQGNf+DPjuzSzVo/7QOX9xc99fi0H41vz3Lh8Zm50v/3M0CBa+Ou
3qvrL+9nrbt8wm/2mf1ofPugjsCVLtwf7WHqHbaUPJwcegPOr4g8OzdoPY8D
jK/taz/h1eTX+9P8DEJCOJ/sR+Pbf1r4Wfak5eP9j1Vdsm5O/bsfjW//e9lp
75xdH+15kmstXrlzO6DxD0yaw1CiJ7LPfve7LIN1Ktf3o/HtAZwHnIA=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Ww09xt731V7gQ9OlhumftiPxrcX7LBI+m0vcaDz
4pXnMfMEHdD4B4Sv78jL0f5h37T4kmpu/8f9aHz7Ys7wWuEHf/czQEHhP7Pf
d65d2T+XaXY/k8e5/Wh8ez5NlSC9go/2MPWP/ka/cjh0E85nMHt0q+anrAOM
a3CoyNfI/M1+sRUf5n6tf7IfjW+/eYlUwtGyR/s37lFceyDzz340vr3yrb6X
lW1MDn/E6pa+bpRxQOMfYPynLPHp2n771NeJjE31N/aj8e0BvY2Y/A==
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ7Ww09xt731V7gQ9OlhumftiPxrcX7LBI+m0vcaDz
4pXnMfMEHdD4B4Sv78jL0f5h37T4kmpu/8f9aHz7Ys7wWuEHf/czQEHhP7Pf
d65d2T+XaXY/k8e5/Wh8ez5NlSC9go/2MPWP/ka/cjh0E85nMHt0q+anrAOM
a3CoyNfI/M1+sRUf5n6tf7IfjW+/eYlUwtGyR/s37lFceyDzz340vr3yrb6X
lW1MDn/E6pa+bpRxQOMfYPynLPHp2n771NeJjE31N/aj8e0BvY2Y/A==
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQrVmhJF7246r9F/uab5Off9iPxrc/fUKZ8zGDz4EF
PKm+DREuDmj8A1rLtucrZX637xO6meDC9HE/Gt8+vJrp0+v3f/YzQEGy9RoT
m8dX92fqTTD4dfb8fjS+/RWGSc88jn20h6kPDMs6+ov3Npw/9Y3Cwrl+gQ4w
/isb5U/Nh97sP7PKzlLv6ZP9aHz7Pxdy3kY8erj/hctW9ajW3/vR+Pa5O1gv
dKWYOigkLhM7UhrggMY/UKrwbnHtjgP2c50iav/vurkfjW8PAAormaY=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQrVmhJF7246r9F/uab5Off9iPxrc/fUKZ8zGDz4EF
PKm+DREuDmj8A1rLtucrZX637xO6meDC9HE/Gt8+vJrp0+v3f/YzQEGy9RoT
m8dX92fqTTD4dfb8fjS+/RWGSc88jn20h6kPDMs6+ov3Npw/9Y3Cwrl+gQ4w
/isb5U/Nh97sP7PKzlLv6ZP9aHz7Pxdy3kY8erj/hctW9ajW3/vR+Pa5O1gv
dKWYOigkLhM7UhrggMY/UKrwbnHtjgP2c50iav/vurkfjW8PAAormaY=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvbJ9o154yDX7l//5prrqfdyPxrdnK1t8S1BS2WHd
EofP1gekD6DxHeoEBKP8L3yz71+ietp68of9aHz76k4HdVbjP/sZoGCm4B3l
jBvX9n+Q0DosO/PCfjS+/c+NKnfnCnyyh6nf+m+DE7vtHTg/8dLbHxaz1Q/A
+OdKa0tOWr3dv8O3Q2aCzdP9aHz7+ukPe2bmPtzvl/PTdNPFX/vR+Pahxpsq
ruryHqh8K2tZVKx2AI3vUKvCznqy+KD9618Zr81u39qPxrcHAOQvlL0=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQvbJ9o154yDX7l//5prrqfdyPxrdnK1t8S1BS2WHd
EofP1gekD6DxHeoEBKP8L3yz71+ietp68of9aHz76k4HdVbjP/sZoGCm4B3l
jBvX9n+Q0DosO/PCfjS+/c+NKnfnCnyyh6nf+m+DE7vtHTg/8dLbHxaz1Q/A
+OdKa0tOWr3dv8O3Q2aCzdP9aHz7+ukPe2bmPtzvl/PTdNPFX/vR+Pahxpsq
ruryHqh8K2tZVKx2AI3vUKvCznqy+KD9618Zr81u39qPxrcHAOQvlL0=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQPXlzknvZkmv2W4V77F9nf9yPxrffqxvFNMtA2KHO
L6Y/9xH3ATS+Q9PsKTu/hHyz1/n/f/Icyw/70fj2ti3PL3XP+r2fAQrm1a3n
dN55ff+5lmvLq20u7kfj2zPW1G/ID/xkD1Mf1+z66lvQXTg/1faqjf8O8QMw
/umrBldWLX67//zTk0GHO57uR+PbH9vkuCCW/+F+wYYffusdfu1H49tr2ezr
Pxn4d//ktWe5ZPrFDqDxHe5VSmr2yx+yn7RZUKvn8e39aHx7AIxOnD0=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQPXlzknvZkmv2W4V77F9nf9yPxrffqxvFNMtA2KHO
L6Y/9xH3ATS+Q9PsKTu/hHyz1/n/f/Icyw/70fj2ti3PL3XP+r2fAQrm1a3n
dN55ff+5lmvLq20u7kfj2zPW1G/ID/xkD1Mf1+z66lvQXTg/1faqjf8O8QMw
/umrBldWLX67//zTk0GHO57uR+PbH9vkuCCW/+F+wYYffusdfu1H49tr2ezr
Pxn4d//ktWe5ZPrFDqDxHe5VSmr2yx+yn7RZUKvn8e39aHx7AIxOnD0=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvVLyTtanV9fs9/VznFRb9HE/Gt9e/HF35rTnXA5m
zxcIKvQwH0DjO/Rcd9T2ef/VXojJz7nx/vv9aHz7zk75LY9lfu9ngII328+u
suy4sV88hOnUzUsX96Px7W+FuG0p7fpkD1O/Wv4j98mge3B+w/XMxMMLBA7A
+BsSt7x89//t/uim5YFnTj/dj8a371dNWbTl4IP9+zjXztY9+XM/Gt9eT9xF
YFnvl/2GyqedbizgP4DGd9AJWOW5au8he9Vw3t83rt3Zj8a3BwC6pJ0Q
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQvVLyTtanV9fs9/VznFRb9HE/Gt9e/HF35rTnXA5m
zxcIKvQwH0DjO/Rcd9T2ef/VXojJz7nx/vv9aHz7zk75LY9lfu9ngII328+u
suy4sV88hOnUzUsX96Px7W+FuG0p7fpkD1O/Wv4j98mge3B+w/XMxMMLBA7A
+BsSt7x89//t/uim5YFnTj/dj8a371dNWbTl4IP9+zjXztY9+XM/Gt9eT9xF
YFnvl/2GyqedbizgP4DGd9AJWOW5au8he9Vw3t83rt3Zj8a3BwC6pJ0Q
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]], ",",
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXfrIODtf87o9488gM+tLH/ej8e0nth2+qRrH6vAo
+pbAdJ7/+9H49i9m29wQmvXVXkjh8NVVye/3o/Htp279ztiz+dd+BigoPTX9
ZKT7zf0bHpqrbYu9tB+Nb/+O/VoP895P9jD1vxQa29nt78P5TWwc9ZWZXAdg
fM2f+U67A9/tf+nHH2/F/mw/Gt/eqqlx3cyGB/vfvpU/9zfl5340vv18tnqT
S0Ef9n8Ln5LULcd5AI3v8LF4Hfca/8P2Le1d+e3b7+5H49sDALC1mP0=
"], {
{GrayLevel[0],
LineBox[{{1, 5}, {1, 15}, {1, 19}, {2, 6}, {2, 16}, {2, 20}, {3, 4}, {
3, 5}, {3, 17}, {4, 6}, {4, 18}, {5, 10}, {6, 10}, {7, 12}, {7,
13}, {7, 14}, {8, 9}, {8, 13}, {8, 19}, {9, 14}, {9, 20}, {10, 11}, {
11, 19}, {11, 20}, {12, 17}, {12, 18}, {13, 15}, {14, 16}, {15,
17}, {16, 18}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXfrIODtf87o9488gM+tLH/ej8e0nth2+qRrH6vAo
+pbAdJ7/+9H49i9m29wQmvXVXkjh8NVVye/3o/Htp279ztiz+dd+BigoPTX9
ZKT7zf0bHpqrbYu9tB+Nb/+O/VoP895P9jD1vxQa29nt78P5TWwc9ZWZXAdg
fM2f+U67A9/tf+nHH2/F/mw/Gt/eqqlx3cyGB/vfvpU/9zfl5340vv18tnqT
S0Ef9n8Ln5LULcd5AI3v8LF4Hfca/8P2Le1d+e3b7+5H49sDALC1mP0=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
PlotRange->All,
PlotRangePadding->Scaled[0.1]]}], "}"}]], "Output",ExpressionUUID->\
"944adf27-c5f6-4100-875d-1d0e26b59c6c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Properties", "Section",ExpressionUUID->"83b5fe29-9f96-4dcf-a9fb-36e65102afcd"],
Cell[CellGroupData[{
Cell["Classes", "Subsection",ExpressionUUID->"8b730682-5e81-41e1-a487-581abd20811f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",ExpressionUUID->"8dfb3551-9dd3-44ae-bab3-d2f91bd24059"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"Biconnected\"\>", ",", "\<\"Bridgeless\"\>",
",", "\<\"Class1\"\>", ",", "\<\"CompletelyRegular\"\>",
",", "\<\"Connected\"\>", ",", "\<\"Cubic\"\>",
",", "\<\"DeterminedBySpectrum\"\>", ",", "\<\"DistanceRegular\"\>",
",", "\<\"EdgeTransitive\"\>", ",", "\<\"GeneralizedPetersen\"\>",
",", "\<\"Hamiltonian\"\>", ",", "\<\"LCF\"\>", ",", "\<\"Noneulerian\"\>",
",", "\<\"Planar\"\>", ",", "\<\"Platonic\"\>", ",", "\<\"Polyhedral\"\>",
",", "\<\"Regular\"\>", ",", "\<\"SquareFree\"\>",
",", "\<\"Symmetric\"\>", ",", "\<\"Traceable\"\>",
",", "\<\"TriangleFree\"\>", ",", "\<\"Unitransitive\"\>",
",", "\<\"VertexTransitive\"\>", ",", "\<\"WeaklyRegular\"\>"}],
"}"}]], "Output",ExpressionUUID->"e7cc43e7-bc53-4b61-9daa-80e9fe10d3a6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Matrices", "Subsection",ExpressionUUID->"fc440145-9aa5-44c8-a3e8-b8efcd991d3d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsRow", "[",
RowBox[{"GraphMatrixPlot", "[",
RowBox[{"GraphData", "[", "\"\\"", "]"}], "]"}],
"]"}]], "Input",
CellLabel->
"In[140]:=",ExpressionUUID->"b7326196-fac2-42d1-a7ea-61dcc1e428c3"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[
RasterBox[SparseArray[
Automatic, {20, 20}, 1., {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{4}, {6}, {18}, {3}, {5}, {17}, {10}, {13}, {
20}, {9}, {13}, {19}, {1}, {7}, {8}, {1}, {4}, {10}, {1}, {3}, {
9}, {2}, {17}, {18}, {6}, {8}, {11}, {5}, {7}, {12}, {9}, {15}, {
18}, {10}, {14}, {17}, {4}, {12}, {16}, {3}, {11}, {16}, {2}, {
12}, {20}, {2}, {11}, {19}, {8}, {15}, {20}, {7}, {14}, {19}, {5}, {
6}, {13}, {14}, {15}, {16}}}, CompressedData["
1:eJxTTMoPSmVkYGCwYRgFwx0AAKQdAec=
"]}], {{0, 0}, {20, 20}}, {0, 1}],
DisplayFunction->Identity,
Frame->Automatic,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5, 1.5}, {1.5, 16.50000000000003}},
LabelStyle->Directive[12,
GrayLevel[0], Italic, FontFamily -> "Times New Roman"],
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultPlotStyle" -> Automatic},
PlotLabel->FormBox["\"adjacency matrix\"", TraditionalForm]], {89.63777380299078, -94.87765161036491},
ImageScaled[{0.5, 0.5}], {164.98010456800387, 180.71933640069506}],
InsetBox[
GraphicsBox[
RasterBox[SparseArray[
Automatic, {20, 30}, 1., {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{12}, {16}, {30}, {9}, {14}, {29}, {25}, {28}, {
30}, {23}, {27}, {29}, {3}, {18}, {20}, {2}, {11}, {24}, {1}, {8}, {
22}, {6}, {27}, {28}, {15}, {19}, {26}, {13}, {17}, {26}, {21}, {
24}, {25}, {21}, {22}, {23}, {10}, {19}, {20}, {7}, {17}, {18}, {5},
{15}, {16}, {4}, {13}, {14}, {10}, {11}, {12}, {7}, {8}, {9}, {
4}, {5}, {6}, {1}, {2}, {3}}}, CompressedData["
1:eJxTTMoPSmVkYGCwYRgFwx0AAKQdAec=
"]}], {{0, 0}, {30, 20}}, {0, 1}],
DisplayFunction->Identity,
Frame->Automatic,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.4999999999999991, 1.4999999999999432`}, {1.5,
16.50000000000003}},
LabelStyle->Directive[12,
GrayLevel[0], Italic, FontFamily -> "Times New Roman"],
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultPlotStyle" -> Automatic},
PlotLabel->FormBox["\"incidence matrix\"", TraditionalForm]], {307.3520253165203, -94.87765161036491},
ImageScaled[{0.5, 0.5}], {241.8575123830999, 180.71933640069506}],
InsetBox[
GraphicsBox[RasterBox[CompressedData["
1:eJzNWT1OQzEMfoKVkYkBqTMDB2B4MxOCqTOCmY0bICbOwBUYmRgZOEBXxMSA
kDgCQvCKmsSJP+dzXipVbd08+7Njf87P4vzq7HJ7GIbdv/fP983X17i8OHo9
uXsfH453tg5un8dJvh5x+rh/8/E2hs9Nny/XT/d7h5/B/7H+0vhf+6v1OAkP
ih8dX9JTizMv18cnb0/vr2SXNe/e8Zxr3iX902+0LtLj9HbninM+T1CcaP7H
+kt6MDxo3PT1yMI5F1+h/GC1K/Get/7wSWvepu3W98E2fQf1K5aj+KW8ssUB
51WMZyS5H4+hfCvJrfHk+KXHk/6N5z+b59F1Wm0doXWR1+/Nn7LdUCOah97z
npe350MUZ6t+kX5er8e2v9DnbZ/7CLTucP7H8hafR6/9SMkuql87vg1/4nwb
xqdULxLuWr6S8LD6hXedWvWg+cnZn8Y40Hpnr+tC/N565sqHTfu1847Xo7be
2TyT9qufPoviRO2y94+Yv/X7Kfb6IdQv4fHupzZ/Zf3hiLnPozj9VB836/6R
tT9i9am0n7G/rP7O4lvWuY3V37Se+nMMW5zrzwHyfsnyWr9QPNz7Eckvb/7E
7x9b81tv6xAW/7e5Z+HNY+25WW/ziNplxUead9s5gOSvJPe7D0Llre4pvM5X
Wesc7r1Yb/7++8Pu4zY5jkcr/wb8Yet+
"], {{0, 0}, {20, 20}}, {0, 1}],
DisplayFunction->Identity,
Frame->Automatic,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5, 1.5}, {1.5, 16.50000000000003}},
LabelStyle->Directive[12,
GrayLevel[0], Italic, FontFamily -> "Times New Roman"],
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultPlotStyle" -> Automatic},
PlotLabel->FormBox["\"distance matrix\"", TraditionalForm]], {525.0662768300499, -94.87765161036491},
ImageScaled[{0.5, 0.5}], {164.98010456800387, 180.71933640069506}]}, {}},
ImageSize->{
UpTo[600],
UpTo[360]},
PlotRange->{{0, 614.7040506330407}, {-189.75530322072981`, 0}},
PlotRangePadding->{6, 5}]], "Output",
CellLabel->
"Out[140]=",ExpressionUUID->"b4385df9-37bc-40ad-8288-fd0c2db99ff0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Properties", "Subsection",ExpressionUUID->"e77a0d4d-7216-4d05-8893-611d3947da39"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"TableForm", "[",
RowBox[{
RowBox[{"GraphDataTable", "[",
RowBox[{"\"\\"", ",", "x"}], "]"}], ",",
RowBox[{"TableDepth", "\[Rule]", "2"}]}], "]"}], "//",
"TraditionalForm"}]], "Input",ExpressionUUID->"5db89822-e1cb-4c40-9ea9-\
4bd3852d4ee8"],
Cell[BoxData[
RowBox[{
RowBox[{"GraphData", "::", "\<\"notdef\"\>"}], ":",
" ", "\<\"GraphData has no defined value for the specified tag or \
properties.\"\>"}]], "Message", \
"MSG",ExpressionUUID->"36ae7f36-2ce6-4a1f-9d13-48632ef85e3e"],
Cell[BoxData[
FormBox[
TagBox[GridBox[{
{"\<\"automorphism group order\"\>", "120"},
{"\<\"characteristic polynomial\"\>",
RowBox[{
RowBox[{"(",
RowBox[{"x", "-", "3"}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], "5"], " ",
SuperscriptBox["x", "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+", "2"}], ")"}], "4"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "-", "5"}], ")"}], "3"]}]},
{"\<\"chromatic number\"\>", "3"},
{"\<\"chromatic polynomial\"\>",
RowBox[{
RowBox[{"(",
RowBox[{"x", "-", "2"}], ")"}], " ",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}], " ", "x", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "17"], "-",
RowBox[{"27", " ",
SuperscriptBox["x", "16"]}], "+",
RowBox[{"352", " ",
SuperscriptBox["x", "15"]}], "-",
RowBox[{"2950", " ",
SuperscriptBox["x", "14"]}], "+",
RowBox[{"17839", " ",
SuperscriptBox["x", "13"]}], "-",
RowBox[{"82777", " ",
SuperscriptBox["x", "12"]}], "+",
RowBox[{"305866", " ",
SuperscriptBox["x", "11"]}], "-",
RowBox[{"921448", " ",
SuperscriptBox["x", "10"]}], "+",
RowBox[{"2297495", " ",
SuperscriptBox["x", "9"]}], "-",
RowBox[{"4783425", " ",
SuperscriptBox["x", "8"]}], "+",
RowBox[{"8347700", " ",
SuperscriptBox["x", "7"]}], "-",
RowBox[{"12195590", " ",
SuperscriptBox["x", "6"]}], "+",
RowBox[{"14808795", " ",
SuperscriptBox["x", "5"]}], "-",
RowBox[{"14713381", " ",
SuperscriptBox["x", "4"]}], "+",
RowBox[{"11613602", " ",
SuperscriptBox["x", "3"]}], "-",
RowBox[{"6892084", " ",
SuperscriptBox["x", "2"]}], "+",
RowBox[{"2751604", " ", "x"}], "-", "555984"}], ")"}]}]},
{"\<\"circulant graph\"\>", "\<\"Circulant\"\>"},
{"\<\"claw-free\"\>", "\<\"N\"\>"},
{"\<\"clique number\"\>", "2"},
{"\<\"graph complement name\"\>",
RowBox[{"{",
RowBox[{"GraphData", "[",
RowBox[{
FormBox[
TagBox[
TooltipBox["\<\"\[LongDash]\"\>",
"\"(not available)\""],
Annotation[#, "(not available)", "Tooltip"]& ],
TraditionalForm], ",", "\<\"Name\"\>"}], "]"}], "}"}]},
{"\<\"cospectral graph names\"\>", "\<\"---\"\>"},
{"\<\"determined by spectrum\"\>", "\<\"Y\"\>"},
{"\<\"diameter\"\>", "5"},
{"\<\"distance-regular graph\"\>", "\<\"Y\"\>"},
{"\<\"dual graph name\"\>",
RowBox[{"{", "\<\"icosahedral graph\"\>", "}"}]},
{"\<\"edge chromatic number\"\>", "3"},
{"\<\"edge connectivity\"\>", "3"},
{"\<\"edge count\"\>", "30"},
{"\<\"Eulerian\"\>", "\<\"N\"\>"},
{"\<\"generalized Petersen graph\"\>",
RowBox[{"{",
RowBox[{"\<\"Gp8\"\>", ",", GridBox[{
{"10", "2"}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}]}], "}"}]},
{"\<\"girth\"\>", "5"},
{"\<\"Hamiltonian\"\>", "\<\"Y\"\>"},
{"\<\"Hamiltonian cycle count\"\>", "60"},
{"\<\"Hamiltonian path count\"\>", "\<\"?\"\>"},
{"\<\"integral graph\"\>", "\<\"N\"\>"},
{"\<\"independence number\"\>", "8"},
{"\<\"LCF notation\"\>", GridBox[{
{
RowBox[{"{",
RowBox[{
RowBox[{"-", "10"}], ",",
RowBox[{"-", "4"}], ",", "7", ",",
RowBox[{"-", "7"}], ",", "4", ",",
RowBox[{"-", "10"}], ",", "7", ",", "4", ",",
RowBox[{"-", "4"}], ",",
RowBox[{"-", "7"}]}], "}"}], "2"}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}]},
{"\<\"line graph\"\>", "\<\"?\"\>"},
{"\<\"line graph name\"\>",
RowBox[{"{", "\<\"icosidodecahedral graph\"\>", "}"}]},
{"\<\"perfect matching graph\"\>", "\<\"N\"\>"},
{"\<\"planar\"\>", "\<\"Y\"\>"},
{"\<\"polyhedral graph\"\>", "\<\"Y\"\>"},
{"\<\"polyhedron embedding names\"\>", GridBox[{
{"\<\"dodecahedron\"\>"},
{"\<\"great stellated dodecahedron\"\>"}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}]},
{"\<\"radius\"\>", "5"},
{"\<\"regular\"\>", "\<\"Y\"\>"},
{"\<\"spectrum\"\>",
TagBox[
RowBox[{
TagBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-",
SqrtBox["5"]}], ")"}], "3"],
HoldForm], " ",
TagBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "2"}], ")"}], "4"],
HoldForm], " ",
TagBox[
SuperscriptBox["0", "4"],
HoldForm], " ",
TagBox[
SuperscriptBox["1", "5"],
HoldForm], " ",
TagBox[
SuperscriptBox[
SqrtBox["5"], "3"],
HoldForm], " ",
TagBox[
SuperscriptBox["3", "1"],
HoldForm]}],
HoldForm]},
{"\<\"square-free\"\>", "\<\"Y\"\>"},
{"\<\"strongly regular parameters\"\>", "\<\"StronglyRegular\"\>"},
{"\<\"traceable\"\>", "\<\"Y\"\>"},
{"\<\"triangle-free\"\>", "\<\"Y\"\>"},
{"\<\"vertex connectivity\"\>", "3"},
{"\<\"vertex count\"\>", "20"},
{"\<\"weakly regular parameters\"\>",
RowBox[{"{",
RowBox[{"20", ",",
RowBox[{"{", "3", "}"}], ",",
RowBox[{"{", "0", "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$, TableDepth -> 2]]], TraditionalForm]], "Output",Expr\
essionUUID->"8ad34215-0530-433d-b2de-78839e4786e6"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Graceful labelings", "Section",ExpressionUUID->"7e6802a5-1c3c-42c3-9b80-595f5898e3b7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->
"In[150]:=",ExpressionUUID->"d7480361-7534-4df3-a485-240d88ccfe47"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[150]=",ExpressionUUID->"b10900cb-510c-46ed-baa1-fbb284f2f7ed"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]], "Input",
CellLabel->"In[7]:=",ExpressionUUID->"3e7fb1c9-9f23-444c-94a7-12f2c13edeac"],
Cell[BoxData[
RowBox[{"Missing", "[",
RowBox[{"\<\"TooLarge\"\>", ",",
RowBox[{"{",
RowBox[{
"0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",",
"14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",",
"18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}], "}"}]}],
"]"}]], "Output",
CellLabel->"Out[7]=",ExpressionUUID->"0b78b421-80ad-45ea-a688-ad31fc657e8b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"lab", "=",
RowBox[{"%", "[",
RowBox[{"[", "2", "]"}], "]"}]}]], "Input",
CellLabel->"In[8]:=",ExpressionUUID->"0f964443-e679-498e-a856-12eca09d8673"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",",
"14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",",
"18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}],
"}"}]], "Output",
CellLabel->"Out[8]=",ExpressionUUID->"b0f97601-0f57-4ba2-819a-961d15389e97"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetProperty", "[",
RowBox[{
RowBox[{"GraphData", "[", "\"\\"", "]"}], ",",
RowBox[{"VertexLabels", "\[Rule]",
RowBox[{"Thread", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "lab"}], "]"}]}]}],
"]"}]], "Input",
CellLabel->"In[9]:=",ExpressionUUID->"7ea3f009-dfc5-4034-89b4-a502517626fd"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, {
16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {
12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, {
17}, {4}, {6}, {18}}}, Pattern}]}, {
VertexLabels -> {
6 -> 26, 18 -> 29, 3 -> 1, 20 -> 6, 11 -> 12, 5 -> 8, 8 -> 14, 7 -> 3,
14 -> 30, 10 -> 2, 9 -> 23, 4 -> 17, 17 -> 10, 16 -> 28, 12 -> 4,
13 -> 5, 2 -> 20, 15 -> 18, 1 -> 0, 19 -> 27},
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKP4R/Hjp7CM/7Ouz9pRMlnhgnwYGz+wfVomsc3/4
zh5dPgTEVfhkzxLGp7tp7vX96PKHv2rE9B9icviz8uMl36QX9vvmS+nfVfm0
PyrF+r5/L1z9fph6dHnLLSfK9s1/tx/ImZ4n9HU/uvymue+XH/O+v1/dkGON
TNSR/QxQYG8at8uT55c9jP+uBiTC7IAuj+4/HPL7YfJQ99jD3HOyDOSi7/Zv
AnfItb7+vx9dHj180OVh9kH4nzHCAxp+B2Dhhy6Pw33w8DIGg+/70dy3H5f9
6OGFbj8OeXj8oocHuv3o8uj628VunvsefBnqj1v20Pi1h8Uvujx6/KHLQ/n7
cZmHHj/o8jD/LgOq2lD0YD96eKD7Dz094rAfI73CzEdXjx6/6OrR4w8AMJHe
Eg==
"], 0.0412452419793366]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{1.548, 0.503}, 0.0412452419793366],
InsetBox["0",
Offset[{2, 2}, {1.5892452419793366, 0.5442452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.134, -0.368}, 0.0412452419793366],
InsetBox["20",
Offset[{2, 2}, {-1.0927547580206634, -0.3267547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 1.628}, 0.0412452419793366],
InsetBox["1",
Offset[{2, 2}, {0.0412452419793366, 1.6692452419793364}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.957, -1.317}, 0.0412452419793366],
InsetBox["17",
Offset[{2, 2}, {0.9982452419793366, -1.2757547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.548, 0.503}, 0.0412452419793366],
InsetBox["8",
Offset[{2, 2}, {-1.5067547580206635, 0.5442452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.957, -1.317}, 0.0412452419793366],
InsetBox["26",
Offset[{2, 2}, {-0.9157547580206633, -1.2757547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 2.466}, 0.0412452419793366],
InsetBox["3",
Offset[{2, 2}, {0.0412452419793366, 2.5072452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.449, -1.995}, 0.0412452419793366],
InsetBox["14",
Offset[{2, 2}, {1.4902452419793366, -1.9537547580206636}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.302, 0.416}, 0.0412452419793366],
InsetBox["23",
Offset[{2, 2}, {0.3432452419793366, 0.4572452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.489, -0.159}, 0.0412452419793366],
InsetBox["2",
Offset[{2, 2}, {0.5302452419793366, -0.1177547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-2.345, 0.762}, 0.0412452419793366],
InsetBox["12",
Offset[{2, 2}, {-2.3037547580206637, 0.8032452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.45, -1.995}, 0.0412452419793366],
InsetBox["4",
Offset[{2, 2}, {-1.4087547580206634, -1.9537547580206636}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.489, -0.159}, 0.0412452419793366],
InsetBox["5",
Offset[{2, 2}, {-0.4477547580206634, -0.1177547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0.7, 0.965}, 0.0412452419793366],
InsetBox["30",
Offset[{2, 2}, {0.7412452419793365, 1.0062452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.133, -0.369}, 0.0412452419793366],
InsetBox["18",
Offset[{2, 2}, {1.1742452419793366, -0.3277547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{2.345, 0.762}, 0.0412452419793366],
InsetBox["28",
Offset[{2, 2}, {2.3862452419793367, 0.8032452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.302, 0.416}, 0.0412452419793366],
InsetBox["10",
Offset[{2, 2}, {-0.2607547580206634, 0.4572452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., -0.514}, 0.0412452419793366],
InsetBox["29",
Offset[{2, 2}, {0.0412452419793366, -0.4727547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7, 0.965}, 0.0412452419793366],
InsetBox["27",
Offset[{2, 2}, {-0.6587547580206634, 1.0062452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., -1.192}, 0.0412452419793366],
InsetBox["6",
Offset[{2, 2}, {0.0412452419793366, -1.1507547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->"Out[9]=",ExpressionUUID->"0634ede0-3202-43d4-a9e1-d152a80128d0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GracefullyLabeledGraphQ", "[", "%", "]"}]], "Input",
CellLabel->"In[10]:=",ExpressionUUID->"91133d85-4205-465e-887d-bda94012de9f"],
Cell[BoxData["True"], "Output",
CellLabel->"Out[10]=",ExpressionUUID->"355d5388-c9c8-408b-9ea7-407c99074eb9"]
}, Open ]],
Cell[CellGroupData[{
Cell["Partial population", "Subsection",ExpressionUUID->"2a897ff8-6b5f-4c86-b9c8-94e10e8d1152"],
Cell["Bert Dobbelaere 2020-10-06:", "Text",ExpressionUUID->"404aea2f-6f88-4db8-87c8-e93fed9d091c"],
Cell["\<\
Over 12 million \"fundamentally different\" solutions after running \
overnight. I estimate the program could run for a month or so.\
\>", "Text",ExpressionUUID->"f50ff6d5-2d1f-4972-b0f4-65532c9f0e60"],
Cell[BoxData[
RowBox[{
RowBox[{"adj", "=",
RowBox[{"1", "+",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "4", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "4", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "3", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "6", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "7", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "6", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "9", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "11", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "10", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "13", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "12", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "13", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "16", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "15", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "16", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "15", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "17", ",", "18"}], "}"}]}], "}"}]}]}],
";"}]], "Input",
CellLabel->
"In[137]:=",ExpressionUUID->"87918fa1-9ee8-474f-9d5e-e50cfb87f191"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"r", "=",
RowBox[{"RecognizeGraph", "@",
RowBox[{"(",
RowBox[{"dodec", "=",
RowBox[{"FromAdjacencyLists1", "[", "adj", "]"}]}], ")"}]}]}]], "Input",
CellLabel->
"In[138]:=",ExpressionUUID->"942c5efd-f6a1-4390-858d-dd8490085201"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->
"Out[138]=",ExpressionUUID->"a6cbc13c-bd80-4522-8893-caa862c5dbe9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"iso", "=",
RowBox[{
RowBox[{"FindGraphIsomorphism", "[",
RowBox[{
RowBox[{"GraphData", "[", "r", "]"}], ",", "dodec"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}]], "Input",
CellLabel->
"In[139]:=",ExpressionUUID->"9a957ae8-67c4-4e4c-aed4-d819de287701"],
Cell[BoxData[
RowBox[{"\[LeftAssociation]",
RowBox[{
RowBox[{"1", "\[Rule]", "1"}], ",",
RowBox[{"2", "\[Rule]", "18"}], ",",
RowBox[{"3", "\[Rule]", "3"}], ",",
RowBox[{"4", "\[Rule]", "15"}], ",",
RowBox[{"5", "\[Rule]", "11"}], ",",
RowBox[{"6", "\[Rule]", "20"}], ",",
RowBox[{"7", "\[Rule]", "4"}], ",",
RowBox[{"8", "\[Rule]", "14"}], ",",
RowBox[{"9", "\[Rule]", "8"}], ",",
RowBox[{"10", "\[Rule]", "7"}], ",",
RowBox[{"11", "\[Rule]", "12"}], ",",
RowBox[{"12", "\[Rule]", "13"}], ",",
RowBox[{"13", "\[Rule]", "17"}], ",",
RowBox[{"14", "\[Rule]", "2"}], ",",
RowBox[{"15", "\[Rule]", "6"}], ",",
RowBox[{"16", "\[Rule]", "5"}], ",",
RowBox[{"17", "\[Rule]", "9"}], ",",
RowBox[{"18", "\[Rule]", "16"}], ",",
RowBox[{"19", "\[Rule]", "10"}], ",",
RowBox[{"20", "\[Rule]", "19"}]}], "\[RightAssociation]"}]], "Output",
CellLabel->
"Out[139]=",ExpressionUUID->"4753f43a-c89c-411a-9799-581c6ce2f69a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vorder", "=",
RowBox[{
RowBox[{"Normal", "[", "iso", "]"}], "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}]}]], "Input",
CellLabel->
"In[140]:=",ExpressionUUID->"600b8144-165e-4469-9b80-7ab84bbb31ee"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1", ",", "18", ",", "3", ",", "15", ",", "11", ",", "20", ",", "4", ",",
"14", ",", "8", ",", "7", ",", "12", ",", "13", ",", "17", ",", "2", ",",
"6", ",", "5", ",", "9", ",", "16", ",", "10", ",", "19"}],
"}"}]], "Output",
CellLabel->
"Out[140]=",ExpressionUUID->"681ba0ee-cf39-43b6-91ce-4b8f0ea33f15"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vlab", "=",
RowBox[{
RowBox[{"{",
RowBox[{
"0", ",", "30", ",", "1", ",", "3", ",", "28", ",", "18", ",", "2", ",",
"23", ",", "10", ",", "27", ",", "8", ",", "12", ",", "4", ",", "14",
",", "17", ",", "29", ",", "5", ",", "20", ",", "6", ",", "26"}], "}"}],
"[",
RowBox[{"[", "vorder", "]"}], "]"}]}]], "Input",
CellLabel->
"In[141]:=",ExpressionUUID->"8fa186f2-09ac-41e4-a73f-b57b654851d1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "20", ",", "1", ",", "17", ",", "8", ",", "26", ",", "3", ",",
"14", ",", "23", ",", "2", ",", "12", ",", "4", ",", "5", ",", "30", ",",
"18", ",", "28", ",", "10", ",", "29", ",", "27", ",", "6"}],
"}"}]], "Output",
CellLabel->
"Out[141]=",ExpressionUUID->"93d2c122-a462-480c-9d6b-0a254dbfb52a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"glab", "=",
RowBox[{"SetProperty", "[",
RowBox[{
RowBox[{"GraphData", "[", "r", "]"}], ",",
RowBox[{"VertexLabels", "\[Rule]",
RowBox[{"Thread", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "vlab"}], "]"}]}]}],
"]"}]}]], "Input",
CellLabel->
"In[143]:=",ExpressionUUID->"dcae9c4f-3022-4b4e-8021-95816da05133"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{14}, {15}, {16}, {5}, {6}, {13}, {7}, {14}, {
19}, {8}, {15}, {20}, {2}, {11}, {19}, {2}, {12}, {20}, {3}, {11}, {
16}, {4}, {12}, {16}, {10}, {14}, {17}, {9}, {15}, {18}, {5}, {7}, {
12}, {6}, {8}, {11}, {2}, {17}, {18}, {1}, {3}, {9}, {1}, {4}, {
10}, {1}, {7}, {8}, {9}, {13}, {19}, {10}, {13}, {20}, {3}, {5}, {
17}, {4}, {6}, {18}}}, Pattern}]}, {
VertexLabels -> {
6 -> 26, 18 -> 29, 3 -> 1, 20 -> 6, 11 -> 12, 5 -> 8, 8 -> 14, 7 -> 3,
14 -> 30, 10 -> 2, 9 -> 23, 4 -> 17, 17 -> 10, 16 -> 28, 12 -> 4,
13 -> 5, 2 -> 20, 15 -> 18, 1 -> 0, 19 -> 27},
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQ/SP48dLZR37Y12ftKZks8cB+33wp/bsqn/ZHpVjf
9++9vp8BCuxN43Z58vyyt9xyomzf/Hf2QMnpeUJf90P174fph8rvh8nD9L+r
AZnA7HCyDGTDd/s3gTvkWl//398udvPc9+DLUH237DfNfb/8mPd9e3VDjjUy
UUf2H/6qEdN/iOnAn5UfL/kmvbA3BoPv+2H6oer3w9SngcEz+4dVIuvcH76z
DwE5T+GTPUsYn+6muddh5jnAzIPavx9mP8y9y4C6NhQ9gJm3H2YeTB7iv8/7
AVLKoH4=
"]}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKP4R/Hjp7CM/7Ouz9pRMlnhgnwYGz+wfVomsc3/4
zh5dPgTEVfhkzxLGp7tp7vX96PKHv2rE9B9icviz8uMl36QX9vvmS+nfVfm0
PyrF+r5/L1z9fph6dHnLLSfK9s1/tx/ImZ4n9HU/uvymue+XH/O+v1/dkGON
TNSR/QxQYG8at8uT55c9jP+uBiTC7IAuj+4/HPL7YfJQ99jD3HOyDOSi7/Zv
AnfItb7+vx9dHj180OVh9kH4nzHCAxp+B2Dhhy6Pw33w8DIGg+/70dy3H5f9
6OGFbj8OeXj8oocHuv3o8uj628VunvsefBnqj1v20Pi1h8Uvujx6/KHLQ/n7
cZmHHj/o8jD/LgOq2lD0YD96eKD7Dz094rAfI73CzEdXjx6/6OrR4w8AMJHe
Eg==
"], 0.0412452419793366]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{1.548, 0.503}, 0.0412452419793366],
InsetBox["0",
Offset[{2, 2}, {1.5892452419793366, 0.5442452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.134, -0.368}, 0.0412452419793366],
InsetBox["20",
Offset[{2, 2}, {-1.0927547580206634, -0.3267547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 1.628}, 0.0412452419793366],
InsetBox["1",
Offset[{2, 2}, {0.0412452419793366, 1.6692452419793364}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.957, -1.317}, 0.0412452419793366],
InsetBox["17",
Offset[{2, 2}, {0.9982452419793366, -1.2757547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.548, 0.503}, 0.0412452419793366],
InsetBox["8",
Offset[{2, 2}, {-1.5067547580206635, 0.5442452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.957, -1.317}, 0.0412452419793366],
InsetBox["26",
Offset[{2, 2}, {-0.9157547580206633, -1.2757547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., 2.466}, 0.0412452419793366],
InsetBox["3",
Offset[{2, 2}, {0.0412452419793366, 2.5072452419793367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.449, -1.995}, 0.0412452419793366],
InsetBox["14",
Offset[{2, 2}, {1.4902452419793366, -1.9537547580206636}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.302, 0.416}, 0.0412452419793366],
InsetBox["23",
Offset[{2, 2}, {0.3432452419793366, 0.4572452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.489, -0.159}, 0.0412452419793366],
InsetBox["2",
Offset[{2, 2}, {0.5302452419793366, -0.1177547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-2.345, 0.762}, 0.0412452419793366],
InsetBox["12",
Offset[{2, 2}, {-2.3037547580206637, 0.8032452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.45, -1.995}, 0.0412452419793366],
InsetBox["4",
Offset[{2, 2}, {-1.4087547580206634, -1.9537547580206636}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.489, -0.159}, 0.0412452419793366],
InsetBox["5",
Offset[{2, 2}, {-0.4477547580206634, -0.1177547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0.7, 0.965}, 0.0412452419793366],
InsetBox["30",
Offset[{2, 2}, {0.7412452419793365, 1.0062452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.133, -0.369}, 0.0412452419793366],
InsetBox["18",
Offset[{2, 2}, {1.1742452419793366, -0.3277547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{2.345, 0.762}, 0.0412452419793366],
InsetBox["28",
Offset[{2, 2}, {2.3862452419793367, 0.8032452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.302, 0.416}, 0.0412452419793366],
InsetBox["10",
Offset[{2, 2}, {-0.2607547580206634, 0.4572452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., -0.514}, 0.0412452419793366],
InsetBox["29",
Offset[{2, 2}, {0.0412452419793366, -0.4727547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7, 0.965}, 0.0412452419793366],
InsetBox["27",
Offset[{2, 2}, {-0.6587547580206634, 1.0062452419793366}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {DiskBox[{0., -1.192}, 0.0412452419793366],
InsetBox["6",
Offset[{2, 2}, {0.0412452419793366, -1.1507547580206634}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[143]=",ExpressionUUID->"95af7c10-d189-40a0-a8ce-450652f4e937"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GracefullyLabeledGraphQ", "[", "glab", "]"}]], "Input",
CellLabel->
"In[144]:=",ExpressionUUID->"2cbbc6fe-8f61-454d-82eb-38d8e66e3f71"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[144]=",ExpressionUUID->"23378912-f4bc-4056-9210-02ffae610868"]
}, Open ]],
Cell[CellGroupData[{
Cell["Full computation", "Subsubsection",ExpressionUUID->"105591d8-e1a7-4797-96ad-debb455290c1"],
Cell["\<\
On 10/21/20 12:50 PM, Bert Dobbelaere wrote:
> I couldn't resist starting the dodecahedron run anyway, split in multiple \
ranges so I could compute them in parallel.
>
> The total number of graceful labelings I obtained for the dodecahedral \
graph is 784298856 * 240 = 188231725440.
>
> Quite a number compared to the icosahedron...\
\>", "Text",ExpressionUUID->"4fdbf445-4269-4121-a87c-1dcc4b4691bb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"2",
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}],
"]"}]}]], "Input",
CellLabel->
"In[142]:=",ExpressionUUID->"82656cf4-5dfd-4ad8-be89-ddad69d29e32"],
Cell[BoxData["240"], "Output",
CellLabel->
"Out[142]=",ExpressionUUID->"5ffb2a7b-ee2e-468a-81c8-c284e745fa19"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Construction", "Section",ExpressionUUID->"0b2d5c90-e928-4e33-abd5-88e2eebbbab8"],
Cell[CellGroupData[{
Cell["distanceregular.org", "Subsection",ExpressionUUID->"82b341c1-e7a1-49cf-91f8-6c8eaeff028f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{
"DistanceRegularGraph", "[",
"\"\\"",
"]"}]}]], "Input",
CellLabel->
"In[247]:=",ExpressionUUID->"deacf966-44c3-43ea-b661-4414e3a3dc01"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null,
SparseArray[
Automatic, {20, 20}, 0, {
1, {{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
51, 54, 57, 60}, {{3}, {4}, {5}, {6}, {7}, {8}, {1}, {9}, {10}, {
1}, {11}, {13}, {1}, {12}, {14}, {2}, {15}, {16}, {2}, {17}, {19}, {
2}, {18}, {20}, {3}, {11}, {18}, {3}, {12}, {17}, {4}, {9}, {20}, {
5}, {10}, {19}, {4}, {14}, {15}, {5}, {13}, {16}, {6}, {13}, {20}, {
6}, {14}, {19}, {7}, {10}, {18}, {8}, {9}, {17}, {7}, {12}, {16}, {
8}, {11}, {15}}}, Pattern}]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQvUB0wYY1ctfty/p2cyVdZHUokS04+fEeh8O3Q/pz
qkIf20cc+uPBe/O9/bpLUyfsesbowAAFu6fn7cuq/G3/4/uG59zfP9snyNjF
b1vG5fBH+eSZ7tPMDjxlrJ8Smz/an1EUCfY+zO1w3EnDN/XyT/ve9ownCccQ
5rwSvHFq7bl39t0H1sg8tf1kHxiqZ/M6lcGBRyUy4UsMi0NK18z//raX7R/J
32E8//upff0y70OLJjA5zLW/wbgplcvBcMMbU+VFL+0Tmv8JLhD7bS8TVN6r
3//dvqeCm4mznsVBV0Uio2XnN/uvAVcDtyi9tP+QLf+Wn4/F4d/krwvmdzI6
bC7K6Z8Xyeqg5yj5Jt/ol32Vz/Nf8V/+2x9caXv674IX9n3Slv8mRHE6rHv0
xe2cGquD410veYGUT/YNlTWvd0kvsAcAJOiTfg==
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 3}, {1, 4}, {1, 5}, {2, 6}, {2, 7}, {2, 8}, {3, 9}, {3,
10}, {4, 11}, {4, 13}, {5, 12}, {5, 14}, {6, 15}, {6, 16}, {7,
17}, {7, 19}, {8, 18}, {8, 20}, {9, 11}, {9, 18}, {10, 12}, {10,
17}, {11, 20}, {12, 19}, {13, 14}, {13, 15}, {14, 16}, {15, 20}, {
16, 19}, {17, 18}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.03352019566842021], DiskBox[2, 0.03352019566842021],
DiskBox[3, 0.03352019566842021], DiskBox[4, 0.03352019566842021],
DiskBox[5, 0.03352019566842021], DiskBox[6, 0.03352019566842021],
DiskBox[7, 0.03352019566842021], DiskBox[8, 0.03352019566842021],
DiskBox[9, 0.03352019566842021], DiskBox[10, 0.03352019566842021],
DiskBox[11, 0.03352019566842021], DiskBox[12, 0.03352019566842021],
DiskBox[13, 0.03352019566842021], DiskBox[14, 0.03352019566842021],
DiskBox[15, 0.03352019566842021], DiskBox[16, 0.03352019566842021],
DiskBox[17, 0.03352019566842021], DiskBox[18, 0.03352019566842021],
DiskBox[19, 0.03352019566842021],
DiskBox[20, 0.03352019566842021]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[247]=",ExpressionUUID->"18fa493d-646c-41f7-a4f4-c761a25d015d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ToEntity", "[", "g", "]"}]], "Input",
CellLabel->
"In[248]:=",ExpressionUUID->"a346918b-79dd-4d71-9de3-21679b99dbe8"],
Cell[BoxData[
TemplateBox[{"\"dodecahedral graph\"",
RowBox[{"Entity", "[",
RowBox[{"\"Graph\"", ",", "\"DodecahedralGraph\""}], "]"}],
"\"Entity[\\\"Graph\\\", \\\"DodecahedralGraph\\\"]\"", "\"graph\""},
"Entity"]], "Output",
CellLabel->
"Out[248]=",ExpressionUUID->"166cb3ab-0bd1-4ff0-b4ca-9ebf53e4f20b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"VertexCount", "[", "g", "]"}]], "Input",
CellLabel->
"In[249]:=",ExpressionUUID->"8b8ae36d-252c-4be9-aad4-bb129949a6c6"],
Cell[BoxData["20"], "Output",
CellLabel->
"Out[249]=",ExpressionUUID->"deae0efb-f102-4e68-87f7-091f8fbfacfe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"GraphDiameter", "[", "g", "]"}], "//", "Timing"}]], "Input",
CellLabel->
"In[250]:=",ExpressionUUID->"72fe1085-33a6-40ef-a820-578bd2cf6a95"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.000051`", ",", "5"}], "}"}]], "Output",
CellLabel->
"Out[250]=",ExpressionUUID->"e99e24f4-0801-488c-bb3a-bc0b1223110f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"RegularParameters", "[", "g", "]"}], "//", "Timing"}]], "Input",
CellLabel->
"In[251]:=",ExpressionUUID->"8e9d4fe8-1597-4406-b2b2-b3d52378b7ae"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.003891`", ",",
RowBox[{"{",
RowBox[{"20", ",",
RowBox[{"{", "3", "}"}], ",",
RowBox[{"{", "0", "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[251]=",ExpressionUUID->"0dd0d847-0683-40a3-8093-9360e69b4597"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"DistanceRegularGraphQ", "[", "g", "]"}], "//", "Timing"}]], "Input",\
CellLabel->
"In[252]:=",ExpressionUUID->"474c91b2-0b9d-4784-8d85-2a3b37609c2b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.061212`", ",", "True"}], "}"}]], "Output",
CellLabel->
"Out[252]=",ExpressionUUID->"77a94d54-ed3d-4579-a5f5-e354367b87f4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"IntersectionArray", "[", "g", "]"}], "//", "Timing"}]], "Input",
CellLabel->
"In[253]:=",ExpressionUUID->"2badbb65-2bae-4481-b877-09da698b9695"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.060375`", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"3", ",", "2", ",", "1", ",", "1", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1", ",", "2", ",", "3"}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[253]=",ExpressionUUID->"84daac03-a3f7-4d54-b30b-7bc13f27e985"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"IntegerSpectrum", "[", "g", "]"}], "//", "SpectrumForm"}]], "Input",\
CellLabel->
"In[254]:=",ExpressionUUID->"ea1be9a2-ee95-4b80-8a22-be209f7b61b4"],
Cell[BoxData[
TagBox[
RowBox[{
TagBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-",
SqrtBox["5"]}], ")"}], "3"],
HoldForm], " ",
TagBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "2"}], ")"}], "4"],
HoldForm], " ",
TagBox[
SuperscriptBox["0", "4"],
HoldForm], " ",
TagBox[
SuperscriptBox["1", "5"],
HoldForm], " ",
TagBox[
SuperscriptBox[
SqrtBox["5"], "3"],
HoldForm], " ",
TagBox[
SuperscriptBox["3", "1"],
HoldForm]}],
HoldForm]], "Output",
CellLabel->
"Out[254]=",ExpressionUUID->"4aa48be7-b355-449f-8eee-f09970cb5988"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GroupOrder", "[",
RowBox[{"GraphAutomorphismGroup", "[", "g", "]"}], "]"}]], "Input",
CellLabel->
"In[255]:=",ExpressionUUID->"989f74d1-bd67-4d6d-b96d-5c57147c0fb0"],
Cell[BoxData["120"], "Output",
CellLabel->
"Out[255]=",ExpressionUUID->"654e9ef8-f250-4986-8b27-3d9adaf9eb48"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"HamiltonianGraphQ", "[", "g", "]"}]], "Input",
CellLabel->
"In[256]:=",ExpressionUUID->"0f0b755b-637e-4064-842e-601558288657"],
Cell[BoxData["True"], "Output",
CellLabel->
"Out[256]=",ExpressionUUID->"f13fe61f-9fb5-4b12-8a3c-effb9bced661"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["MinimalPlanarIntegral [old]", "Subsection",ExpressionUUID->"dc779de8-88c6-4d15-9d85-c74ea57b5a5b"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzs3Q2OG7uyGOAGgiwkW8oS3gayzywjG1Hy4FhPlmZabDZ/qsjvAy5wrs+x
ukgWi8X2zPh//Mf/+p//8d+O4/jf//04/s//+99//vMDAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAALju+NfscAAAAAC2c5yaHR0AAADA+s7fz3hL
AwAAADBGyVsar2sAAAAAurr0isaLGgAAAIDmKt7PeFcDAAAA0NbNVzRe1AAA
AAA00eQtjXc1AAAAANUavp/xogYAAACgQo/3M97VAAAAAFx19ZWLFzUAAAAA
PVS8b6l4UeNdDQAAAMCPmrxg8aIGAAAAoM5R9V1L5x/oXQ0AAADAVZ1eqlR8
rNc1AAAAwOb6vUup+2SvawAAAIDdXH2LUv3+pOJBN58IAAAAkML4tyXe0gAA
AAC8Oqp+XHCTtyVe1AAAAAC8mviexIsaAAAAgEeYvybbuxoAAABgZ9HeinhR
AwAAAOym7n3IgFciYQMDAAAA6CH4a5DqdzVe1wAAAABZJHr1kShUAAAAgEsy
vveoi3l62AAAAAC/yfuu408YSYMHAAAAeJX3Fc1T9vgBAAAAFnhF87TMQAAA
AIDdrPSK5o/FhgMAAADsYL1XNE+rjgsAAABYyVH743bTvcq4OrR0AwQAAABS
q3s/k/QNxibDBAAAANLZ6hXN0z4jBQAAAOKrfj+zzLuL3cYLAAAABLTzy5lX
O48dAAAAmM4rmjcV87DwbAAAAAADVL+f2eGlhNkAAAAAxrjzimaH9xKmBQAA
ABjg5vuZfV5HeFEDAAAAdHXnFc2GzBIAAADQXPX7GS8fzBUAAADQyp1XNJ9v
Hl5/ZYdXE8ff7/byogYAAACodvP9zG/vHPZ8R3F/3gAAAIBtjXw/s8nbiSbT
CAAAAGyl6t3M2bsF7yUe/vonAAAA4KKKlwnnrxS8mnhjQgAAAIATV18dlL9M
aPtpazAVAAAAwG/q3qWUvEno98nZmQcAAADg1c23KOfvELp++BoqZmP5OQEA
AIAN9XuFcv+TXx9x8qDs2k47AAAAkNH9lyf9PrziidmZBwAAANhT7xcmNz//
zqPzMg8AAACwmwHvSW4+okkMGZkHAAAA2MSYdyM3n9IwkrzMAwAAACxszIuR
m0/pFFVG5gEAAADWM/JlyNcPuR/MnfDSMQ8AAACwkmHvQMo/5GZId4LMxVQA
AADAMka+ALn0IfcDq44zI1MBAAAAqY189VHxIffDq442I1MBAAAAGY1/41H3
OffjvB95IqYCAAAAchn/oqP6o+6H2nAUWZgHAAAAyGLwm437H1ge2LBBBbf5
8AEAACC+upcYN2/0TT7tUmBjxhWfSQAAAICAKl5ctLrFt/rAr7Ed997V1I0u
PpMAAAAAcVx9X9Hw/t7wAyuCHDbM4K7OwKrzAAAAANNVvKxo8u6i+WfWhTpm
sPGZBAAAAJjo6guKthf2Hh9bF3DdqG8OP6CKSQAAAACaqHg70eqe3u/6fyfm
YcOP6Xh5+7TnDAAAAMBgV99FNL+n97743/n8iuE3iTmOq8MHAAAAql19EdH2
ej7m4n/zEVNmJpo9Rw0AAABj3Hn58Hofv3MrH3PfLxzIzU/oF38Q2w4cAAAA
uqp+7dD2Mj7smt9kFHPnKoLdxgsAAAC93Xzb0PAaPvKO32Q402csgt3GCwAA
AM3dfMPQ9vY963bf6rk3Z6/rGIe5NGQAAADg1Z13C21v3LMu9W1HN30a59pt
vAAAANDKnVcKze/aE6/zzQc4fTLn2nDIAAAAUK36NUKPW3aEi3ynACbO6lxb
DRYAAACqVb866HS/DnKF7xfGrImdbrfxAgAAwFUVLw26Xq6D3N/7jTfCJM+y
1WABAACg3M3XBc2v0tHu7L3jmT7h4x1//warS4NNPWQAAAA4V/1+oOsbg5HP
ihPS9GmfomKwC4waAAAAPtW9Gej9rmDkswJGVTf/E2fmvorxAgAAwDIqXgUM
uzWHvZ6PnIfpqzDYVoMFAACAp4o3AGMuy/Ev5nFmI/Is3bHbeAEAANhW3cV/
2B05xX18cJDTF2WwqyPNPl4AAAA2dLz88NUmOgU58nF1os1M/Bmrs9VgAQAA
2ErFNX/wpTjLHfz49rdId310kMUaYJ+RAgAAsJW62/3gi3Ci23fJLPULO9rC
9XN1gEmHCQAAwD7qLvWDb/oTH13h+PblNL3DDrV2A2w1WAAAAFZVcZ0ff/PN
eN0+yl7UDAijfPkiz2eJ8sFmHykAAAArKXyHEOTam/euPXfeHlUL3TWe3vYZ
KQAAAMu4dJmde+1NfdGeMmNvARRG8hZV/Ln9zdWRAgAAwCxHqq+i+Rpq10e3
EmcIoVa2q02GCQAAQF5XL+nTb7jLXK7nTuPVYJJO8qdNhgkAAEBGl67n0y+2
i12rp8/nayQl8WSf8D+WHyAAAAAZXb2VT7/VLnanjjClFSFFiPO+tUcHAABA
FkeHH0Qz4Ca73j06wqzWRRUn2jvWHh0AAAAp3LmGz7rALnx9jjC9dVFFiPOm
5QcIAABAcHUX8Ln31ggxdBJnkutiixNtnbVHBwAAQFh1l+7pN9YIMXQVZJ6r
w4sWcIXlBwgAAEAcFRftIBfVIGF0FWe270QYKuAKyw8QAACACCqu2KGuqEHC
GCDOnP+mIk+CRF5o7dEBAAAw19VrdeHlNEj8IyMZIMVg4+fMTdWjyzVMAAAA
Rqq7TRdeSIOMYnAwA0Sb/9+kSJ6b1h4dAAAAw9RdoqNdQqPFM0bMtfhRiiy6
Y+3RAQAAMEDF3Tng9TNgSMPEXJEfpcilO9YeHQAAAP1UXJnDXjyjxTNS5HX5
UUVGhYq/xNqjAwAAoK2rN+XyK2e0sUwJabywq/PpGUz81Kp2aWjpRgcAAEBb
V2+RkS+bAUOaIubqnKjIroCjOHF1gLlGBwAAwB3PO2DF5THsBTNgSLOEXaNz
iZLtqrpxZRkdAAAAdxzXv82k/Go5a0QxA5sl8mKdS5R1FRYeGgAAAHUqLsLB
b5SRY5sl9Zyky8ByFYPKMjQAAACuqrv/fr1IRh7R3PAmSj0z6fLwqoWHBgAA
QImKm2/wK+TXwDa/4UZeuxLpErLcquMCAADgq7rbbvxr43lsESKcK8s6nqvL
zPjjevhJNQAAAFuquOemuDAGDy+CRKt5Im+KfrXkoAAAAPjRpdtfrtti8PBC
ib+aJS7l59pDmx0vAAAAl1269KW7IcaPMI5Ey3quPEtzjeux9NAAAAA2V3fd
y3U3DB5eKIXLmmj2CnM13dAujSvLoAAAALZVfXvNdSuMH2FAWRa3XGHSphvj
koMCAADYTd3NLt1lMH6EkS02e+XZm2uYSw4KAABgK1fvdEnvgFnijCnRQpcr
z+R0g11vRAAAAMuru5+mu/pliTOyRMt9VWE+JxrpkfAvXwMAANhZ9c0046Uv
S5zxJVr0S0q3QbbxrjouAACAldTd3ZLe8hKFmsKq83ms+/UnSw4KAABgGVev
bKlvebmijS9jDlxyKds/Rx12+BVjAQAAoKu6W2fey12uaBP5OrELTO+lzE+R
VMsMBAAAYAF1d7S817rj2/ewzA4wsXTJUKE883MNfLHhAAAAZFR32Ux9m0sX
cC4ZU6JC+RbINfbFhgMAAJBIxY3suPLDVKcO7lfpAk4nY1bUKdwIr2OPPwPr
jQgAACC4q7fLY4mvonl4RTNK0vSoU74psgx/seEAAABEdufylf3WljHmjPJm
SJ3CfZFrEhYbDgAAQEDVd64FbmpJw04qdapUKNwg6SZhseEAAADEUX3bWuOO
ljfyvLLnzFWFOyXXJCw2HAAAgAjqLlkr3ctSB5/XAplzVfleyzIPiw0HAABg
rurr1TI3stTBp7ZMCtUp3XgZJqF8LCmGAwAAMEXdxWqlu1j2+FNbJovqFO6j
RPNwaThZBgUAADBAxfXwebda5lL58IU0ASyTS3UKN1SW2VhsOAAAAL3duUMt
dvNaYAgLWCadqh1X3n+mmJDysWQZEQAAQCfVV6f17lwLDGEBK2XUTeVbLMWc
rDQWAACA5u7cAde7cK0ximWslFp3lG+0LHOy3ogAAADuu3NRWu96tdJYlmFR
/ijcbommZaWxAAAA3Hfn0rfk9WqNUaxnpRy76cKOzTA/ywwEAADgpquXo7d/
WO9KtdJYFrNest1UvHdzzM9KYwEAAKhw6U70ejNa9Sa12HCWtF7W3VS4GY+P
XRxT+XCOlxfFs6MGAABooPwqdP93pbDYcJa0ZOI1Ubgxj/Cva8oHYtEBAIA1
VN99Fr43rTSWtS2Zfk2Ub8/4U3RpLPGHAwAA8JvqW8/CN6aVxrKDJZOwifJN
GnyWrg4k+HAAAAB+VHfZuXRLynhXcvVLZ9VUbKJ8w0aerrpRAAAApHDnmrP8
FWm9Ee1g4YRsonDbxp+xNUYBAADwqvp2s8PNaOGhLWz5tLyvcPPGn65lBgIA
AHDnarPDnWjVce1g7cxspXAXx5+3NUYBAADs7M6lpvC3pL4NueJldzWrt1VY
BIJP2qVRBB8LAACwlZsXmU3uPssPcBObpOt9F4pC1Em7NITgYwEAAPZx5/Ky
ya1n7dHtZoeMbaKwMsSft2UGAgAArO3mtWWTK8/CQ9vT8hnbVuE2jz+BCwwB
AABY2M07yz43neUHuKEd8ratC8Ui9hyuMQoAAGAlTS5c+1xwlh/ghqrTfnMX
qkbsOVxgCAAAwBqaXLL2udrsMMY93cn/zZWWj9jTeHUUYQcCAAAk1epKss9d
Zocx7myfTG7uQh2JPZkLDAEAAMio1ZVqq7vMDmPc3D7J3ENpNQk/mWuMAgAA
SKTJNWSrK8wOY+ThJwnfc6GshJ/SBYYAAACk0OT2sdv9ZYcx8vDlNLcVVoYU
s7rAEAAAgMiaXJ02vLNsMkye9sntfkqrTPhZXWAIAABANFdvTL/dOAp/42IX
FveyDVn0Ji7VnLBzmz1+AAAgmiZ3pW0vKVsNlj/2TPVOLpSeqNObPX4AACCC
isvRyf1iw1vJhkPmj+ptwo8uFKDY85w3cgAAYLpWt6Ft7yMbDplXe6Z9J5fK
UdhJrgg+4CgAAIDxGl6F0t2kmthwyHySBs1dKExRZ/hS/GFHAQAADNPwHpT0
GnXfhkPmR3vmf1eXCtRznqPN9tX4AQCAbbW6O2x779hz1Pxm243QW3mlCjjP
x993R6lHAQAAdNXqsrD5dWPPUfObnfdCb6UFK/Bspw4eAADopNU1wV1j24Fz
YucdMUBh2Yk84XkjBwAAemh1Qdj8orHhkCm0874Yo7D4hJ3zjDEDAADNNbwa
uF/sPHa+2nx39FZUxcJPe9KwAQCAJprcCI7iH4M5aljTbD58vrJHeispRJ9z
HmrmL0UOAACs4eot5uZHjRnUXGaAr+yUYYpKW+CZzxs5AABwVcPLi0vEH2aA
QvbLMEUFLvDkpw4eAAAo1LDhd3f4Y/Phc5UtM0xhjQo+/5ciDxg/AADwo6P4
B8h87fPz3nd62Hz4VLBxRiqvV8/JD7UEV4N/BIsfAAD4VNHn3/+0AeOabvPh
U832GaywasVcgtTBAwAAb5r39i4If5gE7mi1HylXVASjLkFF8KHiBwAAHsN/
VvBW9wIzwB1fN5FE6qS8lIXazseV71oNFTkAAPBHw2beveCNGeA+W2mW8oL2
uhyv6zJ3gS6FDQAARNCwjXcd+GQeaMK2mquwuEVbl1zRAgDA5tp2764APzIV
NNFwq1KnfAmirUiuaAEAYE9tm3b9/49MBQ3ZYkEUlrtQq5MlTgAA2FPbdl3b
/yMTQg/2WgRF1TPe6lyKc3q0AACwiYa3iSx3kynMBj3YbkGUV79oq3M11Agx
AwDAktreI7JcSaYwIfRj38VRWAajLVOWOAEAYGHNG3Lt/W9MCL3ZenEUVsLf
1mj8Sj2fWx0zAABwR/MOXD9/zoQwgA0YSnlVjLZGGWMGAIC8evTe2vgTpoVh
bMNoiupspMXKFS0AAGTXqevWwJ8wLQzTdl/TVmnlDbBYiUIFAIDUmnfduvdz
poXxbMmwSotvmPXKFS0AAOTSvNPWsZ8zM0xhY0ZWsjqhlixLnAAAkEvbBlvH
XsK0MIuNGVx5CQ2yalniBACA+JpfBDTqhUwOE9mh8RXW0jirlihUAACIqXlH
rT8vZHKYziZNobRGvyzc3OVLFCoAAIRS3kg3/MxOY0nH5BCB3ZpCYa2Os3xZ
4gQAgDiat9Aa8nImhyDs2UQKa2ycFSwPT5oBALCnZz/cvLcPflmIxvwQh22b
SGntDrOIKYIEAIBZOjX22u9yZomAbOF0SpYsyCJmiRMAAMbr0SRruS8xS8Rk
F6dTWs1jLGWKIAEAYJhO7bFm+xKzRFj2cl5FZX32ah4Xv99WvgEAsLYeXbFO
+yqzRHA2dVKFCxdkHVMECQAAnfToh7XWdcwV8TUvF4xxXP9ilYmLmCJIAABo
qKJjL/xYfXUdc0UK9nhq5csXYSnjRwgAAK10atF11NVMFynY4wsoXMQgC5ol
TgAAqNap6dVC1zFj5GKnr6FkHYOsbPwIAQCgWo92V/98hxkjI3m7gPLSPX1x
L4UnAwEAyKJHHx65sU/BjJGRLb+M0lNh9vqmCBIAAMr16Gx1yzeZMfKy61dS
XsznLnFFhFIRAIBoOrXckTv5LEwaeakAiylf0LnrmyJIAAA40aOJ1RjfZ97I
rrAOyOpcLi3rc3HHL7H0AwAgnR4drK64CbPHMlSDJZWX+rkLHTw8AAB41aNx
1Q+3YupYiYKwpPKC/7rQ41f8UngAADBFp5ZVJ9yKqWMlasLaCiv/63KPXPSr
sQEAwDBdm1U9cBOmjiUpDgsrLP4/rviwda8LDwAAuurRoOp72zJ1rEqJWN7V
42DwcgcPDwCA3fRrTbW7TZhA1tap/hBN+UJPWe6r4UlIAACa69qO6nJbMYHs
QK3YROHRMGvpI8cGAMDaunah+tuGzCE7UDE2UXg6zFr94+UvnIoWGwAAC+vX
gpa3uN0GtxoTyD4UjX1cOoPG50DMqAAAWFW/zlND25ZpZCuqx24KD6MpaVAR
lRQFAOCqfp1wqO56GWaSrSggeyo8PqakQeTYAABIrXeTqX1tzmSyIWVkT0WH
06RMiBwbAABJ9e4tda09mEn29LWS2AWrKj+qxidDRWwAAPDp2cf26yo1q82Z
T7AL9lR4Ws1KhrCBAQCQRdd+UqfaifkEu2BzhefLlKy4GpWMBQDgj679baie
eSXmE55UmJ1dOMCGZ0XYwAAACKtr36gp7ceUwpPtQOFx85oVw3LjamySFgBg
W13bxWh98mK09/DKtZfCE21KbgQMCQCAaPq1ixrRAUwpvFFweMT+wpWYUQEA
MF3vFlEL2ptZhU9qDk+Fx9CU9AgYEgAAE/XuD3WevZlb+I3iw1PROTcpPQKG
BADAFF07Qz3nAOYWzilBvCk8mwYnyfH3J7MFiQcAgMF6d6dazTFMLHylEPGm
9Pz7N0kGpMqleAAAWMPVvrTfI9qOa0/mFkqoRXy6cBaOTZVo8QAA0NWA9k9v
OYDphUvsF35UfiaOzJlQwQAA0E/Xru8o/rb61sPakemFq9QlflN+OI5MmGjx
AADQVtd+79LH6idv0qtDheZ1j8UUHmSDcyZUMAAAtNK7zdNDjmSSoY4axbnC
s+w1YcakzaWQAAAIrndrp3UcyQzDHSoVXxUeaoPTJmBIAABU6NrOaRfHM8lw
k3rFV+Wn2+DMCRUMAACX9O7lNIpTmGe4SeGiUOExNzhtYkYFAMC5Af2b5nA8
8wxNqF0UKj9MR+ZPqGAAAPiqsG2707zpDMczz9CQCka5kiNvfP5EiwcAgE9j
GjYN4RSmGtpSx7iq/JAdkz/R4gEA4M2Abk0rOIvZhuZUMy4pP2RHZlGoYAAA
+GNAh6YDnMhsQydqGhVKT9yBWRQnEgAAxjSK2r9ZzDZ0pbJRofzkfU2krul0
NRgAAJp7dn29WzIt3ywmHHpT3Khz6Qgelk5BwgAA2FN5J1bdkun35jLnMIAS
xx2FB+VrLnVNqop4AAC4b0ADpsGby7TDMGoddxSeyMPyKkIMAAD7GNN66e6m
M+cwknLHfaXH85DUChIGAMDChvVaOroITDuMpOLRROk5PSq1goQBALCeYY2W
dm460w5TKH20UniSjkmtIGEAACxmWIuli5vOzMMsSh8NlR/cvRPsahiyHQDg
3JgGb3obyR8mHyZSBmmr8GwdkGARYgAAyK68m7rZUw17EOe0zTBdSSWESwoP
2d5pNj0AAIDUxrRSGrY4Tmbe/MNI6iHNlZ+2AzJtegAAAOmM6aAKP1+fNoAm
GUJxdaWH8sO9d6YFCQMAIIVhjZPeLA5LANGojfRQfsT3zrfpAQAABDeyX9KS
RWMVIBp1kn5KD/vOyRYhBgCAsAa0Scff72DSjIViCSAmRZJ+yg/93lkXIQYA
gIBK+qL73ZEeLBqrAJEplXRVeCj3zroIMQAAxDGmL9J9xWQhIDgFk97KD+iu
iRchBgCAuQb3QpquaCwEpKBsMkB5S9A19+Y+HQBgomGN0FH842haDIsLLASk
oHgyTHlv0DX95j4dAGC8kc2PRismCwGJKKEMU3hq987ACDEAAAwwuOHRXMVk
ISAdVZTByk/wfkk49+kAAAOM7Ha0VWFZC8hIOWWw0o6hZx7Oei4AQG+D+xwN
VWRWBDIaWcPhqTDxuiZhhBgAABoa3Nhon8KyIpDasDIObwpzr2sSRogBAOC+
wS2NxikyiwKpKbBMVNRGdE7IiqfbFABANCP7qPENG5dYFFiAMstEhU1Fv4Sc
HgAAQLVhDYxOKQXrAstQb5mo/NB/y8aGaVkXAADALIP7Fj1SfNYFFqPkMlfh
0d8vM4+/39A0/tEAAFeN75T0RcFZHViP2st0hf3GZ2a2ys/qAAAAxhjfpWiH
4rM0sCrllyBKO48+yTnx0QAAJ8Z3KRqhFCwQLEwdJogL/cffzGyYnxVPBwDo
Z3BnogVKxALB8pRiIjiu/6CY5vl5NYa2TwcAeBrckGh+srBAsAPVmFAKm4Qe
KXpUvSmyRwCAhgZ3IOX9T5PHcZM1gh2oyURTkpO9E3XiowGAbQ3uPfQ5uVgj
2IrKTEClbUq3XJ31XABgQ4Mbj6Psq2iaPIsmLBPsxq4npvKO5TVXGzYwFU8H
ALhkfLOht0nHSsGGFGpiKuxb+qXrxEcDAKt69gxhe5uGT+SO4/QLn2ZHB3Sk
VhNWYS/RNWNnPRcAWNKsrkYzk5Flgm0VVmwFgVkK+4rm59dR9r3bzZ8LAKxq
SkehgcnISsHOCuu2msBEhf1Mp1NsykMBgMVcaidaNRVal4ysF2zuKPuCgdlh
srvivubn1L2fw3XPBQA4rnyBbtvn6lgysljAw1sa8ijscDrl8PgnAgCpTWke
Dn8Om5b1Ap6UcbIob3Ves7dVDl99bsNHAwCJVLQrg5/b6ok0ZL2AVyo5iZR3
IM0T+OpD7R0A2M2UFqXw0W0fR0NWDXgz5RyBOwqTtkcaj38iAJDCxPZAT5Ka
JQN+pLaTTmkn9JHGN/O54okAwNomNga6kdSsGvCbwvKuXBBNSeq2PfuOl588
0/tZAEB8U/oBHcgCLBxwTp0nr8JGpXlKX3qQHQQAixnceFQ8uuETac6qAV8p
9SRV2Kj0yOqRzwIAQpnYAOg6srNqQCHVntTKm6XmWT3loQDALOXHffNzX5ux
AMsHlFPzya6ka+qR3iOfBQBMNPG412MswAoCl8w6caCtoubpp9y+k+EVjwMA
cpl10OsulmEFgQrqP2so7GfaZvjIZwEAY8w93DUVK7F8QAWnAMso7GoaZvjx
92tyyh9kQwFAcANaiDtP7/FQmrOCwB3OAlZS3lm1SvUBjwAAhpl1oGskVmIR
gZscCqykJJ+b5/mYpwAAXc06x/UPi7GCwH2OBlZyXPxepPupPuARAEBXUw5x
ncNirCDQkNOBJRU2P62yfdiDAICGCk/t5me3hmElVhBozgHBeo4bX1fzqG3G
Kh5U/SwA4Kbyw3rwQ/UG6VhHoDknBasq7IUa5vzIZwEAFWYd0BqDJVlHoIeS
w0K1Ia/CpqjJ2Vr3LJsLAAY4ir/attPT9QOLsZRAPyWnhmpDdoV5fjPhrz7F
5gKAMWady1qCVVlHoCunBju41CbdzPwBjwAACk08jjUDS7KUQG+OD/ZRmO33
87/35wMAJWadwhqAhVlQYAyHCJso7JqabIGKz7fXAKCVHod7k+c67vOyrMBI
ThP2UdI+tdoCY54CADzNPXOd9QuzrMBIDhR2U9jC3d8IFY+w4wCgTr8DvcnT
Oz2XMSwrMJhjhQ0V9nL3t0PvzwcAZh2yTvblWVxgFkcMGypJ+yYbYcAjAGBP
089Wx/ryrCwwiyOGbRU2eHe2w4BHAMBuJh6pTvNNWFxgLgcN2yrstT53xNWt
cenDAYDfTDxPHeWbsL5ABGoROytsuu7vjk4fCwCbmHiSOr73YX2BIBw6bKu8
5bu5Nfp9MgCsbfoZ6uDehCUG4ph15EEopf3fja3R6WMBYFX9DuW2T2/+aMb7
bWWtLzCFowcewV7U2HoAMPG4dEzvwxIDYTmJ4BHsb4DqMUAACK73QdwqgObP
ZQpLDETmJII/SvvC2j3S9cMBIK8Ih6NzeStWGYjMeQRPpQ3ivW3S6WMBIKm5
J6MTeTfWGohPpYI3pc1i7Tbp+uEAkMXcA9FBvCELDaTgeIJPhZ1b9Tbp9LEA
kMWlo7DHgegU3pC1BrJwQsGnwtbxzk7p+uEAEFOE48/JuyHLDeTinIIfFXWQ
NzbL1Y+1GQHIrtOR2jyATk9nCssNZKR2wYnCju65WQq3zKWPtRMByG76Yeec
3ZMVBzJyPYRzhY1lxZap+Fj7EYB0mh+gPQLo9GgmstZAXo4tOHf8fUNyVeGH
N/9MAAhi+tE2PQCmsOJAdg4vKFHS6X3unZIdVPGxABBZhEPNkbotiw4swBEG
hYo6zqq90+ljAWCwIMeZw3RPFh1YhoIG5cr7z0ubqPkHAsAwx8XvEe4ayddH
O0lXpX0CVuI4g0uK+9DSxuDqB5Z/MgB0FeTMmh4A01l6YCUONbiqtCW9uI/a
fhoA9Bbk5JoeAHNZd2A9jja4qqglvb6Drn6svQnALBGOqggxMJ1FB5bkaIOr
yjvDq1up+QcCQFtBTihnJdYdWJgzDuoUtohX99GlD7Q9ARgmSNMYJAwmsvTA
8hx2UK1k+1zdTc0/EADuiHMeRYiB6aw+sANHHlQr7F0vbauGHwUAd8Q5jKYH
QBASANiEgw/uKG9iv26r11+//2kAUCfaARQhBuaSAMBWgpy/kFp5Q1u+rXp8
JgCcC3XuRIiBCOQAsBsnINxU3tNe2lnNPxAAfnP8/QH1cQ4dRx5/SANgQ0HO
YsiuvLkt31mXPspWBaBOq2NrQDzDYiACmQBsK86hDNkVNrqX9lfbTwOAV6HO
lwgxEIRkADYX53SG1Ap73c/Ndb7FKj4QAM5FO1YixEAckgHYXJwDGtZQ3vqW
bLHj4k8MsGcBOBftKAkSBnHIB4BQJzUsoLABvrrRLn2ObQvApybn0chgxkRC
BPIB4CnUeQ3LKNxZhRvtuP5FNQPHCkAOoY6PkkgcZ/sIkpYAQZQc2cojXFW4
sy5tt/ufAMCGoh0c0eJhOpkA8Kno4qdOwkVH1c+WOd9rTT4EgE1EOy9KgnGE
bSVOcgIEFOoQhwUctW9pzrdbw48CYFUBj4lQwRCEfAA44eiErkq22Nt2O9l0
Vz8KgH0EPB2ixUME8gHgKwcodFWyxcp3XNtPA2ABAU+EUMEQh6wAKKRgQlcl
zeql3dfkQwBYQ7TjIFQwhCIlAAo5TKG3wl1WvvWafAgAqYU6CI7in8zWOxLC
khgA5RypMEbJXivcfa0+B4CMAtb/aPEQipQAuCrgWQ9LurTXPvfd5was+xwA
8opZ8KsPMnYQJ1EBEik88dVSaKJ8x53vvvufAEAiMat9tHgIRW4AVCs895VT
aKV8053svqP4pwHYwgCpBSzyAUMiFIkBcJOjFsYr3HdfN+ClT7CRAXIJ2KEF
DIlo5AbAfSUHrroKzRVuva/b8P4nABBKzJIeMCQCkh4ATRQ2A6orNHRUfePS
bzvRLgZYQ8BiHjAkYpIhAA05fGGKwtb3636883sBiCBmGQ8YEjHJEIDmHMEw
S2EP/HUz3vztAEwUs4ZHi4eYJAlADzF7A9jBc2eVb8Pf9uOd3wvAFGFLd7R4
iEmSAHR1qU9QdaGH+9vQRgbIInK5jhYPMUkSgK4utQo/FmEFGe6r2H1ve7Bu
/wIwzHH9qyhHxhYnGIKTJwC9XeoWnODQT/WOO6q+f2rqWAG2E7M+x4yKyCQJ
wADlB/TX41t9hjuqt171J8waKcBWYpblgCERnDwBGKO8c7jk8e9LG9UbytXt
uDu/EYAeIlfjwqicFPwRLYEB1lbeQtwxe5SQyZhdaW8C9BO5CJcH5pjgj1AJ
DLC8wi6irYdzH74ZvysBuK+86k6pvY4DrpItAIMV9hKdPAOYPQ0Q0ZQtCUCd
4PU2ZlTEJ1sAxrvUVHT1jGfuhEAoU7YhAJccV/7SvfGxBYyKFCQMwBSFZ/cU
s+cGorDvAMIKXmDDBkZ8EgZgikutRfl/3NzDt0exsVkbcPa4ARIoLKdTiqpS
TzU5AzBRYWvxWZNLjv4eXuP5jAoWNmW7AfCbyLU0cmzEJ2cA5rp/fBd2AgP0
niuYy4YCCCJmIY0ZFbnIHIAI2lbjI8B3SMGqBu+v2cMFCCdy/QwbGFlIHoAg
elfjI9J7m1aDgrkmbiKAPcWvmZFjIwXJAxDE4AO9qL/p5jWAtuOCwaZsH4Bt
Ra6WMaMiF8kDEMrcmlze9jT0ePkin2cYY8YLbY3cNQB7Cl4qY0ZFIvIHIJo4
Zbm8C+ph8GChFTsFoJ/gtTFsYGQhfwACClucC/uiTh6+wIZUBu8OgB0EL4wx
oyIX+QMQU/z6XN4m9TZ7JuCMjQDQRPx6GDYwEpFCAGElqs/H7L806m1ajnhT
xOambASAlQQvgyVRKdGUiJbbADzFbELKlXdTXc2eBvgvMh+gQvzqFzMqkpJI
AJEteeJf6rVaefgDLMIYnPkAqcWveJFjIx2JBBDc8oW6tPFq5/Hv3/S9xjSS
zsiEB0jn7aQuqXWzKp5STFsSCSC+TU7/Y95Ptnn4MhsmGZbhALlkKXSRYyMj
uQSQwrYNQMnAG3p74uzRs5FhGQ6QQpb6FjYwkpJOAFnoAV6Vdmy3PYpf2uy2
BPQwLKsB4ktR1oKHR0bSCQjrePlO5K//zef/fS1lx8td++1fJaJivynpi7r6
MZKJE8IyBicwQDQpqlnw8EhKOgH9lJeRz//y+Oknkzz/1fHL7fjtPy48Oo+C
d0FBFA5kTxXr3s/syWAdMhbYU/wKFjk2UpNUwIkf68BvJeLz149/v3zlUfyC
Za7289hU6uDHG5MzJcthdagzPlcBJspSu4KHR2qSCrb1uc2fe/+4/QUJN397
BONXpFzeyGc5/n1PONjjZU/NnAWSG5auABOlqFeRYyM1qQVhfW7A1115/Hvd
+/z133Z00YHHX2PWulreyEMZlk5WiiYkJ7C2FGUqeHikJrVgpOe2+txib9ut
/Hiiq9EpclHq4AM6pr7JfPxbIibPBbGNT06AMVLUpfgRktfXvJJdcPx7dXp8
3OM+/3sWMzjlLskbeS5jMu3rOlpT3kzJQ4B+UhSl+BGSmtSCP45/38A8Zl/K
iGZebn6XNOykjtlfbPMaxuPfF8js5hj+FZizRgrsI3g5UjDpR2qxnh8z9iSN
j48vjHn+X/jUIWebSRr2GoZlYKG32GZNC1MMTjCAVo4rfwIyN87CCBVMKkgt
BvsxnSp+8TU5P3O1sHJCnUa7ob2kYS/m+KhL082eEuaQWkA6KYpPiiBJTXZR
4Twxvv7b4983LY+XPHx85OT5v4VZmmyl5tIFvJsjQB17C4a1DUsq6QQ0UVhz
gkc4PUiyc+zu7Cho149//1D47Z8fv79Cecy+icAlVzO2275sIGPMW6nIt36e
IR0yZGljckkWAXUulZrgoc4OkPTk2Hg92pgfl+z4eJHyuHg1uPrfM1GTZfrM
z8//e3zkWPMwxivZWZd+43TpAt5c03S+6y2wWXNCD1OyCKBE/PISPDxWItMa
Ov692P74rz7/sx//1Y8f/uPSFBY0Mnpd38fHq5Lnr3/myY/pd3zkW3MncUZz
dVxNPmekhsNnvKbJfsvjpaocMmcVg1MI4FyWepIiSLKTZjcdv7x4eZ264+N2
/PofFFYkUvvMls9EOvm3X3NvuuOXr72J6VE7e+efGdDXeSCF49+DJoiJE0Ir
sgWYLlc9iR8ha1gvzT5j/nEUv/3i68CPj5vm+f9lT7+l0/Jehx9c2yF3fURb
Y6aFiY4Ye/AtHtKZki0AjzxfQvPwioaBFsu0t4CPbz9b4/kPcGJcBucxe01+
8Oh/Qzx/ekwZY6ba616IYPZ8cIGUAMbLVT3iR8gagu+IS08/IvWlRPOaG4+P
F3StknB5U9buq8fAZQoSxiUlE8g+Wu27Sx5Rdwe/GZASAImKRoogWUbFvvgx
CX/7ldf/+O3T3v7h7XEn//fH8AoHQjSPj5cnn//2JPFOMpCbRqVAvcgzMyu2
E7miZZhG2/Gyh7od24AEADaXqFxkiZPsnrlUebh6McJfbxn1+n+//i4ie65U
x+y5YvZ8vFss4NnREcIxb8u/BkAovRcd2FCuWhE/QlKrPUVZx1syPP/5Mz1e
/9XrfzM0Zensbemfvzjd1FkplXEU6QJmrkYbutLs0fNfrDXQSroqETk2llG3
L4js8fE1D7OzjLje0uO3FBrsx9jiKxxXKOkCJpQ2G/6i2YPmvzxXpMcqW2vY
R64jIH6E5HXr7KSbx5W2pPy/hB/Nzvf/77FQMn8daUDpAiaslnWhwNsTHwtV
koy6LjSwqlzVIH6EpFZ7Tm7t8e/Xpbz++vNXPuf5t3918rugk8/sjWDunDSX
cbDpAia449+TcbCJA+fRbcVnDwvoJVERyBInudw4Gxf0+PgDuIcXJizqM+HH
e4vkLbbFlExFKLmiJaN2teSaxwYFJ6YeSwmsJ1EFSBEk6dw7G1cwewVgqNkb
7j/NnoPJck2LdWS8DlXnu9mD3ogVBE7k2vK5oiW+2jNwhNfwnv98Evnrv3r9
h8OOYEvn+2WKibMRTbqJyhUtK2lahK55fPQen7ENnIk1dVo4ILVcOz1XtAR3
7wC8a/boYVlzt/bT49vthvPZiyZXtCzv+PePcoZ5fPxJEK10Wi8gl3QbPFGo
BFd71n1JtuOnr2YBBmiyqe+bPQ355JrMXNGyiePlzUnbgnbJ7GlYhHUBcu3u
LHES3M2TTqZBHMfUW8ns0a8j1wznipY99al53z18AWEjPdZl9piA7y7t6wgS
hUpklcebHIMwbu5iRSCgXBOeK1p4+AKbnCwH7KZ8I8fZzmoOFe4eZtIMAmi7
ka/uent/jPNVCCVRqPDmmP29UZ9hcKLfEgDRpNvCuaIllBuH2D/ZJcdgpCY7
9+auZ7BEyyF5WEzT8nnZ7NHnYNphYUl3bq5omet4+WOam+YOBPZxf7fe9/Ay
NoDzBQolS5xQrX2d/eb10RMHHla/CQfmSrdnc0VLEDfOK0kFfR3t3qPe3OB2
ekAlCxdHljjhpsYl+LrZExCL6YWVpNuniUIljnvHlLyCXg5/ExNlEq1jolCh
iWP23/Rtfz2ZVcgu4/bMFS0R1B5K0glGuLlDbeqtZFlT6cfmOlTuax4fXxV5
bPbVkr3nE+infGMGkS5gJqo8hyQSdPO6re7v0Kvb2aZewNdVDiJFkDBSy4Je
6xnJ3KkYqdMcAp0k3YzpAmaK2pNHCkEXx0tvPN7csdNcluVOESSMdLx8V9Rj
3nub1xh20Hz2gH7S7cR0ATPY0egaOHcUsIab27B689rCO/iaBkGUZCzwqs1h
UOWx+gnSY8aAhjJuwEShMtLr6l87Wn7KH1kE1VrtxEt7lm1lSQxpDBXaHRSV
Zk9AR2YJYkq39XJFy2BVp4rkgQaOl3ebTXZiyVa1YfkjS0nPEicE1/g4qTJ7
DpoxMxBK0o2WMWYGuHGYSBu45rll7u87G5ZWUmRLiiAhkWP2YXT8+ycUk6fj
huZzAlRIustyRcsYN84QOQOX3dxxdiudpEgeSQ69NTpwbpk9B/VMAkxUuLNC
7a+j7FX57DAZ6v7xIWfgN8/dcXOjNdyeNiznzjMqiBRBwkqOSV9v8/r0LHrM
AFAi6bbKGDNdOTKgh+qd1dDsOSCrLHkVP0JYWOsj65rZoy+y4ZBhory7KWPM
NFd7OMgT+K7J/rI3mS5FjqUIEpb33HQtD7MrHqdfaROhJjQc5vSxQEzl++gR
6Wvzyvf+7Ejpq+pYeE9s2NBb/r/W+VlmTAMbiZ94NgiEdcz+ccSvkbz9yizN
hwb8kXfvZIyZVo5G18m5o4CJbu6d5mbPB1tIkYTBwwOeWp+EDaSehPHBQ0B5
t0zSsGmoqvbLDfZ1zP4TwB/NnhV2FD8ng4cH/Kjp8dhA0rGPDBsCyrtZMsZM
K7UlX3qwnePl680eAbrHt6hglpJEnSt4eECJI8bh+zRs1ImihYAy7pGMMdNK
bZmXFezl5k5p6OGdDFGd520E8SMELml8xN7wDCb4SDuFB2Hl3RoZY+aOe9Vd
VrCy4+WrU44wf2A3dUqgVIo0Dh4ecNXx7xuShofvTY8O720axgabSLojMsbM
TTeruqxgVXe2RnOzJwMuS5HSKYIE7mt3IDcWZGj3w4Dgku6FjDFT7Wjx5wuz
BwHNvCX2za3RxOwpgTaCJ7ltCFt5bu1mp3UjrYYWIRIIKGnyJw2bq55LWV+7
ZQKruLMLGnqNZPaUQHtfkz9mbLYk7OD+Id7Q4+PPjB4Xi2TbYGANeXM+adhc
daNUywTSO14angjmzgaMFHkvRI4NGOBtp39WgJvH/X2fQZYM6v5DYQ15sz1v
5JRTq9nBZ64+E/jmFrhpxmRAFMF3R+TYgGiOqU3Fo/iNTavHQWpJk9z2XNvt
2mz1ie74/Y/Apps1JxBQ8M0SOTYgsqaNwwUjw+s6gdBc9txOHTxfVZVh604m
N5O8h9lTAhHF3zXBwwOyaNpTtKmcI58F02XP7YwxU+i496WYs8OH76rTu5XH
7J96CokU7qmYEc4NDEiqTbfRtDSNfyIMljqf80bOV1VF17oT1PHLy5D7eW6D
wHiRN1fk2IBltOtHKt/S3I+h9ZRAS6nTOGnYnLhXbi06Ibxl4/2sbuXx+/si
oFzhRosZG0ArTTqTiQE0mQRoLm8CJw2bczeqrBUnkJuZ3MTsOYDFBd+DYQMD
1jalXbn6UIWRyPImbd7I+VFtQX1fbovOFK+J1ySZq7cAMFLkLRk5NmATg7uX
0oZJVSSq1BmbNGx+VFtKLTTjHP++hHn+w1yTJgP4R9hNGjYwYB9T+plr7dRH
MIokU1zK0mjyRs6nmtJplZnhiPGlMtIeYgq7Z8MGBmxiYm9zrcFSJJkqe2aW
hB02eP6oL5exk5OVPIvJRA/VDDL4upHFBuypvOGZHoMKyVypMzNp2LyqrZQW
l+7uJGdDs6cBqBFzX8eMCthEqM6nMBhFksEWyMm8kVNRGK0svR0BvmDmafZk
ALeE3eAxowJ2EK0FKu3JFElGWSAnk4bNw5caMs9nFlVnY0NTpgLoKuyujxkV
sLywrVHYwNjKAnmYN3IupZ8FpaHq3Otn9pQA3cWsADGjAhYWvEEKHh47yJ6B
ScPe2aW6Z01p6376NfHwg39hS+dlQVTAJi61TMGDnBghq0qxQU4kDXtP5clm
NWnrCPDjZV4DeI0K2MrXQiEqYHmX2qf4oc6OkQXlTby8ke+pZL2sI9V+TJXn
L95JP6kLtBWwaChlwEi5WqkUQbKMRFvjR0nD3k1hmllKLnlNjLdsuZ9ydeZN
BpBMzGISMypgPen6q+Nbhzk7QNaRaF98yhv5bgrTzDpS6AjwjUtvZk8JkFLM
qqLcAQMkbbTiR0h2uXbEq7yRb6i0+H4sn0XkRF1etfIawOyZAHL7Wm2EBKyn
ovWKI36EJJV0RzyVhB02+K2UZ1r8rGOuzw0+zGckMyYAWFN58dk5JGAxN5ux
ieJHSF4Zd8RTYdgxg99EeYIFTzamO6Z+c9Ps0QOLC1uFAoYELCN7SxY/QtLJ
ux0evtEptkupZcn4TXUi3fR89OwJALZzXpqihaROAnfUNWlxpAiSXJLuhT+S
hr228oyyXvzomQY3c6ki8SQhEEdJ1YoT0pR4gDVUd25BxI+QXDLugj/yRr6D
wtV5WynrtZvXpZ9l9hwA/Cpg+YoWD7CG1P1bljjJIt0WeMq4f3dQuC6WaXN1
edLE7KEDXBCwpoUKBlhD9o4uS5zEl3QLPKUOfknlGWWBNvHj+tblSbXxowZo
7rzKDa51qi7Q1gINXqJQCS7pFvgjb+SLKcwiy7SPH5f4GPs9TbPnAKCxaHUv
TiRAdgs0e4lCJbKMyf+Ud/8u6dJyWKAl3cyB5mbPB0B70QpgkDCABazR72WJ
k8gyZv5T6uCXUVpArdG67udAQ7MnA6C7aJUwTiRAagv0fimCJLKMaf+UN/Jl
FOaPNVpYkxxo5eEvBQN28rUkBolnfCRAUneawDhSBElMSXP+KXXw2ZUnj3VZ
2P00uJlCh9cywN6+1sk48YwPBkjnTlsYR5Y4iSldwr86Cn706MP1rY/iepkp
o7jqThrUZc5v+SOvgJ2dV86dgwHSudMoxpElTqJJmvBPeSNP7bjxl/LMjp32
6jKhMFvkDEChaIdvtHiALG52j3FkiZM4kqb6q9TBJ1WeNpZjHzezQpIAtBKq
wIYKBshimU4yRZBEkzHVX+WNPJ3nTJbnjLXYiqwACCJU1Q0VDJBFdWMZrbAk
CpUgMub5q9TBp1OYLRZiT1eTQVYAdPW1CMcJBuDVpa4yfmFJFCoRpMvwN9nj
z6Jkni0EMgEgmjjV2NEAlCu9YCSpKolCZa6M6f0me/wpFOaJ+efhr1cDiCfO
MR0nEiC4wltGlqqSJU7mKkn7I/aVqmRjSvv7ClPlt2k3/7uxGQECClKZnRFA
ofKLRoqqovpR4jxPPpM/oJIhhA0+hcIZNvM8SQmAmOLU5yBhAMGVV60UVSVO
ESam8wzJki0LDCGm8vQ4mXMzvy37ESCmUC1TkDCAsMrrVZzKdiJFkMx1niQp
UmWBIQRUMqvmnHMyBCCsOCU6SBhATJcuHSnqSZzyS0BfEz5FqqQOPqbyxDDn
nJMnAJHFqdJBwgACKr96xKlpX2WJk/G+Jnz8PEkdfECFKWHCKSRVAIILUqiD
hAEEdOn2kaKYXBoRWznPjfhJkjfyaI7ivxvLVHOJtAGIL0itDhIGEM3Vm0iK
MqLc8elrqgfPkOzxR1M4nyaZqyQPQApBanWQMIA4Ki4jKcpIiiAZ6WuqB8+Q
1MEHcbT44hlTzVc2KUAKQcp1kDCAOL5eScr/+/HB/+bqoFjYUXwxnx3pFwsM
YbqSOTS33CSRABKJULEjxADEUdFMxi8jFYNiYef5kCUxssc/XWEa/DixppdL
bFWAXCJUbGcH8EfJ9eTq7xo8hN/Ej5ABjiW+iqZkFLNjjKtk9c0qbckrgFwi
FG1nB/BHXTWIX0BUOf44z4QsKZE9/imOGz9/5vkbZw+ClBaoOQAbilCxHRxA
XRuZovNMESS9fc3wFMmwxihGKpkxk0k/cgwgowh1O0IMwFx1dSBF9dAhc54D
WZKhJP74oximcNHz5gMpyDSApKbXbWcHbK66CKQoHSmCpJ/z9E6UDNnjH6Zw
xU0jXck6gNQi1G3HB+ysrgJkqRvxI6ST8xRNlAzZ4x+mfMVNIwPIOoDUpldv
Jwjs6WYDGb9uxI+Qfr6md/w0yB7/GCULbQ4ZT/oBpDa9ejtBYEM3u8cUdSNF
kDT3NbdTrP4CQ+iqZJXPZ88c0tUahQhgZ9ML+PQAgMHutI5Z2s4scdLQ+aIn
Wv0FhtBP4SqbOmaRhwBrmFvDnSOwmzsNZJaKkSJIWvma0olWf4EhNHf8/QKY
OrPDZy/SEmAN02v49ACAYW72jSnazhRB0tD5imdZ+gWG0Enh+poxIpCZAMuY
W8MdIrCJ+31jirYzRZA08TWljzw/h+T+9lxPyfqaK+KQogArmVvGHSKwiftN
Y4q2M36ENHGejYkWfYEhtHK8vFUrXN89J4qY5CrAYuaWcecI7KBJ0xi/XMSP
kPvOkznRii8whJuOez92Zp+JIj7pCrCeuZXcOQJra9Iuxm8740fITedLnGut
1xjFfYVraqIITsYCrGd6MXeUwKpatYvTy9S582HGiZM7SlY5/kKvMYo7Cmeg
ZGbWnigSsa8B1jO9nk8PAOikVccYvPM8Dy9IkNyRfYmPK9/dMzvYXgqHv+HM
kJ0EBljS3JLuTIElNdzawUvE+UiDBEm1r+ubYokLh5BiLFeVrOACS8yeJDDA
wiYWdscKLKnh1g5eIhSxVZ2vbKL1XWMUVx23fz7w7BHAd/IZYGFzC7tjBRbT
cFPHrw/Bw6PCedblWt+VxlKocMibzAZrk9IAa5tY2J0ssJiGmzp+cYgfIZec
Z2+uxV1mIIUOXz/DTiQ2wPIm1naHC6yk7XYOXhmCh8clXw+jXOu7zEC+urRw
S84AG5LkAJuYWNudLLCG5o1i8OIQPDwKnedtxpVdZiDnDl88w67kOcA+ZpV3
JwssoEeXGLwyaIzXcL6OGZd1mYH85tKSrTd8kO0A+5hY4R0ukF3zXRy8LOiK
l3G+lOmWdY1R/Kh8pdYbO7yS8wD7mFjnnS+QWo/qEbwsTCyYtHK+iK+rmWVZ
S8aSUeFKrTdw+JHMB9jHxDrvfIHUOm3hyGVB1Urt/LzLuKBrjOLTpZVaY8hw
zkYA2M3EIu98gbx6tIjBa0Lk2Dh3nq5JV3OZgfxRvkY/DjbjkKHQ1e0AwAJm
lXpHDCTVqUWMXBDUq9TOMzbjUi4wkGechauTfbxQzXYA2NCsau+UgaR67Nzg
1SB4ePzm/KDJuI7LDORx+/3M7PBhEPsCYE9TCr5TBjLqtG2DV4Pg4fGj81Mm
6QouM5zC1Uk9RmjC7gDY08SC76CBRPpt2OBtZ+TY+HSeTkmXb4GxlK9L3jFC
c/YIwJ5mFXwHDeTSacPGLwXBw+PpPJfeFi7X8sXfJr8pX5RlFgsaurpZAFjG
rO7IQQMp9G4LI9eBWeWROue5Giq1yiUdS+Fa2F/wm4pdA8BKptR8Zw2k0HWf
Bi8CwcPj1fmZknHhcg3n+Ptq5Y7Zg4AobB8AZpV9Zw0E17s4BC8CwcPj6TxR
M65axhEVxhx/IDCdTQTAI95f9tTpiUC5AT1h8CIwpTBS7muKvi5WoiUrHFEE
5UsQfCAQR90+spsAljSlidK5QVglbWG/z28yhE7hzQ6N//Q1P5MuVvwRFc78
+RAiDARiqt5WACxpfPF33EBYAy5ZkStA5Ng4WZ28i5ViROUzH3YIEJxtBcCr
KcXfoQMx9d6YwTd+8PB2dn5q5F2p4CMqn/awQ4D47CwA3kyp/w4dCGjAroy8
8SPHxvmpkXSlYg7naPE3NyVdEZjC/gLg05T679CBUMZsycgbP3JsOztZl9TL
FHBE5VMdLXJIzS4D4EfjDwLnDoQyZj9G3viRY9vT+cGUd40CjujSVEcIGFZi
xwHwo/EHgXMHQhmwH4Pv+uDhbej8YMq7QNGGUz7PEaKF9dh6APxoylng6IEI
hu3E4Fs+eHj7OD+M3tYl3eqUDCpUPHFChVXZgwD8ZvxZ4NyB6Ubu+shbfnD1
48T5WuRdl+PbT+WNE8lK0w7B2YkAnBt8HDh6YLph2zB4txk8vH2cL0TeFYkw
oqPFX940IE7Yis0IwLnxx4GjB+YatgeDd5vBw9vB+RKkXo4ggyqf4ZUmH4Kz
GQH4auRx4ACCuYLs9+bPqhA8vOV9PQ7yLkeQEZXPcPYJh1yq96btCbCVwSeC
0wemsNNTxLaD81RMvSLTh3NpbrPPNmRkewJQYvC54ACCKQZvvcg7fWTF4835
5Kdei7kjujSxeScZUrNPASg0+GhwBsF449u/sDt9/FTw5nwJkq7FrBEVTuZn
JOlmGLKr2639qgcAkQ0+GhxDMN74TRd2jytB050vQcaFGD+ckjlcZnphDfYs
AJeMPxocQzDMlMYvbLcZNrCtnB86uZZj8FhKHpd9SmFJNi8AVw0+HZxEMMz4
vRZ5g0eObR/nJ06itSgZSMPhfH1c6smEtdXtX1sYYHMjDwiHEYwxZa+F3eA6
4SDOFyL+WnyNv+1YLj0u10zCJuxiAOoMPiOcR9DbrMYv7O4OG9iGzpMz+Ip8
Db7hEAqf9eOjg08j7KNuIzesJADkNfKMcCRBb1O2WOStHTaw3ZwnSeQVKYm8
Yfzljzv+fndV5NmDbV3ayz2KCQB5DT4jnEfQz8SWL2y3GTawDZ2sReRFGRZ2
yYPiTxfwR8WOtrUB+GPwGeFIgn5mba7I+zpybLs5WYuwK/I15iZhlzwl8iwB
by5tatscgE8jDwtHEnQyd3PF3NfDKhuFzlck4KL0C/jrJ2eZIuBT9Qa3zQF4
GnZYOJKgh+k7K+a+nj4tvDk/a+IsTUmcFdEe//4kmUv6DBToom6b2+8AvBp5
WDiVoLm52yrsjlZtAjo/boIszdcg6+Is+djPpwSZE6BcxWa/WV4AWNKw88Kp
BG1Nb/bCbuqwge3sPF0jLM3XCK8GWfKBMacCqFC95e19AN6MPC8cTNBKhE4v
5naePi385jxp5y7Q19jKwyv5qIAzANx0Z+8rAgC8GXZkOJWgiSBt3vQAEkXF
16SduEAlsZWHV/hpcYYPNFG99xUBAD4NOzWcTdDK9K0UdjvHjIpH1Bc196M6
bvxwYJkJa7hTAZQCAH407NRwNsFNQdq8mBs5wszwm6+pO36ZbsZTOKIggwX6
KdzvSgEA5Ya1kfpVuCnIDgoSRnlUKsx056szeJnuB1P4CXOHCYxRuN8VBAAu
GdNP6lrhpiA7KEgY5VGpMBGcL9CwZSoJ4zyY8k+QgbC8rxv/+PZ9kbNHAEBQ
w9pLhxRUG7NJ70QyMobCkKYHxtP5Go1ZrMIYnpEcBX8OPn1QwETlFUB9AOCq
MR2mPhauOgp+POn4kIJEUhKS2hLH+TL1Xq/CpzfUaSBAHAoFAF2NOUQcVXBV
tB4vSBglIakqoXzN5H5LVvjoJnrEDwSkYgDQ25hDxFEFV4XaNXEiiR8Vn86T
uceSHbf/suxL2gYPBFdSEBQNAO4YcI44qqDc+X6ZsmVCBRM8Kj59TenmS1by
xCbahg3EV14TlA4Aqo1pQR1VUGjMlmwS0pRgzkNSUgI6T+nmq1byuPsaBgwk
Ul4ZFBAA7hjQizqqoNCA/dgwpCnxnEc1MSR+c57VrRau5Cn33Y8TyKuwPqgh
ANw0oCPV9MJX59tk1k6JFk/kqPjN19xusnAlT7npfpBAXpfqg0oCwH0DThOn
FZwLeEPMFdKUePjqPIuaLF/hI+q0mgcgtUtVQkkB4L7ep4keGE6cb5CJ2yRa
POchKSZhdc3wkg+v03AGgOwu1QqFBYD7eneqOmE4EXN3BNy2AUOixPnC3VnB
wk++pPnwgeyuFg11BoAmep8mTiv4TditETCqsHPFifP6X7eChZ95SafhAwu4
VDrUGQCa6N2+6o3hR723XqfAhMQlX/P86iIWfmDbhwLbulRDFBwAmujdxOqT
4Udh90XAqAKGRKGvR8ClpSz/tJLHyR/g3NWqdae+AcCrkm428udDLl93xNxN
kSgk1SOFkoT/upSFH3LzKQBPV4uJ4gNAW707W50zPH3dDnN3RKKQlI4UShL+
62qWf4hsAZq4Wk+UIACa63qyOLngKfJeCBhbwJC45Gv9/7qa5Z8gT4BWrpYU
VQiA5nofLrpoeGTo4qLFFn/G+Opr/T9f0PLfLkOAVtpWqsHBA7CMrueLXhoe
4b95J2B4AUPiqq/1/2RNy3+v9ABaaVupxscPwEq6njKOMAie/wF3aMCQuOq8
+J8v66XfKzeAVi6VFxUJgH76nTKaaoif/9HCiz9jFPp6BPy2suW/UVYArVwt
NeoSAP107YF11+wsfvIHjDBgSNQ5r/8nK1v+G2UF0MrVOqM0AdBP707YEcae
UvRvASMMGBLVznfBb4tb/rtkBdBKRZ1RlwDop2snrLtmQ512U3MBgwwYEtXO
N8LJ4lb/RoAKdXVGaQKgq36dsAabDWVJ+2hBRouH+873wvkS1/0ugKsq6ozS
BMAA/Y4bBxlbSZTt0UJVKxZzvqAl61v9GwEK1VUYFQmAMTp1whpstpIo26PF
mWjqKHRe/78u8Z3fC/BVdXlRkQAYo18b7CxjE4lSvd9+7xHSlHi47zzNSpb4
5m8HOFdXWJQjAIbp1AY7y9hBp+3TQ8xQA4bETeeZVrjKN387wIm6qqIWATBM
vx7YWcbycl0ho8WZaOq46nxrlKz1/U8A+FFdPVGFABimX/frOGNt/fZOJ9FC
TTeBFDpf2fK1vvnbAX50Ukx+KymqEAAj9WuAnWisLVd6B4w2YEi0cl7/y1f8
/icAvGleiP4ve3e2I9eqLQg0/v+n8+oor1OxswEW7QTGeCgdVW1HwGyxy83M
wwNwj0Grx0bjVNvVdsAXZrTz0Fe65Moz3vjDAd6NGETTDg/AVQatnvTH2mvs
a7vXWqgDJ1+7QQPIU+ksP016r88BblY9PUweAOYbtH0sNU61XWGHOnB6MoSN
IU9lE/0o470+B7hZ3fQweQBYYtACstQ4z46vtVAH3jGAVEgn+mnee30OcLMR
82fCsQG4VnYHVWwie43DbFrScc6cDmDkGPJUNtdPU9/lQ4BrVY8OMweAVQa9
fq02jjGiQeYIdexQh2GcdL/UZb/X5wAXqp4bBg4Aqwx6+npOc4Z9KznUsfcN
I0+lc12d/b6fBtyjemKYMwCsNeLRa7txgH1/Shjq2OkwBo8kj2RzXZ39jh8F
XKJlXJgzAKw16OlrwbG7fX8+OKKjBx1mi3hSriTddalXSMAj1bPCkAEgghH7
yIJja1v/fDDaybcOJk9l012X+r6fBhyvelaYMwBEMOL1a8exu60LOFQDhjoM
o6XT3VgAfT8NOFj1oDBhAIij+9PXmmNTr3//Ev2mBdy9l8cdJn4weSqb8ZYC
GPSxwHmqh4PBAkAc3R+91hyb6tsI84U6f/fBQnzZpLeUQfcPBM7TMh/MFgBC
6b6YrDm2c8DzLNT50/HcJaQ8kk16Yxl0/0DgPC3DwXgBII7u7147ju0cULSh
rhDqMEyTXiVdSmLEZwJnaJwJ5gkAoXR/63o8s5cDyjVO0yVOsldIqZDOfq96
GPfJwL4aB4J5AkA0HZ+7Xs5s5IxyDXWLUIdhsnT2O5bEoI8F9tU4DQwTAKLp
/ty17NjFAT/Ri3OF7pOEvaQLoGNVDP1wYEeNc8AYASCUV+7fIK5YUl7ObOGM
Kg11izgnYYn08O9YGEM/HNhO4xwwRgAIqO9b17OZ4E76yV2ci8Q5CaukO6tv
bQz9cGAvjRPADAEgoO7PaS9nIjumPkNdJM5JWChdk91rY8JXAME19r4BAkBY
fR+69h2RnfEkC3WLUIdhoXQljKiNOd8ChNXY+0YHAJF1fOh6MBPWScUZ5yIn
RZVG6WLoXh5zvgUIq7H3zQ0AIuv4yvVaJqyTKjPOXeKchOXS839Ehcz5FiCm
xsY3NwAIruND14OZgE6qyVAtFuowrJUuhkFFUvL5ShHO0zhYhs4lAOil48Ky
+Aji6+doJxVkqOuEOgzLJdfIwDqZ9kVABF063awAIL5e71vvZOJIV+OmBRnn
OufFlkbZjhtUJ9O+CIigS7MbFwBsodfC8lQmiCNLMc6NjgwvjdJVMa5OZn4X
sFZ7jxsUAGyk19ryVCaIw4owVGeFOgxBpKtiaKnM/0Zgvi6tbT4AsJFeL1sv
ZJY7sghD3ejICNMoXRWjq2XmdwFLdOluIwKAjfR63Hoks1a6Avctwjg3OjK8
dJHtvqE1M/O7gCXaW9uIAGAvXTaX9cdC6fLbugjj3OjI8NJFSQOOK5j53whM
06uvDQcA9tLrceuFzEK9yjigIDc6Nby0y3bf6JqZ/43AHL2a2mQAYDtdHree
xyzxWV1dajigIDc6Mrb0ku2+CWWz5EuBCbq0s7EAwI7a95fnMascXHVBrqa1
ScvO/wlls/CrgUF6NbKBAMCOurxpPYyZ7+yqC3KvgyNMF+k2nFY8q74XGKFX
I5sGAOzoVfBnRso/yvOYaY4vtiAXjHAGIstO/tH18/5pM78XGKdXC5sGAOyr
y7PW25iZzq60OLeLcxIiy87/OcWz9tuBXnq1sDkAwNbSi6xknXkYM83xlRbk
ghHOwBay8/9n/QyqosJvB4Lr0sLmAAC7a3/Z2oZM0FilWwhywSDHYAvpxpxZ
RQu/GuiiV/+aAADsrv1Z61XMBMfXWJw+CnIMtpCu2/lVtPbbgWodO9cEAGB3
Xdaihchox9dYl04cfZKZx2AL6bpdUktrvx2o07Fh9T4Au+vymvUeZqgbCizI
BW8INR2lC2ZJLS0/AFChV7dqfADO0P6atRMZ6obqCnJHvcwj6YJZVUsRzgA8
0rFVdT0AZ2h/zdqJDNJYmbsIcsdLok1H6ZpZVUtBjgGU6Nin+h2AkzS+Zq1F
Ruj4cosszjXjnIRdpGtmbTlFOAOQ1bFVtTwAh2lZbdYiI1xSV+lrTrtphDOw
o2wBr6qoOCcB/tK3QzU7AIdpXG3WIn3d89YKctMgx2A76cpZW1ShDgP81Lc3
9TgA52lclJYjvXR8s8UX5KZXxZyO0pWzvKiinQd417crNTgA52l8xFqO9HJP
LbV03HnHYFPp+lleV9HOA3zp2JK6G4BTVT9iPYDp5bZCinDfCGdgX9n5v7yu
Hp1KzcMc3UdEkIEDAN1V77ju25Y7XVVFES6b7twjw05f2RKKUFoxTwU3696G
mhqAIzW+YL17aVRde5sKctkgx2Bf6c4NUmABjwQ369uJmhqAUzW+YD19aXRb
/QRpmQhnYHfpYg5SYDFPBXfq24Y6GoCzVe9NT19aXFg5Ea4c4QzsLjv849RY
zFPBbbq3oaYG4GzVj1hPX1rcVjlBmiXCGThAdv7HqbHgx4NL9G09vQzA2Voe
rrYkdS4smyDNEuEMnCFd0qEqLfLZ4Abd+04jA3CD6n1nS/LUnY+rIFcOcgwO
kG7kaGUW/4RwsO4dp4UBuEH1w9Vzl6fuLJjlnbL8AJwnXVShii348eBgIzpO
CwNwg5Yd6sVLuWurZfmtr40846SLKlq9BT8enKp7r+lfAO5R/XC1Lil3Z6lE
6JEIZ+A86boKVW9f3xv2hHCk7o2meQG4St3isy4pdG2pRLh4hDNwnnRdRSu5
z++NfEI4z4hG07kA3KP61eqtS9blRbL87pfHn0HSdZUuubWFV3hIoMWIFtOz
AFyl/HX99MdOvggB3VweEbojwhk4T7qusuKf/GP1rybB1kZMgLBTBQAGqX5X
W5okXF4bEa4f4QycJz35s1Yfv+h3kEY4J2xqRPtHHikAMEL1u9rS5C+X10Zd
Q808w4QDcLBshUeuvY2OCjsa0VP6FIA71T1WPXH5SVVEiMDyA3C2dJEHL7+9
TgsbGdRNmhSAO9U9Vr1v+UlVRLh+hDNwsHSbxx8CGx0VdjGuoXQoANeq2K3e
t3wz7pG2kQjXj3AGDpbt9OAVuNFRYRfjukmHAnCtiveq9y3fKImPAEGQAiZI
13nwInz9+1uCtzgtbGFcK+lQAK5V8Vj1uOUbxfCx+j2pK5kjXWlb1OF2B4bg
BnWQxgTgZnXPVI9bPimDT2vjoB+ZJl1su9ThdgeGsEZ0kMYE4HJ1L1WPWz6U
wT/LgyARTJMuto2KcN+TQygjekdLAkDFG9WzlnQNXFUGa4MgEcyUrbeN6nDf
k0MQgxpHPwJAxRvVsxYF8GV5HPQj02SLbaM63PfkEMG4rtGMAPDhrxHmIdl/
tzwOFf0LdbLFlq7DgNVYeHLgm3EtoxkB4NPTN6o37c2k/t3yUKTTcWdSGCo9
/7ebD5seG9Ya1zKaEQA+VTxTPWvvJO/vloeionOhUbbqtivIfU8Oq4zrFD0I
AJ8qHqjetBeS9J/WhkJGWCJbeHsV5O7nh/nGdYoeBIB3TzejNXobb6d3EaKx
/ADcKV38O5bl7ueHmYa2SeJj9SAAF3r6QPWavYp0/7Q8IMsPwJ3S02DTWbH7
+WGacT2i9QDgp0eb12v2KnL9zfJoyAirZIf/psW5+/lhjqGtofUA4JtHT1Pv
2HtI9E/L63/5AbhZuvz2Lc4DrgBDDe0LfQcAv3q0Iu3TG8jyr9aGRVJYK12B
W9dn4RXiXwRGGNraW48OABiqfEWWPGXZnfz+am1Y9B1rZYd/uj6DV2n5ReAq
o9tBuwHAX8qfph6xN5DcX60te33Hctn5v3WVnnEL6Gt0O+g1AEgoXMQesceT
2V+trXlNRwQl83/rKj3pLtDF6EbQZQCQUPgo9Xw9nsz+am1YdBxBlKyAfWv1
mItAL6MbQYsBQFrhu9Tz9WDS+pe1kdF0BJEtxTMK9aS7QIvRLaC/ACCt8EXq
+XoqOU1YGxmpIY6SFbB7rRbeZaMbQYXR7XzArACACUo28tfrdPT6ZjLZTFgb
HKkhjuzwP6NcD7sOVBhd+ZoLAEoUPkq9Xc8joQlrI6PdiCZbk2eU62HXgadG
V77mAoBCJUvT2/UwUpm2NjiyQzQlK+CMoj3vRlBudNlrKwAoVPIc9XA9jDym
LQyO1BBQ4Qo4oHSPvBSUmFDqGgoAymX3pifrSbK5Xn3A9dYWuRYjmpLJX/Lf
bCF9kU0vBVkT6lw3AcAj5e9SS3Z3Mpi2tsi1GDFlK/O80k3faNNLwV8mlLpu
AoBHss/REqsvQZ4MZi0MkRYjrJLKPKx0S/px06vBTxPq/KT5AABzZF+kJVZf
ggy5y1oYIs1FWIXFmf7Ptivjwutsdy/4Zk7bnjEWAGCm7HO0xOpL8Ce5K7Qw
RBJEZCX1eV4Np2+0773gy5zy1kQAUKfkOWrPbkrWCi0MlOYispL6PK+AX2V/
hf7qY0KTCbWtgwCgWvYt6rG6KSkrtDBQOovICof/kTVceHfY0bTa1kEAUCf7
FvVY3ZF8FVpb29JEZOXD/8gyzl5/9wtyrWlVrX0AoFrJW9Se3YV8PbI2VjJF
cIXz5NQyLrw+7GVOVesdAGiUfYtatbuQrEfWxkqyiK+kSg8u4/T1D7ggF5pT
z7oGABplH6JeqruQo0cWVrWGYguFw//UYi68PmxkQj1rGQBol32Illh9Cf5H
gh5ZGC6ZYguFk//ges5G4IxrcolpNaxTAKBd4UPUGzUyCXpqVbhkio2UlOvx
JZ2+4Bl35AZzylizAEAX2SdoidWXuJrUPLUwXJLFRkom/w0lXRIHCG5O9eoU
AOgl+wT1Ro1Map5aGDHJYiPl8//sqi6JAEQ2rYC1CQD0kn2CeqDGJDV1FgYt
/b1SRkDZTrlhCqXveMw1OdW00tUjANBR9gnqgRqQvNRZGDHJYjvZon357TRn
XZbzTCtXrQEAfZW/Qi3fICSlzqqg6SN2VFi0NxR2SQufdF+OMac9bxgCADBZ
9v1p/0YjKRUWRky+2FRJ3V5S3ulrnnRTTjKnXLUGAIyQfX/av3HIRZ1VcdM+
7KuwdG+o8HQjH3ZZjjGtXPUFAHRX8v60f5eTjhargiZl7KuwdO+p8Gw7H3Zf
tjazULUDAHRX8vL0KF0umwW5SFhVwHqHfZVX7z1Fno7JefdlUzOrVDsAwAjZ
Z6d3aQTi32JV9PQO+yqs3tsqPBuWI2/NXibXp0YAgEFKXp4W8ULiX21h6DQO
Wyss4NvqPH3fI6/MXmYWp0YAgHGyz06LeC3Br7aqdDUOByis4duqPXvf867M
RmaWpRYAgKFKnp128Xwi32hV9HQNZyip4Qur/cIrs4uZNakFAGCo7JvTLp5M
2LtYFT254wyFlXxhwaevfOqtCW5yQSp+ABgt++b0HJ1MwBstDKB+4QyFlXxn
wadvffDFCWtyNSp+ABgt++C0jmcS8HarYqhfOEZ5Jd9Z8DqdUCZXo+IHgAnS
D07P0ZmEut2SitUsnORRMV9Y85qdUCbXobIHgDmyb05LeQJx7mJJxeoUDlNe
z3dWfvbWB9+dUOZ334X9DgBLpB+c2eco7cS5lyUxlD4OU17P15Z9SdcfHwSW
m9+A17Y8AMyXfXDay0MJby9LIqlBOE95VV9b/OmLXxIEFpq/euZ/IwDcLL15
7eWhhLejJWHUI5ynvKqvrfxsiG4IAmtNLjx1DgCTFT44rebuhLeXVWFMf68k
sqNHc+naIZa++A0RYKHJVafIAWCJwgenvdyR8Pa1JJIyyJHKp9Plcyx9/Xvi
wGTzi01tA8B8hU9N27kXge1rSSQ1CKd6VNg3t0B2CNwQBCZbUmwqHACWKHlt
2s5dCGl3S+Ipj5zqUW1f3gXpWN0TB6ZZUmnKGwCWKHlq2s5dCGl38+OpNTjb
o9rWBQYC0yypNIUNAKtk35l2dDvB7G5JSOWR45VXuF5ID4R74sBoq8pMYQPA
Qtmnph3dQjBHCPVklUqO8ajC9cKHX7xlvCU1pqoBYK30A8CCbiSeIyyJpyRy
vEcrQEd8mPCMt6S6lDQArJV9ZNrRLURyBK9WGOHRvNIRX4SCcew7ALhT+mVu
TVcTw0G8WmGQ8qllvr0TDUZYVVSKGQAiSL8wrek6YjjI/JDqCC7xqM41xZfs
iLgtIHSxqpyUMQBEUPLCtKYfEcBx5gdWNrlH+fwv/y8vISD0taqWFDAABJF9
XtrUj4jeIKGerLLJeUqG//v/0B3v0gG5MybUWVhIiS9VwwAwWfZ56alZSNzG
WRJbCeUq5fO/8D+7RzZ0d4aFCgsLSQEDQCglL0xrOkvcxon2ZB33pbDKo+Gv
O75JR+/myPDIwhJSugAQSsnz0rJOE7RxlgRWQrnNo+GvO37KBvDm4FBoYfGo
WwAIpeRtaV//5fXvT20L1yDzY6v+uVP58NcjvyoPIPxqVfGoWwAIKPu2tK8T
hGuo+bGVUO70aPjrkV9lY3h5fEhYWDPKFQBiKnlbWtk/idVo88Mrp1yrsPJf
ud9DeHOnpMNyeXBIWFgwahUAAip5VVrZPwnUBPMjLKfc6enw1ym/yobx8vjw
l4UFo1ABIKaSh6XF/U6UJlgSYTnlWk/Hmhn4l6eRhIXVokoBIKzsq9LifidK
E0wOr5zCoxbQL3/JDpPL48M3a0tFlQJAZCUPS4v7kxBNMD+8csrlHrVAdgze
3DUlwbk5PnyzsDzUJwBEVviqtLjFZ475EZZTeDTfTMKEbCRf//4e5tUnZbG1
HaR/ASC4klel3S0yc0yOs7KHp12ga7KyIRKly60tDGUJAPGVvCcv3+BiMsf8
IMssfPhDT72VhEiUbra2KtQkAGyh8El55wYXkJkmx1nBw0fVlNM1Wdnx8vKn
n261tn10LgBsoeQxeecSF5CZJsdZcuHL00bQOFnZCSNcd1peD6oRAHbhPfkr
0ZhpcrQlF75UtIMOykqHSKzutLwYlCIA7KLwMXnVHheEmZZEW3Lhy6MeTP/H
muhLNlDCdZu1laAUAWAjhS/Jqza4OEw2OdqSC+8qhr8mKpENrHBdZXkZKEUA
2EjJS/KeJX759ZeYGXD5hZ+e9oU+KpQIlKDdZnkBKD8A2EjhM/KGVX759VeZ
GXAphp8qmkIfFUrPHEG7xPLsp79dBQJAQIXPyOP3+OXXX2JytCUXfvW0NYzK
culYidgNlqdeBQLAdkrekMfv8WsvvtbkmMsv/OrpAEz/93rqXTZWIna2CHmP
cAYA4CnPyJvvvsrkgMsv/OVpd2QHpp76SdCutTzjyw8AANS5+QF5562Xmxx2
KYa/VAx/Y/OpbJCF7kgR0r38AABAnWtfjxdeOYjJYZdoSKhoED31VDpiQnek
CIlefgAAoNqFr8fb7hvK5MjLMiRU9KPh+VQ6YqJ3pAhZjnAGAKDOha/He24a
0LTIX1XSUKeuR7TVU9lxJIAnCZLiCGcAAKrd9nq84Y5hTYv8PfUMLeraRGdV
yA4l0TtDkPxGOAMA0OKe1+PxFwxuWvBvKGZoV9Ep6R+ivxKyoRPAAwRJqwID
gN1d8m48/oLxTQu+XEOhik7RX3XScRPAMwRJqwIDgN1d8m48/oLxzQn+DcUM
vdQ1i/6qk51OYri7IDlVXQBwhuPfjQdfbQsz4y/XUO5Rv3z+XyZ3hS7LSEdP
DPcVJKFKCwCOcfa78dR77WJy/OUaytW1p6HaIh09MdxUkFQqKgA4RuGjccct
7yW83OQUSDc8UtGh5mqLdPTEcDuv3O8xm3mSCMcAALooeTRuuuLPu9F2pqXg
yAKG0Sq6Rq+1E8OTxMljnJMAAI2yz8V9V/xh19nRzKI6r4BhtIquSf8QvVZC
DE8SJ49xTgIANMo+Fzdd8SfdZV8zi0rGoUJF48zs6yOlAyiSewmSQbUEAMc4
9aF43o2285r+p/VlHCrUTUsztl06hsK4izgZjHMSAKBF9pW46XI/7DqbmllX
59UwzFHXODquXTqGgrmFULmLcxIAoMWRT8TDrrO1aYmQdKhT3Tuarot0GEUy
uDi5C3IMAKDaK/enUbZe7ifdZXfTcnFeGcM0de2j6XpJR1IwI4uTNSUEALvL
vgk33ewn3eUAM9Mh71CtulX1XS/pFIhqWEGSpXIA4ACnPggPu87upqVD3qFF
9S7Qeh1lsyCk0YTKVKjDAABPlTwFd1zrh13nANPSIfXQqLqJtF5H6SwIaTSh
khXnJABAhew7cNOdft6NtjYzHVIPLVqWgtbrqCURzBcqR2oGADZV8gLcdKGf
d6PdTUuH1EOjV8HfJ5/4sRqwu3RIBTaCaGUf7TwAQKH0c3rrbX7qvfY1LR3y
Dl1kW+mvhtKA3aVzIbYRREtNqMMAAIVKXn2bLvTzbnSAaUmRfeiipZW0YV/p
eIpqBNHyolQAYDsHv/cOvtrWpmVE3qGX6llqAo+QTofYrhUtKeoEALZz8GPv
1HttbWZGZB96adkUOnGElowwVLSMKBIA2MvBb7xT77W1V/JvIu3+XWoAOqru
KZ04SDojwrtEtHREOw8AkJB93e2+wU+91+6m5eXs8ob5qhtKG45j0IUSMB2h
DgMAJGQfEruv71PvdYBpqVED0F26rf5qruSq0Y+t0uEV4ZkC5iLUYQCAX2Wf
EAes71PvdYZpqVEG0F11W2nGcdJJEeSZAmYh1GEAgF8d/5Y7+3a7m1Z+ygBG
yLZwor+05DgteaGjgPGPdh4A4KfjH3Jn3253c7JzfJHDQtXNpSWHys49cZ4g
YPCjnQcAeFfyhDtgcZ99u91Ny44agEFaulhjDpVOjThPEC3y0c4DAHxzw/st
fbUDLri7OeV3dpHDctX9pTdHS0dYnIcKGHOVAADB3bCsj7/g1tIV2DFHN5Q6
LFTdYnpzguykFepBAgZcGQBAZDc8286+3QGmVaAygNGqe1l7TpAdtqLdXcxQ
xzwVAPBxxy9f3HDH3c3JkUqACaobTYfOkY6zaHcXM84xTwUAXPJIO/6CB5hT
h5cUPKzV0mg6dI50jgS8r5hBjnkqALjZ699fmXv8mj7+gmeYk6YbCh4iaGk0
HTpBehgKeF8xgxzzVABws0veZpdc8wBz0qQYYI707E13nD6dJpsmMe8iZngD
HgkAbnbPq+yGOx5gWjWqB5ijsan16TTpTIl5u7DhDXgkALjWVU+yS665uzkF
eVXlw1qNvaZJZyqZjYJfLezSiXkqALhQyWPsGJdc8wBzalI9wEwtfa1bZ0pn
SvAbhY1nzFMBwFWueoBdcs0zTCtLJQEzNba2bp0smy/BrxA5mGEPBgD3uOr1
dc9NDzCnMpUEzNfSdxp2vjnT+DYxgynLALBc9ul12F6+5JrHmJCve4of4mjs
Ow07WTpfgl8hbDBjngoA7nHho+uqy+5uTnHe1gIQREvr6dkl0ikT/0fCBlBy
AWCh255bV132DNPypSpgvpYGN8yXSIdd8MtFjmHYgwHADS58a9123wPMyZeS
gPlaBrJhvko68oJfKHIAwx4MAM72uW1ve2tdddljTEiZwoBVWrpP266Szpr4
l4gcvbAHA4CzZZ9Y523ke256mAlZUxuwUHX3adtV0jNTCkqEjV7YgwHA8S58
Yl112ZOMzprCgLVaelD/LpQOviykRQ6XhALAfBc+q6667EkmZE1tQATVPah/
F0rPT1lIiByxyGcDgCPd+aa67b7HmJA4tQERtLShFl4rPUVl4VeRYyWVADBT
9il15Ba+6rKHmZA7tQERtHSiLo4gPa7l4pvIgYp8NgA4TPYFdeT+vfDKx5iT
OLUBETT2u0ZeLp1BiXgXPFCRzwYAJ8k+nw5evhde+QxzylV5QBAtnXjndgso
nQi5+BQ8PjIIAHNcu3OvvfgB5iROhUAQjc2okSNIJ1EuPkWOT+SzAcBJ7nw1
ZW996sXPMCd3ygNCaelH7RxEdnpfno7gkYl8NgA4w82PpZvvfoYJuVMeEEpL
P+rlONKj9fKMxA9L8OMBwO6yL6WD1+7Ndz/AnMSpDQilcWjr6Diyqbw2KfED
Evx4ALC1a99IJRc/9e7HmJA75QEBNTampg4incebkxI/FMGPBwD7uvl1VHj3
gyNwgAmle22DQGSNXamj48jO2AtTEz8IwY8HAJu6+VHkTXiGOblTIRBTY29q
6lDS2bwtO/GvL0cAMMK1z6HCp+DZQTjDnNwpDIipsf2N/WiyI/2e1MSPQPDj
AcB2Sh5Cp67awrufHYRjTMid2oCwGieA4R9QOin3pCb+9YMfDwB2dOErqOTt
d0kojpHOWnvu1AZE1t6hujsgU3eL629xSADYRfr9c/CGLbn4PdE4w+jEqQ0I
rrFDNXhA2cF7Q2riXzz+CQFgF3c+fkpufVVAjjE6d2oDgmvvUA0e083jN/6t
458QADZy4bPn9e8Pv1RbfQP+NDpxCgPia2xSPR5WegKfmqMtLntbUgBgEK+d
FqvvwS9GZ01VQHxdBrhOj6kkueclaIubbnFIAAjOOyd98duCc4YJKVMVEF/7
ANfpkWXze1iOtrjmFocEgMhue+F8Krn1+8WvCs4ZRpf0bS0Dmyqf83UfMvr8
pGXze1iatrjjFocEgOAuedt8KnzRfbv7VSE6QHlmR3xF+4cDHTVOA/M/uOzA
PylTW9zu+CwAwFCXvGo+FT7kfr34JSE6xoSqVhKwkcaZMGGk0CKdoGMytcvV
zs4CAAx1w5PmS+ET7q9b3xCik0wobCUBG2kfCKNHCo2yY/+ANO1ytS0OCQAB
3fCeeVd438StLwnUGUYXtmKAvbTPhOwnaP/l0jnafUTvcqlT4w8Ao539kvmm
5LIlV74hVscYXduKAbbTPhZGDxbapXP02vnX03apPW0CABWyb5jDNmmv+94Q
q2MMTdY9vQMnaW9bjR9fdj7vm69d7nJe5AFggiNfL3/p+Fq7IVzHGJqsS3oH
zmMRXCKd6E3ztctdDgs7AIxW8m45Zod2v+zxETvG6Aq/oX3gSO3Nq/23kN0C
OyZrl7vsck4AWO71789in/du+VXJTZ9e9oa4nWFopi7pIDhSe/Nq/42cNK43
usVGRwWAtbJvlZMW6KCb3hC6MwzN1CVNBKdq7F8TYCPZZO2Ssr3Ov9FRAWCt
A14phcY9yS4J4AGGVvu4AgMmaG9e7b+RkokdP2sbHX6XcwLAcgc8UQoNvekN
ATzD0EwpA9hdYwsbAntJ52uXxO1y8q2DDABzFD5OzlidE655dgCPsaoGlAFs
ob2FzYG9pPMVP3F7HXujowLAfIXPkgP25rQ7HhzDkwxNkwKAAzROiTkbh46y
KYucuI0OvNFRAWCJfR8k5Sa/u84O5hmGFoMCgDO093L2E8yEaLLbIWbK9jrw
XqcFgMk2fY08VXLNjje9IaS7G5od2YcztPdy9hPMhIDSWQs7yTc67XaxBYBp
St4hB6zLwmt2vOnxIT3A0OxIPZyhSy9bBztKZy1g7jY66octCQC/KXl+HLAu
V13z4JAeY1yCZB+O0aud059jMsSUzVqo3MU/4bu9TgsAc2z08Ki28H11dmAP
MDRBsg8n6dLR6Q8xGcLKJi5O7uKf8N1epwWACTZ6dTxVcrUJ1zwyticZmiDZ
h8N06WiTYVPpxAXJYNiD/SVyMAFgpte/v6gw+GOjWvkFR1/zyPCeZGh2ZB8O
097R6bFgMgSXTd/yDIY92K8iRxIA5it5aey7IgtvN+ea54X3DKMLY2HJAYP0
amrDYV+jd8e44y081V/2Oi0ADFXyxth3RRbebs4FI5yBvwzNjrzDkbq0tuGw
tezuWJXHgEdK2+u0ADBOyeti0/1YeLXJd4xwBn41tELkHY7Uq7XNh31ld8eq
VIY6TKG9TgsAgxS+K3ZckTEfTnFOwrvRRRKqCIFeevW1+bC77JBfksogxygU
J24AsFDAF0Uvhe+l+XeMcxLejc6LpMOReu2XXp/DKtkMzk9lhDM8st2BAaC7
aM+JRq+H/5DTqguGOgzvxuVF0uFgvRrcoNhdOoPzU7n8AE9FCBoArFL4kNhu
LZbfa+3tAh6JodUSsw6BLno1uEFxhuw2mZbQ7WpJ/QNwrTjvh44KL/V+u1V3
PCnsJxmaF0mHs3XpcYPiGOlUzsnpjuW03YEBoIsIL4cRCu8V4WrxT3inoUmR
cThbl8FuUBwjWw8TcrpjIal/AG7zKv5rW1af9LHC51Cc28U/4YWGJkW64Wy9
BohZcYx0SUzI7I6FpP4BuNDaB8Mg5Q+hOFfb4pBXGVo80g036DJDjIvDlCyX
r8x2TPGmVbTjmQGg2qN3wkYK7xXtahsd9RJD60e64Qa9xsjQccRk2WwOyuym
9bPjmQGg2uTnwRzznz297HXaG4wroR3rE6jQq9MNjZNkszkos4mvCFtCah6A
q0x+G0yw6tnT0V6nPdvQEtqxOIE6vfp96FBivmxC++Z308rZ9NgAUOew997M
p844O575YOPSsWl9AnW69Ht6bhgd23kV//MNXZK7afFsd2AAqFD4HthoA5bf
KP69Nj32qcalY98SBSr0anmj40jptPZK7qaVs+mxAeCpOe+BaUqus8Wltj78
kcZlRK7hNr263ug4T7o2eiV337LZ9NgAUKjkJbDL+iu/yy43+vD8DmZQRR1Q
qMBTvRrfADlSOq1d8rtjzSh1AG4w+g0wU+GT5phLrT7ajQbV1Rm1CjzVq/HN
kCNlN05LcvctmH1PDgAlhj4AJnsV/517X//xFg5IzUlGNMsxPQg81avxzZBT
jVsQmxbMuIAAwHLZNbfLsnvN/QcR5jvvRvsalIsj6xYo0bH3zZBTZXdEXYo3
LZjucQCAOAYt/flKLrLXjb4570b7GpGLI4sWKNRxApgkZ+u7LPYtFXUOwKmy
u36XTVdykV3u8peDr7adEYk4u3qBtI4TwDA5Wza/jxK9b50ocgCO1HHLr1X6
XtnhLmkHX20jg2rs7NIFsnoNgfTnmCcHyKa4PMv71okiB+BIZzzkSt4qe90o
4eCrbWRQmZ1dukCJLnNg0IwilGyWS9K9dZ3se3IA+FXjWo+j/JWyy43Szr7d
LgaV2fHVC2R1HALmyQ3SiyOb8fQPCV4qKhyAYzQu9FBOukuhe24a2aAsSC7Q
caMZKZfI1kwi3VtXyNaHB4AvJat8i+1WeJEt7vLIPTeNbETJ3VbJQEKvaWCq
3CC7PhLp3ro8tj48AHxpWeVxFN4i/kXq3HbfUF7/fhN49yxcWMnAX3oNBIPl
Buks/8z11//N7uWx78kB4N2jPR5TyWtkl7tUuPDK0QxKgcwCnzpuN4PlEtma
ec/4+//YukI2PTYAfHm0wSM74xbVbr57ECPiL63Au44DwWC5RHaP/Mz77ntn
35MDwMf+v0RT/vaIfIsuLr9+BIOCL6fAu14zwcq4Sjrd70kv/M/C2vfkAPCp
fGsHVHL4LS7SxeXXj2BE/OUUeNd3Jhgv90hXziOrr5Kx78kB4GPzX6L58Btp
fhCBtUYEX0KBb/qOBUPmKul3QonVN8jb9+QAsPsuPulF0Ys4LDQi+BIK/JQe
C0+HgzlzlXS6s1Yfv8jWhwfgWruv4yMfFV2Iw0KDIi+hwDfdR705c5V0/XSv
rvm2PjwAN9t3F5/3nOhINBYaEXkJBX7VdziYM7dJ18/u9bD14QG409a7eOvD
zyEgq4yoRhUO/KrvBrRPb5PO+O7FsPXhAbjTvlv4pCfEIMKy0IjIK3XgL33n
gzlzoXQJbVoPWx8egAttvX+PeT8MJTgL9Q27UgfS+o4I0+ZC2UWzYzHse3IA
LrTj/n39++cqdjz8KuKzSt+wK3ggq+98MHDuVLJu9qqB3c8PwD12XL7lL4eY
519CfJYYUZwKHkjrOyXMnGulU79XGWx9eADuse/mPenZMI0oLTGiPpU9kNVx
RBg4N8tunF1qYPfzA3CDfdduyckjn38VgVpiRNilEsjqOyhs22ulU79LAWx9
eAAuUbJzY26uwpPHPPxawrVE95hLIlCi48xPf5Thc7wzsn/AFQA4W/bFFXBn
lZw55smDELH5RhSqPAKFOo6LEdOMXZyR/d3PD8DZ0ts27Oba7sABidtkI8pV
/QPlOk4Mw+dmI9bZZFsfHoCzpfdszJ2145kDEr35ugdcEoFy00ZQ32MT0AHb
Z+vDA3C29J6NtrBKThvtzGGJ3nzdY64LgEf6Dg3z507pKtol+1sfHoBTZZds
wG213YEjE8b5ugdcBoGnOs4NI+hO6fdD/Ox/nnDTwwNwtpIlG2pbZQ9svT4l
kpP1Dbj0AU9136EG0Z12z/vWhwfgPNkXWsAlVXjmaMeOTzAn6x5t6QOe6jv5
7ZE7bZ33rQ8PwHnSiynmktrxzLsQ0plGhFrugAp9x5FBdKERG22m3c8PwEnS
Wyngbio5cMBjb0RUp+keZ7kD6vSdHqbQhXbfPrufH4BjpF9l0dZT4WnjHHhT
AjtN91DLHVCn+1Y1i26z+wLq3gIAUCG9j6Itpr1OuzWxnaZ7qLUGUK3vADGO
brN7xhPn3+UKAOwuvYyiLaa9Trs7sZ2mb6i1BtCi+wwxka6y+w7a/fwAHCC9
jEJtpY2OegYRnqN7PUsc0KL7nrWyr9J9qU2WPf8WtwBgX9mXWJBNVHLOOKc9
hjjP0TfOsga0675qjaar7JvrdOVvdBEAdrTXGtrrtMcQ6jn6xlnWgHbdt233
DySyfdOdPvlGFwFgRxttH7tyFdGeoG9V6xGgi+7DxHS6yr65ThfqdtcBYCO7
7B1bcjkBn6BvYWsToIvua9d0use+uU6X/aaXAmALu6wbm3E5YZ+gb3lrFqCL
EfvXgLrEvonOlv2m9wIgsi0WjbUYh7CP1rG8dQrQV/epYkZdYut9lD781lcD
IKAtVoxVGIf4T9A3wlIGdNR9ERtQlzhgGWWLf+vbARBH8OViCQYkBaP1jbB8
AX11nyrG1A1OynLiLmmrDw7ABuJvE1svIFkYqm+paxygu+6DxaS6wWEpThet
kgagTvAlYtOFJR1D9Q2v9gG6G7GaDauzHZnfbCMceWsAxom8O+y44KRjqL7h
lSxghO6r2bA63pEpTjdC1urjAxBF/MVhu8UnI+P0rXntA4zQfTt3/0BCOTi/
6asVWn0JABYLvixstC3IyDgda14HAYOMGC/m1dkOzm+6HR5ZfRUAFoi8IB6t
MItsrYD1c4a+vRmz04EzjBgvRtbBjl9J6Qs+8uGhC3CTkr0Q9mwRDsknqRmk
b+XrI2CcEcva1DrYDZnNNsUjq28DwFiR14GFtSMJGqRv8esmYKgRQ8bUOtU9
mU33RYXVFwJgiJgrwIbalzQN0rEFNBQw2og5Y3Cd6ratlL7vU6tvA0BnYYe/
3bQ1yequbwvoKWC0EXPG4DrVhVspfeWnPvxlNQBHKB/7zsZTUtZdx0bQVsAc
I0aN8XWqOzOb3siPfPiFGoD9PRr7AU9lE4UlZSN0jKq2AiYYtMSNryNdvpiy
zfLU6gsBUCnmhLd9ziBr3XVsB80FzDFi2phgR0qn9YbMZiNQbfXNACgVcLBb
N8eQuxE6RlV/AXNkp03dzDHEjnR5WtPXb7T6cgDkRZvntsyRZLCjjk2hy4CZ
Rgycks80zbZjMX3Jbuo6q68FQEq0YR7tPLSTxL469oUuA2YaMXOyn2ma7chu
+pKu8EarLwfAd6Gmt51yMHnsq2N3aDRgsu5jJ/2BptmmJPSnklKvsPpaAPxH
nNFtoZxNKvvq2B0aDZhp3H4f98ksIZu/ytZ5i9WXAyDWe8YSOZ5sdpTujvKo
6jVgvkGL3kA7jFQmlDRRi9X3A7hUqPlsa9xATjvq0iPaDVhi0Lo30A4joQkl
TdRo9RUBrhNnONsX95DWjnp1inYD5hu38Ud8JqvIZlpJH7X78JdvA0xROJOD
nGTmeRhKcnvp1S+aDlho0Agy1o5hSZVIR6mXD79WAzBS+TSOcIw5h2EO+e2l
V7/oO2ChcSPIcDuGPBZK13xHqy8KcJpQEzjUYZhDinvp1S/6DlhrxBTyqDiG
PD6VLv7uVl8XYHtxRq75fy1Z7qVX12g9YK1BzwDD7QwjauNsr39/NGmm1ZcG
2FjhmB09bI39m0l0L70aR/cBa417CZhvBxhUGzfIdlZ3q28MsJlQ0zXUYZhM
urvo1Tt6EFhu3HvAfDuDPFbLNldfq68LsJM4o/XRnDftj2Szd9Grl9cOBIBP
vWbanI9lJklslA7gIB+e8QA55RN1+RkmnIS15L2XLpGUDmC5ca+CcZ/MNDLY
LtsIg6y+N0BcEaaoqc4Xee+lSySlA4hg3Ksg/clmXXzS11G2HUZYfWmAcJbP
T5OcnxRAF+0x1IxAEENfCGbd1qSvo5JGG2T11QGiWD42TW9+pQzadQmgRABx
jHsnDPpYppG+Lr7Cle21cd6PAXCh8mm5/AzG9W1UQrsuAZQIII5xT4Vxn8wc
0tddtimGWn17gGXWDkmzmjTF0KJLN2lJIJrsa6FuQKU/1tCLT/rGyXbHUKtv
DzDP2qloRJOlGBp1CaAsANEMejO8/v0Kj7m3KYkbqqTvxvk6w9ogAAz1aCQu
PMD7GUzmC00uy8N0ae0l8wEgrfzx0PFj+16B7qRvgmzrjfbhZwTAoQpn4NoD
zDkJwSmJFl3aSm8CAY17PBh6W5O70bKtN83qSAB0tmr0Gb88pTZadImeFAAB
DX1CeJlsSuKmyTZgYSKqP0eKgcMsHHSPJq15y4cXV4MuoVsyKABKlLwlRnxy
xyvQnaxNk23Awly8Cv4+qLpPBtjFqilnxlJHkVTr0mJaFYhs3IvC6NuRnTVf
tgcf5aLu0759slwDe2mcnKO/d9C3szWlUqdXl+lWILKhjwqjb0eJrMndONlO
LOyjis8p/3CAgFbNNBOVaq/kb4JdfbrQevWa4APBjXtaeLHsSNYWSjfj06RU
fJq8A3tZOMfKv9cg5Sc7t1qXThd/ILiSB0b3T+51eLqTtbXS/fg0KU8/TeqB
jSwZXyYnXaicOl3ipnOBLYybVGbgdtKbS+ImyKbgaVIqPjD9RcoAWK59No77
3nHfzjEUT532oOlcYBfjhpUZuB2bK4jsK+JRXh59WvvXAYw2eViZk/Slcuq0
x03zArsYN6nMwO3YXHFkHxIVOar7TPUAxDF5QJmNjKB+6rQHTfMCuxj33jAJ
tyNf0WTb82mmKj6w5esAOloyl0xFRlBFFdrDJebARoZuCsNwI94MMaXzUp6p
b/9Pr+Q/BtrrSwF6mT+LzEAGUU4VGsMl4MBehm6K9IcbjKFIU1jZPvo1X48S
9/QrlAcw2cxZZAwylHJ6qj1cAg7sZfSmMBV3IVPBpVs1kbXCDD79fKUCTDNt
+Jh4TKC0nmqMlVADOxq6KUzFjUhWcOlW7dLF1V/x9UVqBuio74jr8nVGHI1U
11Pt4RJwYDujB5fBuAVp2kUiU12S+Or3V9YMiwFwhZlz5tHo6/WlXEt1lWtv
RtEGNjV0fJmNu5CpXaRfLH3zWP1dX9+ofoA6I2Za9Xd1/0aupcCeaoyYgAOb
GvosMRu3MK4AGCHbs73y+Or0W2t6BwA42cypYpQxnwIr196POhrY1OhnifG4
BTnaTrZz+2az4utUFFBh2iQxuJhPmT3SGC59DWxt9PvEeIzPFttUtnl/zWZF
Wp9+kYoC6kwYIKYWCymzco1dmf7hYg7EN/Rx4uUTnxxtLZG+v14m1cl99F0l
hwH4NG1omFQspNIKtQdKqIHdjX6iGJLBWWS7y7Zw3+TWfZ0CA/4ybVyYTiyk
6sq1R0mcgd2N3hqGZHAStLtsCw/Kb933qjTg3YQp8fLPbROD2ivUHiVBBnY3
4cViVIblwXCMbCOPSHHdl/48g2KDa40eUyVf0fG7IEHtFWrsU3EGDjDh0WJU
hjU69cyU7eWf+e2Y5affnig2tQeXGD2mqqcQjKACCzWGSJyBM4yeZkZlZLJz
mHQ7D010xVf/dR7lB2f76vRx06li8sBQKrBEe5QEGTjG6IFmWoZll50n/cL5
K9cdM15xABUI9xg9AUwbYlKEhRpDJMjAMYYuDlspMqk5z+vJX5U5Lul1B1CE
cLyh7W/UEJk6zGqMj/ACJxm9NQzMsKyzg6X7embe606iDuEwoxu/braYM0xj
32U1xkd4gcMMHWu2UljycqqvDKa7b2YBVJ/k5S+rgSMMGj51IwXmU5ZZjcER
XuAkc94zZmZM1tnxsg0+rQaqT6IyYXeF3V3R42YIu1CWWY3xEV7gMBNeNXZT
TJJyiVfV31cz7jAtBp0KGGdEa5sb7EV9prXHR3iB84x+3thNMUnKbdKdPrMS
np5EfcKOBvW1ocF2lGhaY3zEFjjS6N1hN8UkKXdK9+PMMig/iVqFHXVvYSOC
fanShMbgiC1wqtGPHPMzIEm5VrrfJ9fD08OoWIhvRPMaDmxNoSY0RkZUgVNN
2B12UzQycrl0108riVfVX5ujaCGsET37dFCMuRnUU7QJLWERUuBgExaHKRrK
hIwTXLoGllTF0yOpW4hmRLcaBRxA9SZUR0MkgeNNGHQGaShWGx8P//+m59RG
+ZEUMEQzokO1P2dQtL9qbGfTADjbhGePl1UcEsGndFeuLY+nZ1PGsFb39tT7
nETR/qqxnUUVONuEZ4+XVSgSwZdX4L/zofxUv55TScMcI6bHo2aHyFTvX1oi
I6rA8eY8gYzTOCSCn7JzYGG1PD2bwoaZureh7uYkCvgvLWExGYAbTHgImaVx
yAW/ys6BVaXy6vGvQc08MFxiRAPqaA6jkn/VGBZRBW4w5zlknAYhESRkp8Gq
gnl0sMSB1Tn00n1WdP9AiEAl/9TS4IYDcI8JE89QDUIWSEu3aoSyeXrC5QeG
w4zoOP3LqdTzTy0xMSKAq0yYeOZqEFJAWrpVgxRPxSGXnxnO0Le/9CxnU9K/
qg6LeAJXmTD0zNUIZIFCiVKJUz9PDxnk2LCvvm2lVTmewv5VXUxEErjNhCWS
/goDdg7xp1y2Z3+W0KpCenrUIMeGvRQ2VK+P0qQcoL1ZzlMdE8EEbpN9II3+
ll5fQZYU8Eh6OMQppKfn/HlsXQAJfdv/UW/CvtT2T9UxEUzgQnNGn+m6lgVH
hUTZ/FVLCyvq6Wm1AGT1bSJdyT1U+E/VARFG4EJz9ohVtZb489RXbaRHRLSK
enraUIeHUDq2jB7kQur8m7poCCNwp2lPJjN2LfGnRXZQxCmqR0eNdngIole/
vP79Ljvdx22U+rvq3hdG4FpzXk3G7FriT6P0oAhYVI8OHPMKsEqvHtFxXEup
v6trf0MDuNmct5Mxu5b40y47K34trbU19vTM386vQbjQowZv/xxdxpHU/Lu6
aBgdwM3mvKDM2LUEny5KxkXAMqs7dpDDwzQd+0J/geJ/N2KYTDg2wEIT3lFW
1VqCT1/ZoRGtzJ4eOOYtYJyO7aCt4MPT601LKIQRuNmER1T6KwzboYSdEbJN
HbDYnp458l2go171r4/gk+L/Uh0HMQQuN2cMGrariDzjpKvrW6WFqrfyk2sc
ztax7HUQfFH8n0bMkwnHBlhuzptq9OeTIOwMVThDYhZexeHfbxHqLvBUx7bt
9TlwBvX/qToOZgjAR4DfUdPrK/hJzBkqPT3+KrxQFfj0Cj9vFOo6UKiicwd9
CJxEF3xqCYIYAnzM+veeEl/U5cP5lTXHBCUzJHIF1p0/7HUg7VFV/1XbFQ2i
TbiETfGpLgjZSQJwj8In1rhvaf9wfiXmTFMyRiKX3+vfTyTrrD4+FOlS0loD
ErTDhz/uBNDDtJFo8E5m2TFTot52qcBHV9jlUvCpsZK//p90BCToiA+/SgPQ
yZyHlsE7mWXHfOlh8q0Iw5Zi+S0SV9NrhFJevS0/XOVzOU3xMeBXaSacGSCg
OW8tm2syAWeJ9Dz5VoeRq7H8IhqN4Foq9uW30EAxrVEdAaED+GbCi+uVfOZ1
+Qp+EnBWSU+VLarx62zld0lcMPJNOV5LJ1ZUO9zs8u6ong8GC8BPc95dxu9M
c3IKf0lX4F7VWH6Xfe/IeV5lvw0m/QmKHB7RI91HzbSTA4Qy7ellCE8m2qyV
nS0b1eSju2x3O87TWJwqHCpok7rrmzAAf5kwG03gyUSbCLKvr70q89F1Nr0j
B2gsSCUNFS5vk+pZYcIA/GXOhDSEZxJqgkiPl03r89Gldrwgm2qsRvUMLS5v
lrq7Xx40gIRpzzCjeBpxJo70hNm6RB9dbd9rsovGIlTD0OjafqmeFddGDKDE
tJeYaTyHOBNQYs78LNQtyrX8RlqSCeoKT91CFze3TPXEuDloAFnT3mNG8Ry2
HjGlR82+5fr0XjvekeAqSk7RQl/XtkzdxDBnANKmzUnTeA5xJqz0tNm0Vl9l
//DxMfcllIoyq6vYpbeE6G5un4qL3xwugHLTRqWZPJoIE1/6ebZ10ZZf7Yz7
slBdXSlOGOTO9qmbG6YNQIlp09JMnkCEiS89c/Yt4Ip7/bzmLpdluYr2eVqN
QKE7Wyl961/vbuwAlJszLY3lCQSZXaSfartX76Pb7X5ZZqqrJXUIQ93ZR+kB
8tf1TR6AEjNfa8byaHYfeymZP/tWb/ntTro1Q1UUj8KD0e5spboxYvIAFJr2
YDOZRxNhtpOdPwdU8tM7vl9231vTV3WnVP9AoNCFDVU3RgwfgEemPdsM56GE
lx1l588ZlfzomofdnS4elYoag2ku7KnqK18YK4Bq015uc77lWmLLvrJT6Ix6
fnTNXy++9fWpVlEnqgvmSLfVqSqunB1BALwrebzt+F23EVV2l50PB5R0+R3P
uzt12mtGUcFQF3bW03liBAFUmDY8jeihLEF2l67hk6r66U2PuTjlGotEIcEc
t/VXxUgxiAAqTHvImdLjCCxnyI6jk2r70WVPDQJ/6VIeagZGu63RKmaLiQRQ
YeaLzpQeRGA5SXYonVTkTy97XgT4qUtVqBaY4LZee3pf4wigziv39w12/CKD
ehCB5TzpiXFYnT+67F8ROCAOfPglGtjHVe1Wfdl7QgTQ18x3nVk9iKhynuxo
Oq/an175yCDcrL0AVAXMdFXr1d3UgAKoM3N+GtSDCCynyg6on9V+QM0/vbWW
P0Nj3tUDzHRV69Xd9KoQAfQ1eYQa1yOIJ2fLjqkjK//prc+LwFVa0q0MYJV7
erDimsYUQIuZI9S4HkE8OV7JY++8yn966yODcLZX7m+HUwAQ1j0NWHfNe+ID
MMLkl56h3Z14coPspDq48h/d/eA4nKc6s7IPy93TgBXXNKAA2s0cpIZ2d+LJ
JbKvvuOL/1EEvkXj1JhsrTqhJRkHRrukB+uueUlwAIZKz9K+E9Xc7i4RUlHl
JOlSv6H4n0YgEZAj47OLxjwWphgY6pJOrLimMQXQxcxxam53ZA9ym3TN39MI
FXH4GZNTgxNcY+6yaQXmuKQTn84cYwqgo2kT1ejuSzy5TfoFeE9HVMfhZ1jO
C05kvRL3nsEPSYTpsl15hqfXLJlXABQqfAeO/q6O33IPweRC2ZF1Qzs8DcJt
8YmpY9becyeJMNkNE7XijiXzCoBC04Zq+osM8AoiybWy8+SSpngahwtDtNZr
zD+6vfpacLUberPijjeEBWCmma9BA7wjkeRm6cF1VXdUhOLX4BwcooW6ZOdb
poCFbmjPiil0Q1gAZpr5IDTDOxJJSI+v21rjUTSujdJMXTLylRcJgghumJ9P
75gdXwA8NXm0GuO9iCR8VXt6jl3VHeWhuDlKQ3VJgYxATMf3acUsOj4mAPNN
fhzO/K6zCSN8yc6xbw1ydps8ikZ2kpwdq0F6peA9EUAQZ7dqxTgyvgBGmPk+
TH+XeV5OAOFddrb87JQb+uVpWNKxuiFijb4C1cvqCwHfHd+zT293cCgAFpr8
SjTM2x3/QoA62Wl2Yae8uv66werbbECo4WDHt+3TC54dDYCFJr8VJ3/dkQQQ
/pKdMNe2zKvHL9esvkRojbEVatjC2W37dC6dHQ2AtSY/F430dmIICdmZpmUe
heivoF0bvZ8a4/kztkBMZ/fvo6udHQqA5eY/Go30RtYiZGUn27fGua19HsXH
tElrD6aowhbObt6n0+nsaAAsN/nRmP46sz1L3CArO2d00KeKQInbu/YAiiTs
4uwWfnS1g+MAEMTkpWOwtxNDKJEebtrny9NAid6nLnG7Nnqwo4O7+NHVDDSA
CSYPW7O9hbjBI+mBo5W+PA3UzXFrjNW1cYPdndrIj8aUmQYwx/xnpPFeTdzg
qeyI01BfKmJ1YfS6ROmGQMFJDm7nR8Pq4DgAhDL/JWnCtxA3qJAddBrq3dNw
3RPA9sgcHBw426lN/WhemW8A00x+VRrvLcQN6pQMum89dXlnPY3YDROpJSYH
hwVucGpfl48sUw5gsskj13ivJm7QouSRqb++qQva66xf6aoOgiqCMxzZ3Y+m
lkEHMN/MqWu8VxM3aFTyztRl717/fr2lxepLtLr8+sCRDf7oUmYdwHwzp64J
X0fcoIuSp6b++qkibgfEsPHW+14ceHdkjz+aXWYdwHyTp645X0HQoKPsg1N/
/eVR6P4K5hZRbbzpFncEShzZ6Y9udGQEAIKbPHuN+gqCBt2l20qv/eXV/Meg
Vt8gr+V2G10TKHFkpz+60XnXB4hv/vY5ct+Nlg6auEGdbGdptISn0XsPY8x4
vpp/DSrgpYAW5/X7oxsddneAXczfPulvNPZ/JWIwTnYoabe/PArdFiE96S5A
F4e1/KMhdtjdATYy/805/xt3J2IwVLrFtFtaefSCh/SMWwB9Hdb4j0bZYXcH
2Mj8l+f8b9xaOlwiBl1kG03TZT2K4c+Qrg1sy8mBgx02AcrvctjFAfYy/xVq
7D8lYjBByTDUd1mPwhgksBsdFZjssCHw6DqH3R1gL0veoiZ/ufnZgTtlh+F7
3+m+hPJILp9sdWeTfbhEhDHVy6PZW/ifATDO/FFs8pezKGGO1/N/5Wf1kUN7
FMlVsQ17MCCCk6bBo7ucdHGATc0fxSZ/ObGCydIj8VsPasa08mDOmXLvHxvk
SEBYJ02D8rtk/8vt7g6wqflr6JitN4FAwWTpkaglK9SFtHtsX89/x5T8ws2O
mQnl880kBAhi/kC2AsqJEiyRHlP6scKjkI4IcvX3SjHcaehEmubRdC3/LwEY
asnr1PwvZFfCWuknq8Z86mk8f4a3OsgtXwpc6IzJ8GjEnXFlgDPMH8hWQCFR
grXST9Zfe1OHZj2NavsYnPMtwEnOGA6PrnDGlQHOMH8m2wKFhAgiSI8sTVqt
IrAVER79+cCRzpgP5YPOSASIZv5MtghKCBHEkX7BatJqjwL7M87ZaNd9LMAB
U6L8CqYiQDTzx3L6G62DT3YlhJJ+xOrTao8C+yjavT4HuNABg6J83BmMANHM
n8zeyVniAzGlx5dubfEotr+G+v1/yBRQ7YBxUT70jEeAmJYMZ+sgwbqEsNIP
Wt3aqDy8f8W84ocAfLP70CifeyYkQEzz57N1kCU+EFZ6ZmrYLsqD3GL1LYGg
tp4b2bn3fgtDEiCmVe9YSyFBZCCy7NjUue2eBllSgF62nh6PDr/vNQHOtmoT
2QsJIgPxpYen5u3oUahlBGi09egon36GJEBkS16z9kKC4MAWssNT/3bxqvo7
Z2QBqLb1ACkcgOYkQGSr3rS2w19EBjaSHaHv/auLG5VH2wgF6mw9Q8pn4NbX
BDjewmet7fArYYHtZAfpeyNr50bl0TY/gae2niSFw9DABIhv1ay2HX5lb8KO
0oP0Zy/r6GqPQi3OwFP7DpPCYWhmAsS38IlrQfwkJrCp7CzV0X0lYvv+P1Yf
E9jMvnO7cOnYTQBbWDKu7YhfiQlsLTHZ9PUI4gn0tenELt84thLAFlb9VMKO
+ElMYHfZiaq1AcLadFwX7horCWAjS4a2HfGTmMAZ0kNVgwPEtOmgLlkxlhHA
dpYMbWviGwGBM7ze/oKUQquPDMCufyCocL9sejuAa62a25bFO9sTDpN+OX9r
8Je/8xZgqU1fYoXH3vR2ANdaNbcti3eJLFwbE9hduq81O0AoO07mkoVi7wBs
Z9Xoti++SSfi2rDA1rJ9rdMBgthxLJdsE0sHYEerpnf6e29bHEIBp8rOum/N
ruUB5tvuDVb4dPS8BNhR4ZCf/L237Q5xgLNlJ963rtf7ANPs+AwreUWX/DcA
xLRqhlscX4QCjpeetHofYKHtpnHJBrFlAPa1aoDbHV/EAS6RnnvaH2CJvUZx
4QaxYgD2tWqG2x1fxAHukR59JgDAfNvN4UerZJdLAfBuyRi3O74IBdzGcxog
lI0mcMnKsFYAdrdkkr+Svxtz0JfGZJPCndK9bw4ATLPRBC7ZF3YKwO4WTnLr
48MmhYul299AAJhjo6mbXRP2CMABFv68wBL5sEzhbtkJbCwAjLbLyC1ZEDYI
wBkWznNLxCYF0kPYfAAYaqNhW7EvIl8HgIRV89wSsUmBj9qH9+pTA5xglzFb
tynCXgeAtIXz3B6xTIFP3tsA8+0yZp/uiMh3ASDttfTPsdoml18feOfVDTDZ
LjP26YKIfBcASiwc7Jdvk8uvD/zk7Q0wzS4DNnvIXS4CQKGFg/3ybWKfAj+l
Z7KJAdDLLnM1fU5rAuA82ak+brZfvk0uvz6QUPLqNjQAWuwyV7OH3OUiABRa
+1OAm3eKlQqkFc5nMwSgTvwpWnJC6wDgPAtn+807xUoFstKDImv18QFCiz8/
sye0BQCOlB3vQ4f8qu9dzlYFyqUnhmEC8NQWkzM74be4BQAVFj7y01998Iq5
89ZAi+zANEwAygUfniXj3QoAONXaCX/ncrFVgQrp0WGSABSKPz9LhnzwKwBQ
bflT/8L9sjbgwKayz3LzBKBQ8Mn5aNTHvAIALRbO+Tv3i8UKtPBcB2gUfGw+
nfPRzg9Ao7Vz/sIVc+GVge4ePdeNF4B3wR9j5RM+7BUAaLRwzt+5Yi68MtCd
RztAneDT8tF4j3kFABqtHfUXbpnb7gsM4tEO8FT8gVk+28NeAYBGy0f9VSvG
SgX68mgHeCrstCwc6TEPD0BHawf+bYvmtvsCo3nDA5SLPCcfzfM4xwZghIUz
/7Z1c9t9gQm85AHKhR2Sj4Z5qJMD0N3amX/VurnqssAcr3//nJPHPEBa5PH4
aIyHOjkA3a0d+1dtnEuuCaziPQ+QFnY2lg/wUMcGYJC1k/+epXPPTYGFPOwB
/pIeiasGY/ncNswBLrF2+N+zdO65KbCWFz7AXwIOw6dDO8KZARhq+fBffoA5
jr8gEIpHPsBPAYdh+biOc2YARls7/y/ZOzYsMJmnPsA30cbgo0Ed4cAAzLF2
/l+yfexZYD4PfoB30Wbgoykd4cAAzLF8BdywgG64IxCTZz/Ap2jT79F8jnBg
AOZYvgVuWEA33BEIy8sf4CPee+zRcA5yZgCmWbgCblhAN9wRCO7Ry990Ao4U
6jFWPpaDHBiAmRZugUvW0Nm3A7bgJwLA5eKMu4qBbDIDXGX5Ilh+gKHOvh2w
Fz8dAK4VZ9Y9HcUmM8Btli+Cs9fQ2bcD9uKnA8C1ggy6ijlsJgPcZvk6OH4T
HX9BYDt+UgDcJsiUezR+DWSAOy3fCMcvo4OvBuzLzwuAe8QZcY9mr2kMcK21
6+DsZWTbApE9+qmBkQXsK8h7rHzqrj0nAMst3wgH76ODrwacwU8TgOMFGWtP
563ZC3Ct5Xvh4JW0PLYAWQ9+nvBvar3/D9MMiG/5S+zRpF14TgCCWLsXDl5J
di6whWc/WzDQgN0sH1wGLACPLF8Np26l5YEFKPTgZwtlVl8I4P8FGVbGKQCP
LN8OR+6mIy8FnKrmJw/JKWfWAUFk59XaAyw/HgABLd8OR+6m824EnK3ypxA5
H37FBlgqPaCWnyE7QgG4UITVsPwA3Z13I+BU1T99eOrDr9gA02Xn0toDlExO
AC60fDuct5jOuxFwnvqfNjRbfXXgFssHkVEJQIUIC2L5Afo66S7AkSp/ztBb
4ngzowGcqmL+TDtA3XgE4AbZHTFhU5y3pA67DrC793le8xOGwb5O9f4/ABql
x87Cby+ZigBcK8KaOGxJLY8nwDfPfnrw2+Bq/ITq7wWotna8mH4A1AmyJpYf
oKNjLgKcoeZnCLnx1f6ZjQcAKLFwqph4ALSIsCmWH6CXCMEE+Oj0aykzv6vw
JOWnAi7XPtxGfHXhrAPgZulNMWdfnLSqTroLsKPqnx00DqvX9D8e9f69AN9k
p8eSr154KgA2EmFlHLOtjrkIsJHX2y9ZNOp7qmk6Hhs4w8KJYY4B0CjCyjhm
YR1zEWAXdT8dmDmdGk9Yd5E5VwPCWjj3ugwxAG4WYWucsbBsXmCmmp8GrJ5L
r7l/MGrJHYEIFs4HwwqARkEWxwFra3kMgYO93n5942PPX6L5pvEKT+8b6u7A
aNmZsOR7558HgE1FWBzLD9DFGbcAAqp59281iLpcsCQCweMAdJEdBUu+d/55
ANhUkMUR4QwtgoQRONLjR//mg6jLfbOh2DEyQIlVk7BlIgHAuwi7Y/kB2h1w
BSCOmrf+WfOnVwRKQrR7rIB32Zaf/6XzzwPA1iLsjghnaLT14YFQah76p4+d
xpiIIVxlfncbOAB0FGd3LD9Ao93PD6z16vSvIK2+xyi94lMd0oNjC4fJtvPM
byycMADwLsjiiHCGFrufH1io5YV/7Zx5Tf91m9U3BorM72JTBYC+gqyP5Qdo
ESGAwHYqn/UmzJvX6t9jkzgVsERd2w76xvmHAeAAQZbI8gO02PrwwHyPX/O/
zRYTJqE9wo9y8dcBJt8a+PCrNAAcIcgSiXCGCkGiBwT3NRCevuQNlmrtoX6a
l9dblpdeHa6W7tOZX5cdGgDwlyAbJMIZKgSJHhBZ9TP+5XfOdNKSgpZ8yR1M
lm7Pad+VHRQAkBBkj0Q4QwWLGEh79nY3QAb7CuzX/znBt68Gxsl24pzvmnYG
AI4UZJssP0CdINEDAqp4wJseq7QkS2YhjpndZwIAME6EbRLhDHX2PTkwTsXr
3dyIoDpxLVZfGs4xs9c0OwDjBFkoyw9QIUjogCAqHu3GRSivFf/A9/tX//zf
QLmSXpvwRRMOAMDxIiyUCGd4yjoG3vu9/K1uROylLr8tVt8YtjStrTQ1ABMs
3yk77jUbGS5X8VA3InbXmHRFAuNM6ya9DMAEETbL8gNU2PHMQLuKJ7rhcKqW
YqgoHoUEf8m2z5wvGv3tAFwiyGZZfoCnIgQNmKnicW4sHO+14i+0+Vlaagyy
bTL0KyZ8OwD3CLJWghyj3F6nBRrVPc7NhHu83n7BZLKvL10aAFgs3SBDvyLb
oQDwSJDlsvwAj0SIGDDHs+e4OcCbuuJp936AhdeHmbLtMO4rCvsRAMoF2SwR
zlAuSNCAQepe44YAf3kt+rNRX9+uMjlbtguGfkVJGwLAI0HWykYLbqOjAuWq
H+Han3KNZdbu/SQL4wAdZat93FeUdxwAlAuyWYIco8Qu5wTKVb/A9T4tWgqv
sWjf/0/YXaLUh35+SZcBwFPp/RLhJJOPkRUnYkC1V/MfQll9A47SXpBdfPh5
JRvKVvXQz098qW4CoM7o1dblJDOPkbXLOYG/VDy5NTvTtNdnu9UxgAdG17MO
AmCyOFsmyDGydjkn8JeKJ7c2Z4lXgN9j8+G3BBBeuoDHffi4LwXgcnEWTYQz
ZAWJFfBUxUtbdxPTa/qv3rx/3erbw3fp0h334eO+FIDLxVk0Ec5QIki4gBIV
D2x9TXzvlfl6+3swpll0b/jFuFrVGgCsEmfXBDlGgtUMu3i1/X6D1ceHSo2V
r1PYztD61BEArBJh3eyy9bY4JFzu6btaF3Ok6kZo6SCtxHyJghz0yeO+EQA+
Bdk1Wyy+LQ4Jd3r6nNa8nO319oehPqb/os3Hf/9kFgySLsJBnzzoGwHgS5yN
E+QYCXFiBXx5/JLWuVzp9fbrNpOtvTgHG1d1ihyAheIsnTgn+Uv8E8KFnr2k
9Sy8eS36R6NW35tDpCtt0CeP+DoA+CbI3on/rosQJeDT0ye0hoW0lp7SjKwy
qLpUMgBrxdk7cU6y4/HgBs/ezVoVnnut+A02UGFcUalhAJYLsneCb8DIZ4NT
vbr+hHH1bWA/fXtQq9LRoBJSrgBEEGf7BDnGdmeDI716/PRw9SXgKI39qHnp
a0TxKFQAIgi1gIIcY6ODwWFe/f7/7ldfBY711WJdWlVHU2dEtShLAIKIs4CC
HGOjg8Exnr6NNSOE0t7CJT3+839wrXSp9P3Avl8EAFmhFlCQYxSeavnB4AAV
D2NtCDG1t7MJQKERhaH2AIgjzgKKc5L4p4IDPH0Sa0DYS2OPGwj8ZUQxKDkA
4giygF65P+c+8zDfDhbtSLCp9655+h7Wd7Cv6n5vmRLGxcFKCqDjB/b6FgAo
FGoHhTpM9khLzgObevwC1nRwnNeiv3nY9DhMSdI7fmCXrwCActHWUKjDpI+0
6jywhW898vQNrOPgeO1jwQy5Vt9EqyUAogm1ieKcJHukVeeBLTx99Go0uNNr
+m+wMVgO0De/SgiAgEKtoVCHSZxnyWFgCxUvXv0FfCz6t6J+tToSZHTMndoA
IKBQmyjUYRLnWXIYiO/pc1dbAQktI6Xd6tvzp44pUxIAxBRnGUXbjNHOA2E9
eujqJiDr53xomTPV08mMCiidsl4f1f7hAFAtzj6KtiLjnARievX4ayVWXwLY
TOPMqZ5URlYQ6TR1+Zz2DweARqFWksPAFp6+bzUR0Ndrxd8/bI4t1zEjcg1A
ZKG2UvyTWNbc7NGzVvsAc7SPppaBZrJNU5KO9s+p/lgA6CXUetriJDOPAau8
3n4C0sXa6wBX6TW46madiTdISfC7fE7FZwJAX6F2U5DDBDkGrPLoEZtoFi0D
rPJa+gejVt/+QO0Bfz0sicEXAoA/JXbT/A0VZFdGOAPM9977jVZfBeD/vXr/
5kDDcJX2OMsdALuIs6HSJ5l2njgBgQle/f5/nFdfBaBUl6H3aDb+/B88UhLk
lk+o+EAYRBECoZZUhJNEOANM8Oi9qi+AU71W/PGo96/+8Es3OSXBbPyQig+E
cdQhXC7UnopwkuUHgDnK36sRGhNgkNfSPxX1NUtN1ISSALZ/yKNPg6HUIRBq
SUVYmnGiAYOUP1YjtCTANN+GW5dpWTdgjdl3JRFr/ITyj4Kh1CEQcE8tP0+o
aEAX5a/TrNVXAZit4wg1byu8Cv5UWvYThJ1dqEPgI94v1Kw9TKhQQBePXqfq
HyDhteif+f748XO32yZzNj7VP/bRR8FQ6hD4FHBbrT1MnDhAu0dPU2UP8Mhr
0V8+fOF8Tgek+sdWfBoMog6BLwG31drDhAoFVCt8jip1gC5apm71rP51aB85
xtNxqP6xTz8KBlGKwDfRttXaw0SLBpQrf4iqcIAJGsdy4eh+/fc32Jw30rMR
aPnhjz4KBlGKwE/RFtbCw0QLBRQqf4Uqb4DJGkd03VR/H++7z/n0Tat/7NOP
ghGUIvCraDtr4WHiBAEKFT4+1TbAco0T+9qB33KvG+LDvpQi8Jfszpo8Lhbu
UIubXeQem3mrbwBwqfYB3svHJr/NJnuL6h9b/jkwglIE/hJwc606SZDrQ1pJ
zypmgF20TPVeVscgo+7wx1yfU6lGICHa/lp1jAh3h1+9Ov2Tr6vvAcCf2od8
u4+Qv8Eme+a6H1j4ITCCUgSyom2uJYcJFQF4l+7QaP0LQItXp1+Zb/d+noXR
KDlkxQ/MfgIMohqBEtGW15LDhIoAfPjFGYCLvf77rzW1bIQu1oai4lRbXI0L
qUagUMBxMf8wAYPAnV7ND/LVNwBglJbt0O7bST6m/E6bwvPURWn04eEbBQmU
izYx5p8k1PW5U7oNS6y+AQBjvd7+IFIoQ6/89HsjHBt+pSCBctEmxpLDxLk+
93h1em+vvQUAa71vk6//Mc3X1w26WvqrH/332R8O4yhI4KloE2PyYaJdnxu8
evxtA6svAUBojVtm+WKq+K4l54QsBQk8FW1uTD5MqLtzg3THZa0+PgCbeU3/
i4g/3n5vT8uxE5//9IcUfgJ0pxSBCgFHx+TzhLo7R3p1eiGvvgcAJ2jfR3O2
2KOPGncMqKYagToBp8fk88S5OEfKtli0BgTgEo0bavSCe/TDe30pdKQagWrR
Bsjk88S5OIdJV3LW6uMDcIvGhdXF+2FKTlV3hXkx5XqqEWgUbYDMHGuhLs4B
Xs1/vunj7Y0KADO17K8uCo9Rd+zp4eRS6hBoF3CSTDtMqFtzgHQ3Za0+PgD8
z9dWatxrI/x12qc/CgZRisD/tXdvy43qSgBA9f8/zak5M+WNEWBAtwbWepjy
OHaibrVatkKScgE7SbchhYqau9uv24ALDQD2pdlFniXbXHXzEZ56PDSlDoEq
YjaTDkMKGDU3kvzxJgBepnzXK3dtSEPSxQupQ6CWgP2kz5BChcyN7NfnT6OH
DwBFCvfBinvotWdBI+oQqCXg1tZnPKFCJr5PbfxcMuoKgAe7vA+WuzCSISni
hdQhUFfArrI/niqjihYyke2vkZ9GDx8Aftt5oVW4D9YyH8/BUfVMIK+lDoHq
AnaVDkOKFjIx/dx2FRIAt/PZpFY3r5K9r7V5CKceD+2oQ6C6gF2lz5BChUw0
Pzfcn0ZHAAD/pNnxyxT7HGZLHtGFZ0F1KhBoJGBvaT2kgCETxP5uu1856geA
zla3nst7WWRnA+w1A7yXIgTaidlemg4pYLwM93OrVTYARJBue0nMNasZuPxc
qEXtAU0FbDKtxxMtXgbar/+AqwOAdyrZsO6oMAmdZ4dXUX5AazE7TNNRxQyZ
bn7urUeMDgKAh0v3/5Uyua0wV2+sPvjaV4GKVCDQVNgm03RU0YKlp581H3ZR
APAMi60kff9+s/J9KpTqqev/RWFO+QF9xGw17YYULVI6+LmlBlwCADxAmh3C
lGxGAU2zS32m3WtgKibzyKigncLyU6LAQWE3u0ZDihksLezX9s/KVxIAHJce
dz3ManQDnR0zVFdSgeoTOC7sZtdoSDGDpbqf26hKAKDEfL8o2XQiGJjG4x4T
CDdVWHtKFDgl7GbXYmA29zfYn2U1AMBB6XFXyHxMd/vm/sGgoIXC2lOiwFlh
97sWQ4oZKYV+bp0/jY4AgK7Sxk/0fDaF8p0llAEpru0lYRJQYe0pUeCamPtd
iyHZ3J/nyNZp3gGYK987hpvudjFMiYMJgRYKa0+VAtfE3PhajCdgmJT4Wbrm
GuCdUvbDStPND2eGpnMw+WGgksJTpcBlMXe9FqMKGCZHzCcoFb/SHhcHANXk
LT1lJzN3N73pgpkdRxIFLZQUnkIFCgXc+Fpsx7b4m0pOZgDeJ32fuszvLN8X
QlnEy8LxHEJdl6tOlQLlwm58dYcUM0Z+2q/PsNULwAV5Gy/ZBYabxzU5ijnv
VJKhostVp1CBWva70KjGUn1H1jbvaH+XNKcAd5GyU4spu1TmGQYk96FkmyEu
V51CBSoKu/3tj+rs2AIGyL79yjShAJHlu/aTTK6Nae/ILEB1l0tOrQIVhd0E
6w4sWnSs+jnpZhAgoPTEo5i/Rqf2vUwNQ1woObUKNBKwsdRtdwED5OPn7mbu
ADqbd9p5y73csSObsot/JlfLjHZk1qCiyyWnVoFGAvaWnx3v1MCiRcdfR2bZ
lAE0lffVa835RobkmeNMIv3tF9tWySlUoJ2YvaVi0wsY3cv93NRMGUAt6fuS
mMWNZ8vzwC0cn1ao4kK9neo/AGeF7TC1RhUzutf6uamtTpPJAjgozX5s55Hm
oQ3NNE0cKQCo6Fq9He9XANfEbC+1hhQwtFf5pPrgdmaOAHbMG+O1vno70+yK
oGF5p5cj9QC1XKu3g40LoETMDlNrVDGje4kju9jW1Jgg4M3yHni5o97F5CIZ
on7rkKe6UG8HuxlAobB9ptaoAob2Bkd2MVMDkFv0w5J2GtMnzKFpJqIjlQO1
nKq3sy0OoFDYJlOlAYaN7sGOb2QmBXih9NDjl7/mMcIpB6sLyp0ttgttEKBE
2D5TPqqYcT3Vqf3LdADPs+hmJV3xFkblmadScnRwtrmd7YcKFagl7IZYPrCY
cT3AJ40HN6+tWTAXwK2Vd8KY5qFNejWNHaxJKHe20hQnMErYzlM+qphxPcCR
PUvmgQdLTzmfmUcxOZBhkCOFCuUOdsWDj9yqTBULVBF2ZywZVcyIHuDgtiXt
wANc7nhhjc4oLKlbOjjbJC93VBULVBF5cywZUsyI7iid3LAkHLiReYubnvJX
lvK4ILKf9QzljvfPIw/e/xIdwwKe6VoXijC8Rk/kI9V4kzI6CID/zJvSp0cV
drnOprUTmMX9cC8/ax7KHSmzU6145/P3jQx4prCbY+HAAkZ0L8e3KkkGwipp
ZcONTh40ZwnQ2qlme6Ezq1ugkZhbZNr9LufP5+48UQvd93t/ilQnwJstGnve
6m9ndEahK8uB1o733oOP+fnJx8QJPE7k/fFnt7zwxG6Dv5dfW5NkAsN8Gs61
ThXEIpBPaAMTC2P9XDJQ6FRzPlKQPx8/MlrgWcLukpcHFjaiaPYTJY1Af4s+
U9KmhpicvcABR5YSlKjb2A9+5iGRAk8Vs9uc7ZlHnthz/GH9TOy1tAOckmZn
GoV9aZTRKYQbs7Jop1GfP/VggEKRW82FZqh5bvm5uVzINsCOdP+jmNzopMIT
WGK006Lbn308QKHI3eZCP9Q/Vx3ZXCQNOG7eHD63S1pNNHmYQBVHlh5c02IX
OPV4gFrCdpsL/VDzXDi+ucgYsCPvDyXtJYjp+4KfybEMtPdzVcI1jfaI4w8G
qChywznbFfXPv47vKVuJelW64IV21nj6fmk6PeJA5q9++QXWWKG002cfUb1A
H5F7ztmuGDmWbo5uJ+/OEjzVkVWcvv889DT6xW07bXMNnGTN0kiHDUXRAj0F
bz6nxhY2itZS2fe7Rw8fqGO+nOcL/HJzuItxKQdOsJZppMNGo2KBziK3oLMD
CxhCO6f3ktdkBt5msairNIdoPpEOzTRw0ZE1boFzTfMdaKNiAdqJ3IVOjS1s
FC0c3ULekQ14sPTcXxSzZR448AwHFz6c0n5HUqvAMJF70amxhY2iluSHm+CJ
Fuv08hq/i0+Mn/AnxzLwdEc6A5zSdKtSpcBAwdvR8bFFjqKKE1vIE8OHx5gv
yZJ1Hd/0fRoDvNORRjF6jNxP8z0sK1SAzsI2pVM9M2wUl6XZ95ovmLzygRHm
q+/a4r2R0ckGRtpvAtoIjbTc1lQpEEXkvnRwbJFDuOAz7OPbxwOihvhWV1b5
ar2FnQwAj/FzjafvbyFNxd2veUg8TmHJqU/gFoI3qIMDizn4C65sIbcNFm4k
X24lqzWaKfsVMfkNII5TCzNl39ha3Jg2Wlx+f4vmA6e0rknFCQQRtkEdbKGP
6bEndo7bxghhpe9zicvrMaYpO4cB7iWtHZ5MG2eqQ/rMWSOyyL0pTuA9Iveo
g100cghbUqVLhSPHCAHN184jfcIcmmbghPnind/zbKOyzX0pS+A9gjerpzbb
RwYF0SwWTlk7CecT4+IGEF/6/k7T9LgGtWNo4rkrlQm8Tdh+9bx+mwpeiU3e
hcGu8o4RWR7skCTDa6WNjTitnbfkj0zfB6pj+kgMjSeKZ1KZwNtE7lcP67eP
CQSiKewVQYzOIrAiZecqn/uPLOomzeK2Rk4kt6UsgXeK3Lhu3XWTP1UJZVaX
QOGaGm4rLqCRIysurV0VQ7mD+YdVHerzwpCqhwmQq9u7uo2tUe+NMPJp9ioR
Xqhw4fe3NezP/ZPXdVDJ6lKar7jFnYuVOL/dvje8wiLVSa+jktZ1WzKkupEC
5Fo0sW7DizbytP1+LfKwobPylTLW5CgVGsgXV347X4Odlv2j7U/K4jH7j4da
RtX86kimrAUBtFariTXSof2OHWqQPENd6fv7qpdXx3CrcQFz88Wyv0YWH01O
WtpoN9fQQailYX0BQ9RtZdV1a8KXxxZ8kNDavKTT445l4J3S2nHK/L87ayet
/SBMfpt9eebTgQZ15DEQXOtlVTiMRlEDLFRsaJ3HNmTYl4cUIZ9wWXrQO6zR
uYQmtmp7tfLT9x+Pnj/gc7vrsnyNU3MHb9Nz3V376k3DB/gI3ouaduNu44mQ
SdiS1r5dm+78TfA8Lri1tPHbWec1nzYWb746Wi9APqaNUzIg124NVvy6XTIB
4JSm+WAipBF2XC7sUEZnEf6TDrw1WNTtahmPWk0vN2VHK4uP7s87cE2j5bzz
5S580V7JAN4ueC+q3pO7jSH5w5QMkmYvPBb3P8ygBMO6T1nOSzSv2K6LhMxn
FhazBgzUdL3Pv8r8RvknBGgkfjsa2EIvfOkgSePBPjWWnn4Is2pQ1nmXvNLm
5bdVmf2WAd8mhy1wc9V7wrT7U6KFnxmgj+DtqHMLLWjegZLGY3yKqrwy45u+
r0OA/vJSZLidyepYGkArHXpFu08O0EjwjtSzixY07xC54i5SdiXMlJVffs9j
5BmADvKqW61M6ppc6wJsq9ttWnzy/jkBmML/dpqp2UHN/JGX+3aQFHEL5SV3
XwPTTnz7FZLWFs7iAWn3qDP/EMfladyass9HAX6q3qmqf+ZRmQH4K3iDqt5X
U40X7V1C58Y+dVJYacGNTjNPkGZv/D9F9SmwgeX9EouJKJ9KgJ+q97G6nzDp
ZsBowdtU9aZ6qVWHSAUxpdn7yum5byqnjXfTvMTqjKftay3ysqGDnckCiGN0
s1wxOiUAX+K3rLo9VuvmrLT2/f0p5GuMQnnI3EvhxC2ePi+MxY300CUwVp7S
ktkEiGlIg903OiUAS/G71qkeuzrs6107TBLoKW28LX2MyTnM4+zM9ZSdK86f
lf9LLZOFBpAZ3Zv/GZ0GgB+Cd7BrXbegbQeKnYpSdp3A4r+PMQ8wZaeXSW3f
wWfK8olLVUu3/DO8zXwW5vcA8NPQ/v3P6BwAHBW8lXXr26Gipor0mveh83gp
t5XJtHYOtvOUkTXBSQ3qCIA/Rjf4P0bnAOCc+A1N6+avdOzSginG64FGJt/E
byN9V87iQ+npdfVCk6UE0MXwbg9wR8E7m9b9QmntQObxFiHTweg5p63R9QXw
dnYBgGvi9zfd+9nazW9ko7P+EFuZTNvXxuQfZbjPvMzvWdxuV0UANNJ7O7FZ
AE8Rv9Fp4HeX1n6E5D12UsEpafdvEq3eSSjzeTw16QDcUf8tBuAZbtHx9PB7
SS/7C79bgQ9K/3MsMjxqftnJ/88ZbFsiAATWc5MCeJhbtL7yBh4nlofJ01s4
WdFM2XHBTh7YkbITrcXt9Nwq6ulg9rYyDwDlOux0o0MEaOhnG4ygpI1TRfp+
Q5eefoXDsEQPdS3w9F0M+UdpbWcGk1ezAHTUf6cDeJ6DLTGCy/2cC9ITf2Rp
mp0kpO3LCdLNiycdODZZPHJam/H8wfmHdpLMKauTmNbKMn8wAATRZ5cEeLwb
tUSdvK7VjBVtolEdzEabNJd+0fTrBCm/c2iy327aOB87O+8AcC9N99bVL9c5
QICeznbFgW401GjSc69zmA68Lz6YopRdw1BL+r4oJb9nEcvO7a3w9x/GQXkO
p7UCS8dOzADgDVrvy/mXuzbICqECdLHfGGNK2ZtT/mq3SwYxfb9lnt8uT93q
7cWdae0Fw+qd0/YJDMNVqRkAYIrxCmc+mK1B7j9m64kAQxzpeAyxPwU99ry+
8qgXH9rKQJVkzm/kg9kZ8897qGJn4uaPSQdeqgEA5Ua9JGhqdFIB/tCmIsiz
3WsvGiMPeevOrcdvPevz+Cl7Cz//bI/P8GMUrSsAoJnRrxGaGJ1UgD+0qf7S
aw4Kpl9HJYuETNkxy+K/i2fxMM3WHABQ2ehXDU2MTirAP5pVT322mCC2ov7c
+drMPNt8TqftC6XarTIAoLWxLzYaGZ1UgH80q3IpO3n4ZK/1bhLczwxI0S0s
SnpR5ADA2wx7UdLS6KQC/KNZndVnm4AqpjPnKun76pf9BwMArzXodU1bo5MK
8B/NKg+2y1YAF32qdFGuq7XdevkAAC807GVQM6MzCvDlhf0qZe9woZutgsw/
tPpgAIDhBr+cqm10OgG+PKlfbY057f7VIThrq5B6VjsAQDQp+5nraffXNq7e
2e6l2s7jAeK4actKG79AIzmQocCQYgYAeKStF1d1X3Ttfzav8YDbud071uQE
hgPmRTLZoAEAALiJn+92h4znc3vavU6S95iXBAAAADzSwXfHdb9i/t/kHObp
VmcfAAAA+Dj45rrbl+OOPpNbt1oAAADgVU69B5+/DU/f18BM2Y8mHfzk3E5e
DAAAAEC5s2/MuaPFdOc10LXmAAAAgA1Dzw84IZ+1xfStTm6nMgIAAABqGHDi
wP/lE7E6Nb0KAQAAABhs6EHF/axmbye3WzcAAAAAFgaeeISSZ2P6/g3JAAAA
AK2NORZpb9o9YNn5EAAAAMAQo09TfpgPcvLbWgAAAIBHC3ICsxjS1lDb5gIA
AABgqHaHMAAAAACcdeEymMVz8/sBAAAAuCy/GMbBCwAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0NP/ALqc38Y=
"], {{0, 1482}, {1506, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
BaseStyle->"ImageGraphics",
ImageSize->{410.70000000000005`, Automatic},
ImageSizeRaw->{1506, 1482},
PlotRange->{{0, 1506}, {0, 1482}}]], "Input",ExpressionUUID->"8a3d5009-a17f-\
4bd2-9989-425a678bce0b"],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"405.799`", ",", "20.1835`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1261.27`", ",", "76.588`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1480.62`", ",", "919.522`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"750.493`", ",", "1389.56`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"79.9064`", ",", "838.049`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"446.536`", ",", "51.5194`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1258.13`", ",", "132.993`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1417.95`", ",", "925.789`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"719.157`", ",", "1333.15`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"114.376`", ",", "800.446`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"418.333`", ",", "490.221`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"828.833`", ",", "230.134`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1201.73`", ",", "549.759`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1010.58`", ",", "1010.4`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"509.207`", ",", "975.926`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"528.009`", ",", "903.854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"484.139`", ",", "465.152`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"869.569`", ",", "289.672`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1167.26`", ",", "612.431`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"944.775`", ",", "988.461`"}], "}"}]}], "}"}]}], ";"}]], "Input",\
ExpressionUUID->"f8c5089c-ecc5-45de-8b8f-4b6401f27fc7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "v", "]"}]], "Input",ExpressionUUID->"54a57b54-94ef-4d1b-8c2d-6a075f91d152"],
Cell[BoxData["20"], "Output",ExpressionUUID->"2ea8716b-d48b-4aa2-9a07-7b4e4c0ec32e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ShowLabeledGraph", "[",
RowBox[{
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"List", "/@",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sequence", "@@",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[", "5", "]"}], ",", "2", ",", "1", ",", "1"}],
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Sequence", "@@",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"16", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}],
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"1", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}]}], "\[IndentingNewLine]", "}"}]}],
",",
RowBox[{"List", "/@", "v"}]}], "]"}]}], ",",
RowBox[{"VertexStyle", "\[Rule]",
RowBox[{"Disk", "[", ".02", "]"}]}]}], "]"}]], "Input",ExpressionUUID->\
"7ef39f4e-390f-4663-9519-dfe311d3a8d1"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.2640412643754111, 0.}, {0.8498051781094215,
0.03862167235617571}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.8498051781094215, 0.03862167235617571}, {1.,
0.6158011662951455}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{1., 0.6158011662951455}, {0.5000624813197974,
0.9376487782933391}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5000624813197974, 0.9376487782933391}, {0.04089386974373759,
0.5600144203462459}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.04089386974373759, 0.5600144203462459}, {0.2640412643754111,
0.}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3477217256621566, 0.6050728669134195}, {0.3176827612840408,
0.3046818536786776}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3176827612840408, 0.3046818536786776}, {0.5815970088394806,
0.18452599616621476`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5815970088394806, 0.18452599616621476`}, {0.7854340123654813,
0.4055277309215431}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7854340123654813, 0.4055277309215431}, {0.6330925719810483,
0.6630055466293812}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6330925719810483, 0.6630055466293812}, {0.3477217256621566,
0.6050728669134195}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.2640412643754111, 0.}, {0.8476551359816057,
0.07724368707574758}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.8476551359816057, 0.07724368707574758}, {0.8090365448959953,
0.3626145333946393}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.8090365448959953, 0.3626145333946393}, {0.9570881719266809,
0.6200923491024773}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5000624813197974, 0.9376487782933391}, {0.06449612838353466,
0.5342666387754621}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47860588255634545`, 0.8990233399398059}, {
0.33484749251336854`, 0.654422496287925}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.33484749251336854`, 0.654422496287925}, {0.06449612838353466,
0.5342666387754621}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.06449612838353466, 0.5342666387754621}, {0.272623629990075,
0.32184726963479765`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.272623629990075, 0.32184726963479765`}, {
0.29193497971325705`, 0.02145653029077266}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.29193497971325705`, 0.02145653029077266}, {0.553703978228427,
0.14375873240637305`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.553703978228427, 0.14375873240637305`}, {0.8476551359816057,
0.07724368707574758}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.553703978228427, 0.14375873240637305`}, {0.3176827612840408,
0.3046818536786776}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5815970088394806, 0.18452599616621476`}, {0.8090365448959953,
0.3626145333946393}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6781510185482219, 0.6780277677256082}, {0.9570881719266809,
0.6200923491024773}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47860588255634545`, 0.8990233399398059}, {0.6781510185482219,
0.6780277677256082}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.33484749251336854`, 0.654422496287925}, {0.6330925719810483,
0.6630055466293812}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3477217256621566, 0.6050728669134195}, {0.272623629990075,
0.32184726963479765`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6781510185482219, 0.6780277677256082}, {0.7854340123654813,
0.4055277309215431}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.8498051781094215, 0.03862167235617571}, {0.9570881719266809,
0.6200923491024773}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{1., 0.6158011662951455}, {0.47860588255634545`,
0.8990233399398059}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.04089386974373759, 0.5600144203462459}, {
0.29193497971325705`, 0.02145653029077266}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.2640412643754111, 0.}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.2640412643754111, 0.}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.8498051781094215, 0.03862167235617571}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.8498051781094215, 0.03862167235617571}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{1., 0.6158011662951455}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {1., 0.6158011662951455}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.5000624813197974, 0.9376487782933391}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.5000624813197974, 0.9376487782933391}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.04089386974373759, 0.5600144203462459}]},
{GrayLevel[0],
InsetBox["5",
Scaled[{-0.02, -0.02}, {0.04089386974373759, 0.5600144203462459}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.29193497971325705`, 0.02145653029077266}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.29193497971325705, 0.02145653029077266}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.8476551359816057, 0.07724368707574758}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.8476551359816057, 0.07724368707574758}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.9570881719266809, 0.6200923491024773}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.9570881719266809, 0.6200923491024773}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02],
PointBox[{0.47860588255634545`, 0.8990233399398059}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.47860588255634545, 0.8990233399398059}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.06449612838353466, 0.5342666387754621}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.06449612838353466, 0.5342666387754621}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.272623629990075, 0.32184726963479765`}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.272623629990075, 0.32184726963479765}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.553703978228427, 0.14375873240637305`}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.553703978228427, 0.14375873240637305}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.8090365448959953, 0.3626145333946393}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.8090365448959953, 0.3626145333946393}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.6781510185482219, 0.6780277677256082}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.6781510185482219, 0.6780277677256082}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.33484749251336854`, 0.654422496287925}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0.33484749251336854, 0.654422496287925}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.3477217256621566, 0.6050728669134195}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0.3477217256621566, 0.6050728669134195}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.3176827612840408, 0.3046818536786776}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.3176827612840408, 0.3046818536786776}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02],
PointBox[{0.5815970088394806, 0.18452599616621476`}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.5815970088394806, 0.18452599616621476}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.7854340123654813, 0.4055277309215431}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.7854340123654813, 0.4055277309215431}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.02], PointBox[{0.6330925719810483, 0.6630055466293812}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.6330925719810483, 0.6630055466293812}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"cd361cb8-a5b6-45c1-b155-\
8f773a3d9625"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Degrees", "[", "g", "]"}]], "Input",ExpressionUUID->"a11f76b2-9054-4b0a-8ceb-19cbbb58d0e9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3",
",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",",
"3", ",", "3", ",", "3", ",", "3", ",", "3"}], "}"}]], "Output",ExpressionU\
UID->"db7e9fbe-1704-4fc5-be68-4566046ed945"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"464089d0-4dc5-4f44-a689-a3f3891afee0"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",ExpressionUUID->"bcaead3b-601f-4c74-88d6-677cfc5e6608"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Theta]", "=",
RowBox[{"ArcTan", "@@",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "]"}], "]"}]}]}]}]], "Input",Expression\
UUID->"851835b0-64e5-472d-8938-b462d45a236b"],
Cell[BoxData["0.06583855826824746`"], "Output",ExpressionUUID->"b12b5334-8145-4131-bcaa-aa7b59b2de20"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"Vertices", "[", "g", "]"}]}], ";"}]], "Input",ExpressionUUID->\
"3d62074a-e44d-4f21-94cb-f0f8e3e93ee8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s", "=",
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "]"}], "]"}]}], "]"}]}]], "Input",Expre\
ssionUUID->"46945d60-3755-4f1c-ade0-074b4a12db41"],
Cell[BoxData["857.3284664941729`"], "Output",ExpressionUUID->"62b45bde-b1c8-4062-a0ed-fe0753fafdf1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v2", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"RotationMatrix", "[",
RowBox[{"-", "\[Theta]"}], "]"}], ".", "#"}], "&"}], "/@",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
FractionBox["2", "s"],
RowBox[{"(",
RowBox[{"#", "-",
RowBox[{"v", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "&"}], "/@", "v"}],
")"}]}]}]], "Input",ExpressionUUID->"f92bb9d4-0508-437c-b925-\
40dd2ffa3ae9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.639969967366229`", ",", "1.9284941441331052`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.0125403865895626`", ",", "3.134695583794902`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6330790309176831`"}], ",", "1.9538236903406385`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.09963593232108546`", ",", "0.066690612604513`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.0013477788538805`", ",", "0.1317800126569297`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.495050229017602`", ",", "1.9527008389032203`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9309395064870957`", ",", "3.0081952779303434`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5586128696445305`"}], ",", "1.8610020440270505`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.10131725371607454`", ",", "1.0922173293574788`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.0169505298353347`", ",", "0.42379041935951406`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.9340262025937487`", ",", "1.110573262046055`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.5597709856624493`", ",", "2.212178901960677`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.387396950645044`", ",", "2.208881503519514`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.42010220985590596`", ",", "2.0382284670131225`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2506511769419012`", ",", "1.023762518764728`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.1209125674807146`", ",", "0.5561292984654467`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.8634066779219152`", ",", "1.2617499342878409`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4032246443908711`", ",", "2.171209562387802`"}], "}"}]}],
"}"}]], "Output",ExpressionUUID->"06407023-c123-41bd-be20-388f1553b56e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"c", "=",
RowBox[{"Mean", "[",
RowBox[{"Take", "[",
RowBox[{"v2", ",", "5"}], "]"}], "]"}]}]], "Input",ExpressionUUID->\
"076410a5-30d4-46ec-a82d-522b28306ee4"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1.0038862646076216`", ",", "1.4034026836537292`"}],
"}"}]], "Output",ExpressionUUID->"bd7adf36-d332-4163-bf79-a6735c66d175"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v3", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"#", "-", "c"}], ")"}], "&"}], "/@", "v2"}]}]], "Input",Expressio\
nUUID->"dde58f36-0fca-420d-930a-e80c9a1c8906"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.0038862646076216`"}], ",",
RowBox[{"-", "1.4034026836537292`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9961137353923784`", ",",
RowBox[{"-", "1.4034026836537292`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.6360837027586075`", ",", "0.5250914604793759`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.008654121981940932`", ",", "1.7312929001411728`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.6369652955253047`"}], ",", "0.5504210066869093`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9042503322865362`"}], ",",
RowBox[{"-", "1.3367120710492162`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9974615142462588`", ",",
RowBox[{"-", "1.2716226709967995`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4911639644099806`", ",", "0.5492981552494911`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.07294675812052598`"}], ",", "1.6047925942766141`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.5624991342521521`"}], ",", "0.4575993603733213`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9025690108915471`"}], ",",
RowBox[{"-", "0.3111853542962504`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.01306426522771309`", ",",
RowBox[{"-", "0.9796122642942151`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.930139937986127`", ",",
RowBox[{"-", "0.2928294216076741`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5558847210548277`", ",", "0.8087762183069478`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6164893139625777`"}], ",", "0.8054788198657847`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5837840547517157`"}], ",", "0.6348257833593933`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7532350876657204`"}], ",",
RowBox[{"-", "0.3796401648890013`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.1170263028730929`", ",",
RowBox[{"-", "0.8472733851882825`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.8595204133142935`", ",",
RowBox[{"-", "0.14165274936588834`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3993383797832495`", ",", "0.7678068787340726`"}], "}"}]}],
"}"}]], "Output",ExpressionUUID->"5a9219fa-39b0-4c66-a7c5-913ed0d5a449"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphPlot", "[",
RowBox[{
RowBox[{"g2", "=",
RowBox[{"ChangeVertices", "[",
RowBox[{"g", ",", "v3"}], "]"}]}], ",",
RowBox[{"Method", "\[Rule]", "None"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}]], "Input",ExpressionUUID->\
"c266b839-359d-42ab-93e1-415eb3b29cab"],
Cell[BoxData[
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHEs2C+sP8L8ZlVZfVnT2v8hpk+kp
4O8/GZVWX1Z09r9u3s0aZi36P5ZeRZuMzeA/ALAal0C5gT8LdB4vYLP7P5R9
j4UCMfq/tA3Ygwyd4T93K5Jknu/sv24yVTIsY/W/LJrWaDTr7z/liIwDkVj0
v0zVwb7O2/c/GpeRudmT4T/oFHqEo6yyvzN/1P86rfk/y0KaF///+L/sVN7T
TkndP0ExBWjY4ey/lJTs+XXq078AwzH/b8GKP+buvNH7WO+/BFPL1LTD7T+8
I0edt73Sv6TZKMHOyeE/EibtqX7h6T8bsDnMR7rjvw43noR7xuk/cLfi5Vuu
4r8m9UUpflDkP7Mqd3iAGui/UJAcQwZM2L8AmpyPb/W9P9D0BBPdHOu/xrwt
9DCB6z/oHfVirSHCv1A6TZDCjtk/UtA5u9+R6D/4zbEB
"], {
{GrayLevel[0],
LineBox[{{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {4,
5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {8,
14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAAHEs2C+sP8L8ZlVZfVnT2v8hpk+kp
4O8/GZVWX1Z09r9u3s0aZi36P5ZeRZuMzeA/ALAal0C5gT8LdB4vYLP7P5R9
j4UCMfq/tA3Ygwyd4T93K5Jknu/sv24yVTIsY/W/LJrWaDTr7z/liIwDkVj0
v0zVwb7O2/c/GpeRudmT4T/oFHqEo6yyvzN/1P86rfk/y0KaF///+L/sVN7T
TkndP0ExBWjY4ey/lJTs+XXq078AwzH/b8GKP+buvNH7WO+/BFPL1LTD7T+8
I0edt73Sv6TZKMHOyeE/EibtqX7h6T8bsDnMR7rjvw43noR7xuk/cLfi5Vuu
4r8m9UUpflDkP7Mqd3iAGui/UJAcQwZM2L8AmpyPb/W9P9D0BBPdHOu/xrwt
9DCB6z/oHfVirSHCv1A6TZDCjtk/UtA5u9+R6D/4zbEB
"]]& ],
AspectRatio->Automatic,
Axes->True,
FrameTicks->None,
ImageMargins->0.,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
PlotRange->All,
PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"9d09ad05-da6d-\
4e5f-8293-853ecef463f6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]", "=",
RowBox[{"-", "1.8"}]}], ",",
RowBox[{"\[Phi]", "=", ".03"}], ",",
RowBox[{"\[Psi]", "=",
RowBox[{"-", ".68"}]}], ",", "\[IndentingNewLine]",
RowBox[{"r", "=", "1.1"}], ",",
RowBox[{"R", "=", ".94"}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"ShowLabeledGraph", "[",
RowBox[{
RowBox[{"g3", "=",
RowBox[{"ChangeVertices", "[",
RowBox[{"g2", ",",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], "r", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}]}], "\[IndentingNewLine]", "]"}]}], ",",
RowBox[{"VertexStyle", "\[Rule]",
RowBox[{"Disk", "[", ".01", "]"}]}]}], "]"}]}], "]"}]], "Input",Expressi\
onUUID->"1194a67c-adde-4d57-9665-d4ccaea24efc"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.18619207643071944`, 0.07280133647277626}, {
0.7887222926323639, 0.07280133647277626}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9749143690630834,
0.645841624856078}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9749143690630834, 0.645841624856078}, {0.4874571845315417,
0.9999999999999999}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4874571845315417, 0.9999999999999999}, {0.,
0.645841624856078}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.645841624856078}, {0.18619207643071944`,
0.07280133647277626}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.319775408709856, 0.6812556790545112}, {0.25132734509140986`,
0.38786936726426213`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.25132734509140986`, 0.38786936726426213`}, {
0.5092026938211704, 0.2321100340719797}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5092026938211704, 0.2321100340719797}, {0.7370264878153406,
0.4292317838843786}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7370264878153406, 0.4292317838843786}, {0.6199539872199314,
0.7068190583825767}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6199539872199314, 0.7068190583825767}, {0.319775408709856,
0.6812556790545112}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.18619207643071944`, 0.07280133647277626}, {
0.7822105015628843, 0.1063504753798492}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7822105015628843, 0.1063504753798492}, {0.7507006262235426,
0.3866123430329741}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7507006262235426, 0.3866123430329741}, {0.9409949877851321,
0.6500157975956281}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4874571845315417, 0.9999999999999999}, {
0.024987838715717085`, 0.6225273360902602}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47300564509388066`, 0.9690306417208824}, {
0.33376387714759254`, 0.7237729878882025}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.33376387714759254`, 0.7237729878882025}, {
0.024987838715717085`, 0.6225273360902602}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.024987838715717085`, 0.6225273360902602}, {
0.21521365594233244`, 0.41431176230965927`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.21521365594233244`, 0.41431176230965927`}, {
0.21608694950009458`, 0.08936167187108845}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.21608694950009458`, 0.08936167187108845}, {
0.47289473803015586`, 0.20593502412029568`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47289473803015586`, 0.20593502412029568`}, {
0.7822105015628843, 0.1063504753798492}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47289473803015586`, 0.20593502412029568`}, {
0.25132734509140986`, 0.38786936726426213`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5092026938211704, 0.2321100340719797}, {0.7507006262235426,
0.3866123430329741}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6647130253140853, 0.7066538053065771}, {0.9409949877851321,
0.6500157975956281}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47300564509388066`, 0.9690306417208824}, {0.6647130253140853,
0.7066538053065771}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.33376387714759254`, 0.7237729878882025}, {0.6199539872199314,
0.7068190583825767}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.319775408709856, 0.6812556790545112}, {0.21521365594233244`,
0.41431176230965927`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6647130253140853, 0.7066538053065771}, {0.7370264878153406,
0.4292317838843786}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9409949877851321,
0.6500157975956281}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9749143690630834, 0.645841624856078}, {0.47300564509388066`,
0.9690306417208824}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.645841624856078}, {0.21608694950009458`,
0.08936167187108845}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.18619207643071944`, 0.07280133647277626}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.18619207643071944, 0.07280133647277626}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7887222926323639, 0.07280133647277626}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.7887222926323639, 0.07280133647277626}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.9749143690630834, 0.645841624856078}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {0.9749143690630834, 0.645841624856078}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.4874571845315417, 0.9999999999999999}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.4874571845315417, 0.9999999999999999}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0., 0.645841624856078}]},
{GrayLevel[0],
InsetBox["5", Scaled[{-0.02, -0.02}, {0., 0.645841624856078}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.21608694950009458`, 0.08936167187108845}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.21608694950009458, 0.08936167187108845}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7822105015628843, 0.1063504753798492}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.7822105015628843, 0.1063504753798492}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.9409949877851321, 0.6500157975956281}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.9409949877851321, 0.6500157975956281}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.47300564509388066`, 0.9690306417208824}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.47300564509388066, 0.9690306417208824}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.024987838715717085`, 0.6225273360902602}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.024987838715717085, 0.6225273360902602}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.21521365594233244`, 0.41431176230965927`}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.21521365594233244, 0.41431176230965927}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.47289473803015586`, 0.20593502412029568`}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.47289473803015586, 0.20593502412029568}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7507006262235426, 0.3866123430329741}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.7507006262235426, 0.3866123430329741}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.6647130253140853, 0.7066538053065771}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.6647130253140853, 0.7066538053065771}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.33376387714759254`, 0.7237729878882025}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0.33376387714759254, 0.7237729878882025}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.319775408709856, 0.6812556790545112}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0.319775408709856, 0.6812556790545112}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.25132734509140986`, 0.38786936726426213`}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.25132734509140986, 0.38786936726426213}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.5092026938211704, 0.2321100340719797}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.5092026938211704, 0.2321100340719797}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7370264878153406, 0.4292317838843786}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.7370264878153406, 0.4292317838843786}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.6199539872199314, 0.7068190583825767}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.6199539872199314, 0.7068190583825767}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"0907969b-a907-4da3-bd68-\
fc3b72eaf1cf"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g3", "//", "InputForm"}]], "Input",ExpressionUUID->"c086a8bf-a17f-4a1f-a3ca-235944ab5b13"],
Cell["\<\
Graph[{{{1, 2}}, {{2, 3}}, {{3, 4}}, {{4, 5}}, {{5, 1}}, {{16, 17}}, {{17, \
18}}, {{18, 19}}, {{19, 20}},
{{20, 16}}, {{1, 7}}, {{7, 13}}, {{13, 8}}, {{4, 10}}, {{9, 15}}, {{15, \
10}}, {{10, 11}}, {{11, 6}},
{{6, 12}}, {{12, 7}}, {{12, 17}}, {{18, 13}}, {{14, 8}}, {{9, 14}}, {{15, \
20}}, {{16, 11}}, {{14, 19}},
{{2, 8}}, {{3, 9}}, {{5, 6}}}, {{{-1, (-1 - Sqrt[5])/(4*Sqrt[5/8 - \
Sqrt[5]/8])}},
{{1, (-1 - Sqrt[5])/(4*Sqrt[5/8 - Sqrt[5]/8])}},
{{Sqrt[(5/8 + Sqrt[5]/8)/(5/8 - Sqrt[5]/8)], (-1 + Sqrt[5])/(4*Sqrt[5/8 - \
Sqrt[5]/8])}},
{{0, 1/Sqrt[5/8 - Sqrt[5]/8]}}, {{-Sqrt[(5/8 + Sqrt[5]/8)/(5/8 - \
Sqrt[5]/8)],
(-1 + Sqrt[5])/(4*Sqrt[5/8 - Sqrt[5]/8])}}, {{-0.9007688834002959, \
-1.321412609545296}},
{{0.9783851800477993, -1.265021069164605}}, {{1.5054441787590225, \
0.5395865923168378}},
{{-0.047969509409050703, 1.5985039230901437}}, {{-1.5350909659974739, \
0.448343163302919}},
{{-0.9036676378005895, -0.24279420435705867}}, {{-0.04833764717456861, \
-0.9344665307773743}},
{{0.8737933289105058, -0.33473787301255803}}, {{0.5883716235841774, \
0.7275871479337672}},
{{-0.5101596675195248, 0.7844114602132242}}, {{-0.5565920888706728, \
0.6432822431534698}},
{{-0.7837941835637598, -0.33056538772472527}}, {{0.07218064324379499, \
-0.8475828882716374}},
{{0.8284042744182557, -0.19326964550995132}}, {{0.4398013547723822, \
0.7281356783528439}}}]\
\>", "Output",ExpressionUUID->"97ec1daf-cbb8-4156-984a-09eedaef9760"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"v", "=",
RowBox[{"Vertices", "[", "g3", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "&"}], "/@",
RowBox[{"Edges", "[", "g3", "]"}]}], "//", "FullSimplify"}]}], "Input",Expr\
essionUUID->"22931139-6d0c-4a31-8f1a-39abb8d43033"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "0.9999999999999999`",
",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",",
"1.0000000000000002`", ",", "1.9815168835607953`", ",",
"0.9361443694042034`", ",", "1.0786223003386715`", ",",
"1.9815168835607953`", ",", "0.9361443694042034`", ",",
"1.0786223003386717`", ",", "0.9361443694042034`", ",",
"1.0786223003386726`", ",", "0.9361443694042029`", ",",
"1.0786223003386717`", ",", "0.9516264537610764`", ",",
"0.9516264537610764`", ",", "0.9361443694042033`", ",",
"1.0786223003386717`", ",", "0.9516264537610766`", ",",
"0.951626453761076`", ",", "0.9516264537610761`", ",",
"1.9815168835607955`", ",", "1.981516883560795`", ",",
"1.9815168835607961`"}], "}"}]], "Output",ExpressionUUID->"7eda413c-acb9-\
4ebd-bfe6-aa438bc058b0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vv", "=",
RowBox[{
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], "r", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}], "/.",
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"\[Pi]", "/", "100"}]}]}]}]], "Input",
CellLabel->
"In[109]:=",ExpressionUUID->"5bcfd697-b47c-47f0-8b49-b1b480ca78a1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"19", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"19", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"21", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"21", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox["\[Pi]", "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
FractionBox["\[Pi]", "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[", "\[Psi]", "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[", "\[Psi]", "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"Cos", "[", "\[Theta]", "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[109]=",ExpressionUUID->"3a0be067-98ed-4500-a6f6-69dbb2e46758"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"n", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"#", ".", "#"}], "&"}], "[",
RowBox[{
RowBox[{"vv", "[",
RowBox[{"[", "x", "]"}], "]"}], "-",
RowBox[{"vv", "[",
RowBox[{"[", "y", "]"}], "]"}]}], "]"}]}]], "Input",
CellLabel->
"In[110]:=",ExpressionUUID->"3dbcd2c6-484b-4078-b89c-06dcc878ee8a"],
Cell[CellGroupData[{
Cell["FindRoot", "Subsubsection",ExpressionUUID->"0664bf38-cd2c-4f4d-b135-f196827d448e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"soln", "=",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"n", "[",
RowBox[{"9", ",", "14"}], "]"}], "\[Equal]", "1"}], ","}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"n", "[",
RowBox[{"4", ",", "10"}], "]"}], "\[Equal]",
RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}], " ",
RowBox[{"(*", " ", "added", " ", "*)"}], "\[IndentingNewLine]", "}"}],
",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.8"}], ",",
RowBox[{"-", "1.9"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Psi]", ",",
RowBox[{"-", ".68"}], ",",
RowBox[{"-", ".7"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"r", ",", "1.1", ",", "1.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", ".94", ",", ".96"}], "}"}], ",",
RowBox[{"MaxIterations", "\[Rule]",
RowBox[{"10", "^", "4"}]}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "50"}]}], "]"}]}]], "Input",Express\
ionUUID->"5c2e3880-40f4-4950-b21c-9c30153793df"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{
"-", "1.705609787925779610386015961460837566712436505750338302568905712366\
29180161806`50."}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{
"-", "0.596902604182060715307902242823105547997548505952966087340857290740\
44126728344`50."}]}], ",",
RowBox[{
"r", "\[Rule]",
"1.20786944362003084727646891808969176051871599141625694902742932477722499\
564001`50."}], ",",
RowBox[{
"R", "\[Rule]",
"0.95707815686611063222867711536412461546114343529004809765978406494528295\
603317`50."}]}], "}"}]], "Output",ExpressionUUID->"51c5010f-f0d3-48e6-93af-\
9ef722ee2f79"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Select", "[",
RowBox[{
RowBox[{"Edges", "[", "g3", "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{
RowBox[{"Vertices", "[", "g3", "]"}], "[",
RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "<", ".95"}], "&"}]}],
"]"}]], "Input",ExpressionUUID->"c1bfc502-f84b-425e-8537-5eafdaaf5455"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"7", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "8"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\
"76365702-29a9-4a33-b128-f6d36db11e6e"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"vnew", "=",
RowBox[{"vv", "/.", "soln"}]}], ";"}]], "Input",ExpressionUUID->"6e59d20a-\
ca98-46b4-a77e-450060db1ed9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ShowLabeledGraph", "[",
RowBox[{
RowBox[{"g4", "=",
RowBox[{"ChangeVertices", "[",
RowBox[{"g3", ",", "vnew"}], "]"}]}], ",",
RowBox[{"VertexStyle", "\[Rule]",
RowBox[{"Disk", "[", ".01", "]"}]}]}], "]"}]], "Input",ExpressionUUID->\
"32dab07f-2a8a-46cb-a4b3-0bcefc22b8c1"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.18619207643071944`, 0.07280133647277626}, {
0.7887222926323639, 0.07280133647277626}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9749143690630834,
0.645841624856078}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9749143690630834, 0.645841624856078}, {0.4874571845315417,
0.9999999999999999}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4874571845315417, 0.9999999999999999}, {0.,
0.645841624856078}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.645841624856078}, {0.18619207643071944`,
0.07280133647277626}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3022563057277473, 0.6645889685579716}, {0.26176462816667234`,
0.3660574134297238}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.26176462816667234`, 0.3660574134297238}, {0.5331723924939953,
0.23529621573773105`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5331723924939953, 0.23529621573773105`}, {0.7414032932199773,
0.45301290628268304`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7414032932199773, 0.45301290628268304`}, {0.5986893030493162,
0.718330418649599}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5986893030493162, 0.718330418649599}, {0.3022563057277473,
0.6645889685579716}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.18619207643071944`, 0.07280133647277626}, {
0.7881147761190571, 0.09985175302970946}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7881147761190571, 0.09985175302970946}, {0.7847087992702528,
0.4010976072430173}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7847087992702528, 0.4010976072430173}, {0.9490001612011386,
0.6536228807383545}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4874571845315417, 0.9999999999999999}, {
0.016391327104162065`, 0.6243144674036434}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47204883979463674`, 0.9777586640534737}, {
0.29773646252693636`, 0.7320436655485331}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.29773646252693636`, 0.7320436655485331}, {
0.016391327104162065`, 0.6243144674036434}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.016391327104162065`, 0.6243144674036434}, {
0.1962146906781231, 0.38260343482145626`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.1962146906781231, 0.38260343482145626`}, {0.2117308184387139,
0.08173815743252738}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.2117308184387139, 0.08173815743252738}, {
0.49718014636645197`, 0.17806752234584314`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.49718014636645197`, 0.17806752234584314`}, {
0.7881147761190571, 0.09985175302970946}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.49718014636645197`, 0.17806752234584314`}, {
0.26176462816667234`, 0.3660574134297238}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5331723924939953, 0.23529621573773105`}, {0.7847087992702528,
0.4010976072430173}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6614458238159441, 0.7434736926988588}, {0.9490001612011386,
0.6536228807383545}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.47204883979463674`, 0.9777586640534737}, {0.6614458238159441,
0.7434736926988588}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.29773646252693636`, 0.7320436655485331}, {0.5986893030493162,
0.718330418649599}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3022563057277473, 0.6645889685579716}, {0.1962146906781231,
0.38260343482145626`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6614458238159441, 0.7434736926988588}, {0.7414032932199773,
0.45301290628268304`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7887222926323639, 0.07280133647277626}, {0.9490001612011386,
0.6536228807383545}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9749143690630834, 0.645841624856078}, {0.47204883979463674`,
0.9777586640534737}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.645841624856078}, {0.2117308184387139,
0.08173815743252738}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.18619207643071944`, 0.07280133647277626}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.18619207643071944, 0.07280133647277626}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7887222926323639, 0.07280133647277626}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.7887222926323639, 0.07280133647277626}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.9749143690630834, 0.645841624856078}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {0.9749143690630834, 0.645841624856078}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.4874571845315417, 0.9999999999999999}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.4874571845315417, 0.9999999999999999}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0., 0.645841624856078}]},
{GrayLevel[0],
InsetBox["5", Scaled[{-0.02, -0.02}, {0., 0.645841624856078}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.2117308184387139, 0.08173815743252738}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.2117308184387139, 0.08173815743252738}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7881147761190571, 0.09985175302970946}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.7881147761190571, 0.09985175302970946}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.9490001612011386, 0.6536228807383545}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.9490001612011386, 0.6536228807383545}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.47204883979463674`, 0.9777586640534737}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.47204883979463674, 0.9777586640534737}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.016391327104162065`, 0.6243144674036434}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.016391327104162065, 0.6243144674036434}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.1962146906781231, 0.38260343482145626`}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.1962146906781231, 0.38260343482145626}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.49718014636645197`, 0.17806752234584314`}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.49718014636645197, 0.17806752234584314}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.7847087992702528, 0.4010976072430173}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.7847087992702528, 0.4010976072430173}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.6614458238159441, 0.7434736926988588}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.6614458238159441, 0.7434736926988588}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.29773646252693636`, 0.7320436655485331}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0.29773646252693636, 0.7320436655485331}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.3022563057277473, 0.6645889685579716}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0.3022563057277473, 0.6645889685579716}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.26176462816667234`, 0.3660574134297238}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.26176462816667234, 0.3660574134297238}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.5331723924939953, 0.23529621573773105`}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.5331723924939953, 0.23529621573773105}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01],
PointBox[{0.7414032932199773, 0.45301290628268304`}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.7414032932199773, 0.45301290628268304}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.01], PointBox[{0.5986893030493162, 0.718330418649599}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.5986893030493162, 0.718330418649599}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"935c5bd5-0322-4251-9764-\
9a2d8853bce6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"vnew", "[",
RowBox[{"[", "#", "]"}], "]"}]}], "]"}], "&"}], "/@",
RowBox[{"Edges", "[", "g4", "]"}]}], "//", "FullSimplify"}]}]], "Input",Ex\
pressionUUID->"8a74711c-fefd-4ae4-bd21-ce6b4166e25b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",", "2", ",", "2", ",", "2", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999994\
27097`48.90049584692159", ",",
"1.000000000000000000000000000000000000000000000000000000000000000000000002\
76921`49.450976942543186", ",",
"1.000000000000000000000000000000000000000000000000000000000000000000000001\
97217`49.62938136108419", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999998\
54657`49.49882095254179", ",",
"1.000000000000000000000000000000000000000000000000000000000000000000000002\
44103`49.02650315576971", ",",
"1.999999999999999999999999999999999999999999999999999605464176876616993916\
8481`48.843784103141026", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210394\
57346`47.71969098000218", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991078\
64382`49.30694592638161", ",",
"1.999999999999999999999999999999999999999999999999999605464176876616993916\
8481`50.", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210390\
99275`49.461967831420964", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991082\
22452`49.338001562866204", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210396\
53257`49.33844700995389", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991076\
68471`48.39174874767445", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210395\
67801`49.1258762312175", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
53926`49.04646333787108", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696171\
28474`49.4289516178953", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696167\
25783`49.509125790814416", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210394\
53636`49.232506146165534", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991078\
68091`49.44023750067347", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696163\
81934`48.39871661976897", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696165\
45169`49.2086071367097", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696164\
98628`49.31677376225208", ",",
"1.999999999999999999999999999999999999999999999999999605464137049319215605\
54117`49.540661411733765", ",",
"1.999999999999999999999999999999999999999999999999999605464216703914772228\
15503`49.83056634403243", ",",
"1.999999999999999999999999999999999999999999999999999605464216703914772228\
15503`49.88530577914866"}], "}"}]], "Output",ExpressionUUID->"95ece37e-6420-\
4a18-aded-d37fa5090a11"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ToCommonEdges", "[",
RowBox[{"g4", ",", "\"\\""}], "]"}], "//",
"N"}]], "Input",ExpressionUUID->"bc036703-687d-4946-8a51-55e5a77ff86d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",",
RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3692167314661254`", ",", "0.7663457463543789`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.7013016167040798`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9866778685808916`", ",",
RowBox[{"-", "0.2866564197657534`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6297467476423219`"}], ",", "0.811864615052392`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0.8429323604360092`", ",",
RowBox[{"-", "0.11433211919560039`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618033988749895`", ",", "0.5257311121191336`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.532016035906606`", ",", "0.5515597118243223`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9152283443343608`"}], ",",
RowBox[{"-", "1.3467176124599043`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.03227377340908787`", ",",
RowBox[{"-", "1.0269681216523665`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05114546730631786`"}], ",", "1.6274751583839118`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.5775266853212051`", ",", "0.8498047111437738`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6147438711748009`"}], ",", "0.5879598375765124`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618033988749895`"}], ",", "0.5257311121191336`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0.9979834488064797`", ",",
RowBox[{"-", "1.2865925096513835`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",",
RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9667315796688627`"}], ",",
RowBox[{"-", "0.34804478477804596`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.749149338227839`"}], ",",
RowBox[{"-", "0.40296658271222663`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.563625673072407`"}], ",", "0.4542752519030536`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"0.15174411750050543`", ",",
RowBox[{"-", "0.8370068820230643`"}]}], "}"}]}], "}"}]], "Output",Express\
ionUUID->"27426b80-e854-4681-9ab4-fc3fd387847a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Equations", "Subsubsection",ExpressionUUID->"4c0675a8-f3e7-4e7a-8740-437ee0d8ebc5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"\[Pi]", "/", "100"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{
"-", "1.705609787925779610386015961460837566712436505750338302568905712366\
29180161806`50."}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{
"-", "0.596902604182060715307902242823105547997548505952966087340857290740\
44126728344`50."}]}], ",",
RowBox[{
"r", "\[Rule]",
"1.20786944362003084727646891808969176051871599141625694902742932477722499\
564001`50."}], ",",
RowBox[{
"R", "\[Rule]",
"0.95707815686611063222867711536412461546114343529004809765978406494528295\
603317`50."}]}], "}"}]], "Input",ExpressionUUID->"a9814760-64f0-4641-b5b8-\
e7918f15b290"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
"-", "1.7056097879257796103860159614608375667124365057503383025689057123662\
9180161806`50."}], "]"}], "]"}]], "Input",
CellLabel->"In[54]:=",ExpressionUUID->"a94495ba-d4f4-4f10-a47f-bb30189c919c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.1344054670530381808905445327012863268718426595377588876055107661231\
0714382211`48.90049584692159"}], ",",
RowBox[{
"-", "0.9909264202887390306794769363027335736894030068316024857521542169919\
3074573881`50.63574479382874"}]}], "}"}]], "Output",
CellLabel->"Out[54]=",ExpressionUUID->"7c96b766-9095-4290-a755-22cb3914def7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
"-", "0.5969026041820607153079022428231055479975485059529660873408572907404\
4126728344`50"}], "]"}], "]"}]], "Input",
CellLabel->"In[55]:=",ExpressionUUID->"23199edc-4f65-4e37-9c4c-d72a5bd74a41"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.8270805742745618249178521862153294255630511531603743373833344980095509886\
7029`50.391843604621855", ",",
RowBox[{
"-", "0.5620833778521306000972520013088883538430167152347721803756191820506\
9794850781`50.05634944808423"}]}], "}"}]], "Output",
CellLabel->"Out[55]=",ExpressionUUID->"94fa755a-ffcf-44e0-9ac6-afb207a69167"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eqn", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"TrigExpand", "@",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"n", "[",
RowBox[{"4", ",", "10"}], "]"}], "\[Equal]",
RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}],
"\[IndentingNewLine]", "}"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "\[Rule]", "u"}], ",",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "\[Rule]",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]]}]}], ",",
RowBox[{
RowBox[{"Cos", "[", "\[Psi]", "]"}], "\[Rule]", "v"}], ",",
RowBox[{
RowBox[{"Sin", "[", "\[Psi]", "]"}], "\[Rule]",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}]}], "}"}]}], "]"}]}]], "Input",
CellLabel->
"In[117]:=",ExpressionUUID->"b71b5d26-0feb-4fde-8446-212db02ecbb5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"2", " ", "R", " ",
RowBox[{"(",
RowBox[{"R", "-",
RowBox[{"2", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"9", " ", "\[Pi]"}], "100"], "]"}]}]}], ")"}]}]}],
"\[Equal]", "3"}], ",",
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"u", " ", "v"}], "+",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}],
"\[Equal]", "3"}], ",",
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"4", " ", "R", " ", "v", " ",
RowBox[{"Cos", "[",
FractionBox["\[Pi]", "100"], "]"}]}], "+",
RowBox[{"4", " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]], " ",
RowBox[{"Sin", "[",
FractionBox["\[Pi]", "100"], "]"}]}]}], ")"}]}]}], "\[Equal]",
"5"}], ",",
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]], " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}], "+",
RowBox[{"v", " ",
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"11", " ", "\[Pi]"}], "100"], "]"}]}]}], ")"}]}]}],
")"}]}]}], "\[Equal]", "5"}]}], "}"}]], "Output",
CellLabel->
"Out[117]=",ExpressionUUID->"104ad5c4-3fbd-4f7a-9ad3-9f03ba721982"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["NSolve \[Pi]/100", "Subsubsection",ExpressionUUID->"d3f518c6-0465-4748-80c1-b20e9774163a"],
Cell[BoxData[
RowBox[{"soln", "=",
RowBox[{"NSolve", "[",
RowBox[{"eqn", ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}],
"]"}]}]], "Input",
CellLabel->
"In[129]:=",ExpressionUUID->"d72ee1d1-bc82-4a60-b181-39276c92e1ee"],
Cell[BoxData[
RowBox[{
RowBox[{"soln", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]",
RowBox[{"-", "0.3990959447876521`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8270805742745618`"}], ",",
RowBox[{"r", "\[Rule]", "0.4321405727249934`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.7343747174881446`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]",
RowBox[{"-", "0.3990959447876521`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8270805742745606`"}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.7236421796023367`"}]}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.9922859882503167`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",",
RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",",
RowBox[{"r", "\[Rule]", "1.8893005317789116`"}], ",",
RowBox[{"u", "\[Rule]", "0.39583991014193765`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",",
RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",",
RowBox[{"r", "\[Rule]", "1.8893005317789116`"}], ",",
RowBox[{"u", "\[Rule]", "0.9995502986010655`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",",
RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",",
RowBox[{"r", "\[Rule]", "1.2078694436200312`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13440546705303744`"}]}]}], "}"}]}], "}"}]}],
";"}]], "Input",
CellLabel->
"In[106]:=",ExpressionUUID->"582f63d8-850a-4457-a96b-d1a361542276"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]], "Input",
CellLabel->
"In[107]:=",ExpressionUUID->"fd258edf-579f-4566-9d6a-2983e35bd1cb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9570781568661106`"}], ",",
RowBox[{"v", "\[Rule]", "0.827080574274562`"}], ",",
RowBox[{"r", "\[Rule]", "1.2078694436200312`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13440546705303744`"}]}]}], "}"}]], "Output",
CellLabel->
"Out[107]=",ExpressionUUID->"a575383c-442d-4d19-8ee5-6518f2e38282"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"ArcCos", "[", "u", "]"}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"ArcCos", "[", "v", "]"}]}]}], "}"}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}]], "Input",
CellLabel->
"In[130]:=",ExpressionUUID->"4c23cf13-127b-41f8-901d-61d6fd7db98e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]", "1.7056097879257788`"}], ",",
RowBox[{"\[Psi]", "\[Rule]", "0.5969026041820603`"}]}], "}"}]], "Output",
CellLabel->
"Out[130]=",ExpressionUUID->"35e78e4a-f466-4d62-a6e8-eb492f5160c9"]
}, Open ]],
Cell[BoxData[
RowBox[{"r", "=."}]], "Input",
CellLabel->
"In[100]:=",ExpressionUUID->"9cdef98d-cf72-470b-968d-5a138e1af207"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"vv", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"ArcCos", "[", "u", "]"}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"ArcCos", "[", "v", "]"}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[", "1", "]"}], "]"}]}]], "Input",
CellLabel->"In[71]:=",ExpressionUUID->"3668651c-d780-4d71-875b-7940cce5e50c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3816448198698766`", ",", "0.5615732989526845`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.41615321019135937`"}], ",", "0.5365014858111187`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6388416482955158`"}], ",",
RowBox[{"-", "0.22999714570659371`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.021327358115724296`", ",",
RowBox[{"-", "0.6786475391732555`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.6520226805012744`", ",",
RowBox[{"-", "0.1894300998839539`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.01154661788876847`"}], ",",
RowBox[{"-", "0.36741933874168964`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3458684551679571`", ",",
RowBox[{"-", "0.12452030591747103`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.22530507881898518`", ",", "0.2904615573951579`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.2066222586198502`"}], ",", "0.304035420812907`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.35300465747832355`"}], ",",
RowBox[{"-", "0.10255733354890419`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.8342930247301567`", ",", "0.1660179105897467`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.09991830724201198`", ",", "0.8447621734120614`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7725401147562384`"}], ",", "0.35607382498914003`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5773743558341116`"}], ",",
RowBox[{"-", "0.6246964470645912`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.4157031386181814`", ",",
RowBox[{"-", "0.7421574619263569`"}]}], "}"}]}], "}"}]], "Output",
CellLabel->"Out[71]=",ExpressionUUID->"cdb2730d-ac77-4bb7-96ee-f19ea0b4ac08"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e", "=",
RowBox[{"Select", "[",
RowBox[{
RowBox[{"Subsets", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"{", "2", "}"}]}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Round", "[",
RowBox[{"d", "=",
RowBox[{"EuclideanDistance", "@@",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"vv", "[",
RowBox[{"[", "#", "]"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]}], "]"}], "-",
"d"}], "]"}], "<=", "1*^-2"}], "&"}]}], "]"}]}]], "Input",
CellLabel->
"In[102]:=",ExpressionUUID->"d0543d39-c043-4299-b4b9-7cefccc9d4c6"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\
\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \
\\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 22, 19400777345032151489,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"8e7d2ed6-550c-4b35-8799-aeed9db953a6"],
Cell[BoxData[
TemplateBox[{
"Norm", "nvm",
"\"The first Norm argument should be a scalar, vector, or matrix.\"", 2,
102, 23, 19400777345032151489, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"36a58c22-9d0a-4e79-acf3-5f5160214ae6"],
Cell[BoxData[
TemplateBox[{
"Norm", "nvm",
"\"The first Norm argument should be a scalar, vector, or matrix.\"", 2,
102, 24, 19400777345032151489, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"9742aa88-97b6-4725-8687-f569828d76b4"],
Cell[BoxData[
TemplateBox[{
"Norm", "nvm",
"\"The first Norm argument should be a scalar, vector, or matrix.\"", 2,
102, 25, 19400777345032151489, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"0b13745c-1ebe-4cf4-9e85-dd23eb9e24ea"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Norm\\\", \\\"::\\\", \
\\\"nvm\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 102, 26, 19400777345032151489, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"1250e417-5959-40aa-b5fb-c2d047671ddd"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\
\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \
\\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 27, 19400777345032151489,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"f1ac6358-a2c6-4a74-be49-d9e41da912f6"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{FractionBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \
\\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], RowBox[{FractionBox[\\\"5\\\", \
\\\"8\\\"], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \
\\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 102, 28, 19400777345032151489,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"149114e2-0109-409c-9d3d-306e7ee4b12a"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \
\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 102, 29, 19400777345032151489, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[102]:=",ExpressionUUID->"07249812-f9d5-47dd-9ac0-51026a574348"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[102]=",ExpressionUUID->"e0ded6e3-6212-4e89-bf74-c8d385c80fd6"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"e2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "20"}], "}"}]}], "}"}]}], ";"}]], "Input",
CellLabel->
"In[111]:=",ExpressionUUID->"2327551b-c16a-4f50-8ea7-b4c2a1937165"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vc", "=",
RowBox[{"(",
RowBox[{
RowBox[{"vv", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]], "Input",
CellLabel->
"In[112]:=",ExpressionUUID->"3c070c64-e6ed-4325-a4c2-310b1aa606f0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9152283443343608`"}], ",",
RowBox[{"-", "1.3467176124599043`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9979834488064795`", ",",
RowBox[{"-", "1.2865925096513835`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.532016035906606`", ",", "0.5515597118243223`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05114546730631786`"}], ",", "1.627475158383912`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.563625673072407`"}], ",", "0.4542752519030537`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9667315796688629`"}], ",",
RowBox[{"-", "0.3480447847780463`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.03227377340908827`", ",",
RowBox[{"-", "1.0269681216523667`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.986677868580892`", ",",
RowBox[{"-", "0.28665641976575307`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5775266853212049`", ",", "0.8498047111437742`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6297467476423224`"}], ",", "0.811864615052392`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6147438711748013`"}], ",", "0.5879598375765118`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7491493382278387`"}], ",",
RowBox[{"-", "0.40296658271222724`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.1517441175005061`", ",",
RowBox[{"-", "0.8370068820230641`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.8429323604360092`", ",",
RowBox[{"-", "0.11433211919559975`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.36921673146612466`", ",", "0.7663457463543791`"}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[112]=",ExpressionUUID->"abb35988-2720-4dd8-a530-fe892328dbb5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e2"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[113]:=",ExpressionUUID->"d05e7261-6065-4b37-afe6-df1da2ff08ff"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {
4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {
8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, (
Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {((Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {
0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1,
2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 +
5^Rational[1, 2])}, {-0.9152283443343608, -1.3467176124599043`}, {
0.9979834488064795, -1.2865925096513835`}, {1.532016035906606,
0.5515597118243223}, {-0.05114546730631786,
1.627475158383912}, {-1.563625673072407,
0.4542752519030537}, {-0.9667315796688629, -0.3480447847780463}, {
0.03227377340908827, -1.0269681216523667`}, {
0.986677868580892, -0.28665641976575307`}, {0.5775266853212049,
0.8498047111437742}, {-0.6297467476423224,
0.811864615052392}, {-0.6147438711748013,
0.5879598375765118}, {-0.7491493382278387, -0.40296658271222724`}, {
0.1517441175005061, -0.8370068820230641}, {
0.8429323604360092, -0.11433211919559975`}, {0.36921673146612466`,
0.7663457463543791}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8u/z8s6E/V+/f2VpuZ2R9N/YJhHlS/PZp+uPz2lUb2ys0/7F8U
N/UmLHtoj109A8MTZjfuDovfGPIPVl2T2qu/ar/ub5cUZa5fuNTvx2Xez6YJ
UXNYfu6/PXFy4w2huxjqz1u+/Nzj+XZ/bFr6EfWer/vR+XNYrwmUv3+3v3wC
16JYt2sY8hYM85UM2hbYP2zgUCjL+4ARXoTkT+5VL7876b19hCur9pSISxjh
RUheYLODnWT1I/vPOt7LZhq+xggvQvJO0XuWPVJ7sn/Hft+G079eYoQXuv/R
5dH1o6s3n3447Pfqx/stRC3UJl54ZI8eHh1uBRwcP5/vNw7oiDQ5dRMjPBhM
mV9H5hy2nyEjteLQiVf70f3zn1HK0/fnK/vkq5dX3HPZux/dPf9kNpnZL7xu
r7rqQPPz1hf26O5Btx9dHl0/unp096Hz0d2Hzkc3HwCdld9o
"],
0.0319088348808545]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9152283443343608, -1.3467176124599043},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9979834488064795, -1.2865925096513835},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.0298922836873339, -1.254683674770529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05114546730631786, 1.627475158383912},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647665}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.563625673072407, 0.4542752519030537},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839082}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9667315796688629, -0.3480447847780463},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {-0.9348227447880084, -0.3161359498971918}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.03227377340908827, -1.0269681216523667},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {0.06418260828994277, -0.9950592867715122}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.986677868580892, -0.28665641976575307},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {1.0185867034617466, -0.25474758488489857}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5775266853212049, 0.8498047111437742},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6094355202020594, 0.8817135460246287}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6297467476423224, 0.811864615052392},
0.0319088348808545],
InsetBox["15", Offset[{2, 2}, {-0.5978379127614679, 0.8437734499332465}],\
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6147438711748013, 0.5879598375765118},
0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5828350362939468, 0.6198686724573663}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7491493382278387, -0.40296658271222724},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7172405033469842, -0.37105774783137274}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.1517441175005061, -0.8370068820230641},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.1836529523813606, -0.8050980471422096}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8429323604360092, -0.11433211919559975},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8748411953168637, -0.08242328431474526}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.36921673146612466, 0.7663457463543791},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.40112556634697916, 0.7982545812352336}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[113]=",ExpressionUUID->"88ed1993-d82f-4945-b9db-a426a533a971"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",
CellLabel->
"In[114]:=",ExpressionUUID->"3077224a-8846-4774-8df3-f5a2301fa0b8"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Reading CanonicalForms from raw GraphData file cache (first \
time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[114]:=",ExpressionUUID->"e893ed52-8fe8-4eea-81cb-87a80a8605cd"],
Cell[BoxData["\<\"Reading GraphData standard names from raw GraphData file \
cache (first time only)...\"\>"], "Print",
CellLabel->
"During evaluation of \
In[114]:=",ExpressionUUID->"b1734736-54ed-432a-90a2-25288281fe68"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Building default Association of length \"\>",
"\[InvisibleSpace]", "10589", "\[InvisibleSpace]", "\<\"...\"\>"}],
SequenceForm["Building default Association of length ", 10589, "..."],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[114]:=",ExpressionUUID->"ef181d1b-6ba0-4ebe-9c06-e394eddab374"]
}, Open ]],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->
"Out[114]=",ExpressionUUID->"c10f98c0-a1f4-4694-b099-9b4d5443691f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[116]:=",ExpressionUUID->"beef2994-3d5a-45d1-b955-0545c369d264"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",", "1.9999999999999998`", ",", "2", ",", "2.`", ",", "2",
",", "2.`", ",", "2", ",", "1.9999999999999998`", ",", "2.`", ",",
"0.9999999999999996`", ",", "1.0000000000000002`", ",",
"0.9999999999999994`", ",", "1.0000000000000004`", ",",
"0.9999999999999994`", ",", "1.0000000000000002`", ",",
"0.9999999999999996`", ",", "1.0000000000000004`", ",",
"1.0000000000000002`", ",", "0.9999999999999994`", ",",
"0.9999999999999998`", ",", "0.9999999999999998`", ",",
"0.9999999999999999`", ",", "0.9999999999999999`", ",",
"0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`",
",", "0.9999999999999999`", ",", "1.`"}], "}"}]], "Output",
CellLabel->
"Out[116]=",ExpressionUUID->"6083cabf-4eb6-4d27-b073-e1ea3fd73481"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["NSolve ArcSin[1/32]", "Subsubsection",ExpressionUUID->"73a88d8f-41f3-4035-8525-fb4b798b0e54"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", "/", "100."}]], "Input",
CellLabel->
"In[123]:=",ExpressionUUID->"52db371c-ea47-4206-a851-bd8cfb56737b"],
Cell[BoxData["0.031415926535897934`"], "Output",
CellLabel->
"Out[123]=",ExpressionUUID->"5fb09c79-f5e4-4c9a-ae9f-f6d5ba7fe845"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Convergents", "[",
RowBox[{
RowBox[{"Sin", "[",
FractionBox["\[Pi]", "100"], "]"}], ",", "5"}], "]"}]], "Input",
CellLabel->
"In[141]:=",ExpressionUUID->"785d2cab-0215-4868-b8ab-0172fbe20853"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1", "31"], ",",
FractionBox["1", "32"], ",",
FractionBox["6", "191"], ",",
FractionBox["55", "1751"]}], "}"}]], "Output",
CellLabel->
"Out[141]=",ExpressionUUID->"98706335-102e-4993-a14f-963e625d1434"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vv", "=",
RowBox[{
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], "r", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}], "/.",
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"ArcSin", "[",
RowBox[{"1", "/", "32"}], "]"}]}]}]}]], "Input",
CellLabel->
"In[142]:=",ExpressionUUID->"e7a2bc47-32ac-4d30-8a90-25327c7875a1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["R",
RowBox[{"32", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
RowBox[{
FractionBox["1", "32"], " ",
SqrtBox[
FractionBox["1023",
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], " ", "R"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{"R", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-",
RowBox[{"ArcSin", "[",
FractionBox["1", "32"], "]"}]}], "]"}]}],
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[", "\[Psi]", "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[", "\[Psi]", "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"r", " ",
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Psi]"}], "]"}]}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "5"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]], ",",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"Cos", "[", "\[Theta]", "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "-", "\[Theta]"}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[142]=",ExpressionUUID->"dc4f5eb3-26c7-4c56-8320-d655479c56ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eqn", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"TrigExpand", "@",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"n", "[",
RowBox[{"4", ",", "10"}], "]"}], "\[Equal]",
RowBox[{"2", "^", "2"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"20", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"10", ",", "15"}], "]"}], "\[Equal]", "1"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "[",
RowBox[{"14", ",", "8"}], "]"}], "\[Equal]", "1"}]}],
"\[IndentingNewLine]", "}"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], "\[Rule]", "u"}], ",",
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], "\[Rule]",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]]}]}], ",",
RowBox[{
RowBox[{"Cos", "[", "\[Psi]", "]"}], "\[Rule]", "v"}], ",",
RowBox[{
RowBox[{"Sin", "[", "\[Psi]", "]"}], "\[Rule]",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}]}], "}"}]}], "]"}]}]], "Input",
CellLabel->
"In[143]:=",ExpressionUUID->"2cce6c55-5384-4c8f-8bc1-0a588d8e86d0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]",
RowBox[{
RowBox[{"32", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"R", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"64", " ", "R"}]}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"u", " ", "v"}], "+",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}],
"\[Equal]", "3"}], ",",
RowBox[{
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], "\[Equal]",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ",
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}],
"}"}]], "Output",
CellLabel->
"Out[143]=",ExpressionUUID->"8e499586-5d18-4df8-9f92-36c56920c839"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"soln", "=",
RowBox[{"NSolve", "[",
RowBox[{"eqn", ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}],
"]"}]}]], "Input",
CellLabel->
"In[144]:=",ExpressionUUID->"c3f0ceb1-94ea-4348-b3ca-d5f9ccb19b59"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]",
RowBox[{"-", "0.3990050571652749`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903422`"}], ",",
RowBox[{"r", "\[Rule]", "0.4323341311998854`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.7342785936266998`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]",
RowBox[{"-", "0.3990050571652749`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903411`"}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.7235416195529027`"}]}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.9922952710345903`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903416`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225496271`"}], ",",
RowBox[{"u", "\[Rule]", "0.3952240572880047`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903416`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225496271`"}], ",",
RowBox[{"u", "\[Rule]", "0.9995606988479289`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903418`"}], ",",
RowBox[{"r", "\[Rule]", "1.2090696436948747`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.1337265555509568`"}]}]}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[144]=",ExpressionUUID->"02c1ca94-dcfa-48e5-917b-c133c71da961"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vc", "=",
RowBox[{"(",
RowBox[{
RowBox[{"vv", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}]}]], "Input",
CellLabel->
"In[145]:=",ExpressionUUID->"c38ee6b7-9e88-49b4-b2ba-20724b5f20c1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9156534611226073`"}], ",",
RowBox[{"-", "1.3468771209104056`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9980037820455707`", ",",
RowBox[{"-", "1.2870461105649829`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.5324537193277121`", ",", "0.551438879492891`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05089529731485315`"}], ",", "1.627854080809747`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.5639087429358225`"}], ",", "0.45463027117275046`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9677481949313415`"}], ",",
RowBox[{"-", "0.34823497343745`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.03214050218009261`", ",",
RowBox[{"-", "1.0279937517502054`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9876121176941289`", ",",
RowBox[{"-", "0.2871001053666986`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5782373542561404`", ",", "0.8505561284599095`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6302417791990205`"}], ",", "0.8127727020944443`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6151465359789001`"}], ",", "0.587538540883182`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7488730915298569`"}], ",",
RowBox[{"-", "0.40347972753596106`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.15231751215323758`", ",",
RowBox[{"-", "0.8369027262719528`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.843010491122383`", ",",
RowBox[{"-", "0.11375460257755537`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.36869162423313656`", ",", "0.7665985155022872`"}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[145]=",ExpressionUUID->"c0652752-e9be-452d-ae54-910b51b91cf5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e2"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[146]:=",ExpressionUUID->"47ee53f1-442a-4136-82f3-b3fc0756e9c0"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {
4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {
8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, (
Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {((Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {
0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1,
2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 +
5^Rational[1, 2])}, {-0.9156534611226073, -1.3468771209104056`}, {
0.9980037820455707, -1.2870461105649829`}, {1.5324537193277121`,
0.551438879492891}, {-0.05089529731485315,
1.627854080809747}, {-1.5639087429358225`,
0.45463027117275046`}, {-0.9677481949313415, -0.34823497343745}, {
0.03214050218009261, -1.0279937517502054`}, {
0.9876121176941289, -0.2871001053666986}, {0.5782373542561404,
0.8505561284599095}, {-0.6302417791990205,
0.8127727020944443}, {-0.6151465359789001,
0.587538540883182}, {-0.7488730915298569, -0.40347972753596106`}, {
0.15231751215323758`, -0.8369027262719528}, {
0.843010491122383, -0.11375460257755537`}, {0.36869162423313656`,
0.7665985155022872}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8u/6Vg6YKl79/b6ytOXbl3+hcM86D67dH0w+Xjwz4ZvGv5YV/h
pqqWvPShPXb1DAxPmN24Oyx+Y8hnzPh56hPfqv33zlXv2MD9C5f6/bjM25/e
q3OU9ed+r8i5E1ZK3MVQv27L/hoO37f7bZcrsJ3v+bofnX/9+H/+09/f7e/S
7w+v9ryGIb9Npdp7R8kC+/NqLZNXFn3ACC9C8pNVQ3a1zHpvP2PmObmb8Zcw
wouQ/PnE3fNfNzyyv7Ezpeag+WuM8CIkf63w+LkPWk/2h1ZcemrN9AojvND9
jy6Prh9d/Za7J066r3+837/YfYHs2Uf26OGRZzJ/85Fvz/fPy56+aM6lmxjh
cc5o+TPl+sP2futeWL44/mo/un/eHTNU/vjzlX0I//VOVvm9+9Hdw/xX4uCS
Gdftd1xSn/Oz/YU9unvQ7UeXR9ePrh7dfeh8dPeh89HNBwDJPQQl
"],
0.0319088348808545]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9156534611226073, -1.3468771209104056},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.8837446262417528, -1.314968286029551}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9980037820455707, -1.2870461105649829},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.0299126169264252, -1.2551372756841284}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.5324537193277121, 0.551438879492891}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5643625542085666, 0.5833477143737456}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05089529731485315, 1.627854080809747},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906015}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.5639087429358225, 0.45463027117275046},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.531999908054968, 0.48653910605360495}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9677481949313415, -0.34823497343745},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {-0.935839360050487, -0.3163261385565955}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.03214050218009261, -1.0279937517502054},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {0.0640493370609471, -0.9960849168693509}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9876121176941289, -0.2871001053666986},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {1.0195209525749833, -0.2551912704858441}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5782373542561404, 0.8505561284599095},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6101461891369949, 0.882464963340764}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6302417791990205, 0.8127727020944443},
0.0319088348808545],
InsetBox["15",
Offset[{2, 2}, {-0.598332944318166, 0.8446815369752988}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6151465359789001, 0.587538540883182},
0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5832377010980456, 0.6194473757640365}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7488730915298569, -0.40347972753596106},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7169642566490024, -0.37157089265510657}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.15231751215323758, -0.8369027262719528},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.18422634703409208, -0.8049938913910983}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.843010491122383, -0.11375460257755537},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8749193260032375, -0.08184576769670088}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.36869162423313656, 0.7665985155022872},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.40060045911399106, 0.7985073503831417}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[146]=",ExpressionUUID->"aed4f17a-0cb1-472e-9b69-5b45488a5c0b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",
CellLabel->
"In[147]:=",ExpressionUUID->"02a5ae6a-c62c-4938-86da-9453073855b2"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->
"Out[147]=",ExpressionUUID->"d62b09e0-6522-4e74-942b-947b875e0346"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[148]:=",ExpressionUUID->"4c77aa71-05ba-49ed-af8d-9b38f4c57cdb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",", "1.9999999999999998`", ",", "2", ",", "2.`", ",", "2",
",", "2.`", ",", "2", ",", "2.`", ",", "2.`", ",", "0.9999999999999996`",
",", "1.`", ",", "0.9999999999999996`", ",", "1.`", ",",
"0.9999999999999997`", ",", "1.0000000000000002`", ",",
"0.9999999999999998`", ",", "1.0000000000000002`", ",", "1.`", ",",
"0.9999999999999996`", ",", "1.`", ",", "0.9999999999999999`", ",", "1.`",
",", "0.9999999999999999`", ",", "1.`", ",", "0.9999999999999999`", ",",
"0.9999999999999999`", ",", "1.`", ",", "1.`", ",",
"0.9999999999999999`"}], "}"}]], "Output",
CellLabel->
"Out[148]=",ExpressionUUID->"8c564fdd-ab26-4ea2-ae20-d6a34f1e7d75"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Solve", "Subsubsection",ExpressionUUID->"31c33c49-79d4-4cc3-9514-c68dee7142ca"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eqn", "//", "Column"}]], "Input",
CellLabel->
"In[153]:=",ExpressionUUID->"f3013e0e-f940-4e02-a621-f92167e490c9"],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]",
RowBox[{
RowBox[{"32", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"R", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"64", " ", "R"}]}], ")"}]}]}]}]},
{
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"u", " ", "v"}], "+",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}],
"\[Equal]", "3"}]},
{
RowBox[{
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], "\[Equal]",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}]},
{
RowBox[{
RowBox[{
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ",
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]], "Output",
CellLabel->
"Out[153]=",ExpressionUUID->"d381de93-d87c-4f23-bd27-530578a6ad15"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"soln", "=",
RowBox[{"Solve", "[",
RowBox[{"eqn", ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r", ",", "R"}], "}"}], ",", "Reals"}],
"]"}]}], ")"}], "//", "Timing"}]], "Input",
CellLabel->
"In[149]:=",ExpressionUUID->"dcefabd4-7c56-49ce-b95a-d2b6a37270c3"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[149]=",ExpressionUUID->"e317a47d-16a1-4671-b8da-ae8061813f5d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]",
RowBox[{
RowBox[{"32", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"R", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"64", " ", "R"}]}], ")"}]}]}]}], ",", "R", ",", "Reals"}],
"]"}], "//", "FullSimplify"}]], "Input",
CellLabel->
"In[151]:=",ExpressionUUID->"c31068e6-56c4-45e3-b4a2-514412dc388a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"R", "\[Rule]",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", "\[Rule]",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[151]=",ExpressionUUID->"50d05d44-2823-453a-8c78-0af77ab94660"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"In[152]:=",ExpressionUUID->"1e301c4c-039f-4d56-8bd9-dad771073be6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"R", "\[Rule]",
RowBox[{"-", "0.39900505716527496`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", "\[Rule]", "0.9572961655267644`"}], "}"}]}], "}"}]], "Output",\
CellLabel->
"Out[152]=",ExpressionUUID->"837362fe-18d3-4dae-91af-e0590a8b0064"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"eqn", "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[162]:=",ExpressionUUID->"20ec89ef-73e2-4ff5-b420-f1e1cd59eafb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"u", "\[Rule]", "0.395224057288004`"}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903405`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225496251`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.1337265555509564`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903436`"}], ",",
RowBox[{"r", "\[Rule]", "1.2090696436948791`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"u", "\[Rule]", "0.9995606988479302`"}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903439`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225496298`"}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[162]=",ExpressionUUID->"778da5cb-4f77-4623-9844-8e97718d36ce"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{"Append", "[",
RowBox[{"eqn", ",",
RowBox[{"u", "<", "0"}]}], "]"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[167]:=",ExpressionUUID->"71224ffa-dd98-4c75-9d8a-a3a4f989d123"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.1337265555509564`"}]}], ",",
RowBox[{"v", "\[Rule]", "0.8269901591903436`"}], ",",
RowBox[{"r", "\[Rule]", "1.2090696436948791`"}]}], "}"}], "}"}]], "Output",\
CellLabel->
"Out[167]=",ExpressionUUID->"2e121f52-c7c7-4ae1-8874-bbb7d894a325"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"Append", "[",
RowBox[{"eqn", ",",
RowBox[{"u", "<", "0"}]}], "]"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[168]:=",ExpressionUUID->"3543dda5-bd43-482c-8377-b07a03708d80"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[168]=",ExpressionUUID->"2e3aa18a-7b12-4311-ae66-0cdcae603f1c"],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}], " ", "R"}], "\[Equal]",
RowBox[{
RowBox[{"32", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
RowBox[{"R", " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"64", " ", "R"}]}], ")"}]}]}]}]},
{
RowBox[{
RowBox[{
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"u", " ", "v"}], "+",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}]], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], ")"}]}]}],
"\[Equal]", "3"}]},
{
RowBox[{
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], "\[Equal]",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}]}]}]},
{
RowBox[{
RowBox[{
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ",
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]], "Output",
CellLabel->
"Out[153]=",ExpressionUUID->"6dbf01d8-0b0e-4fd2-b7f7-9b8c8e474fd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{"{", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}], " ", ")"}],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", "-",
SqrtBox["5"]}],
RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+",
RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "+",
RowBox[{"r", " ",
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}],
"+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}]]}]}], ")"}]}]}], "\[Equal]", "0"}]}],
"\[IndentingNewLine]", "}"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[179]:=",ExpressionUUID->"3b44f48f-bfd6-4641-9df3-743d56dd4546"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",",
RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",",
RowBox[{"u", "\[Rule]", "0.5480927073836085`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",",
RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",",
RowBox[{"u", "\[Rule]", "0.9648503599623114`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",",
RowBox[{"u", "\[Rule]", "0.39522405728759424`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",",
RowBox[{"u", "\[Rule]", "0.999560698847948`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]", "0.8723547586153894`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",",
RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.23261572125066274`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",",
RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",",
RowBox[{"u", "\[Rule]", "0.853085613105143`"}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[179]=",ExpressionUUID->"0a33f69f-ff58-4fa3-881d-80253f0a3e4b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{"{", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}], " ", ")"}],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", "-",
SqrtBox["5"]}],
RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+",
RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "16"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", " ",
RowBox[{"32", " ", "r"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}],
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]], ")"}], "2"]}]}],
"\[IndentingNewLine]", "}"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",
CellLabel->
"In[183]:=",ExpressionUUID->"254ed205-7d26-4c40-912c-5c9c72016684"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",",
RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",",
RowBox[{"u", "\[Rule]", "0.5480927073836085`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749014`"}], ",",
RowBox[{"r", "\[Rule]", "2.0558914228078766`"}], ",",
RowBox[{"u", "\[Rule]", "0.9648503599623114`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8090169943749828`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "2.055891422807146`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.5480927073827843`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8090169943749828`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "2.055891422807146`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.9648503599626433`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.826990159190304`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.8888058225500177`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.3952240572883131`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.826990159190304`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.8888058225500177`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.9995606988479147`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",",
RowBox[{"u", "\[Rule]", "0.39522405728759424`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903959`"}], ",",
RowBox[{"r", "\[Rule]", "1.8888058225490996`"}], ",",
RowBox[{"u", "\[Rule]", "0.999560698847948`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]", "0.8723547586153894`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8269901591903037`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.2090696436946151`"}]}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555120522`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8269901591903037`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.2090696436946151`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.8723547586152758`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8090169943749843`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.1108066104778467`"}]}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.23261572125031932`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8090169943749843`"}]}], ",",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.1108066104778467`"}]}], ",",
RowBox[{"u", "\[Rule]", "0.8530856131052018`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",",
RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.23261572125066274`"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8090169943749136`"}], ",",
RowBox[{"r", "\[Rule]", "1.1108066104775183`"}], ",",
RowBox[{"u", "\[Rule]", "0.853085613105143`"}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[183]=",ExpressionUUID->"24c0f343-be80-474a-917d-6b762149bcb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "16"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-", " ",
RowBox[{"32", " ", "r"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}],
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]], ")"}], "2"], "]"}]], "Input",
CellLabel->
"In[185]:=",ExpressionUUID->"c27e6f7c-3910-46c5-bebf-f64f731d6b9a"],
Cell[BoxData[
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "+",
FractionBox[
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}], ")"}],
"2"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"]]], "Output",
CellLabel->
"Out[185]=",ExpressionUUID->"65bc5d03-c2ee-4e77-b573-5b19506eaafa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{"{", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}], " ", ")"}],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", "-",
SqrtBox["5"]}],
RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+",
RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "+",
FractionBox[
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}],
")"}], "2"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"]]}], ",",
"\[IndentingNewLine]",
RowBox[{"v", ">", "0"}], ",",
RowBox[{"u", "<", "0"}], ",",
RowBox[{"r", ">", "1.2"}]}], "\[IndentingNewLine]", "}"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[189]:=",ExpressionUUID->"068e2938-310c-4dbb-ac5c-7abd8c42776a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output",
CellLabel->
"Out[189]=",ExpressionUUID->"6737cf7f-d53b-4110-920a-a551c104a8d1"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903418`"}], ",",
RowBox[{"r", "\[Rule]", "1.2090696436948747`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.1337265555509568`"}]}]}], "}"}], "}"}]], "Input",Expressi\
onUUID->"41f4e5a4-3326-4bed-8e46-1bc14d8bc49d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"{", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}], " ", ")"}],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", "-",
SqrtBox["5"]}],
RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+",
RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "+",
FractionBox[
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}],
")"}], "2"]}], ",", "\[IndentingNewLine]",
RowBox[{"v", ">", "0"}], ",",
RowBox[{"u", "<", "0"}], ",",
RowBox[{"r", ">", "1.2"}]}], "\[IndentingNewLine]", "}"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[194]:=",ExpressionUUID->"9f7b0633-d7c7-48da-a47d-d6bcfb33533f"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[194]=",ExpressionUUID->"6c14e09e-e6d5-4ea7-893e-93341b5dbc2b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "@",
RowBox[{"RootReduce", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["u", "2"]}], " ", ")"}],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3", "-",
SqrtBox["5"]}],
RowBox[{"2", "r"}]], "-", "r"}], ")"}]}], "+",
RowBox[{"u", " ", "v"}]}], ")"}], "2"]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{"20", "+",
RowBox[{
SqrtBox["1023"], " ", "r", " ", "R", " ", "v"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "2"]}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}]}], ")"}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], "2"], " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "+",
FractionBox[
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
RowBox[{"8", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}], "r"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}], " ", "R", " ", "v"}]}],
")"}], "2"]}]}], "\[IndentingNewLine]", "}"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], "]"}]}]], "Input",\
ExpressionUUID->"52fbff18-1bdd-470e-88c0-053fceff4318"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["u", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"],
RowBox[{"16", " ",
SuperscriptBox["r", "2"]}]]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -18.2695822630310402701070415787398815155`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 +
1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 +
108432958666577573375489 #^4 + 8775149549656432576 #^5 +
379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}],
"\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ", "r"}], "+",
FractionBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 5, 0]], "r"], "+",
RowBox[{"v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -41.48833803604578207568920333869755268097`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "}"}]], "Output",\
CellLabel->
"Out[198]=",ExpressionUUID->"ee0e553b-cb7d-4efa-a30f-5ce9b5f9d35e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"eqn3", "=",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"16", " ",
SuperscriptBox["r", "2"],
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["u", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}],
",",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"],
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 + 108432958666577573375489 #^4 +
8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 +
65536 #^8& , 4, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"v", " ", "r", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}],
"}"}]}], ")"}], "//", "Column"}]], "Input",
CellLabel->
"In[207]:=",ExpressionUUID->"14b7faf2-bfc5-4e87-b6de-ecf6b0c2492b"],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{
RowBox[{"16", " ",
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["u", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}]},
{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -18.2695822630310402701070415787398815155`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}]},
{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 + 108432958666577573375489 #^4 +
8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 +
65536 #^8& , 4, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Column"]], "Output",
CellLabel->
"Out[207]=",ExpressionUUID->"c068362a-464e-4454-9dc2-86d29f0cf6f4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"Join", "[",
RowBox[{"eqn3", ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", ">", "0"}], ",",
RowBox[{"u", "<", "0"}], ",",
RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}], "]"}]], "Input",\
CellLabel->
"In[208]:=",ExpressionUUID->"4de6b66f-a087-4e5d-98e3-eebf1c86f266"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output",
CellLabel->
"Out[208]=",ExpressionUUID->"86f272f5-2902-4b32-b3be-50fad05b85b3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Take", "[",
RowBox[{"eqn3", ",",
RowBox[{"-", "2"}]}], "]"}]], "Input",
CellLabel->
"In[211]:=",ExpressionUUID->"24b48e2f-213e-4c63-9424-fbb79b11e866"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -18.2695822630310402701070415787398815155`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 + 204128320 #^6 +
1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 + 731760025692743188537716736 #^3 +
108432958666577573375489 #^4 + 8775149549656432576 #^5 +
379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]]}],
"\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -41.48833803604578207568920333869755268097`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}], "2"]}]}], "}"}]], "Output",\
CellLabel->
"Out[211]=",ExpressionUUID->"22bc0315-b10c-47dc-b665-bd4bf440daa5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 + 108432958666577573375489 #^4 +
8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 +
65536 #^8& , 4, 0]]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}],
"2"]}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", ">", "0"}], ",",
RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "v"}], "}"}], ",", "Reals"}], "]"}]], "Input",
CellLabel->
"In[224]:=",ExpressionUUID->"bc37ff55-b7ce-42d0-ba38-c71beebce6fa"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[224]=",ExpressionUUID->"61327f40-0131-4330-9929-a8bc3393653f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"gbr", "=",
RowBox[{"GroebnerBasis", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 + 108432958666577573375489 #^4 +
8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 +
65536 #^8& , 4, 0]]}], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}],
"2"]}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"{", "r", "}"}], ",",
RowBox[{"{", "v", "}"}], ",",
RowBox[{"MonomialOrder", "\[Rule]", "EliminationOrder"}]}], "]"}]}],
";"}]], "Input",ExpressionUUID->"6b4546f6-69df-4024-9f3f-64d08b3f7ae2"],
Cell[BoxData[
InterpretationBox[
TagBox[
FrameBox[GridBox[{
{
ItemBox[
TagBox[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "6"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "3"]}], "+",
TemplateBox[{"48"},
"OutputSizeLimit`Skeleton"], "+",
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"256", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "3"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "2"]}],
"+",
TemplateBox[{"113"},
"OutputSizeLimit`Skeleton"], "+",
RowBox[{"16", " ",
TemplateBox[{"4"},
"OutputSizeLimit`Skeleton"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["r", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "256"}], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "8"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}], "-",
RowBox[{"5120", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "2"]}],
"-",
RowBox[{"256", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "6"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]], "3"]}],
"+",
TemplateBox[{"206"},
"OutputSizeLimit`Skeleton"], "+",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "7"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.91641594853224639383171279405360110104`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 +
1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 +
485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6,
0]], "3"]}], "-",
RowBox[{"16384", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "2"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript",
SyntaxForm -> SuperscriptBox]}, "RowDefault"],
ShowStringCharacters ->
False], \
-13293.27670775912156386766582727432250976563`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 +
108432958666577573375489 #^4 + 8775149549656432576 #^5 +
379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.91641594853224639383171279405360110104`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 +
1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 +
485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6,
0]], "3"]}], "+",
RowBox[{"512", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "3"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript",
SyntaxForm -> SuperscriptBox]}, "RowDefault"],
ShowStringCharacters ->
False], \
-13293.27670775912156386766582727432250976563`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 +
108432958666577573375489 #^4 + 8775149549656432576 #^5 +
379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.91641594853224639383171279405360110104`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 +
1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 +
485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6,
0]], "3"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]], "5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript",
SyntaxForm -> SuperscriptBox]}, "RowDefault"],
ShowStringCharacters ->
False], \
-13293.27670775912156386766582727432250976563`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 +
108432958666577573375489 #^4 + 8775149549656432576 #^5 +
379805682501120 #^6 + 8071921664 #^7 + 65536 #^8& , 4, 0]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.91641594853224639383171279405360110104`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 +
1316531731456 #^3 + 1807078258689 #^4 + 1316021862656 #^5 +
485599805440 #^6 + 77326188544 #^7 + 4294967296 #^8& , 6,
0]], "3"]}]}], ")"}]}]}], "}"}],
Short[#, 5]& ],
BaseStyle->{Deployed -> False},
StripOnInput->False]},
{GridBox[{
{
PaneBox[
TagBox[
TooltipBox[
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource[
"FEStrings", "sizeBriefExplanation"], StandardForm],
ImageSizeCache->{59., {1.85546875, 7.353515625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText",
StripOnInput->False],
StyleBox[
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm]], DynamicUpdating -> True, LineIndent -> 0,
LinebreakAdjustments -> {1., 100, 0, 0, 0},
LineSpacing -> {1, 2}, StripOnInput -> False]],
Annotation[#,
Style[
Dynamic[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]],
DynamicUpdating -> True, LineIndent -> 0,
LinebreakAdjustments -> {1., 100, 0, 0, 0},
LineSpacing -> {1, 2}], "Tooltip"]& ],
Alignment->Center,
BaselinePosition->Baseline,
ImageSize->{Automatic, {25, Full}}],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
ImageSizeCache->{51., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 235, 19400777345032151489, 5/2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
ImageSizeCache->{56., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 235, 19400777345032151489, 5 2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
ImageSizeCache->{42., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 235, 19400777345032151489, Infinity],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
ImageSizeCache->{77., {0.1220703125, 7.7880859375}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>FrontEndExecute[{
FrontEnd`SetOptions[
FrontEnd`$FrontEnd,
FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}],
FrontEnd`FrontEndToken["PreferencesDialog"]}],
Evaluator->None,
Method->"Preemptive"]}
},
AutoDelete->False,
FrameStyle->GrayLevel[0.85],
GridBoxDividers->{"Columns" -> {False, {True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2],
Offset[1.2], {
Offset[0.4]},
Offset[0.2]}}],
BaseStyle->"OutputSizeLimit",
FrameMargins->{{12, 12}, {0, 15}},
FrameStyle->GrayLevel[0.85],
RoundingRadius->5,
StripOnInput->False],
Deploy,
DefaultBaseStyle->"Deploy"],
If[19400777345032151489 === $SessionID,
Out[235], Message[
MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"];
Null]]], "Output",
CellLabel->
"Out[235]=",ExpressionUUID->"cb379063-04c1-496c-b0cf-ffb8853cc86f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "gbr", "]"}]], "Input",
CellLabel->
"In[236]:=",ExpressionUUID->"3b8d99c9-ac73-44a2-b2eb-504ab3864cf0"],
Cell[BoxData["1"], "Output",
CellLabel->
"Out[236]=",ExpressionUUID->"8887832b-9193-476b-98da-6b068febc291"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"gbr", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "]"}]], "Input",
CellLabel->
"In[237]:=",ExpressionUUID->"cf0978b5-b3d1-4e48-9623-71c442c49f5f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "2.0558914228074445`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.888805822549639`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.2090696436948623`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]",
RowBox[{"-", "1.1108066104776904`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]", "1.1108066104776912`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]", "1.2090696436948596`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]", "1.8888058225496358`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"r", "\[Rule]", "2.05589142280744`"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[237]=",ExpressionUUID->"47ea35cf-35d2-48c8-a40c-e0299412c286"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"gbr", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "&&",
RowBox[{
RowBox[{"12", "/", "10"}], "<", "r", "<",
RowBox[{"13", "/", "10"}]}]}], "]"}]], "Input",
CellLabel->
"In[238]:=",ExpressionUUID->"b17828b2-06b9-405d-939c-bee31a6bfb73"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"r", "\[Rule]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "}"}],
"}"}]], "Output",
CellLabel->
"Out[238]=",ExpressionUUID->"0fc3edf8-20ad-45f1-b09a-f26a05bdbede"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%238", "]"}]], "Input",
CellLabel->
"In[247]:=",ExpressionUUID->"3996824c-935e-4e40-a40b-ceb16506b1e2"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"r", "\[Rule]", "1.209069643694874`"}], "}"}], "}"}]], "Output",
CellLabel->
"Out[247]=",ExpressionUUID->"d8590b29-22b8-4fa1-b5ab-68cd4d34196f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"gbv", "=",
RowBox[{"GroebnerBasis", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91641594853224639383171279405360110104`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"77493960704", " ", "#1"}], "+",
RowBox[{"486106071040", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1316531731456", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1807078258689", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"1316021862656", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"485599805440", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"77326188544", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], -0.9164159485322464},
"NumericalApproximation"],
Root[
4294967296 + 77493960704 # + 486106071040 #^2 + 1316531731456 #^3 +
1807078258689 #^4 + 1316021862656 #^5 + 485599805440 #^6 +
77326188544 #^7 + 4294967296 #^8& , 6, 0]]}], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "8"}], " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-18.3\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-18.2695822630310402701070415787398815155`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"23512593043456", "+",
RowBox[{"11096713075712", " ", "#1"}], "-",
RowBox[{"866613204800", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"594154633808", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5445419528", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"204128320", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"1704448", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -18.26958226303104},
"NumericalApproximation"],
Root[
23512593043456 + 11096713075712 # - 866613204800 #^2 -
594154633808 #^3 + 12972975489 #^4 + 5445419528 #^5 +
204128320 #^6 + 1704448 #^7 + 4096 #^8& , 4, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"30.6\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
30.61851589069084766947526077274233102798`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"71776531109707776", "+",
RowBox[{"4486033194356736", " ", "#1"}], "-",
RowBox[{"492783949380096", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"13087004217408", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"1371707537409", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"12876492816", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"469565184", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"4190208", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 30.618515890690848`},
"NumericalApproximation"],
Root[
71776531109707776 + 4486033194356736 # - 492783949380096 #^2 -
13087004217408 #^3 + 1371707537409 #^4 - 12876492816 #^5 -
469565184 #^6 + 4190208 #^7 + 65536 #^8& , 5, 0]]}]}], ")"}],
"2"]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.33\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]],
"\"\[ThinSpace]\[Times]\[ThinSpace]\"",
TemplateBox[{"\"10\"", "\"4\""}, "Superscript", SyntaxForm ->
SuperscriptBox]}, "RowDefault"], ShowStringCharacters ->
False], -13293.27670775912156386766582727432250976563`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"3194814997072315910768797521339744256", "+",
RowBox[{"4695788797132717630576692857667584", " ", "#1"}],
"+",
RowBox[{"2643725544601800570663830814720", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"731760025692743188537716736", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"108432958666577573375489", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8775149549656432576", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"379805682501120", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"8071921664", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -13293.276707759122`},
"NumericalApproximation"],
Root[
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 # +
2643725544601800570663830814720 #^2 +
731760025692743188537716736 #^3 + 108432958666577573375489 #^4 +
8775149549656432576 #^5 + 379805682501120 #^6 + 8071921664 #^7 +
65536 #^8& , 4, 0]]}], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"32", " ",
SuperscriptBox["r", "2"]}], "+",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"73.1\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
73.07832905212416108042816631495952606201`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 73.07832905212416},
"NumericalApproximation"],
Root[
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 5, 0]], "+",
RowBox[{"r", " ", "v", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-41.5\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-41.48833803604578207568920333869755268097`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -41.48833803604578},
"NumericalApproximation"],
Root[
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 3, 0]]}]}], ")"}],
"2"]}]}], "\[IndentingNewLine]", "}"}], ",",
RowBox[{"{", "v", "}"}], ",",
RowBox[{"{", "r", "}"}], ",",
RowBox[{"MonomialOrder", "\[Rule]", "EliminationOrder"}]}], "]"}]}],
";"}]], "Input",
CellLabel->
"In[239]:=",ExpressionUUID->"886f30c2-86fc-4d95-a4bb-f5452424f06c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"gbv", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "]"}]], "Input",
CellLabel->
"In[240]:=",ExpressionUUID->"4396c039-b119-482a-922b-23132126861c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.8269901591903422`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"v", "\[Rule]",
RowBox[{"-", "0.809016994374948`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"v", "\[Rule]", "0.809016994374946`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"v", "\[Rule]", "0.8269901591903417`"}], "}"}]}], "}"}]], "Output",\
CellLabel->
"Out[240]=",ExpressionUUID->"80fda36e-efd8-4a54-bd00-d266121e3ac0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"gbv", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], "&&",
RowBox[{"v", "<",
RowBox[{
RowBox[{"-", "81"}], "/", "100"}]}]}], "]"}]], "Input",
CellLabel->
"In[241]:=",ExpressionUUID->"972956ad-1e48-4d63-8245-1f7c90b9e710"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"v", "\[Rule]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}],
",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}],
",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}], "&"}],
",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((4096 #3^3) #4^2) #5) #7^4& }, {
5, 3, 5, 4, 4, 6, 1}]]}], "}"}], "}"}]], "Output",
CellLabel->
"Out[241]=",ExpressionUUID->"170ead83-c62c-45a6-8704-55963308d474"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"16", " ",
SuperscriptBox["r", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["u", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["v", "2"]}], ")"}]}], "\[Equal]",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"], "+",
RowBox[{"2", " ", "r", " ",
RowBox[{"(",
RowBox[{"r", "-",
RowBox[{"2", " ", "u", " ", "v"}]}], ")"}]}]}], ")"}], "2"]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"r", "\[Rule]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((196608 #^4) #2) #4^2)
#6^3) #7^2 + ((((786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], ",",
RowBox[{"v", "\[Rule]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]}]}],
"}"}]}], ",", "u"}], "]"}]], "Input",
CellLabel->
"In[243]:=",ExpressionUUID->"ad18968b-347a-46ad-a7e6-5e62df535007"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}],
RowBox[{"(",
RowBox[{
RowBox[{"24", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - (((
(512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "-",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "-",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((16384 #^4) #2) #3)
#4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}],
"+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}],
"+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((262144 #^2)
#3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((2097152 #^5) #4^2)
#5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3)
#4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[243]=",ExpressionUUID->"cdb70db9-485a-4b07-baad-ad08673046ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"In[244]:=",ExpressionUUID->"6842c3e4-09ff-48b9-8467-92095b72860b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.8723547586153321`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"u", "\[Rule]", "0.13372655555095744`"}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[244]=",ExpressionUUID->"d23fd462-c374-4928-9057-ef8ac7777fd8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}],
"+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"],
" ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((24576 #^4) #2^3) #3^2)
#5) #7^4 + ((((65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}],
"}"}]], "Input",
CellLabel->
"In[245]:=",ExpressionUUID->"062a2a6f-51ef-49a4-9a55-80e8ba62293f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}],
"+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"],
" ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((24576 #^4) #2^3) #3^2)
#5) #7^4 + ((((65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], "}"}],
"}"}]], "Output",
CellLabel->
"Out[245]=",ExpressionUUID->"332a853b-9618-4ed4-bbe2-12a413efbbc8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"]}]]}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}], "+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.8269901591903416893103440088452771306`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 + 12758020 #^6 -
26632 #^7 + 16 #^8& , 70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 + 108432958666577573375489 #5^4 +
8775149549656432576 #5^5 + 379805682501120 #5^6 + 8071921664 #5^7 +
65536 #5^8& , 4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((131072 #^3) #3) #4 + ((
65536 #^2) #2) #4^2 + ((262144 #^2) #3) #4^2 + ((
128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((4 #^2) #3) #5^2 - ((
2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 - 3215264 #^6 +
98048 #^7 + 256 #^8& , 71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((1024 #^4) #2^5) #6^4 + ((
4096 #^3) #2^6) #6^4 - (((1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "3"]}],
"+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]], "2"],
" ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((8388608 #^5) #2^2) #4^2)
#7^6 + ((((5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3)
#4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], "]"}]], "Input",
CellLabel->
"In[248]:=",ExpressionUUID->"3cc0f64e-74d2-432d-b8f3-e1a22f506ae9"],
Cell[BoxData["$Aborted"], "Output",
CellLabel->
"Out[248]=",ExpressionUUID->"d2cb65ba-8d9c-4339-bb61-b2739b1ed697"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"In[246]:=",ExpressionUUID->"fe67e0b4-5b26-45e7-a2fe-496d85728169"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555095744`"}]}], "}"}], "}"}]], "Output",
CellLabel->
"Out[246]=",ExpressionUUID->"1ed473e9-de7f-488c-a2b1-4a97522a8173"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"soln", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"Join", "[",
RowBox[{"eqn3", ",",
RowBox[{"{",
RowBox[{
RowBox[{"v", ">", "0"}], ",",
RowBox[{"u", "<", "0"}], ",",
RowBox[{"r", ">", "1.2"}]}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"u", ",", "v", ",", "r"}], "}"}], ",", "Reals"}],
"]"}]}]], "Input",
CellLabel->
"In[215]:=",ExpressionUUID->"ba1ee72e-0f2f-4d78-bca8-1ead61561590"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"v", "\[Rule]", "0.8269901591903855`"}], ",",
RowBox[{"r", "\[Rule]", "1.209069643695151`"}], ",",
RowBox[{"u", "\[Rule]",
RowBox[{"-", "0.13372655555068666`"}]}]}], "}"}], "}"}]], "Output",
CellLabel->
"Out[215]=",ExpressionUUID->"e83a74fb-ae6d-445d-88b6-a806a98bad46"]
}, Open ]],
Cell[BoxData[
RowBox[{"vc", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"vv", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "u", "]"}]}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[", "v", "]"}]}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}], "//",
"RootReduce"}], "//", "FullSimplify"}]}]], "Input",
CellLabel->
"In[220]:=",ExpressionUUID->"16b43fc7-da2e-43e0-9899-104e47dfd51a"],
Cell[BoxData[
RowBox[{
RowBox[{"vc", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"-",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.526\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.52573111211913359230862852200516499579`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.5257311121191336},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
SqrtBox[
RowBox[{"2", "+",
FractionBox["2",
SqrtBox["5"]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.526\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.52573111211913359230862852200516499579`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"5", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.5257311121191336},
"NumericalApproximation"],
Root[1 - 5 #^2 + 5 #^4& , 3, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.916\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.91565346112261347677474532247288152575`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"106537612801", "-",
RowBox[{"212240618245", " ", "#1"}], "-",
RowBox[{"750776492795", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"640064865285", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"2147481021445", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"643399686400", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"753293721600", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"213909504000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"107374182400", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], -0.9156534611226135},
"NumericalApproximation"],
Root[
106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 +
2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 -
213909504000 #^7 + 107374182400 #^8& , 4, 0]], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.35\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.34687712091040556749987899820553138852`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"17598220999335736321", "-",
RowBox[{"539111626071872353265", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"6269521563436040371285", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"35734932813943308364825", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"108820923885449897484825", " ",
SuperscriptBox["#1", "8"]}], "-",
RowBox[{"180651487477897355264000", " ",
SuperscriptBox["#1", "10"]}], "+",
RowBox[{"159824446714883866624000", " ",
SuperscriptBox["#1", "12"]}], "-",
RowBox[{"69355434261505638400000", " ",
SuperscriptBox["#1", "14"]}], "+",
RowBox[{"11529215046068469760000", " ",
SuperscriptBox["#1", "16"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -1.3468771209104056`},
"NumericalApproximation"],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.998\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.99800369375022601747815542694297619164`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"106537612801", "+",
RowBox[{"215161907195", " ", "#1"}], "-",
RowBox[{"754115575025", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"633789772815", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"2139107152645", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"645501747200", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"749941555200", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"215167795200", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"107374182400", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 0.998003693750226},
"NumericalApproximation"],
Root[
106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 +
2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 +
215167795200 #^7 + 107374182400 #^8& , 6, 0]], ",",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.29\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.2870461105649828592589756226516328752`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"17598220999335736321", "-",
RowBox[{"540528768140269969925", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"6269411700808243814485", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"35627336894415949311925", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"108386758107061028364825", " ",
SuperscriptBox["#1", "8"]}], "-",
RowBox[{"180110760013281099776000", " ",
SuperscriptBox["#1", "10"]}], "+",
RowBox[{"159827258715871903744000", " ",
SuperscriptBox["#1", "12"]}], "-",
RowBox[{"69535402324740014080000", " ",
SuperscriptBox["#1", "14"]}], "+",
RowBox[{"11529215046068469760000", " ",
SuperscriptBox["#1", "16"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -1.2870461105649829`},
"NumericalApproximation"],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.53\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.53245371932602814091239906701957806945`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"106537612801", "+",
RowBox[{"426150777605", " ", "#1"}], "+",
RowBox[{"210571399695", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"858980052465", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"532674325755", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"860669542400", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"213072281600", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"429496729600", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"107374182400", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}],
Short[#, 7]& ], 1.5324537193260281`},
"NumericalApproximation"],
Root[
106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 -
532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 -
429496729600 #^7 + 107374182400 #^8& , 6, 0]], ",",
SqrtBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.304\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.30408483781637524190344379348971415311`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"17598220999335736321", "-",
RowBox[{"1100703701881579435525", " ", "#1"}], "+",
RowBox[{"21366179173843941862485", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"153773296557369462079925", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"500538150850720122380825", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"772147051737011732480000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"538130681574451052544000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"138170788411447705600000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"11529215046068469760000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
Short[#, 7]& ], 0.30408483781637524`},
"NumericalApproximation"],
Root[
17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.0509\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -0.05089529731485314956174192957405466586`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1", "+",
RowBox[{"5", " ", "#1"}], "-",
RowBox[{"3835", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"8965", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"3927045", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"4915200", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"1258291200", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"419430400", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"107374182400", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}],
Short[#, 7]& ], -0.05089529731485315},
"NumericalApproximation"],
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0]], ",",
SqrtBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"2.65\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
2.64990890840894577351605221338104456663`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"1199513305477529806561281", "-",
RowBox[{"9022732048533325377799665", " ", "#1"}], "+",
RowBox[{"25962141421217984341452885", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"36712060727845224685260825", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"27796592096551279797708825", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"11496063758699253989376000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"2543846604318770724864000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"276610913191235420160000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"11529215046068469760000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "5"}], "]"}],
Short[#, 7]& ], 2.6499089084089458`},
"NumericalApproximation"],
Root[
1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-1.56\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], -1.56390874295035597896230683545581996441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"106537612801", "-",
RowBox[{"426984732160", " ", "#1"}], "+",
RowBox[{"212240940810", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"858988220160", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"532674325755", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"860661356800", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"211396198400", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"428657868800", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"107374182400", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], -1.563908742950356},
"NumericalApproximation"],
Root[
106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 -
532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 +
428657868800 #^7 + 107374182400 #^8& , 3, 0]], ",",
SqrtBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.207\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
0.20668868346660859702801360526791540906`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"17598220999335736321", "-",
RowBox[{"1075468191904076864020", " ", "#1"}], "+",
RowBox[{"21281804568408463782510", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"155921619528698397990500", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"507419710433470154252825", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"778608770214113828864000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"540290301079358275584000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"138530724537916456960000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"11529215046068469760000", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}],
Short[#, 7]& ], 0.2066886834666086},
"NumericalApproximation"],
Root[
17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9677481949315356`"}], ",",
RowBox[{"-", "0.348234973437605`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.032140502180179956`", ",",
RowBox[{"-", "1.0279937517504376`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.987612117694377`", ",",
RowBox[{"-", "0.2871001053666874`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5782373542562063`", ",", "0.8505561284601488`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6302417791992277`"}], ",", "0.8127727020945811`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6151465359790604`"}], ",", "0.5875385408830143`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7488730915297469`"}], ",",
RowBox[{"-", "0.40347972753616523`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.15231751215346578`", ",",
RowBox[{"-", "0.8369027262719113`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.843010491122414`", ",",
RowBox[{"-", "0.11375460257732557`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.36869162423292756`", ",", "0.7665985155023878`"}], "}"}]}],
"}"}]}], ";"}]], "Input",
CellLabel->
"In[254]:=",ExpressionUUID->"d005a6f3-6db9-42a5-9a61-bf907a7ae841"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e2"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[255]:=",ExpressionUUID->"dc992a5d-8b3d-41d7-8eea-38b175abb9a8"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {
4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {
8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2]}, {1, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
0, (2 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Root[
106537612801 - 212240618245 # - 750776492795 #^2 + 640064865285 #^3 +
2147481021445 #^4 + 643399686400 #^5 - 753293721600 #^6 -
213909504000 #^7 + 107374182400 #^8& , 4, 0],
Root[
17598220999335736321 - 539111626071872353265 #^2 +
6269521563436040371285 #^4 - 35734932813943308364825 #^6 +
108820923885449897484825 #^8 - 180651487477897355264000 #^10 +
159824446714883866624000 #^12 - 69355434261505638400000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 215161907195 # - 754115575025 #^2 - 633789772815 #^3 +
2139107152645 #^4 - 645501747200 #^5 - 749941555200 #^6 +
215167795200 #^7 + 107374182400 #^8& , 6, 0],
Root[
17598220999335736321 - 540528768140269969925 #^2 +
6269411700808243814485 #^4 - 35627336894415949311925 #^6 +
108386758107061028364825 #^8 - 180110760013281099776000 #^10 +
159827258715871903744000 #^12 - 69535402324740014080000 #^14 +
11529215046068469760000 #^16& , 2, 0]}, {
Root[
106537612801 + 426150777605 # + 210571399695 #^2 - 858980052465 #^3 -
532674325755 #^4 + 860669542400 #^5 + 213072281600 #^6 -
429496729600 #^7 + 107374182400 #^8& , 6, 0],
Root[17598220999335736321 - 1100703701881579435525 # +
21366179173843941862485 #^2 - 153773296557369462079925 #^3 +
500538150850720122380825 #^4 - 772147051737011732480000 #^5 +
538130681574451052544000 #^6 - 138170788411447705600000 #^7 +
11529215046068469760000 #^8& , 4, 0]^Rational[1, 2]}, {
Root[
1 + 5 # - 3835 #^2 - 8965 #^3 + 3927045 #^4 + 4915200 #^5 -
1258291200 #^6 - 419430400 #^7 + 107374182400 #^8& , 2, 0],
Root[1199513305477529806561281 - 9022732048533325377799665 # +
25962141421217984341452885 #^2 - 36712060727845224685260825 #^3 +
27796592096551279797708825 #^4 - 11496063758699253989376000 #^5 +
2543846604318770724864000 #^6 - 276610913191235420160000 #^7 +
11529215046068469760000 #^8& , 5, 0]^Rational[1, 2]}, {
Root[
106537612801 - 426984732160 # + 212240940810 #^2 + 858988220160 #^3 -
532674325755 #^4 - 860661356800 #^5 + 211396198400 #^6 +
428657868800 #^7 + 107374182400 #^8& , 3, 0],
Root[17598220999335736321 - 1075468191904076864020 # +
21281804568408463782510 #^2 - 155921619528698397990500 #^3 +
507419710433470154252825 #^4 - 778608770214113828864000 #^5 +
540290301079358275584000 #^6 - 138530724537916456960000 #^7 +
11529215046068469760000 #^8& , 3, 0]^
Rational[1, 2]}, {-0.9677481949315356, -0.348234973437605}, {
0.032140502180179956`, -1.0279937517504376`}, {
0.987612117694377, -0.2871001053666874}, {0.5782373542562063,
0.8505561284601488}, {-0.6302417791992277,
0.8127727020945811}, {-0.6151465359790604,
0.5875385408830143}, {-0.7488730915297469, -0.40347972753616523`}, {
0.15231751215346578`, -0.8369027262719113}, {
0.843010491122414, -0.11375460257732557`}, {0.36869162423292756`,
0.7665985155023878}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8uv9HCrnDp+/f2+opTV+6d/gXDPKh+ezT9cPn9Fp8M3rX8sK9w
U1VLXvrQHrt6BoYnzG7cHRa/MeQzZvw89Ylv1f6756p3bOD+hUv9flzm5aT3
6Rxl/bnfK3LuhJUSdzHUP9uyv4bD9+1+2+UKbOd7vu5H568595//9Pd3+4us
+sOrPa9hyD8KrfbeUbLA/qlWy+SVRR8wwouQvK9eyK6WWe/tz804J3cz/hJG
eBGSV0jZPf91wyN7l0MpNQfNX2OEFyF5xcrj5z5oPdmvWnvpqTXTK4zwQvc/
ujy6fnT1EY9PnHRf/3h/Rq77Atmzj+zRw6PfYP7mI9+e7/9TOX3RnEs3McLj
TdDyZ8r1h+1vrHlh+eL4q/3o/mE9Yaj88ecr+6XnrnWyyu/dj+4ev3cSB5fM
uG7vdE19zs/2F/bo7kG3H10eXT+6enT3ofPR3YfORzcfAKRS/t8=
"],
0.0319088348808545]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9156534611226135, -1.3468771209104056},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.883744626241759, -1.314968286029551}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.998003693750226, -1.2870461105649829},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.0299125286310806, -1.2551372756841284}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.5324537193260281, 0.551438879492891}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5643625542068826, 0.5833477143737456}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05089529731485315, 1.6278540808097468},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906013}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.563908742950356, 0.45463027117275046},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.5319999080695015, 0.48653910605360495}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9677481949315356, -0.348234973437605},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {-0.9358393600506811, -0.3163261385567505}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.032140502180179956, -1.0279937517504376},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {0.06404933706103445, -0.9960849168695831}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.987612117694377, -0.2871001053666874},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {1.0195209525752316, -0.2551912704858329}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5782373542562063, 0.8505561284601488},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6101461891370608, 0.8824649633410033}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6302417791992277, 0.8127727020945811},
0.0319088348808545],
InsetBox["15",
Offset[{2, 2}, {-0.5983329443183732, 0.8446815369754356}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6151465359790604, 0.5875385408830143},
0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5832377010982059, 0.6194473757638688}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7488730915297469, -0.40347972753616523},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7169642566488924, -0.37157089265531074}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.15231751215346578, -0.8369027262719113},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.18422634703432028, -0.8049938913910568}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.843010491122414, -0.11375460257732557},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8749193260032685, -0.08184576769647108}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.36869162423292756, 0.7665985155023878},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.40060045911378206, 0.7985073503832423}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[255]=",ExpressionUUID->"f1cd887d-2bf2-46c0-a25a-e0abb2cfa013"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"EdgeLengths", "[", "g", "]"}], "//", "RootReduce"}]], "Input",
CellLabel->
"In[256]:=",ExpressionUUID->"e9f14d96-f156-40f7-8ebd-3e8844195b30"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2", ",", "2",
",", "2", ",", "2", ",", "0.9999999999998549`", ",", "1.0000000000000087`",
",", "0.9999999999998551`", ",", "1.0000000000000087`", ",",
"0.9999999999998551`", ",", "1.0000000000000089`", ",",
"0.9999999999998549`", ",", "1.0000000000000087`", ",",
"1.0000000000000087`", ",", "0.999999999999855`", ",", "1.`", ",",
"0.9999999999999998`", ",", "0.9999999999999999`", ",", "1.`", ",",
"0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`", ",",
"0.9999999999999999`", ",", "0.9999999999999999`", ",", "1.`"}],
"}"}]], "Output",
CellLabel->
"Out[256]=",ExpressionUUID->"e49d4012-a9d2-48f9-bea7-03d4c523c2a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Max", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"#", "-",
RowBox[{"Round", "[", "#", "]"}]}], "]"}], "&"}], "/@", "%256"}],
"]"}]], "Input",
CellLabel->
"In[260]:=",ExpressionUUID->"3d8812e6-a7ac-4ba2-a2f6-a196cf89c3a1"],
Cell[BoxData["1.4510614931850796`*^-13"], "Output",
CellLabel->
"Out[260]=",ExpressionUUID->"77d753bc-dbb2-48eb-988c-62f8627e19c5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"vc", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"vv", "/.",
RowBox[{"r", "->",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.954589770191003,
Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5", ",",
"6"}], "}"}]}], "]"}], Short[#, 7]& ], 1.209069643694874},
"NumericalApproximation"],
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 + 8071921664 #3^7 +
65536 #3^8& , 4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((262144 #^2)
#3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"3", ",", "5", ",", "4", ",", "6", ",", "4", ",", "5",
",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}], "+",
RowBox[{"\[Sqrt]",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"8", " ",
SqrtBox["5"], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
RowBox[{"16", " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"3"]}]}], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((24576 #^6) #2) #3)
#4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "14"}], "+",
RowBox[{"6", " ",
SqrtBox["5"]}], "+",
RowBox[{"28", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SqrtBox["5"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"2"], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"4"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], "]"}]}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{"-",
RowBox[{"ArcCos", "[",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
"]"}]}]}]}], "}"}]}], "/.",
RowBox[{"soln", "[",
RowBox[{"[",
RowBox[{"-", "1"}], "]"}], "]"}]}], ")"}], "/.",
RowBox[{"R", "->",
RowBox[{
FractionBox["1", "128"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SqrtBox["1023"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"7681", "-",
RowBox[{"2559", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"2046", " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]]}]}], ")"}]}]}]}]}]], "Input",
CellLabel->
"In[250]:=",ExpressionUUID->"051fd746-f402-42dd-b359-5426a7186c9d"],
Cell[BoxData[
InterpretationBox[
TagBox[
FrameBox[GridBox[{
{
ItemBox[
TagBox[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]]}]]}], "}"}], ",",
TemplateBox[{"14"},
"OutputSizeLimit`Skeleton"], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"Cos", "[",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "]"}],
RowBox[{"2", " ",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]}]], ",",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{"1", "-",
FractionBox[
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"],
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]]}]]]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], ")"}], "2"], "+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]}]]}],
RowBox[{"64", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]], " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((32768 #) #2^4) #3^3)
#5) #7^4 + (((8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+",
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((196608 #^3) #2^2)
#3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], ")"}], "2"], "+",
RowBox[{"64", " ",
SuperscriptBox[
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "2"], " ",
RowBox[{"(",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], ")"}]}]}]]}],
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}], "]"}]}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], ",",
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox["\[Pi]", "10"], "+",
RowBox[{"ArcCos", "[",
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "24"}], " ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"-0.827\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters ->
False], \
-0.8269901591903416893103440088452771306`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"6019223819124736", "-",
RowBox[{"710189636845568", " ", "#1"}], "-",
RowBox[{"13865811276800", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"2376618535232", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"12972975489", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1361354882", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"12758020", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"26632", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[LeftSkeleton]", "11", "\[RightSkeleton]"}],
"+",
RowBox[{"98048", " ",
SuperscriptBox["#2", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#2", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"\[LeftSkeleton]", "1", "\[RightSkeleton]"}],
"&"}], ",",
RowBox[{
RowBox[{"4294967296", "+",
RowBox[{"\[LeftSkeleton]", "7", "\[RightSkeleton]"}], "+",
RowBox[{"4294967296", " ",
SuperscriptBox["#6", "8"]}]}], "&"}], ",",
RowBox[{
RowBox[{
RowBox[{"4096", " ",
SuperscriptBox["#1", "4"], " ", "#2"}], "+",
RowBox[{"16384", " ",
SuperscriptBox["#1", "4"], " ", "#3"}], "+",
RowBox[{"32768", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#4"}], "+",
RowBox[{"131072", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#4"}], "+",
RowBox[{"65536", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"262144", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ",
SuperscriptBox["#4", "2"]}], "+",
RowBox[{"128", " ",
SuperscriptBox["#1", "3"], " ", "#2", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "3"], " ", "#3", " ", "#5"}], "+",
RowBox[{"512", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#4", " ",
"#5"}], "+",
RowBox[{"2048", " ",
SuperscriptBox["#1", "2"], " ", "#3", " ", "#4", " ",
"#5"}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ", "#2", " ",
SuperscriptBox["#5", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "39", "\[RightSkeleton]"}],
"+",
RowBox[{"16384", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#6", " ",
SuperscriptBox["#7", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "5"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"512", " ", "#1", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"128", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
"#5", " ",
SuperscriptBox["#7", "4"]}], "+",
RowBox[{"512", " ", "#1", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ", "#4", " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"1024", " ", "#2", " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#4", "2"], " ", "#5", " ",
SuperscriptBox["#7", "4"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3", ",",
RowBox[{"\[LeftSkeleton]", "3", "\[RightSkeleton]"}], ",",
"6", ",", "1"}], "}"}]}], "]"}],
Short[#, 7]& ], -0.8269901591903417},
"NumericalApproximation"],
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]],
" ",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((4096 #^5) #2^4) #4)
#6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]]}],
"+",
TemplateBox[{"2"},
"OutputSizeLimit`Skeleton"], "+",
SqrtBox[
RowBox[{
SuperscriptBox[
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"], "2"], "+",
TemplateBox[{"1"},
"OutputSizeLimit`Skeleton"]}]]}],
RowBox[{"32", " ",
SuperscriptBox[
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"1.21\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]},
"RowDefault"], ShowStringCharacters -> False],
1.20906964369487401889102784480201080441`15.\
954589770191003, Editable -> False],
TagBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"70380813052542976", "-",
RowBox[{"6706695785938944", " ", "#1"}], "-",
RowBox[{"57086057619456", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11464396046272", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"86904077569", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"2812789776", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3215264", " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"98048", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",",
RowBox[{"\[LeftSkeleton]", "5", "\[RightSkeleton]"}], ",",
RowBox[{
RowBox[{
RowBox[{"1024", " ",
SuperscriptBox["#1", "6"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"3072", " ",
SuperscriptBox["#1", "4"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"8192", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "4"], " ", "#3", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"3072", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"4096", " ", "#1", " ",
SuperscriptBox["#2", "4"], " ",
SuperscriptBox["#3", "2"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"1024", " ",
SuperscriptBox["#2", "3"], " ",
SuperscriptBox["#3", "3"], " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "-",
RowBox[{"4096", " ",
SuperscriptBox["#1", "5"], " ",
SuperscriptBox["#2", "2"], " ", "#4", " ",
SuperscriptBox["#5", "2"], " ",
SuperscriptBox["#6", "2"]}], "+",
RowBox[{"\[LeftSkeleton]", "522", "\[RightSkeleton]"}],
"+",
RowBox[{"1610612736", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"6442450944", " ",
SuperscriptBox["#1", "2"], " ",
SuperscriptBox["#2", "3"], " ", "#3", " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"805306368", " ", "#1", " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#3", "2"], " ", "#4", " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "4"], " ", "#2", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "+",
RowBox[{"12884901888", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#2", "2"], " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"3221225472", " ",
SuperscriptBox["#1", "2"], " ", "#2", " ", "#3", " ",
SuperscriptBox["#4", "2"], " ",
SuperscriptBox["#7", "8"]}], "-",
RowBox[{"4294967296", " ",
SuperscriptBox["#1", "3"], " ",
SuperscriptBox["#4", "3"], " ",
SuperscriptBox["#7", "8"]}]}], "&"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "5", ",", "4", ",", "6", ",", "4", ",",
"5", ",", "6"}], "}"}]}], "]"}], Short[#, 7]& ],
1.209069643694874},
"NumericalApproximation"],
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]],
"2"]}]]}], "]"}]}], "]"}],
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}]}], "}"}],
Short[#, 5]& ],
BaseStyle->{Deployed -> False},
StripOnInput->False]},
{GridBox[{
{
PaneBox[
TagBox[
TooltipBox[
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource[
"FEStrings", "sizeBriefExplanation"], StandardForm],
ImageSizeCache->{59., {1.85546875, 7.353515625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLText",
StripOnInput->False],
StyleBox[
DynamicBox[
ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"],
StandardForm]], DynamicUpdating -> True, LineIndent -> 0,
LinebreakAdjustments -> {1., 100, 0, 0, 0},
LineSpacing -> {1, 2}, StripOnInput -> False]],
Annotation[#,
Style[
Dynamic[
FEPrivate`FrontEndResource["FEStrings", "sizeExplanation"]],
DynamicUpdating -> True, LineIndent -> 0,
LinebreakAdjustments -> {1., 100, 0, 0, 0},
LineSpacing -> {1, 2}], "Tooltip"]& ],
Alignment->Center,
BaselinePosition->Baseline,
ImageSize->{Automatic, {25, Full}}],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm],
ImageSizeCache->{51., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowLess"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 250, 19400777345032151489, 5/2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm],
ImageSizeCache->{56., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowMore"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 250, 19400777345032151489, 5 2],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm],
ImageSizeCache->{42., {0.1171875, 7.431640625}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeShowAll"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>OutputSizeLimit`ButtonFunction[
OutputSizeLimit`Defer, 250, 19400777345032151489, Infinity],
Enabled->True,
Evaluator->Automatic,
Method->"Queued"],
ButtonBox[
PaneSelectorBox[{False->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm],
ImageSizeCache->{77., {0.1220703125, 7.7880859375}}],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControl",
StripOnInput->False], True->
StyleBox[
StyleBox[
DynamicBox[ToBoxes[
FEPrivate`FrontEndResource["FEStrings", "sizeChangeLimit"],
StandardForm]],
StripOnInput->False,
DynamicUpdating->True,
LineSpacing->{1, 2},
LineIndent->0,
LinebreakAdjustments->{1., 100, 0, 0, 0}], "OSLControlActive",
StripOnInput->False]}, Dynamic[
CurrentValue["MouseOver"]],
Alignment->Center,
FrameMargins->0,
ImageSize->{Automatic, {25, Full}}],
Appearance->None,
BaselinePosition->Baseline,
ButtonFunction:>FrontEndExecute[{
FrontEnd`SetOptions[
FrontEnd`$FrontEnd,
FrontEnd`PreferencesSettings -> {"Page" -> "Advanced"}],
FrontEnd`FrontEndToken["PreferencesDialog"]}],
Evaluator->None,
Method->"Preemptive"]}
},
AutoDelete->False,
FrameStyle->GrayLevel[0.85],
GridBoxDividers->{"Columns" -> {False, {True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{"Columns" -> {{2}}}]}
},
DefaultBaseStyle->"Column",
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{1.}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.5599999999999999]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2],
Offset[1.2], {
Offset[0.4]},
Offset[0.2]}}],
BaseStyle->"OutputSizeLimit",
FrameMargins->{{12, 12}, {0, 15}},
FrameStyle->GrayLevel[0.85],
RoundingRadius->5,
StripOnInput->False],
Deploy,
DefaultBaseStyle->"Deploy"],
If[19400777345032151489 === $SessionID,
Out[250], Message[
MessageName[Syntax, "noinfoker"]]; Missing["NotAvailable"];
Null]]], "Output",
CellLabel->
"Out[250]=",ExpressionUUID->"93d93b76-31f8-4fa3-a6fa-44534c81fddf"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",
CellLabel->
"In[251]:=",ExpressionUUID->"4007f90c-7d9a-4d07-9605-628a9960378d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",",
RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",",
RowBox[{"-", "1.3763819204711736`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618033988749895`", ",", "0.5257311121191336`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.7013016167040798`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618033988749895`"}], ",", "0.5257311121191336`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9156534611226073`"}], ",",
RowBox[{"-", "1.3468771209104056`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9980037820455706`", ",",
RowBox[{"-", "1.2870461105649829`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.532453719327712`", ",", "0.551438879492891`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.05089529731485315`"}], ",", "1.627854080809747`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.5639087429358225`"}], ",", "0.4546302711727504`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.03214050218009269`", ",", "1.027993751750205`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9677481949313409`"}], ",", "0.3482349734374499`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6302417791990201`"}], ",",
RowBox[{"-", "0.812772702094444`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5782373542561402`", ",",
RowBox[{"-", "0.8505561284599089`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9876121176941284`", ",", "0.28710010536669833`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.6151465359789`"}], ",", "0.5875385408831822`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7488730915298573`"}], ",",
RowBox[{"-", "0.40347972753596056`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.15231751215323702`", ",",
RowBox[{"-", "0.836902726271953`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.8430104911223828`", ",",
RowBox[{"-", "0.11375460257755592`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3686916242331369`", ",", "0.7665985155022871`"}], "}"}]}],
"}"}]], "Output",
CellLabel->
"Out[251]=",ExpressionUUID->"2035b795-9ef1-497e-ae15-83c692220769"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e2"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "vc"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[252]:=",ExpressionUUID->"3e54ab1b-bae7-419a-88a1-f3c7e9b2be69"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {
4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {
8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, (
Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {((Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {
0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1,
2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 +
5^Rational[1, 2])}, {((
Rational[-1, 128] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 5] Pi - ArcSin[
Rational[1, 32]]], ((
Rational[-1, 128] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 5] Pi - ArcSin[
Rational[1, 32]]]}, {((
Rational[
1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2])) Sin[Rational[1, 5] Pi + ArcSin[
Rational[1, 32]]], ((
Rational[-1, 128] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2])) Cos[Rational[1, 5] Pi + ArcSin[
Rational[1, 32]]]}, {((
Rational[
1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2]))
Cos[Rational[1, 10] Pi + ArcSin[
Rational[1, 32]]], ((
Rational[
1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2]))
Sin[Rational[1, 10] Pi + ArcSin[
Rational[1, 32]]]}, {(
Rational[-1, 4096] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2]), (
Rational[
1, 4096] (1023/(Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2]))^Rational[1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2])}, {((
Rational[-1, 128] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2]))
Cos[Rational[1, 10] Pi - ArcSin[
Rational[1, 32]]], ((
Rational[
1, 128] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (
1023^Rational[1, 2] (-1 + 5^Rational[1, 2]) - (
2 (5 + 5^Rational[1, 2]))^Rational[1, 2] +
2 (7681 - 2559 5^Rational[1, 2] - (2046 (5 - 5^Rational[1, 2]))^
Rational[1, 2])^Rational[1, 2]))
Sin[Rational[1, 10] Pi - ArcSin[
Rational[1, 32]]]}, {((
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}])
Sin[Rational[1, 5] Pi + ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]], ((
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 5] Pi + ArcCos[
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {((
Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}])
Sin[Rational[1, 5] Pi - ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]], ((
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 5] Pi - ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {((
Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) Cos[Rational[1, 10] Pi - ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]])
Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], ((
Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}])
Sin[Rational[1, 10] Pi - ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]}, {(
Rational[
1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])/(1 -
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2))^
Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((6442450944 #^4) #2^3) #4)
#7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], ((
Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 +
256 #2^8& , 71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& ,
23512593043456 + 11096713075712 #4 - 866613204800 #4^2 -
594154633808 #4^3 + 12972975489 #4^4 + 5445419528 #4^5 +
204128320 #4^6 + 1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]}, {((
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 10] Pi + ArcCos[
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 + 86904077569 #2^4 -
2812789776 #2^5 - 3215264 #2^6 + 98048 #2^7 + 256 #2^8& ,
71776531109707776 + 4486033194356736 #3 -
492783949380096 #3^2 - 13087004217408 #3^3 +
1371707537409 #3^4 - 12876492816 #3^5 - 469565184 #3^6 +
4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 + 108432958666577573375489 #3^4 +
8775149549656432576 #3^5 + 379805682501120 #3^6 +
8071921664 #3^7 + 65536 #3^8& , 4294967296 + 77493960704 #4 +
486106071040 #4^2 + 1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& ,
6019223819124736 - 710189636845568 #6 - 13865811276800 #6^2 +
2376618535232 #6^3 + 12972975489 #6^4 - 1361354882 #6^5 +
12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}], ((
Rational[
1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((131072 #^3) #2^6) #3)
#6) #7^4 - ((((32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}])
Sin[Rational[1, 10] Pi + ArcCos[
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]]]}, {(
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Sin[Rational[1, 5] Pi +
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((512 #) #2) #3^2) #4) #5)
#7^2 + (((4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]], (
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 5] Pi +
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]]}, {(
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Sin[Rational[1, 5] Pi -
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]], (
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 5] Pi -
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]]}, {(
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Cos[Rational[1, 10] Pi -
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]], (
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Sin[Rational[1, 10] Pi -
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]]}, {
Rational[
1, 2] ((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])/(
1 + (Rational[-1, 1024]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 + 12972975489 #6^4 -
1361354882 #6^5 + 12758020 #6^6 - 26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-4)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])^2))^
Rational[-1, 2], ((
Rational[-1, 64] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((131072 #^3) #2^6) #3)
#6) #7^4 - ((((32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((8
5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((1024 #^5) #2^2) #3) #4^2)
#7^4 + ((((256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (16
Root[{6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 - 12876492816 #3^5 -
469565184 #3^6 + 4190208 #3^7 + 65536 #3^8& , 23512593043456 +
11096713075712 #4 - 866613204800 #4^2 - 594154633808 #4^3 +
12972975489 #4^4 + 5445419528 #4^5 + 204128320 #4^6 +
1704448 #4^7 + 4096 #4^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 + 1316021862656 #6^5 +
485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 - 12876492816 #2^5 -
469565184 #2^6 + 4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 + 1316021862656 #4^5 +
485599805440 #4^6 + 77326188544 #4^7 + 4294967296 #4^8& ,
23512593043456 + 11096713075712 #5 - 866613204800 #5^2 -
594154633808 #5^3 + 12972975489 #5^4 + 5445419528 #5^5 +
204128320 #5^6 + 1704448 #5^7 + 4096 #5^8& , 6019223819124736 -
710189636845568 #6 - 13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((8192 #^2)
#2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # - 57086057619456 #^2 +
11464396046272 #^3 + 86904077569 #^4 - 2812789776 #^5 -
3215264 #^6 + 98048 #^7 + 256 #^8& , 71776531109707776 +
4486033194356736 #2 - 492783949380096 #2^2 -
13087004217408 #2^3 + 1371707537409 #2^4 -
12876492816 #2^5 - 469565184 #2^6 + 4190208 #2^7 +
65536 #2^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])}, {(
Rational[-1, 2] (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2])
Cos[Rational[1, 10] Pi +
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]], (
Rational[1, 2] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2])
Sin[Rational[1, 10] Pi +
ArcCos[(Rational[-1, 32]
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^(-2)) (((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((65536 #2^3)
#3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3 + ((((-24)
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + ((
8 5^Rational[1, 2])
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((50331648 #^6) #2^3) #5)
#7^6 - (((201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}] + (
16 Root[{
6019223819124736 - 710189636845568 # - 13865811276800 #^2 +
2376618535232 #^3 + 12972975489 #^4 - 1361354882 #^5 +
12758020 #^6 - 26632 #^7 + 16 #^8& , 70380813052542976 -
6706695785938944 #2 - 57086057619456 #2^2 +
11464396046272 #2^3 + 86904077569 #2^4 - 2812789776 #2^5 -
3215264 #2^6 + 98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((196608 #^4) #2^3) #3^2)
#7^6 - (((1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^3)^2 + (64
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((268435456 #^2) #2)
#3) #4^2) #5) #7^6 + (((4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2) (-14 + 6 5^Rational[1, 2] +
28 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (4 5^Rational[1, 2])
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5,
6}]^2 - (16
Root[{6019223819124736 - 710189636845568 # -
13865811276800 #^2 + 2376618535232 #^3 + 12972975489 #^4 -
1361354882 #^5 + 12758020 #^6 - 26632 #^7 + 16 #^8& ,
70380813052542976 - 6706695785938944 #2 -
57086057619456 #2^2 + 11464396046272 #2^3 +
86904077569 #2^4 - 2812789776 #2^5 - 3215264 #2^6 +
98048 #2^7 + 256 #2^8& , 71776531109707776 +
4486033194356736 #3 - 492783949380096 #3^2 -
13087004217408 #3^3 + 1371707537409 #3^4 -
12876492816 #3^5 - 469565184 #3^6 + 4190208 #3^7 +
65536 #3^8& , 23512593043456 + 11096713075712 #4 -
866613204800 #4^2 - 594154633808 #4^3 + 12972975489 #4^4 +
5445419528 #4^5 + 204128320 #4^6 + 1704448 #4^7 +
4096 #4^8& , 3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #5 +
2643725544601800570663830814720 #5^2 +
731760025692743188537716736 #5^3 +
108432958666577573375489 #5^4 + 8775149549656432576 #5^5 +
379805682501120 #5^6 + 8071921664 #5^7 + 65536 #5^8& ,
4294967296 + 77493960704 #6 + 486106071040 #6^2 +
1316531731456 #6^3 + 1807078258689 #6^4 +
1316021862656 #6^5 + 485599805440 #6^6 + 77326188544 #6^7 +
4294967296 #6^8& , (4096 #^4) #2 + (
16384 #^4) #3 + ((32768 #^3) #2) #4 + ((
131072 #^3) #3) #4 + ((65536 #^2) #2) #4^2 + ((
262144 #^2) #3) #4^2 + ((128 #^3) #2) #5 + ((
512 #^3) #3) #5 + (((512 #^2) #2) #4) #5 + (((
2048 #^2) #3) #4) #5 + (#^2 #2) #5^2 + ((
4 #^2) #3) #5^2 - ((2048 #^3) #2) #6 - ((
8192 #^3) #3) #6 - (((8192 #^2) #2) #4) #6 - (((
32768 #^2) #3) #4) #6 - (((32 #^2) #2) #5) #6 - (((
128 #^2) #3) #5) #6 + ((256 #^2) #2) #6^2 + ((
1024 #^2) #3) #6^2 - ((
256 #^3) #2^3) #7^2 - (((2048 #^3) #2) #3^2) #7^2 - (((
1024 #^2) #2^3) #4) #7^2 + ((((
8192 #^2) #2^2) #3) #4) #7^2 - ((((
16384 #^2) #2) #3^2) #4) #7^2 + (((
32768 #^2) #3^3) #4) #7^2 + ((((
32768 #) #2^2) #3) #4^2) #7^2 - ((((
98304 #) #2) #3^2) #4^2) #7^2 + (((
262144 #) #3^3) #4^2) #7^2 - (((
262144 #2) #3^2) #4^3) #7^2 + ((
524288 #3^3) #4^3) #7^2 + ((((
16 #^2) #2^2) #3) #5) #7^2 - (((((
512 #) #2) #3^2) #4) #5) #7^2 + (((
4096 #3^3) #4^2) #5) #7^2 + (((
64 #^2) #2^3) #6) #7^2 - (((((
2048 #) #2^2) #3) #4) #6) #7^2 + ((((
16384 #2) #3^2) #4^2) #6) #7^2 + ((
4 #^2) #2^5) #7^4 + (((16 #^2) #2^4) #3) #7^4 - ((((
128 #) #2^4) #3) #4) #7^4 - ((((
512 #) #2^3) #3^2) #4) #7^4 + (((
1024 #2^3) #3^2) #4^2) #7^4 + (((
4096 #2^2) #3^3) #4^2) #7^4 - (((
4 #^2) #2^3) #5) #7^4 - ((((
16 #^2) #2^2) #3) #5) #7^4 + (((((
128 #) #2^2) #3) #4) #5) #7^4 + (((((
512 #) #2) #3^2) #4) #5) #7^4 - ((((
1024 #2) #3^2) #4^2) #5) #7^4 - (((
4096 #3^3) #4^2) #5) #7^4& }, {5, 3, 5, 4, 4, 6, 1}]^2)
Root[{70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^2 -
4 Root[{
70380813052542976 - 6706695785938944 # -
57086057619456 #^2 + 11464396046272 #^3 + 86904077569 #^4 -
2812789776 #^5 - 3215264 #^6 + 98048 #^7 + 256 #^8& ,
71776531109707776 + 4486033194356736 #2 -
492783949380096 #2^2 - 13087004217408 #2^3 +
1371707537409 #2^4 - 12876492816 #2^5 - 469565184 #2^6 +
4190208 #2^7 + 65536 #2^8& ,
3194814997072315910768797521339744256 +
4695788797132717630576692857667584 #3 +
2643725544601800570663830814720 #3^2 +
731760025692743188537716736 #3^3 +
108432958666577573375489 #3^4 + 8775149549656432576 #3^5 +
379805682501120 #3^6 + 8071921664 #3^7 + 65536 #3^8& ,
4294967296 + 77493960704 #4 + 486106071040 #4^2 +
1316531731456 #4^3 + 1807078258689 #4^4 +
1316021862656 #4^5 + 485599805440 #4^6 + 77326188544 #4^7 +
4294967296 #4^8& , 23512593043456 + 11096713075712 #5 -
866613204800 #5^2 - 594154633808 #5^3 + 12972975489 #5^4 +
5445419528 #5^5 + 204128320 #5^6 + 1704448 #5^7 +
4096 #5^8& , 6019223819124736 - 710189636845568 #6 -
13865811276800 #6^2 + 2376618535232 #6^3 +
12972975489 #6^4 - 1361354882 #6^5 + 12758020 #6^6 -
26632 #6^7 +
16 #6^8& , (((1024 #^6) #2^3) #5^2) #6^2 + (((
4096 #^5) #2^4) #5^2) #6^2 - ((((
3072 #^4) #2^3) #3) #5^2) #6^2 - ((((
8192 #^3) #2^4) #3) #5^2) #6^2 + ((((
3072 #^2) #2^3) #3^2) #5^2) #6^2 + ((((
4096 #) #2^4) #3^2) #5^2) #6^2 - (((
1024 #2^3) #3^3) #5^2) #6^2 - ((((
4096 #^5) #2^2) #4) #5^2) #6^2 + (((((
8192 #^3) #2^2) #3) #4) #5^2) #6^2 - (((((
4096 #) #2^2) #3^2) #4) #5^2) #6^2 - (((
2048 #^5) #2^4) #5) #6^3 - (((
8192 #^4) #2^5) #5) #6^3 + ((((
4096 #^3) #2^4) #3) #5) #6^3 + ((((
8192 #^2) #2^5) #3) #5) #6^3 - ((((
2048 #) #2^4) #3^2) #5) #6^3 + ((((
2048 #^5) #2^2) #4) #5) #6^3 + ((((
16384 #^4) #2^3) #4) #5) #6^3 - (((((
4096 #^3) #2^2) #3) #4) #5) #6^3 - (((((
16384 #^2) #2^3) #3) #4) #5) #6^3 + (((((
2048 #) #2^2) #3^2) #4) #5) #6^3 - ((((
8192 #^4) #2) #4^2) #5) #6^3 + (((((
8192 #^2) #2) #3) #4^2) #5) #6^3 + ((
1024 #^4) #2^5) #6^4 + ((4096 #^3) #2^6) #6^4 - (((
1024 #^2) #2^5) #3) #6^4 - (((
2048 #^4) #2^3) #4) #6^4 - (((
12288 #^3) #2^4) #4) #6^4 + ((((
2048 #^2) #2^3) #3) #4) #6^4 + (((
1024 #^4) #2) #4^2) #6^4 + (((
12288 #^3) #2^2) #4^2) #6^4 - ((((
1024 #^2) #2) #3) #4^2) #6^4 - ((
4096 #^3) #4^3) #6^4 + ((((
1024 #^6) #2^3) #3) #5^2) #7^2 - ((((
3072 #^4) #2^3) #3^2) #5^2) #7^2 + ((((
3072 #^2) #2^3) #3^3) #5^2) #7^2 - (((
1024 #2^3) #3^4) #5^2) #7^2 + ((((
4096 #^7) #2^2) #4) #5^2) #7^2 - (((((
12288 #^5) #2^2) #3) #4) #5^2) #7^2 + (((((
12288 #^3) #2^2) #3^2) #4) #5^2) #7^2 - (((((
4096 #) #2^2) #3^3) #4) #5^2) #7^2 - (((
65536 #^7) #2^2) #5^3) #7^2 + ((((
196608 #^5) #2^2) #3) #5^3) #7^2 - ((((
196608 #^3) #2^2) #3^2) #5^3) #7^2 + ((((
65536 #) #2^2) #3^3) #5^3) #7^2 - (((((
2048 #^5) #2^4) #3) #5) #6) #7^2 + (((((
4096 #^3) #2^4) #3^2) #5) #6) #7^2 - (((((
2048 #) #2^4) #3^3) #5) #6) #7^2 - (((((
8192 #^6) #2^3) #4) #5) #6) #7^2 + ((((((
2048 #^5) #2^2) #3) #4) #5) #6) #7^2 + ((((((
16384 #^4) #2^3) #3) #4) #5) #6) #7^2 - ((((((
4096 #^3) #2^2) #3^2) #4) #5) #6) #7^2 - ((((((
8192 #^2) #2^3) #3^2) #4) #5) #6) #7^2 + ((((((
2048 #) #2^2) #3^3) #4) #5) #6) #7^2 + (((((
8192 #^6) #2) #4^2) #5) #6) #7^2 - ((((((
16384 #^4) #2) #3) #4^2) #5) #6) #7^2 + ((((((
8192 #^2) #2) #3^2) #4^2) #5) #6) #7^2 + ((((
196608 #^6) #2^3) #5^2) #6) #7^2 - (((((
458752 #^4) #2^3) #3) #5^2) #6) #7^2 + (((((
327680 #^2) #2^3) #3^2) #5^2) #6) #7^2 - ((((
65536 #2^3) #3^3) #5^2) #6) #7^2 - (((((
131072 #^6) #2) #4) #5^2) #6) #7^2 + ((((((
262144 #^4) #2) #3) #4) #5^2) #6) #7^2 - ((((((
131072 #^2) #2) #3^2) #4) #5^2) #6) #7^2 + ((((
1024 #^4) #2^5) #3) #6^2) #7^2 - ((((
1024 #^2) #2^5) #3^2) #6^2) #7^2 + ((((
4096 #^5) #2^4) #4) #6^2) #7^2 - (((((
2048 #^4) #2^3) #3) #4) #6^2) #7^2 - (((((
4096 #^3) #2^4) #3) #4) #6^2) #7^2 + (((((
2048 #^2) #2^3) #3^2) #4) #6^2) #7^2 - ((((
8192 #^5) #2^2) #4^2) #6^2) #7^2 + (((((
1024 #^4) #2) #3) #4^2) #6^2) #7^2 + (((((
8192 #^3) #2^2) #3) #4^2) #6^2) #7^2 - (((((
1024 #^2) #2) #3^2) #4^2) #6^2) #7^2 + (((
4096 #^5) #4^3) #6^2) #7^2 - ((((
4096 #^3) #3) #4^3) #6^2) #7^2 - ((((
16384 #^6) #2^3) #5) #6^2) #7^2 - ((((
327680 #^5) #2^4) #5) #6^2) #7^2 - ((((
262144 #^4) #2^5) #5) #6^2) #7^2 + (((((
49152 #^4) #2^3) #3) #5) #6^2) #7^2 + (((((
589824 #^3) #2^4) #3) #5) #6^2) #7^2 + (((((
262144 #^2) #2^5) #3) #5) #6^2) #7^2 - (((((
49152 #^2) #2^3) #3^2) #5) #6^2) #7^2 - (((((
262144 #) #2^4) #3^2) #5) #6^2) #7^2 + ((((
16384 #2^3) #3^3) #5) #6^2) #7^2 + (((((
393216 #^5) #2^2) #4) #5) #6^2) #7^2 + (((((
524288 #^4) #2^3) #4) #5) #6^2) #7^2 - ((((((
655360 #^3) #2^2) #3) #4) #5) #6^2) #7^2 - ((((((
524288 #^2) #2^3) #3) #4) #5) #6^2) #7^2 + ((((((
262144 #) #2^2) #3^2) #4) #5) #6^2) #7^2 - ((((
65536 #^5) #4^2) #5) #6^2) #7^2 - (((((
262144 #^4) #2) #4^2) #5) #6^2) #7^2 + (((((
65536 #^3) #3) #4^2) #5) #6^2) #7^2 + ((((((
262144 #^2) #2) #3) #4^2) #5) #6^2) #7^2 + (((
16384 #^5) #2^4) #6^3) #7^2 + (((
196608 #^4) #2^5) #6^3) #7^2 + (((
262144 #^3) #2^6) #6^3) #7^2 - ((((
32768 #^3) #2^4) #3) #6^3) #7^2 - ((((
196608 #^2) #2^5) #3) #6^3) #7^2 + ((((
16384 #) #2^4) #3^2) #6^3) #7^2 - ((((
16384 #^5) #2^2) #4) #6^3) #7^2 - ((((
393216 #^4) #2^3) #4) #6^3) #7^2 - ((((
786432 #^3) #2^4) #4) #6^3) #7^2 + (((((
32768 #^3) #2^2) #3) #4) #6^3) #7^2 + (((((
393216 #^2) #2^3) #3) #4) #6^3) #7^2 - (((((
16384 #) #2^2) #3^2) #4) #6^3) #7^2 + ((((
196608 #^4) #2) #4^2) #6^3) #7^2 + ((((
786432 #^3) #2^2) #4^2) #6^3) #7^2 - (((((
196608 #^2) #2) #3) #4^2) #6^3) #7^2 - (((
262144 #^3) #4^3) #6^3) #7^2 + (((
256 #^4) #2^5) #3^2) #7^4 + (((
1024 #^3) #2^6) #3^2) #7^4 - (((
512 #^2) #2^5) #3^3) #7^4 - (((
1024 #) #2^6) #3^3) #7^4 + ((
256 #2^5) #3^4) #7^4 - ((((
512 #^6) #2^3) #3) #4) #7^4 - ((((
2048 #^5) #2^4) #3) #4) #7^4 + ((((
1024 #^4) #2^3) #3^2) #4) #7^4 + ((((
1024 #^3) #2^4) #3^2) #4) #7^4 - ((((
512 #^2) #2^3) #3^3) #4) #7^4 + ((((
1024 #) #2^4) #3^3) #4) #7^4 - ((
70380813052542976 #2) #4^2) #7^4 + (((
6706695785938944 #) #2) #4^2) #7^4 + (((
57086057619456 #^2) #2) #4^2) #7^4 - (((
11464396046272 #^3) #2) #4^2) #7^4 - (((
86904077569 #^4) #2) #4^2) #7^4 + (((
2812789776 #^5) #2) #4^2) #7^4 + (((
3215264 #^6) #2) #4^2) #7^4 - (((
98048 #^7) #2) #4^2) #7^4 + (((
1024 #^7) #2^2) #4^2) #7^4 - ((((
512 #^6) #2) #3) #4^2) #7^4 + ((((
1024 #^5) #2^2) #3) #4^2) #7^4 + ((((
256 #^4) #2) #3^2) #4^2) #7^4 - ((((
2048 #^3) #2^2) #3^2) #4^2) #7^4 - ((
1024 #^7) #4^3) #7^4 + (((1024 #^5) #3) #4^3) #7^4 - ((((
8192 #^6) #2^3) #3) #5) #7^4 - ((((
32768 #^5) #2^4) #3) #5) #7^4 + ((((
24576 #^4) #2^3) #3^2) #5) #7^4 + ((((
65536 #^3) #2^4) #3^2) #5) #7^4 - ((((
24576 #^2) #2^3) #3^3) #5) #7^4 - ((((
32768 #) #2^4) #3^3) #5) #7^4 + (((
8192 #2^3) #3^4) #5) #7^4 + (((
2252186017681375232 #2) #4) #5) #7^4 - ((((
214614265150046208 #) #2) #4) #5) #7^4 - ((((
1826753843822592 #^2) #2) #4) #5) #7^4 + ((((
366860673480704 #^3) #2) #4) #5) #7^4 + ((((
2780930482208 #^4) #2) #4) #5) #7^4 - ((((
90009272832 #^5) #2) #4) #5) #7^4 - ((((
102888448 #^6) #2) #4) #5) #7^4 + ((((
3137536 #^7) #2) #4) #5) #7^4 - ((((
98304 #^7) #2^2) #4) #5) #7^4 - ((((
262144 #^6) #2^3) #4) #5) #7^4 + (((((
24576 #^6) #2) #3) #4) #5) #7^4 + (((((
294912 #^5) #2^2) #3) #4) #5) #7^4 + (((((
524288 #^4) #2^3) #3) #4) #5) #7^4 - (((((
24576 #^4) #2) #3^2) #4) #5) #7^4 - (((((
294912 #^3) #2^2) #3^2) #4) #5) #7^4 - (((((
262144 #^2) #2^3) #3^2) #4) #5) #7^4 + (((((
8192 #^2) #2) #3^3) #4) #5) #7^4 + (((((
98304 #) #2^2) #3^3) #4) #5) #7^4 + (((
32768 #^7) #4^2) #5) #7^4 + ((((
262144 #^6) #2) #4^2) #5) #7^4 - ((((
65536 #^5) #3) #4^2) #5) #7^4 - (((((
524288 #^4) #2) #3) #4^2) #5) #7^4 + ((((
32768 #^3) #3^2) #4^2) #5) #7^4 + (((((
262144 #^2) #2) #3^2) #4^2) #5) #7^4 - ((
18017488141451001856 #2) #5^2) #7^4 + (((
1716914121200369664 #) #2) #5^2) #7^4 + (((
14614030750580736 #^2) #2) #5^2) #7^4 - (((
2934885387845632 #^3) #2) #5^2) #7^4 - (((
22247443857664 #^4) #2) #5^2) #7^4 + (((
720074182656 #^5) #2) #5^2) #7^4 + (((
823107584 #^6) #2) #5^2) #7^4 - (((
25100288 #^7) #2) #5^2) #7^4 + (((
1310720 #^7) #2^2) #5^2) #7^4 + (((
5242880 #^6) #2^3) #5^2) #7^4 + (((
4194304 #^5) #2^4) #5^2) #7^4 - ((((
262144 #^6) #2) #3) #5^2) #7^4 - ((((
3932160 #^5) #2^2) #3) #5^2) #7^4 - ((((
11534336 #^4) #2^3) #3) #5^2) #7^4 - ((((
8388608 #^3) #2^4) #3) #5^2) #7^4 + ((((
393216 #^4) #2) #3^2) #5^2) #7^4 + ((((
3932160 #^3) #2^2) #3^2) #5^2) #7^4 + ((((
7340032 #^2) #2^3) #3^2) #5^2) #7^4 + ((((
4194304 #) #2^4) #3^2) #5^2) #7^4 - ((((
262144 #^2) #2) #3^3) #5^2) #7^4 - ((((
1310720 #) #2^2) #3^3) #5^2) #7^4 - (((
1048576 #2^3) #3^3) #5^2) #7^4 + (((
65536 #2) #3^4) #5^2) #7^4 - (((
262144 #^7) #4) #5^2) #7^4 - ((((
4194304 #^6) #2) #4) #5^2) #7^4 - ((((
4194304 #^5) #2^2) #4) #5^2) #7^4 + ((((
786432 #^5) #3) #4) #5^2) #7^4 + (((((
8388608 #^4) #2) #3) #4) #5^2) #7^4 + (((((
8388608 #^3) #2^2) #3) #4) #5^2) #7^4 - ((((
786432 #^3) #3^2) #4) #5^2) #7^4 - (((((
4194304 #^2) #2) #3^2) #4) #5^2) #7^4 - (((((
4194304 #) #2^2) #3^2) #4) #5^2) #7^4 + ((((
262144 #) #3^3) #4) #5^2) #7^4 + ((((
16384 #^5) #2^4) #3) #6) #7^4 + ((((
98304 #^4) #2^5) #3) #6) #7^4 + ((((
131072 #^3) #2^6) #3) #6) #7^4 - ((((
32768 #^3) #2^4) #3^2) #6) #7^4 - ((((
131072 #^2) #2^5) #3^2) #6) #7^4 - ((((
131072 #) #2^6) #3^2) #6) #7^4 + ((((
16384 #) #2^4) #3^3) #6) #7^4 + (((
32768 #2^5) #3^3) #6) #7^4 + ((((
32768 #^6) #2^3) #4) #6) #7^4 + ((((
131072 #^5) #2^4) #4) #6) #7^4 - (((((
16384 #^5) #2^2) #3) #4) #6) #7^4 - (((((
229376 #^4) #2^3) #3) #4) #6) #7^4 - (((((
393216 #^3) #2^4) #3) #4) #6) #7^4 + (((((
32768 #^3) #2^2) #3^2) #4) #6) #7^4 + (((((
229376 #^2) #2^3) #3^2) #4) #6) #7^4 + (((((
262144 #) #2^4) #3^2) #4) #6) #7^4 - (((((
16384 #) #2^2) #3^3) #4) #6) #7^4 - ((((
32768 #2^3) #3^3) #4) #6) #7^4 - ((((
32768 #^6) #2) #4^2) #6) #7^4 - ((((
262144 #^5) #2^2) #4^2) #6) #7^4 + (((((
131072 #^4) #2) #3) #4^2) #6) #7^4 + (((((
393216 #^3) #2^2) #3) #4^2) #6) #7^4 - (((((
98304 #^2) #2) #3^2) #4^2) #6) #7^4 - (((((
131072 #) #2^2) #3^2) #4^2) #6) #7^4 + (((
131072 #^5) #4^3) #6) #7^4 - ((((
131072 #^3) #3) #4^3) #6) #7^4 - ((((
1572864 #^6) #2^3) #5) #6) #7^4 - ((((
8388608 #^5) #2^4) #5) #6) #7^4 - ((((
8388608 #^4) #2^5) #5) #6) #7^4 + (((((
3670016 #^4) #2^3) #3) #5) #6) #7^4 + (((((
12582912 #^3) #2^4) #3) #5) #6) #7^4 + (((((
8388608 #^2) #2^5) #3) #5) #6) #7^4 - (((((
2621440 #^2) #2^3) #3^2) #5) #6) #7^4 - (((((
4194304 #) #2^4) #3^2) #5) #6) #7^4 + ((((
524288 #2^3) #3^3) #5) #6) #7^4 + (((((
524288 #^6) #2) #4) #5) #6) #7^4 + (((((
10485760 #^5) #2^2) #4) #5) #6) #7^4 + (((((
16777216 #^4) #2^3) #4) #5) #6) #7^4 - ((((((
524288 #^4) #2) #3) #4) #5) #6) #7^4 - ((((((
12582912 #^3) #2^2) #3) #4) #5) #6) #7^4 - ((((((
16777216 #^2) #2^3) #3) #4) #5) #6) #7^4 - ((((((
524288 #^2) #2) #3^2) #4) #5) #6) #7^4 + ((((((
2097152 #) #2^2) #3^2) #4) #5) #6) #7^4 + (((((
524288 #2) #3^3) #4) #5) #6) #7^4 - ((((
2097152 #^5) #4^2) #5) #6) #7^4 - (((((
8388608 #^4) #2) #4^2) #5) #6) #7^4 + ((((((
8388608 #^2) #2) #3) #4^2) #5) #6) #7^4 + (((((
2097152 #) #3^2) #4^2) #5) #6) #7^4 + (((
65536 #^6) #2^3) #6^2) #7^4 + (((
1835008 #^5) #2^4) #6^2) #7^4 + (((
9437184 #^4) #2^5) #6^2) #7^4 + (((
12582912 #^3) #2^6) #6^2) #7^4 - ((((
196608 #^4) #2^3) #3) #6^2) #7^4 - ((((
3670016 #^3) #2^4) #3) #6^2) #7^4 - ((((
10485760 #^2) #2^5) #3) #6^2) #7^4 - ((((
4194304 #) #2^6) #3) #6^2) #7^4 + ((((
196608 #^2) #2^3) #3^2) #6^2) #7^4 + ((((
1835008 #) #2^4) #3^2) #6^2) #7^4 + (((
1048576 #2^5) #3^2) #6^2) #7^4 - (((
65536 #2^3) #3^3) #6^2) #7^4 - ((((
1835008 #^5) #2^2) #4) #6^2) #7^4 - ((((
18874368 #^4) #2^3) #4) #6^2) #7^4 - ((((
37748736 #^3) #2^4) #4) #6^2) #7^4 + (((((
3670016 #^3) #2^2) #3) #4) #6^2) #7^4 + (((((
20971520 #^2) #2^3) #3) #4) #6^2) #7^4 + (((((
12582912 #) #2^4) #3) #4) #6^2) #7^4 - (((((
1835008 #) #2^2) #3^2) #4) #6^2) #7^4 - ((((
2097152 #2^3) #3^2) #4) #6^2) #7^4 + ((((
9437184 #^4) #2) #4^2) #6^2) #7^4 + ((((
37748736 #^3) #2^2) #4^2) #6^2) #7^4 - (((((
10485760 #^2) #2) #3) #4^2) #6^2) #7^4 - (((((
12582912 #) #2^2) #3) #4^2) #6^2) #7^4 + ((((
1048576 #2) #3^2) #4^2) #6^2) #7^4 - (((
12582912 #^3) #4^3) #6^2) #7^4 + ((((
4194304 #) #3) #4^3) #6^2) #7^4 + (((
65536 #^6) #2^3) #3) #7^6 + (((
524288 #^5) #2^4) #3) #7^6 + (((
1048576 #^4) #2^5) #3) #7^6 - (((
196608 #^4) #2^3) #3^2) #7^6 - (((
1048576 #^3) #2^4) #3^2) #7^6 - (((
1048576 #^2) #2^5) #3^2) #7^6 + (((
196608 #^2) #2^3) #3^3) #7^6 + (((
524288 #) #2^4) #3^3) #7^6 - ((
65536 #2^3) #3^4) #7^6 + (((
262144 #^7) #2^2) #4) #7^6 + (((
2097152 #^6) #2^3) #4) #7^6 + (((
4194304 #^5) #2^4) #4) #7^6 - ((((
1310720 #^5) #2^2) #3) #4) #7^6 - ((((
6291456 #^4) #2^3) #3) #4) #7^6 - ((((
4194304 #^3) #2^4) #3) #4) #7^6 + ((((
1835008 #^3) #2^2) #3^2) #4) #7^6 + ((((
4194304 #^2) #2^3) #3^2) #4) #7^6 - ((((
786432 #) #2^2) #3^3) #4) #7^6 - (((
2097152 #^6) #2) #4^2) #7^6 - (((
8388608 #^5) #2^2) #4^2) #7^6 + ((((
5242880 #^4) #2) #3) #4^2) #7^6 + ((((
8388608 #^3) #2^2) #3) #4^2) #7^6 - ((((
3145728 #^2) #2) #3^2) #4^2) #7^6 + ((
4194304 #^5) #4^3) #7^6 - (((
4194304 #^3) #3) #4^3) #7^6 - (((
4194304 #^7) #2^2) #5) #7^6 - (((
50331648 #^6) #2^3) #5) #7^6 - (((
201326592 #^5) #2^4) #5) #7^6 - (((
268435456 #^4) #2^5) #5) #7^6 + ((((
12582912 #^5) #2^2) #3) #5) #7^6 + ((((
117440512 #^4) #2^3) #3) #5) #7^6 + ((((
335544320 #^3) #2^4) #3) #5) #7^6 + ((((
268435456 #^2) #2^5) #3) #5) #7^6 - ((((
12582912 #^3) #2^2) #3^2) #5) #7^6 - ((((
83886080 #^2) #2^3) #3^2) #5) #7^6 - ((((
134217728 #) #2^4) #3^2) #5) #7^6 + ((((
4194304 #) #2^2) #3^3) #5) #7^6 + (((
16777216 #2^3) #3^3) #5) #7^6 + ((((
33554432 #^6) #2) #4) #5) #7^6 + ((((
268435456 #^5) #2^2) #4) #5) #7^6 + ((((
536870912 #^4) #2^3) #4) #5) #7^6 - (((((
67108864 #^4) #2) #3) #4) #5) #7^6 - (((((
402653184 #^3) #2^2) #3) #4) #5) #7^6 - (((((
536870912 #^2) #2^3) #3) #4) #5) #7^6 + (((((
33554432 #^2) #2) #3^2) #4) #5) #7^6 + (((((
134217728 #) #2^2) #3^2) #4) #5) #7^6 - (((
67108864 #^5) #4^2) #5) #7^6 - ((((
268435456 #^4) #2) #4^2) #5) #7^6 + ((((
67108864 #^3) #3) #4^2) #5) #7^6 + (((((
268435456 #^2) #2) #3) #4^2) #5) #7^6 + (((
4194304 #^6) #2^3) #6) #7^6 + (((
50331648 #^5) #2^4) #6) #7^6 + (((
201326592 #^4) #2^5) #6) #7^6 + (((
268435456 #^3) #2^6) #6) #7^6 - ((((
12582912 #^4) #2^3) #3) #6) #7^6 - ((((
100663296 #^3) #2^4) #3) #6) #7^6 - ((((
201326592 #^2) #2^5) #3) #6) #7^6 + ((((
12582912 #^2) #2^3) #3^2) #6) #7^6 + ((((
50331648 #) #2^4) #3^2) #6) #7^6 - (((
4194304 #2^3) #3^3) #6) #7^6 - ((((
50331648 #^5) #2^2) #4) #6) #7^6 - ((((
402653184 #^4) #2^3) #4) #6) #7^6 - ((((
805306368 #^3) #2^4) #4) #6) #7^6 + (((((
100663296 #^3) #2^2) #3) #4) #6) #7^6 + (((((
402653184 #^2) #2^3) #3) #4) #6) #7^6 - (((((
50331648 #) #2^2) #3^2) #4) #6) #7^6 + ((((
201326592 #^4) #2) #4^2) #6) #7^6 + ((((
805306368 #^3) #2^2) #4^2) #6) #7^6 - (((((
201326592 #^2) #2) #3) #4^2) #6) #7^6 - (((
268435456 #^3) #4^3) #6) #7^6 + ((
67108864 #^6) #2^3) #7^8 + ((
805306368 #^5) #2^4) #7^8 + ((
3221225472 #^4) #2^5) #7^8 + ((
4294967296 #^3) #2^6) #7^8 - (((
201326592 #^4) #2^3) #3) #7^8 - (((
1610612736 #^3) #2^4) #3) #7^8 - (((
3221225472 #^2) #2^5) #3) #7^8 + (((
201326592 #^2) #2^3) #3^2) #7^8 + (((
805306368 #) #2^4) #3^2) #7^8 - ((
67108864 #2^3) #3^3) #7^8 - (((
805306368 #^5) #2^2) #4) #7^8 - (((
6442450944 #^4) #2^3) #4) #7^8 - (((
12884901888 #^3) #2^4) #4) #7^8 + ((((
1610612736 #^3) #2^2) #3) #4) #7^8 + ((((
6442450944 #^2) #2^3) #3) #4) #7^8 - ((((
805306368 #) #2^2) #3^2) #4) #7^8 + (((
3221225472 #^4) #2) #4^2) #7^8 + (((
12884901888 #^3) #2^2) #4^2) #7^8 - ((((
3221225472 #^2) #2) #3) #4^2) #7^8 - ((
4294967296 #^3) #4^3) #7^8& }, {3, 5, 4, 6, 4, 5, 6}]^4))^
Rational[1, 2])]]}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.],
ArrowBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8u/7lg6YKl79/b6ytOXbl3+hcM86D67dH0w+Xjwj4ZvGv5YV/h
pqqWvPShPXb1DAxPmN24Oyx+Y8hnzPh56hPfqv33zlXv2MD9C5f6/bjM25/e
q3OU9ed+z8i5E1ZK3MVQv27L/hoO37f7bZcrsJ3v+bofnX9Ipdp7R8kC+7Nq
LZNXFn3AUH/p+H/+09/f7e/Q7w+v9rxmjx5ehOQvFx4/90Hryf6giktPrZle
YYQXIfmzibvnv254ZH95Z0rNQfPX+9HDi5B8n2rIrpZZ7+0nzzwndzP+EkZ4
ofsfXR5dP7r6zXdPnHRf/3h/YLH7Atmzj+zRw6PQZP7mI9+e75+aPX3RnEs3
McJjl9HyZ8r1h+39172wfHH81X50/7w5Zqj88ecr+2r+652s8nv3o7uH86/E
wSUzrttvv6Q+52f7Cwz3oNuPLo+uH109uvvQ+ejuQ+ejmw8Ahm4Clg==
"],
0.0319088348808545]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9156534611226073, -1.3468771209104056},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.8837446262417528, -1.314968286029551}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9980037820455706, -1.2870461105649829},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.029912616926425, -1.2551372756841284}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.532453719327712, 0.551438879492891}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5643625542085664, 0.5833477143737456}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05089529731485315, 1.627854080809747},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.018986462433998652, 1.6597629156906015}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.5639087429358225, 0.4546302711727504},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.531999908054968, 0.4865391060536049}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.03214050218009269, 1.027993751750205},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {0.06404933706094719, 1.0599025866310594}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9677481949313409, 0.3482349734374499},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {-0.9358393600504864, 0.3801438083183044}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6302417791990201, -0.812772702094444},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {-0.5983329443181656, -0.7808638672135895}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5782373542561402, -0.8505561284599089},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6101461891369947, -0.8186472935790544}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9876121176941284, 0.28710010536669833},
0.0319088348808545],
InsetBox["15",
Offset[{2, 2}, {1.0195209525749829, 0.31900894024755283}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6151465359789, 0.5875385408831822}, 0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5832377010980455, 0.6194473757640367}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.7488730915298573, -0.40347972753596056},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7169642566490028, -0.37157089265510607}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.15231751215323702, -0.836902726271953},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.18422634703409152, -0.8049938913910984}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8430104911223828, -0.11375460257755592},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8749193260032373, -0.08184576769670142}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.3686916242331369, 0.7665985155022871},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.4006004591139914, 0.7985073503831416}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[252]=",ExpressionUUID->"552b3d37-5ecc-4b9e-9b66-14e6aaf778c6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Redo", "Subsubsection",ExpressionUUID->"f6b883e6-2c26-48e5-9e1b-8ccd359f7b72"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v", "=",
RowBox[{
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"outer", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"tilted", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Phi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"middle", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"], "r", " ",
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Psi]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"inner", " ", "pentagon"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox["1", "2"],
RowBox[{"Csc", "[",
FractionBox["\[Pi]", "5"], "]"}],
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"1", "/", "4"}]}], ")"}], "/", "5"}]}], "+",
RowBox[{"4",
RowBox[{"\[Pi]", "/", "5"}]}], "+", "\[Theta]"}], "]"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"k", ",", "5"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}], "/.",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]", "\[Rule]",
RowBox[{"\[Pi]", "/", "100"}]}], ",", "\[IndentingNewLine]",
RowBox[{"\[Theta]", "\[Rule]",
RowBox[{
"-", "1.7056097879257796103860159614608375667124365057503383025689057123\
6629180161806`50."}]}], ",",
RowBox[{"\[Psi]", "\[Rule]",
RowBox[{
"-", "0.5969026041820607153079022428231055479975485059529660873408572907\
4044126728344`50."}]}], ",",
RowBox[{
"r", "\[Rule]",
"1.207869443620030847276468918089691760518715991416256949027429324777224\
99564001`50."}], ",",
RowBox[{
"R", "\[Rule]",
"0.957078156866110632228677115364124615461143435290048097659784064945282\
95603317`50."}]}], "}"}]}]}]], "Input",ExpressionUUID->"c712a265-fda5-4561-\
94e2-cc9cb4db0ec7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.91522834433436088899628632593610441365088079663510765221311779592\
971495978054`50."}], ",",
RowBox[{
"-", "1.34671761245990437672058843171766847533528173567877755312864332701\
993227447781`50."}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.99798344880647971716432220148780709075249481746115222083703710485295848\
464194`50.", ",",
RowBox[{
"-", "1.28659250965138341711464357808887931779079019904372493820619883511\
791028132225`50."}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.53201603590660603568988959089719530538853547940359772775090719963910396\
388124`50.", ",",
"0.5515597118243222989979752187177844870156171336577166614539789307036117\
6889588`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.05114546730631786068885222003284634003239933825034348820104298739\
613377954244`50."}], ",",
"1.6274751583839118693359564349540628079631245134794070104673627567864222\
2796831`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "1.56362567307240700316907324641605164245775016197929880817378352116\
621370920017`50."}], ",",
"0.4542752519030536255013003561347004981473302875853788194135004746478085\
5893574`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.96673157966886271397079215140850599498226089788796505597763881075\
525807241156`49.91546012542344"}], ",",
RowBox[{
"-", "0.34804478477804593599623901932230359160139441615822266999822240328\
226658471331`49.57545143418664"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.03227377340908787579516253991210688823064421415478318183831150793960474\
989473`48.69910576778562", ",",
RowBox[{
"-", "1.02696812165236649330863870005780123797238328553920605450791754005\
752547286071`49.9919287887921"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.98667786858089158570252231063145007369814772708347050936216477854440766\
740624`49.93054790644644", ",",
RowBox[{
"-", "0.28665641976575338119832530866881297351420646532767370195745843350\
356149116655`49.51505244306258"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.57752668532120510199850407842289466146781846403707858142156155322330991\
887057`49.726231455349186", ",",
"0.8498047111437737329150435337502165498867539030056059087950132795778899\
540874`49.85212138464394"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.62974674764232184952539677755794562841434950738736721664439902895\
206426376`49.75214398432924"}], ",",
"0.8118646150523920775881594942987012532012302640194965176685850972654635\
9465321`49.83475415394873"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.61474387117480085404273121868960484186077753243554802912202418579\
16344096504`49.7874668667571"}], ",",
"0.5879598375765123816963422320207561615986538900695118899545809552153485\
5074278`49.74877377399323"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.74914933822783903493327575139089116873262019197330691672753495191\
474155347254`50.03741968820854"}], ",",
RowBox[{
"-", "0.40296658271222664898313470428197741209074911676209059579757326177\
658219499599`49.49882095254179"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.15174411750050541338791545810889400350396063363061054216319489299436607\
049211`49.02650315576971", ",",
RowBox[{
"-", "0.83700688202306423830177140624233801776305006722725447706537479828\
089070005651`50.50973748498062"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.84293236043600911954397822850152172490578745652751470663842546821368448\
454529`50.63574479382874", ",",
RowBox[{
"-", "0.11433211919560039893557170319323734264084692226444038913001666889\
064408457733`48.90049584692159"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.36921673146612535604411328347008028218364963425072969704793877649832540\
808549`49.45097694254319", ",",
"0.7663457463543789045241355816967966108959922161842735720383837737327684\
2888711`50.085263698207136"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[238]=",ExpressionUUID->"4a36d3f6-6a97-4715-9ed3-63b552484d2f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e", "=",
RowBox[{"Select", "[",
RowBox[{
RowBox[{"Subsets", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"{", "2", "}"}]}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"Round", "[",
RowBox[{"d", "=",
RowBox[{"EuclideanDistance", "@@",
RowBox[{"v", "[",
RowBox[{"[", "#", "]"}], "]"}]}]}], "]"}], "-", "d"}], "]"}], "<=",
RowBox[{"10", "^",
RowBox[{"-", "2"}]}]}], "&"}]}], "]"}]}]], "Input",
CellLabel->
"In[240]:=",ExpressionUUID->"fdaaa393-22af-4a76-8e6d-9483e931323f"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\
\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \
\\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 43, 19082697425266532698,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[240]:=",ExpressionUUID->"0c250869-e24d-4dda-883e-a1e745fcec3b"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"1\\\"}], \\\"+\\\", SqrtBox[RowBox[{\\\"Times\\\", \\\"[\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
\\\"}]]}], \\\")\\\"}], \\\"2\\\"], \\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\
\", RowBox[{RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"4\\\"]}], \
\\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 44, 19082697425266532698,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[240]:=",ExpressionUUID->"54dd3ab2-9b25-4854-b429-7e354969c6d9"],
Cell[BoxData[
TemplateBox[{
"N", "meprec",
"\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{\\\"2\\\", \\\"-\\\", \
SqrtBox[RowBox[{FractionBox[RowBox[{FractionBox[\\\"5\\\", \\\"8\\\"], \
\\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"8\\\"], \\\" \\\", \
RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], RowBox[{FractionBox[\\\"5\\\", \
\\\"8\\\"], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]], \
\\\"+\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{FractionBox[\\\"1\\\", \
SqrtBox[RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]]], \\\"-\\\", \
RowBox[{FractionBox[\\\"1\\\", \\\"4\\\"], \\\" \\\", RowBox[{\\\"Power\\\", \
\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}], \
\\\")\\\"}], \\\"2\\\"]}]]}]\\).\"", 2, 240, 45, 19082697425266532698,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[240]:=",ExpressionUUID->"dadbe2bd-7c24-4607-b48c-6738c40177cb"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \
\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 240, 46, 19082697425266532698, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellLabel->
"During evaluation of \
In[240]:=",ExpressionUUID->"ba4bd48e-1777-4b36-ae3b-c733b7467a10"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[240]=",ExpressionUUID->"c5f8d93e-4939-4127-9ee6-280ad62c56ea"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g0", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[262]:=",ExpressionUUID->"ca82e210-7a1e-4784-81c4-15b065cf9023"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {1, 16}, {1, 17}, {2, 3}, {2,
8}, {2, 17}, {2, 18}, {3, 4}, {3, 9}, {3, 18}, {3, 19}, {4, 5}, {4,
10}, {4, 19}, {4, 20}, {5, 6}, {5, 16}, {5, 20}, {6, 11}, {6, 12}, {7,
12}, {7, 13}, {8, 13}, {8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {
11, 16}, {12, 17}, {13, 18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {
17, 18}, {18, 19}, {19, 20}}}, {
VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, (
Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {((Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {
0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1,
2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 +
5^Rational[
1, 2])}, \
{-0.91522834433436088899628632593610441365088079663510765221311779592971495978\
054`50., -1.\
34671761245990437672058843171766847533528173567877755312864332701993227447781`\
50.}, {0.997983448806479717164322201487807090752494817461152220837037104852958\
48464194`50., \
-1.286592509651383417114643578088879317790790199043724938206198835117910281322\
25`50.}, {
1.5320160359066060356898895908971953053885354794035977277509071996391\
0396388124`50.,
0.551559711824322298997975218717784487015617133657716661453978930703\
61176889588`50.}, \
{-0.05114546730631786068885222003284634003239933825034348820104298739613377954\
244`50., 1.\
62747515838391186933595643495406280796312451347940701046736275678642222796831`\
50.}, {-1.\
56362567307240700316907324641605164245775016197929880817378352116621370920017`\
50., 0.45427525190305362550130035613470049814733028758537881941350047464780855\
893574`50.}, \
{-0.96673157966886271397079215140850599498226089788796505597763881075525807241\
156`49.91546012542344, \
-0.348044784778045935996239019322303591601394416158222669998222403282266584713\
31`49.57545143418664}, {
0.0322737734090878757951625399121068882306442141547831818383115079396\
0474989473`48.69910576778562, \
-1.026968121652366493308638700057801237972383285539206054507917540057525472860\
71`49.9919287887921}, {
0.9866778685808915857025223106314500736981477270834705093621647785444\
0766740624`49.93054790644644, \
-0.286656419765753381198325308668812973514206465327673701957458433503561491166\
55`49.51505244306258}, {
0.5775266853212051019985040784228946614678184640370785814215615532233\
0991887057`49.726231455349186,
0.849804711143773732915043533750216549886753903005605908795013279577\
8899540874`49.85212138464394}, \
{-0.62974674764232184952539677755794562841434950738736721664439902895206426376\
`49.75214398432924,
0.811864615052392077588159494298701253201230264019496517668585097265\
46359465321`49.83475415394873}, \
{-0.61474387117480085404273121868960484186077753243554802912202418579163440965\
04`49.7874668667571,
0.587959837576512381696342232020756161598653890069511889954580955215\
34855074278`49.74877377399323}, \
{-0.74914933822783903493327575139089116873262019197330691672753495191474155347\
254`50.03741968820854, \
-0.402966582712226648983134704281977412090749116762090595797573261776582194995\
99`49.49882095254179}, {
0.1517441175005054133879154581088940035039606336306105421631948929943\
6607049211`49.02650315576971, \
-0.837006882023064238301771406242338017763050067227254477065374798280890700056\
51`50.50973748498062}, {
0.8429323604360091195439782285015217249057874565275147066384254682136\
8448454529`50.63574479382874, \
-0.114332119195600398935571703193237342640846922264440389130016668890644084577\
33`48.90049584692159}, {
0.3692167314661253560441132834700802821836496342507296970479387764983\
2540808549`49.45097694254319,
0.766345746354378904524135581696796610895992216184273572038383773732\
76842888711`50.085263698207136}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], LineBox[CompressedData["
1:eJxTTMoPSmVmYGDQAGImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8uzxge9Kfq/Xt7q83M7I+mfsHQbzz9cNjv1Y/324paqE288AhD
f7dbAQfHz+f7NQI6Ik1O3cRwD9R+ezT74fLbVxrZKzf/sH9R3NSbsOwhhjwh
81+YML+OzDlsP0tGasWhE69w2MfA8ITZjbvD4rc9uvyDVdek9uqv2q/z2yVF
mesXhjwh8/8zSnn6/nxlP/Hq5RX3XPbux2Hfflzu+dk0IWoOy8/9tyZObrwh
dBdDnpD53LKbzOwXXrdXXnWg+XnrCwz7zlu+/Nzj+XZ/bFr6EfWerxjpAT1+
0eXRzUc3bxbrNYHy9+/2F07gWhTrdm0/uvz///OUDNoW2D9o4FAoy/uAkd4I
yR/dq15+d9J7+zhXVu0pEZcw0gsheaHNDnaS1Y/s3+t4L5tp+BojvgnJ20bv
WfZI7cn+Hft9G07/eokRX+j+R5dH14+uHj380cMDPf2j+xc9faL7Bz39oLsH
PX7R3YNuP7o8un509ejuQ+ejuw+dj24+AI/Wdz0=
"]]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9152283443343608, -1.3467176124599043},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9979834488064797, -1.2865925096513835},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.0298922836873343, -1.254683674770529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05114546730631786, 1.6274751583839118},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647663}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.563625673072407, 0.4542752519030536},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839081}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9667315796688627, -0.34804478477804596},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {-0.9348227447880082, -0.31613594989719146}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.03227377340908787, -1.0269681216523665},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {0.06418260828994238, -0.995059286771512}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9866778685808916, -0.2866564197657534},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {1.0185867034617462, -0.2547475848848989}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5775266853212051, 0.8498047111437738},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6094355202020596, 0.8817135460246283}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6297467476423219, 0.811864615052392},
0.0319088348808545],
InsetBox["15",
Offset[{2, 2}, {-0.5978379127614674, 0.8437734499332465}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6147438711748009, 0.5879598375765124},
0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5828350362939464, 0.6198686724573669}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.749149338227839, -0.40296658271222663},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7172405033469845, -0.37105774783137213}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.15174411750050543, -0.8370068820230643},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.18365295238135992, -0.8050980471422098}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8429323604360092, -0.11433211919560039},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8748411953168637, -0.0824232843147459}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.3692167314661254, 0.7663457463543789},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.4011255663469799, 0.7982545812352334}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[262]=",ExpressionUUID->"ba6f11c4-04ed-4136-ac67-2d66c60e1d84"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g0", "]"}]], "Input",
CellLabel->
"In[264]:=",ExpressionUUID->"37fe6db0-c3a3-420d-8852-f4b274ddf12e"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[264]=",ExpressionUUID->"c9ba7b42-9eaa-43da-9875-6b86c0d61780"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"VertexDegree", "[", "g0", "]"}]], "Input",
CellLabel->
"In[265]:=",ExpressionUUID->"ca8cac7a-ba0a-495a-9f8f-cb53bade24d8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"5", ",", "5", ",", "5", ",", "5", ",", "5", ",", "3", ",", "3", ",", "3",
",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",", "3", ",",
"5", ",", "5", ",", "5", ",", "5", ",", "5"}], "}"}]], "Output",
CellLabel->
"Out[265]=",ExpressionUUID->"f6545ffc-d860-43e2-8c9e-6127d47bda36"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e2", "=",
RowBox[{"Complement", "[",
RowBox[{"e", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "20"}], "}"}]}], "}"}]}], "]"}]}]], "Input",
CellLabel->
"In[259]:=",ExpressionUUID->"b95a683d-a389-43cf-957c-2a13303d28e8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "7"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "9"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "13"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "11"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "17"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{"17", ",", "18"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "19"}], "}"}], ",",
RowBox[{"{",
RowBox[{"19", ",", "20"}], "}"}]}], "}"}]], "Output",
CellLabel->
"Out[259]=",ExpressionUUID->"3e244091-4f99-46c7-a6c3-665f0555404a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"EuclideanDistance", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"4", ",", "5"}], "}"}], "]"}], "]"}]}], "//",
"FullSimplify"}]], "Input",
CellLabel->
"In[256]:=",ExpressionUUID->"f5482682-7208-4899-bb12-8b6b70eeb205"],
Cell[BoxData["2"], "Output",
CellLabel->
"Out[256]=",ExpressionUUID->"98c68064-120a-4158-83f2-ebb1b9472f15"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], ",",
RowBox[{"UndirectedEdge", "@@@", "e2"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]", "v"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input",
CellLabel->
"In[260]:=",ExpressionUUID->"0f98e7c2-b2df-479a-a736-6662fb052bb4"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20}, {Null, {{1, 2}, {1, 5}, {1, 7}, {2, 3}, {2, 8}, {3, 4}, {3, 9}, {
4, 5}, {4, 10}, {5, 6}, {6, 11}, {6, 12}, {7, 12}, {7, 13}, {8, 13}, {
8, 14}, {9, 14}, {9, 15}, {10, 11}, {10, 15}, {11, 16}, {12, 17}, {13,
18}, {14, 19}, {15, 20}, {16, 17}, {16, 20}, {17, 18}, {18, 19}, {19,
20}}}, {VertexLabels -> {"Name"},
VertexCoordinates -> {{-1, (
Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^Rational[-1, 2]}, {
1, (Rational[1, 4] (-1 - 5^Rational[1, 2])) (Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]}, {((Rational[5, 8] +
Rational[-1, 8] 5^Rational[1, 2])^(-1) (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 + 5^Rational[1, 2])}, {
0, (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1,
2]}, {-((Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^(-1) (
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2]))^
Rational[1, 2], (
Rational[1, 4] (Rational[5, 8] + Rational[-1, 8] 5^Rational[1, 2])^
Rational[-1, 2]) (-1 +
5^Rational[
1, 2])}, \
{-0.91522834433436088899628632593610441365088079663510765221311779592971495978\
054`50., -1.\
34671761245990437672058843171766847533528173567877755312864332701993227447781`\
50.}, {0.997983448806479717164322201487807090752494817461152220837037104852958\
48464194`50., \
-1.286592509651383417114643578088879317790790199043724938206198835117910281322\
25`50.}, {
1.5320160359066060356898895908971953053885354794035977277509071996391\
0396388124`50.,
0.551559711824322298997975218717784487015617133657716661453978930703\
61176889588`50.}, \
{-0.05114546730631786068885222003284634003239933825034348820104298739613377954\
244`50., 1.\
62747515838391186933595643495406280796312451347940701046736275678642222796831`\
50.}, {-1.\
56362567307240700316907324641605164245775016197929880817378352116621370920017`\
50., 0.45427525190305362550130035613470049814733028758537881941350047464780855\
893574`50.}, \
{-0.96673157966886271397079215140850599498226089788796505597763881075525807241\
156`49.91546012542344, \
-0.348044784778045935996239019322303591601394416158222669998222403282266584713\
31`49.57545143418664}, {
0.0322737734090878757951625399121068882306442141547831818383115079396\
0474989473`48.69910576778562, \
-1.026968121652366493308638700057801237972383285539206054507917540057525472860\
71`49.9919287887921}, {
0.9866778685808915857025223106314500736981477270834705093621647785444\
0766740624`49.93054790644644, \
-0.286656419765753381198325308668812973514206465327673701957458433503561491166\
55`49.51505244306258}, {
0.5775266853212051019985040784228946614678184640370785814215615532233\
0991887057`49.726231455349186,
0.849804711143773732915043533750216549886753903005605908795013279577\
8899540874`49.85212138464394}, \
{-0.62974674764232184952539677755794562841434950738736721664439902895206426376\
`49.75214398432924,
0.811864615052392077588159494298701253201230264019496517668585097265\
46359465321`49.83475415394873}, \
{-0.61474387117480085404273121868960484186077753243554802912202418579163440965\
04`49.7874668667571,
0.587959837576512381696342232020756161598653890069511889954580955215\
34855074278`49.74877377399323}, \
{-0.74914933822783903493327575139089116873262019197330691672753495191474155347\
254`50.03741968820854, \
-0.402966582712226648983134704281977412090749116762090595797573261776582194995\
99`49.49882095254179}, {
0.1517441175005054133879154581088940035039606336306105421631948929943\
6607049211`49.02650315576971, \
-0.837006882023064238301771406242338017763050067227254477065374798280890700056\
51`50.50973748498062}, {
0.8429323604360091195439782285015217249057874565275147066384254682136\
8448454529`50.63574479382874, \
-0.114332119195600398935571703193237342640846922264440389130016668890644084577\
33`48.90049584692159}, {
0.3692167314661253560441132834700802821836496342507296970479387764983\
2540808549`49.45097694254319,
0.766345746354378904524135581696796610895992216184273572038383773732\
76842888711`50.085263698207136}}}]]},
TagBox[GraphicsGroupBox[{
{Hue[0.6, 0.7, 0.5], Opacity[0.7], LineBox[CompressedData["
1:eJxTTMoPSmVmYGCQA2ImKIaAD/srVxfzrGT9th/Kt0fjw+VXfJk+u/zxz/28
wQt5T116YI8uzxge9Kfq/Xt7q83M7I+mfsEwD6rfHk0/XH77SiN75eYf9i+K
m3oTlj20x66egeEJsxt3h8VvDPkHq65J7dVftV/nt0uKMtcvXOr34zLvZ9OE
qDksP/ffmji58YbQXQz15y1ffu7xfLs/Ni39iHrP1/3o/Fms1wTK37/bXziB
a1Gs2zUM+f//5ykZtC2wf9DAoVCW9wEjvAjJH92rXn530nv7OFdW7SkRlzDC
i5C80GYHO8nqR/bvdbyXzTR8jRFehORto/cse6T2ZP+O/b4Np3+9xAgvdP+j
y6PrR1dvPP1w2O/Vj/fbilqoTbzwyB49PLrdCjg4fj7frxHQEWly6iZGeLww
YX4dmXPYfpaM1IpDJ17tR/fPf0YpT9+fr+wnXr284p7L3v3o7uGW3WRmv/C6
vfKqA83PW1/Yo7sH3X50eXT96OrR3YfOR3cfOh/dfADpoeHk
"]]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[
0.7]}], {DiskBox[{-1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["1",
Offset[{2, 2}, {-0.9680911651191455, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1., -1.3763819204711736}, 0.0319088348808545],
InsetBox["2",
Offset[{2, 2}, {1.0319088348808545, -1.344473085590319}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.618033988749895, 0.5257311121191336}, 0.0319088348808545],
InsetBox["3",
Offset[{2, 2}, {1.6499428236307494, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0., 1.7013016167040798}, 0.0319088348808545],
InsetBox["4",
Offset[{2, 2}, {0.0319088348808545, 1.7332104515849343}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.618033988749895, 0.5257311121191336},
0.0319088348808545],
InsetBox["5",
Offset[{2, 2}, {-1.5861251538690404, 0.5576399469999881}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9152283443343608, -1.3467176124599043},
0.0319088348808545],
InsetBox["6",
Offset[{2, 2}, {-0.8833195094535063, -1.3148087775790498}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9979834488064797, -1.2865925096513835},
0.0319088348808545],
InsetBox["7",
Offset[{2, 2}, {1.0298922836873343, -1.254683674770529}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{1.532016035906606, 0.5515597118243223}, 0.0319088348808545],
InsetBox["8",
Offset[{2, 2}, {1.5639248707874605, 0.5834685467051768}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.05114546730631786, 1.6274751583839118},
0.0319088348808545],
InsetBox["9",
Offset[{2, 2}, {-0.019236632425463362, 1.6593839932647663}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-1.563625673072407, 0.4542752519030536},
0.0319088348808545],
InsetBox["10",
Offset[{2, 2}, {-1.5317168381915525, 0.4861840867839081}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.9667315796688627, -0.34804478477804596},
0.0319088348808545],
InsetBox["11",
Offset[{2, 2}, {-0.9348227447880082, -0.31613594989719146}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.03227377340908787, -1.0269681216523665},
0.0319088348808545],
InsetBox["12",
Offset[{2, 2}, {0.06418260828994238, -0.995059286771512}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.9866778685808916, -0.2866564197657534},
0.0319088348808545],
InsetBox["13",
Offset[{2, 2}, {1.0185867034617462, -0.2547475848848989}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.5775266853212051, 0.8498047111437738},
0.0319088348808545],
InsetBox["14",
Offset[{2, 2}, {0.6094355202020596, 0.8817135460246283}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6297467476423219, 0.811864615052392},
0.0319088348808545],
InsetBox["15",
Offset[{2, 2}, {-0.5978379127614674, 0.8437734499332465}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.6147438711748009, 0.5879598375765124},
0.0319088348808545],
InsetBox["16",
Offset[{2, 2}, {-0.5828350362939464, 0.6198686724573669}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{-0.749149338227839, -0.40296658271222663},
0.0319088348808545],
InsetBox["17",
Offset[{2, 2}, {-0.7172405033469845, -0.37105774783137213}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.15174411750050543, -0.8370068820230643},
0.0319088348808545],
InsetBox["18",
Offset[{2, 2}, {0.18365295238135992, -0.8050980471422098}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.8429323604360092, -0.11433211919560039},
0.0319088348808545],
InsetBox["19",
Offset[{2, 2}, {0.8748411953168637, -0.0824232843147459}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}, {
DiskBox[{0.3692167314661254, 0.7663457463543789},
0.0319088348808545],
InsetBox["20",
Offset[{2, 2}, {0.4011255663469799, 0.7982545812352334}],
ImageScaled[{0, 0}],
BaseStyle->"Graphics"]}}}],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellLabel->
"Out[260]=",ExpressionUUID->"78ea2c7b-85fd-4f96-b091-04d0973b0f5b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"r", "=",
RowBox[{"RecognizeGraph", "[", "g", "]"}]}]], "Input",
CellLabel->
"In[266]:=",ExpressionUUID->"4c085f10-e05a-434d-907c-90c5fb628851"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",
CellLabel->
"Out[266]=",ExpressionUUID->"6de90f61-2952-42fa-a747-f2679d4b7af2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphEdgeLengths", "[", "g", "]"}]], "Input",
CellLabel->
"In[251]:=",ExpressionUUID->"9b638cca-9062-4cbe-bd66-a2dcf5eb0e3d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2", ",", "2", ",",
"1.999999999999999999999999999999999999999999999999999605464204236327609885\
68972`48.84378410314104", ",", "2", ",",
"1.999999999999999999999999999999999999999999999999999605464204236327609885\
68969`49.540661411733765", ",", "2", ",",
"1.999999999999999999999999999999999999999999999999999605464204236327609885\
68977`49.83056634403243", ",", "2", ",",
"1.999999999999999999999999999999999999999999999999999605464204236327609885\
68979`50.", ",",
"1.999999999999999999999999999999999999999999999999999605464204236327609885\
68979`49.88530577914866", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
91665`48.39174874767445", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210395\
30058`49.1258762312175", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
91659`49.04646333787108", ",",
"0.9999999999999999999999999999999999999996954685150602805006`47.\
71969098000217", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
9165`49.30694592638161", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210395\
30069`49.232506146165534", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
9166`49.44023750067347", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210395\
30068`49.461967831420964", ",",
"0.999999999999999999999999999999999999999695468515060280500767444863210395\
30059`49.33844700995389", ",",
"0.999999999999999999999999999999999999999865238342173912657007802410991077\
9166`49.338001562866204", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696166\
68023`49.20860713670971", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696166\
6803`49.4289516178953", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696166\
68033`49.50912579081441", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696166\
68028`49.316773762252076", ",",
"1.000000000000000000000000000000000000000018906767139441233939702478696166\
68026`48.39871661976897", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999999\
99995`48.900495846921594", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999999\
99998`49.02650315576971", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999999\
99999`49.450976942543186", ",",
"1.000000000000000000000000000000000000000000000000000000000000000000000000\
00002`49.62938136108419", ",",
"0.999999999999999999999999999999999999999999999999999999999999999999999999\
99999`49.498820952541806"}], "}"}]], "Output",
CellLabel->
"Out[251]=",ExpressionUUID->"3c29ed3b-7d82-45a3-bf87-552bd6fc7bbe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"l", "=",
RowBox[{"{",
RowBox[{"{",
RowBox[{"r", ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"ReplacePart", "[",
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{"r", ",", "\"\\""}], "]"}], ",",
RowBox[{"10", "\[Rule]",
RowBox[{"ToCommonEdges", "[",
RowBox[{"g", ",",
RowBox[{"GraphData", "[", "r", "]"}]}], "]"}]}]}], "]"}]}],
"}"}]}], "}"}], "}"}]}]], "Input",
CellLabel->
"In[267]:=",ExpressionUUID->"cf7ece9b-94e7-4108-88b8-9b35bc2771c1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\<\"DodecahedralGraph\"\>", ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1.548`", ",", "0.503`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.134`"}], ",",
RowBox[{"-", "0.368`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.628`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.957`", ",",
RowBox[{"-", "1.317`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.548`"}], ",", "0.503`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.957`"}], ",",
RowBox[{"-", "1.317`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "2.466`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.449`", ",",
RowBox[{"-", "1.995`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.302`", ",", "0.416`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.489`", ",",
RowBox[{"-", "0.159`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.345`"}], ",", "0.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.45`"}], ",",
RowBox[{"-", "1.995`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.489`"}], ",",
RowBox[{"-", "0.159`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.7`", ",", "0.965`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.133`", ",",
RowBox[{"-", "0.369`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.345`", ",", "0.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.302`"}], ",", "0.416`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.514`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7`"}], ",", "0.965`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "1.192`"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.3`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3527`"}], ",", "0.4854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5878`", ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.2853`"}], ",",
RowBox[{"-", "0.0927`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.6`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5706`"}], ",", "0.1854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5878`"}], ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3527`", ",", "0.4854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5706`", ",", "0.1854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5706`"}], ",",
RowBox[{"-", "0.1854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3527`"}], ",",
RowBox[{"-", "0.4854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2853`", ",",
RowBox[{"-", "0.0927`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.6`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9511`", ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9511`"}], ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.1763`", ",", "0.2427`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5706`", ",",
RowBox[{"-", "0.1854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1763`"}], ",", "0.2427`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3527`", ",",
RowBox[{"-", "0.4854`"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.588`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.466`", ",", "1.76`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.002`", ",", "1.086`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4`", ",", "2.55`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.669`", ",", "1.72`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.085`", ",", "2.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.948`", ",", "2.186`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.117`", ",", "3.295`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.278`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.489`", ",", "0.77`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.978`", ",", "2.579`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.187`", ",", "3.348`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.186`", ",", "0.724`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.381`", ",", "0.586`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.798`", ",", "1.628`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.281`", ",", "2.623`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.35`", ",", "0.053`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.518`", ",", "1.161`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.066`", ",", "0.798`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.464`", ",", "2.262`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
FractionBox["1",
SqrtBox["5"]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "2"}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
RowBox[{"3", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"-", "2"}], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"2", "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "8"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5`"}], ",",
RowBox[{"-", "0.866`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5`", ",",
RowBox[{"-", "0.866`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.618`"}], ",", "1.902`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.618`"}], ",",
RowBox[{"-", "1.902`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.354`"}], ",",
RowBox[{"-", "0.354`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618`"}], ",", "1.176`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618`", ",", "1.176`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618`"}], ",",
RowBox[{"-", "1.176`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.354`", ",",
RowBox[{"-", "0.354`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.618`", ",", "1.902`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.354`"}], ",", "0.354`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618`", ",",
RowBox[{"-", "1.176`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.354`", ",", "0.354`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.618`", ",",
RowBox[{"-", "1.902`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.951`", ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.951`"}], ",",
RowBox[{"-", "0.309`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.588`", ",", "0.809`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.809`", ",",
RowBox[{"-", "0.588`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.809`"}], ",",
RowBox[{"-", "0.588`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.588`"}], ",", "0.809`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.309`", ",", "0.951`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.951`", ",",
RowBox[{"-", "0.309`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "1.`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.309`", ",",
RowBox[{"-", "0.951`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.309`"}], ",", "0.951`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.809`", ",", "0.588`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.588`", ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.309`"}], ",",
RowBox[{"-", "0.951`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.951`"}], ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.588`"}], ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.809`"}], ",", "0.588`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.034`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.249`", ",", "1.921`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.626`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.535`", ",", "2.867`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.25`", ",", "1.036`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.712`", ",", "2.868`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.625`", ",", "1.056`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.091`", ",", "2.659`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.092`", ",", "0.296`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.724`", ",", "1.249`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.526`", ",", "1.706`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.156`", ",", "2.66`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.526`", ",", "1.251`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.537`", ",", "0.087`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.919`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.723`", ",", "1.705`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.159`", ",", "0.297`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.624`", ",", "1.9`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.714`", ",", "0.088`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.623`", ",", "2.957`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1928`"}], ",",
RowBox[{"-", "0.1065`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.6314`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.4662`", ",",
RowBox[{"-", "0.4662`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.309`"}], ",", "0.5`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.0583`", ",",
RowBox[{"-", "3.0583`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.6314`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.8999`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.309`"}], ",",
RowBox[{"-", "0.5`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.4662`", ",", "0.4662`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.8999`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "2.3999`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.0583`"}], ",",
RowBox[{"-", "3.0583`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.0583`", ",", "3.0583`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2461`", ",", "0.1065`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4662`"}], ",", "0.4662`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4662`"}], ",",
RowBox[{"-", "0.4662`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.309`", ",", "0.5`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "2.3999`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.309`", ",",
RowBox[{"-", "0.5`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.0583`"}], ",", "3.0583`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "1"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.3692167314661253560441132834700802821836496342507296970479387764\
9832540808549`49.45097694254319", ",",
"0.766345746354378904524135581696796610895992216184273572038383773\
73276842888711`50.085263698207136"}], "}"}], ",",
RowBox[{"{",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.0322737734090878757951625399121068882306442141547831818383115079\
3960474989473`48.69910576778562", ",",
RowBox[{
"-", "1.0269681216523664933086387000578012379723832855392060545079\
1754005752547286071`49.9919287887921"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.6297467476423218495253967775579456284143495073873672166443\
9902895206426376`49.75214398432924"}], ",",
"0.811864615052392077588159494298701253201230264019496517668585097\
26546359465321`49.83475415394873"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.6147438711748008540427312186896048418607775324355480291220\
241857916344096504`49.7874668667571"}], ",",
"0.587959837576512381696342232020756161598653890069511889954580955\
21534855074278`49.74877377399323"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.9152283443343608889962863259361044136508807966351076522131\
1779592971495978054`50."}], ",",
RowBox[{
"-", "1.3467176124599043767205884317176684753352817356787775531286\
4332701993227447781`50."}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.5320160359066060356898895908971953053885354794035977277509071996\
3910396388124`50.", ",",
"0.551559711824322298997975218717784487015617133657716661453978930\
70361176889588`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.9866778685808915857025223106314500736981477270834705093621647785\
4440766740624`49.93054790644644", ",",
RowBox[{
"-", "0.2866564197657533811983253086688129735142064653276737019574\
5843350356149116655`49.51505244306258"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "1.5636256730724070031690732464160516424577501619792988081737\
8352116621370920017`50."}], ",",
"0.454275251903053625501300356134700498147330287585378819413500474\
64780855893574`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.9667315796688627139707921514085059949822608978879650559776\
3881075525807241156`49.91546012542344"}], ",",
RowBox[{
"-", "0.3480447847780459359962390193223035916013944161582226699982\
2240328226658471331`49.57545143418664"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.8429323604360091195439782285015217249057874565275147066384254682\
1368448454529`50.63574479382874", ",",
RowBox[{
"-", "0.1143321191956003989355717031932373426408469222644403891300\
1666889064408457733`48.90049584692159"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.9979834488064797171643222014878070907524948174611522208370371048\
5295848464194`50.", ",",
RowBox[{
"-", "1.2865925096513834171146435780888793177907901990437249382061\
9883511791028132225`50."}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
SqrtBox[
FractionBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}],
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]]}], ",",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}],
RowBox[{"4", " ",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.5775266853212051019985040784228946614678184640370785814215615532\
2330991887057`49.726231455349186", ",",
"0.849804711143773732915043533750216549886753903005605908795013279\
5778899540874`49.85212138464394"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"0.1517441175005054133879154581088940035039606336306105421631948929\
9436607049211`49.02650315576971", ",",
RowBox[{
"-", "0.8370068820230642383017714062423380177630500672272544770653\
7479828089070005651`50.50973748498062"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.0511454673063178606888522200328463400323993382503434882010\
4298739613377954244`50."}], ",",
"1.627475158383911869335956434954062807963124513479407010467362756\
78642222796831`50."}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"-", "0.7491493382278390349332757513908911687326201919733069167275\
3495191474155347254`50.03741968820854"}], ",",
RowBox[{
"-", "0.4029665827122266489831347042819774120907491167620905957975\
7326177658219499599`49.49882095254179"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "-",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["2",
RowBox[{"1", "+",
SqrtBox["5"]}]], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["2",
RowBox[{"1", "+",
SqrtBox["5"]}]]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
FractionBox["1",
SqrtBox["5"]], "-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"2", "+",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"3", " ",
SqrtBox["5"]}], "-",
SqrtBox[
RowBox[{"10", " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "20"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"], "-",
SqrtBox[
RowBox[{"50", "-",
RowBox[{"10", " ",
SqrtBox["5"]}]}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "-",
SqrtBox["5"]}], ")"}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "+",
SqrtBox["5"]}], ")"}]}], ",",
FractionBox["1",
SqrtBox["5"]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", "+",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "2"}], "+",
SqrtBox[
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}],
RowBox[{"4", " ",
SqrtBox["5"]}]], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
SqrtBox[
RowBox[{"5", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], "}"}]}], "}"}]}], "}"}]}], "}"}]}],
"}"}], "}"}]], "Output",
CellLabel->
"Out[267]=",ExpressionUUID->"b7b19763-9dea-45ab-a815-8dfcdf8fbd34"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PropertyReplace", "[",
RowBox[{"l", ",", "\"\\"", ",", "\"\<12.1\>\""}],
"]"}]], "Input",
CellLabel->
"In[268]:=",ExpressionUUID->"de9b8c52-714f-4f64-a829-f03e500e8e43"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"12.1/GraphData34.m\"\>", "\[InvisibleSpace]", "\<\"...\"\>"}],
SequenceForm["12.1/GraphData34.m", "..."],
Editable->False]], "Print",
CellLabel->
"During evaluation of \
In[268]:=",ExpressionUUID->"a09edcc4-5e71-43e8-a0bc-611040cc0f34"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{", "\<\"GraphData34-2.m\"\>", "}"}], "}"}]], "Output",
CellLabel->
"Out[268]=",ExpressionUUID->"c71077e1-b961-49c1-b960-dca3073b2bb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RenameGraphFiles", "[", "]"}]], "Input",
CellLabel->
"In[269]:=",ExpressionUUID->"8c735f44-1fc3-4d9d-9e5b-f3aac69c30e7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"f135ad35-99c8-43b1-9bd9-43cd8cff38b6"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"61dbc858-b061-46db-b8c2-2b6624abbd11"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"f8f15bd2-1fe4-4ae7-8fdf-eef916296cfd"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"7b52a3e0-e23b-49c1-995c-98406e8945b5"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"39265c73-8e0d-4a0d-bd8d-c31cf87079b8"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"ac3aca45-0000-4efc-97a4-a258a647275f"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"2c75c398-7564-4ff1-9995-98e1565d6593"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"5dad46c1-fe3c-4d23-816f-f9ec8378dd6a"],
Cell[BoxData[
RowBox[{"{", "\<\"12.1/GraphData34-2.m\"\>", "}"}]], "Print",
CellLabel->
"During evaluation of \
In[269]:=",ExpressionUUID->"ab4fc304-60b3-4534-b24f-8609b8593cf6"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{"{", "}"}], ",",
RowBox[{
"{", "\<\"/Users/eww/Documents/Mathematica/Paclets/GraphData/Paclet/12.1/\
GraphData34.m\"\>", "}"}]}], "}"}]], "Output",
CellLabel->
"Out[269]=",ExpressionUUID->"6fa06227-82a1-4acf-8724-4b841e05c160"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["UnitDistance", "Subsection",ExpressionUUID->"5f20e4f8-29c7-4f98-9430-671089063ea2"],
Cell[BoxData[{
RowBox[{
RowBox[{"r", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"n", "+", "1", "-",
RowBox[{"2", "k"}]}],
RowBox[{"2",
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}]}]], "\[Pi]"}], "]"}],
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"2", "k"}],
RowBox[{"n", "+", "1"}]], "\[Pi]"}], "]"}]], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"n", "\[Rule]", "9"}], ",",
RowBox[{"k", "\[Rule]", "2"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"R", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
FractionBox[
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"n", "+", "1", "-",
RowBox[{"2", "k"}]}],
RowBox[{"2",
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}]}]], "\[Pi]"}], "]"}],
RowBox[{"Sin", "[",
RowBox[{
FractionBox[
RowBox[{"2", "k"}],
RowBox[{"n", "+", "1"}]], "\[Pi]"}], "]"}]], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"n", "\[Rule]", "9"}], ",",
RowBox[{"k", "\[Rule]", "1"}]}], "}"}]}], "]"}]}], ";"}]}], "Input",Exp\
ressionUUID->"74102536-27d6-47b4-9fd7-537303cb1b2c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ShowLabeledGraph", "[",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ",",
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"r", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"f96cfff6-9c85-\
458f-97cd-75fd29d24b5d"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7126627020880099, 0.6545084971874736}, {0.4187700759417734,
0.75}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4187700759417734, 0.75}, {0.2371344439404332,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.2371344439404332, 0.49999999999999994`}, {0.4187700759417734,
0.25}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.4187700759417734, 0.25}, {0.7126627020880099,
0.3454915028125263}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7126627020880099, 0.3454915028125263}, {0.7126627020880099,
0.6545084971874736}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5812299240582265, 0.75}, {0.28733729791199,
0.6545084971874736}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28733729791199, 0.6545084971874736}, {0.28733729791199,
0.3454915028125263}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28733729791199, 0.3454915028125263}, {0.5812299240582265,
0.25}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5812299240582265, 0.25}, {0.7628655560595667,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7628655560595667, 0.49999999999999994`}, {0.5812299240582265,
0.75}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.7126627020880099, 0.6545084971874736}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.7126627020880099, 0.6545084971874736}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.5812299240582265, 0.75}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.5812299240582265, 0.75}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.4187700759417734, 0.75}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {0.4187700759417734, 0.75}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.28733729791199, 0.6545084971874736}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.28733729791199, 0.6545084971874736}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.2371344439404332, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["5",
Scaled[{-0.02, -0.02}, {0.2371344439404332, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.28733729791199, 0.3454915028125263}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.28733729791199, 0.3454915028125263}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.4187700759417734, 0.25}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.4187700759417734, 0.25}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.5812299240582265, 0.25}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.5812299240582265, 0.25}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.7126627020880099, 0.3454915028125263}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.7126627020880099, 0.3454915028125263}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.7628655560595667, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.7628655560595667, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.9045084971874736, 0.7938926261462366}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.7938926261462366}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.6545084971874736, 0.9755282581475768}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.9755282581475768}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.3454915028125263, 0.9755282581475768}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.9755282581475768}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.09549150281252629, 0.7938926261462366}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.7938926261462366}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0., 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0., 0.49999999999999994}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.09549150281252629, 0.2061073738537634}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.2061073738537634}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.3454915028125263, 0.024471741852423203`}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.024471741852423203}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.6545084971874736, 0.024471741852423203`}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.024471741852423203}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.9045084971874736, 0.2061073738537634}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.2061073738537634}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.9999999999999999, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"353fbe1e-9a12-4264-988a-\
b0c21913cfac"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], "]"}], "]"}]}], "]"}], "//",
"FullSimplify"}]], "Input",ExpressionUUID->"fa36c9b7-dc8d-4f4f-94b3-\
8ee0796a574c"],
Cell[BoxData["1"], "Output",ExpressionUUID->"b427258c-a166-406f-9062-74596d1b01be"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"12", ",", "13"}], "}"}], "]"}], "]"}]}], "]"}], "//",
"FullSimplify"}]], "Input",ExpressionUUID->"b72a157c-94ff-4acc-8f7d-\
cb820ebc6060"],
Cell[BoxData["1"], "Output",ExpressionUUID->"660816c1-58b0-4c51-9523-52f60ea5781f"],
Cell[BoxData["\<\"Rehashing named triangle objects...\"\>"], "Print",ExpressionUUID->"fdf5a1c8-e024-45f6-9412-189cb37f1c5f"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"Combinatorica`Vertices", "[", "g", "]"}]}], ";"}]], "Input",Expres\
sionUUID->"5254fba3-aa81-45b2-9f8e-b269ee38109f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "=",
RowBox[{
RowBox[{
RowBox[{"Intersections", "[",
RowBox[{
RowBox[{"Circle", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",", "R"}], "]"}], ",",
RowBox[{"Line", "[",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"3", ",", "5"}], "}"}], "]"}], "]"}], "]"}]}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], "//", "FullSimplify"}]}]], "Input",\
ExpressionUUID->"c11aa6bc-58a4-43ca-b1f3-f51617d22dd1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "8"], " ",
RowBox[{"(",
RowBox[{
SqrtBox[
RowBox[{"34", "+",
RowBox[{"6", " ",
SqrtBox["5"]}]}]], "+",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"16", "-",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"5", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], ")"}]}],
",",
FractionBox[
RowBox[{
SqrtBox["5"], "+",
SqrtBox[
RowBox[{"25", "+",
RowBox[{"8", " ",
SqrtBox["5"]}]}]]}],
RowBox[{"10", "-",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}], "}"}]], "Output",ExpressionUUID->"8203959f-0dad-\
4608-ace3-51c7d673e4c9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", "//", "N"}]], "Input",ExpressionUUID->"dafd4dae-f201-4f5a-8dc5-6cb308822c61"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.3039864796368392`", ",", "1.589221887889761`"}], "}"}]], "Output",\
ExpressionUUID->"a52a426e-6a86-4f0e-9e3a-e7732e817015"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"Norm", "[",
RowBox[{
RowBox[{"R",
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "a", "]"}], ",",
RowBox[{"Sin", "[", "a", "]"}]}], "}"}]}], "-",
RowBox[{"v", "[",
RowBox[{"[", "3", "]"}], "]"}]}], "]"}], "\[Equal]", "1"}], ",",
"a"}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->"11338d97-\
25ec-4842-a6fe-50414beda70a"],
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "::", "\<\"ifun\"\>"}], ":",
" ", "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Inverse functions are being used by \
\\\\\\\"\\\", \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\!\\(Solve\\), \
\\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\", so some solutions may \
not be found; use Reduce for complete solution information.\\\\\\\"\\\", \
\\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/Solve/ifun\\\", ButtonNote -> \
\\\"Solve::ifun\\\"]\\)\"\>"}]], "Message", \
"MSG",ExpressionUUID->"43dbc7f7-e30a-4481-9ef3-5e9dac1369e5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"a", "\[Rule]",
RowBox[{"ArcSec", "[",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"80", "+",
RowBox[{"160", " ", "#1"}], "+",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"20", " ",
SuperscriptBox["#1", "3"]}], "+",
SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"a", "\[Rule]",
RowBox[{"ArcSec", "[",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"80", "-",
RowBox[{"160", " ", "#1"}], "+",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "3"]}], "+",
SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}],
"}"}]}], "}"}]], "Output",ExpressionUUID->"6b8c6bea-c6fb-486c-8ba7-\
2503f4498623"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[", "%", "]"}]], "Input",ExpressionUUID->"a16df880-f9b7-4958-88e9-ea7cbe033c04"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"a", "\[Rule]", "2.438529951050921`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a", "\[Rule]", "1.3313812332568307`"}], "}"}]}], "}"}]], "Output",\
ExpressionUUID->"464b162c-dcce-442e-98fb-ada3a6baca77"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"ang", "=",
RowBox[{
RowBox[{"3",
RowBox[{"(",
RowBox[{"2",
RowBox[{"\[Pi]", "/", "10"}]}], ")"}]}], "-",
RowBox[{"ArcSec", "[",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"80", "-",
RowBox[{"160", " ", "#1"}], "+",
RowBox[{"100", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"20", " ",
SuperscriptBox["#1", "3"]}], "+",
SuperscriptBox["#1", "4"]}], "&"}], ",", "3"}], "]"}], "]"}]}]}],
";"}]], "Input",ExpressionUUID->"8f984807-abc3-42df-a364-e8c9e9074c7e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ShowLabeledGraph", "[",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"#", ",",
RowBox[{"#", "+", "10"}]}], "}"}], "&"}], "/@",
RowBox[{"Range", "[", "10", "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"11", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}],
"]"}]}], "\[IndentingNewLine]", "]"}]}], ",",
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"r", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "ang"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"884d0158-a7a9-\
4906-bf91-0564dd058bb7"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7132581284623493, 0.6549410997707272}, {0.41854264330457386`,
0.7506999656833253}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.41854264330457386`, 0.7506999656833253}, {
0.23639845646615348`, 0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.23639845646615348`, 0.49999999999999994`}, {
0.41854264330457386`, 0.24930003431667466`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.41854264330457386`, 0.24930003431667466`}, {
0.7132581284623493, 0.34505890022927266`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7132581284623493, 0.34505890022927266`}, {0.7132581284623493,
0.6549410997707272}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5814573566954261, 0.7506999656833253}, {0.28674187153765057`,
0.6549410997707272}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28674187153765057`, 0.6549410997707272}, {
0.28674187153765057`, 0.34505890022927266`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28674187153765057`, 0.34505890022927266`}, {
0.5814573566954261, 0.24930003431667466`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5814573566954261, 0.24930003431667466`}, {0.7636015435338465,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7636015435338465, 0.49999999999999994`}, {0.5814573566954261,
0.7506999656833253}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7132581284623493, 0.6549410997707272}, {0.9999999999999999,
0.5374418372209759}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5814573566954261, 0.7506999656833253}, {0.8825007374502486,
0.8241837087586266}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.41854264330457386`, 0.7506999656833253}, {0.618899193916402,
0.9870984221494786}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28674187153765057`, 0.6549410997707272}, {0.3098821995414547,
0.9639580941456747}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.23639845646615348`, 0.49999999999999994`}, {
0.07348374307530123, 0.7636015435338465}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.28674187153765057`, 0.34505890022927266`}, {0.,
0.46255816277902406`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.41854264330457386`, 0.24930003431667466`}, {
0.11749926254975138`, 0.1758162912413734}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5814573566954261, 0.24930003431667466`}, {
0.38110080608359787`, 0.012901577850521227`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7132581284623493, 0.34505890022927266`}, {0.6901178004585453,
0.03604190585432529}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7636015435338465, 0.49999999999999994`}, {0.9265162569246987,
0.2363984564661534}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9999999999999999, 0.5374418372209759}, {0.8825007374502486,
0.8241837087586266}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.8825007374502486, 0.8241837087586266}, {0.618899193916402,
0.9870984221494786}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.618899193916402, 0.9870984221494786}, {0.3098821995414547,
0.9639580941456747}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3098821995414547, 0.9639580941456747}, {0.07348374307530123,
0.7636015435338465}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.07348374307530123, 0.7636015435338465}, {0.,
0.46255816277902406`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.46255816277902406`}, {0.11749926254975138`,
0.1758162912413734}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.11749926254975138`, 0.1758162912413734}, {
0.38110080608359787`, 0.012901577850521227`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.38110080608359787`, 0.012901577850521227`}, {
0.6901178004585453, 0.03604190585432529}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6901178004585453, 0.03604190585432529}, {0.9265162569246987,
0.2363984564661534}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9265162569246987, 0.2363984564661534}, {0.9999999999999999,
0.5374418372209759}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.7132581284623493, 0.6549410997707272}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.7132581284623493, 0.6549410997707272}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.5814573566954261, 0.7506999656833253}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.5814573566954261, 0.7506999656833253}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.41854264330457386`, 0.7506999656833253}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {0.41854264330457386, 0.7506999656833253}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.28674187153765057`, 0.6549410997707272}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.28674187153765057, 0.6549410997707272}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.23639845646615348`, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["5",
Scaled[{-0.02, -0.02}, {0.23639845646615348, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.28674187153765057`, 0.34505890022927266`}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.28674187153765057, 0.34505890022927266}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.41854264330457386`, 0.24930003431667466`}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.41854264330457386, 0.24930003431667466}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.5814573566954261, 0.24930003431667466`}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.5814573566954261, 0.24930003431667466}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.7132581284623493, 0.34505890022927266`}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.7132581284623493, 0.34505890022927266}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.7636015435338465, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.7636015435338465, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.9999999999999999, 0.5374418372209759}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.5374418372209759}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.8825007374502486, 0.8241837087586266}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.8825007374502486, 0.8241837087586266}], {1, 0}]
},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.618899193916402, 0.9870984221494786}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.618899193916402, 0.9870984221494786}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.3098821995414547, 0.9639580941456747}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.3098821995414547, 0.9639580941456747}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.07348374307530123, 0.7636015435338465}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0.07348374307530123, 0.7636015435338465}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0., 0.46255816277902406`}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0., 0.46255816277902406}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.11749926254975138`, 0.1758162912413734}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.11749926254975138, 0.1758162912413734}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.38110080608359787`, 0.012901577850521227`}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.38110080608359787, 0.012901577850521227}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.6901178004585453, 0.03604190585432529}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.6901178004585453, 0.03604190585432529}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.9265162569246987, 0.2363984564661534}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.9265162569246987, 0.2363984564661534}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"6988da54-92df-4b14-826b-\
26d38eec7068"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"v", "=",
RowBox[{"Combinatorica`Vertices", "[", "g", "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"Norm", "[",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"3", ",", "13"}], "}"}], "]"}], "]"}]}], "]"}], "//",
"FullSimplify"}]}], "Input",ExpressionUUID->"62a061bf-d1ef-4e73-ad67-\
816439554d9b"],
Cell[BoxData["1"], "Output",ExpressionUUID->"89f98185-69a3-4e5c-9dbf-c0247f67ccaa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"RecognizeGraph", "[", "g", "]"}]], "Input",ExpressionUUID->"bd57a2af-89cc-4062-a634-a5f3980b00c2"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Getting index for \"\>",
"\[InvisibleSpace]", "\<\"CanonicalForm\"\>",
"\[InvisibleSpace]", "\<\" (first time only)...\"\>"}],
SequenceForm["Getting index for ", "CanonicalForm", " (first time only)..."],
Editable->False]], "Print",ExpressionUUID->"086c0593-7bcb-4d3f-93ed-\
94416fc8d2ce"],
Cell[BoxData["\<\"DodecahedralGraph\"\>"], "Output",ExpressionUUID->"1447def7-ece0-47f7-86c1-59bd97ea69dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"tilt", "=",
RowBox[{
RowBox[{"ArcTan", "@@",
RowBox[{"Subtract", "@@",
RowBox[{"v", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"19", ",", "18"}], "}"}], "]"}], "]"}]}]}], "//",
"FullSimplify"}]}]], "Input",ExpressionUUID->"1c65a81a-76d0-4acb-b9a8-\
b05b903408b6"],
Cell[BoxData[
RowBox[{"ArcTan", "[",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"8", " ", "#1"}], "+",
RowBox[{"66", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"72", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"19", " ",
SuperscriptBox["#1", "4"]}]}], "&"}], ",", "4"}], "]"}],
"]"}]], "Output",ExpressionUUID->"865d7075-b031-4a2f-80e0-da3ad9eb92fb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ShowLabeledGraph", "[",
RowBox[{"g", "=",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"1", ",", "9", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"2", ",", "10", ",", "2"}], "]"}], ",", "2", ",", "1", ",",
"1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"#", ",",
RowBox[{"#", "+", "10"}]}], "}"}], "&"}], "/@",
RowBox[{"Range", "[", "10", "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"11", ",", "20"}], "]"}], ",", "2", ",", "1", ",", "1"}],
"]"}]}], "\[IndentingNewLine]", "]"}]}], ",",
RowBox[{"List", "/@",
RowBox[{"Join", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"r", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "tilt"}], "]"}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Cos", ",", "Sin"}], "}"}], "[",
RowBox[{
FractionBox[
RowBox[{"2", "\[Pi]", " ", "i"}], "10"], "-", "ang", "-",
"tilt"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "10"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
"]"}]}]}], "]"}]}], "]"}]], "Input",ExpressionUUID->"c8fd2aa7-2b50-\
4a25-bb19-f4669bee1a84"],
Cell[BoxData[
GraphicsBox[{{
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7236067977499789, 0.6381966011250104}, {0.43766552253272184`,
0.7553678004004941}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.43766552253272184`, 0.7553678004004941}, {
0.23786837650427867`, 0.5196293791547939}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.23786837650427867`, 0.5196293791547939}, {
0.40032822462073187`, 0.2567638230952271}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.40032822462073187`, 0.2567638230952271}, {0.7005310785922886,
0.33004239622447423`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7005310785922886, 0.33004239622447423`}, {0.7236067977499789,
0.6381966011250104}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5996717753792681, 0.7432361769047728}, {0.29946892140771136`,
0.6699576037755257}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.29946892140771136`, 0.6699576037755257}, {0.276393202250021,
0.36180339887498947`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.276393202250021, 0.36180339887498947`}, {0.5623344774672782,
0.2446321995995058}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5623344774672782, 0.2446321995995058}, {0.7621316234957213,
0.48037062084520604`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7621316234957213, 0.48037062084520604`}, {0.5996717753792681,
0.7432361769047728}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7236067977499789, 0.6381966011250104}, {0.9999999999999999,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5996717753792681, 0.7432361769047728}, {0.9045084971874736,
0.7938926261462366}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.43766552253272184`, 0.7553678004004941}, {0.6545084971874736,
0.9755282581475768}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.29946892140771136`, 0.6699576037755257}, {0.3454915028125263,
0.9755282581475768}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.23786837650427867`, 0.5196293791547939}, {
0.09549150281252636, 0.7938926261462366}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.276393202250021, 0.36180339887498947`}, {0.,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.40032822462073187`, 0.2567638230952271}, {
0.09549150281252629, 0.2061073738537634}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.5623344774672782, 0.2446321995995058}, {0.3454915028125263,
0.024471741852423203`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7005310785922886, 0.33004239622447423`}, {0.6545084971874736,
0.024471741852423203`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.7621316234957213, 0.48037062084520604`}, {0.9045084971874736,
0.20610737385376338`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9999999999999999, 0.49999999999999994`}, {0.9045084971874736,
0.7938926261462366}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9045084971874736, 0.7938926261462366}, {0.6545084971874736,
0.9755282581475768}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6545084971874736, 0.9755282581475768}, {0.3454915028125263,
0.9755282581475768}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3454915028125263, 0.9755282581475768}, {0.09549150281252636,
0.7938926261462366}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.09549150281252636, 0.7938926261462366}, {0.,
0.49999999999999994`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0., 0.49999999999999994`}, {0.09549150281252629,
0.2061073738537634}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.09549150281252629, 0.2061073738537634}, {0.3454915028125263,
0.024471741852423203`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.3454915028125263, 0.024471741852423203`}, {
0.6545084971874736, 0.024471741852423203`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.6545084971874736, 0.024471741852423203`}, {
0.9045084971874736, 0.20610737385376338`}}],
{GrayLevel[0]}},
{GrayLevel[0], Thickness[0.005],
LineBox[{{0.9045084971874736, 0.20610737385376338`}, {0.9999999999999999,
0.49999999999999994`}}],
{GrayLevel[0]}}}, {
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.7236067977499789, 0.6381966011250104}]},
{GrayLevel[0],
InsetBox["1",
Scaled[{-0.02, -0.02}, {0.7236067977499789, 0.6381966011250104}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.5996717753792681, 0.7432361769047728}]},
{GrayLevel[0],
InsetBox["2",
Scaled[{-0.02, -0.02}, {0.5996717753792681, 0.7432361769047728}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.43766552253272184`, 0.7553678004004941}]},
{GrayLevel[0],
InsetBox["3",
Scaled[{-0.02, -0.02}, {0.43766552253272184, 0.7553678004004941}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.29946892140771136`, 0.6699576037755257}]},
{GrayLevel[0],
InsetBox["4",
Scaled[{-0.02, -0.02}, {0.29946892140771136, 0.6699576037755257}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.23786837650427867`, 0.5196293791547939}]},
{GrayLevel[0],
InsetBox["5",
Scaled[{-0.02, -0.02}, {0.23786837650427867, 0.5196293791547939}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.276393202250021, 0.36180339887498947`}]},
{GrayLevel[0],
InsetBox["6",
Scaled[{-0.02, -0.02}, {0.276393202250021, 0.36180339887498947}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.40032822462073187`, 0.2567638230952271}]},
{GrayLevel[0],
InsetBox["7",
Scaled[{-0.02, -0.02}, {0.40032822462073187, 0.2567638230952271}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.5623344774672782, 0.2446321995995058}]},
{GrayLevel[0],
InsetBox["8",
Scaled[{-0.02, -0.02}, {0.5623344774672782, 0.2446321995995058}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.7005310785922886, 0.33004239622447423`}]},
{GrayLevel[0],
InsetBox["9",
Scaled[{-0.02, -0.02}, {0.7005310785922886, 0.33004239622447423}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.7621316234957213, 0.48037062084520604`}]},
{GrayLevel[0],
InsetBox["10",
Scaled[{-0.02, -0.02}, {0.7621316234957213, 0.48037062084520604}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.9999999999999999, 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["11",
Scaled[{-0.02, -0.02}, {0.9999999999999999, 0.49999999999999994}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.9045084971874736, 0.7938926261462366}]},
{GrayLevel[0],
InsetBox["12",
Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.7938926261462366}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.6545084971874736, 0.9755282581475768}]},
{GrayLevel[0],
InsetBox["13",
Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.9755282581475768}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.3454915028125263, 0.9755282581475768}]},
{GrayLevel[0],
InsetBox["14",
Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.9755282581475768}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.09549150281252636, 0.7938926261462366}]},
{GrayLevel[0],
InsetBox["15",
Scaled[{-0.02, -0.02}, {0.09549150281252636, 0.7938926261462366}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0., 0.49999999999999994`}]},
{GrayLevel[0],
InsetBox["16",
Scaled[{-0.02, -0.02}, {0., 0.49999999999999994}], {1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.09549150281252629, 0.2061073738537634}]},
{GrayLevel[0],
InsetBox["17",
Scaled[{-0.02, -0.02}, {0.09549150281252629, 0.2061073738537634}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.3454915028125263, 0.024471741852423203`}]},
{GrayLevel[0],
InsetBox["18",
Scaled[{-0.02, -0.02}, {0.3454915028125263, 0.024471741852423203}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05], PointBox[{0.6545084971874736, 0.024471741852423203`}]},
{GrayLevel[0],
InsetBox["19",
Scaled[{-0.02, -0.02}, {0.6545084971874736, 0.024471741852423203}], \
{1, 0}]},
{GrayLevel[0]}},
{RGBColor[1, 0, 0],
{PointSize[0.05],
PointBox[{0.9045084971874736, 0.20610737385376338`}]},
{GrayLevel[0],
InsetBox["20",
Scaled[{-0.02, -0.02}, {0.9045084971874736, 0.20610737385376338}], \
{1, 0}]},
{GrayLevel[0]}}}},
AlignmentPoint->Center,
AspectRatio->Automatic,
Axes->False,
AxesLabel->None,
AxesOrigin->Automatic,
AxesStyle->{},
Background->None,
BaseStyle->{},
BaselinePosition->Automatic,
ColorOutput->Automatic,
ContentSelectable->Automatic,
CoordinatesToolOptions:>Automatic,
DisplayFunction:>$DisplayFunction,
Epilog->{},
FormatType:>TraditionalForm,
Frame->False,
FrameLabel->None,
FrameStyle->{},
FrameTicks->Automatic,
FrameTicksStyle->{},
GridLines->None,
GridLinesStyle->{},
ImageMargins->0.,
ImagePadding->All,
ImageSize->Automatic,
ImageSizeRaw->Automatic,
LabelStyle->{},
Method->Automatic,
PlotLabel->None,
PlotRange->All,
PlotRangeClipping->False,
PlotRangePadding->Automatic,
PlotRegion->Automatic,
PreserveImageOptions->Automatic,
Prolog->{},
RotateLabel->True,
Ticks->Automatic,
TicksStyle->{}]], "Output",ExpressionUUID->"884425db-68f6-4127-85a7-\
8bed3b59f82e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphPlot", "[",
RowBox[{"g", ",",
RowBox[{"Method", "\[Rule]", "None"}], ",",
RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]], "Input",ExpressionUUID->\
"9c41ca90-610d-4e3e-92f7-50c0c0f8eaf0"],
Cell[BoxData[
GraphicsBox[
TagBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQXfY7v/Ck+nP7G2/3H1Wdf8c+dP46t0lLrtiv/R+1
T8Pgpf0HyTMBry6e3L937e7gI4Wv7DP+CpXzHnmy32Sl9tHemQ/tdyz6YSCs
+nr/TsWI9F9OG+yh5u2Hmrcfat5+qHn7oebZQ83bDzXPHmrefqh59jsg5u1f
8WX67PLHP+2bzijebembsyfk1+mzuz9+sWcIdRHmy39nz8gAAg/s11+/0y0x
/4f9v/8gcH8/jB8MUb+fEaoeat5+qHk2UPP2Q83bDzUPpn8/1DyY+fuh5tlD
zdsPAH6TufE=
"], {
{GrayLevel[0],
LineBox[{{1, 3}, {1, 9}, {1, 11}, {2, 4}, {2, 10}, {2, 12}, {3, 5}, {3,
13}, {4, 6}, {4, 14}, {5, 7}, {5, 15}, {6, 8}, {6, 16}, {7, 9}, {7,
17}, {8, 10}, {8, 18}, {9, 19}, {10, 20}, {11, 12}, {11, 20}, {12,
13}, {13, 14}, {14, 15}, {15, 16}, {16, 17}, {17, 18}, {18, 19}, {19,
20}}]},
{RGBColor[1, 0, 0], AbsolutePointSize[5],
TagBox[
TooltipBox[PointBox[1],
"1"],
Annotation[#, 1, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[2],
"2"],
Annotation[#, 2, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[3],
"3"],
Annotation[#, 3, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[4],
"4"],
Annotation[#, 4, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[5],
"5"],
Annotation[#, 5, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[6],
"6"],
Annotation[#, 6, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[7],
"7"],
Annotation[#, 7, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[8],
"8"],
Annotation[#, 8, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[9],
"9"],
Annotation[#, 9, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[10],
"10"],
Annotation[#, 10, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[11],
"11"],
Annotation[#, 11, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[12],
"12"],
Annotation[#, 12, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[13],
"13"],
Annotation[#, 13, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[14],
"14"],
Annotation[#, 14, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[15],
"15"],
Annotation[#, 15, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[16],
"16"],
Annotation[#, 16, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[17],
"17"],
Annotation[#, 17, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[18],
"18"],
Annotation[#, 18, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[19],
"19"],
Annotation[#, 19, "Tooltip"]& ],
TagBox[
TooltipBox[PointBox[20],
"20"],
Annotation[#, 20, "Tooltip"]& ]}}],
Annotation[#, VertexCoordinateRules -> CompressedData["
1:eJxTTMoPSmViYGAQAWIQXfY7v/Ck+nP7G2/3H1Wdf8c+dP46t0lLrtiv/R+1
T8Pgpf0HyTMBry6e3L937e7gI4Wv7DP+CpXzHnmy32Sl9tHemQ/tdyz6YSCs
+nr/TsWI9F9OG+yh5u2Hmrcfat5+qHn7oebZQ83bDzXPHmrefqh59jsg5u1f
8WX67PLHP+2bzijebembsyfk1+mzuz9+sWcIdRHmy39nz8gAAg/s11+/0y0x
/4f9v/8gcH8/jB8MUb+fEaoeat5+qHk2UPP2Q83bDzUPpn8/1DyY+fuh5tlD
zdsPAH6TufE=
"]]& ],
AspectRatio->Automatic,
FrameTicks->None,
ImageSize->200,
PlotRange->All,
PlotRangePadding->Scaled[0.1]]], "Output",ExpressionUUID->"28b48b50-2567-\
444c-bcb6-86409ec37bad"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"v", "=",
RowBox[{
RowBox[{
RowBox[{"Combinatorica`Vertices", "[", "g", "]"}], "//", "FullSimplify"}],
"//", "ToRadicals"}]}]], "Input",ExpressionUUID->"afd79d3b-3f6a-4ad4-b835-\
12587d02188d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
FractionBox["1",
SqrtBox["5"]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["3",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}], "-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["3",
SqrtBox["5"]], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["3",
SqrtBox["5"]], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}], "+",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["3",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "8"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], "2"]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->\
"820b9e93-ba8a-45b9-8e96-68c15a135357"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"<<", "Utilities`Simplify`"}]], "Input",ExpressionUUID->"5580b1e5-4866-4588-ab1c-ba091b29b8ca"],
Cell[BoxData[
RowBox[{
RowBox[{"General", "::", "\<\"obspkg\"\>"}], ":",
" ", "\<\"\[NoBreak]\\!\\(\\*StyleBox[\\!\\(\\\"NumberTheory`Recognize`\\\"\
\\), \\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\" is now obsolete. \
The legacy version being loaded may conflict with current Mathematica \
functionality. See the Compatibility Guide for updating \
information.\\\\\\\"\\\", \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\
\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:Compatibility/Tutorials/NumberTheory/Recognize\\\", \
ButtonNote -> \\\"General::obspkg\\\"]\\)\"\>"}]], "Message", \
"MSG",ExpressionUUID->"91601e04-3d80-4d3e-aa99-098056799160"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"SymbolicUnion", "[",
RowBox[{"Norm", "/@",
RowBox[{"Subtract", "@@@",
RowBox[{"(",
RowBox[{
RowBox[{"Edges", "[", "g", "]"}], "/.",
RowBox[{"Thread", "[",
RowBox[{
RowBox[{"Range", "[", "20", "]"}], "\[Rule]", "v"}], "]"}]}],
")"}]}]}], "]"}], "//", "FullSimplify"}]], "Input",ExpressionUUID->\
"a051ba8d-075c-44fd-8ac9-612b6a70789a"],
Cell[BoxData[
RowBox[{"{", "1", "}"}]], "Output",ExpressionUUID->"afe8b871-3161-496a-aaca-b12236487cea"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Insert", "[",
RowBox[{
RowBox[{"GraphData", "[",
RowBox[{"\"\\"", ",", "\"\\""}], "]"}],
",",
RowBox[{"ToCommonEdges", "[",
RowBox[{
RowBox[{"ChangeVertices", "[",
RowBox[{"g", ",", "v"}], "]"}], ",", "\"\\""}],
"]"}], ",", "4"}], "]"}]], "Input",ExpressionUUID->"d75710fa-6913-4110-\
b5d3-11d289813fee"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1.548`", ",", "0.503`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.134`"}], ",",
RowBox[{"-", "0.368`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.628`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.957`", ",",
RowBox[{"-", "1.317`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.548`"}], ",", "0.503`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.957`"}], ",",
RowBox[{"-", "1.317`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "2.466`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.449`", ",",
RowBox[{"-", "1.995`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.302`", ",", "0.416`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.489`", ",",
RowBox[{"-", "0.159`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.345`"}], ",", "0.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.45`"}], ",",
RowBox[{"-", "1.995`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.489`"}], ",",
RowBox[{"-", "0.159`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.7`", ",", "0.965`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.133`", ",",
RowBox[{"-", "0.369`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.345`", ",", "0.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.302`"}], ",", "0.416`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.514`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.7`"}], ",", "0.965`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "1.192`"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.3`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3527`"}], ",", "0.4854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5878`", ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.2853`"}], ",",
RowBox[{"-", "0.0927`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.6`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5706`"}], ",", "0.1854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5878`"}], ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3527`", ",", "0.4854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5706`", ",", "0.1854`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5706`"}], ",",
RowBox[{"-", "0.1854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3527`"}], ",",
RowBox[{"-", "0.4854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2853`", ",",
RowBox[{"-", "0.0927`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.6`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.9511`", ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.9511`"}], ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.1763`", ",", "0.2427`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5706`", ",",
RowBox[{"-", "0.1854`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1763`"}], ",", "0.2427`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.3527`", ",",
RowBox[{"-", "0.4854`"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.588`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.466`", ",", "1.76`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.002`", ",", "1.086`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4`", ",", "2.55`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.669`", ",", "1.72`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.085`", ",", "2.762`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.948`", ",", "2.186`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.117`", ",", "3.295`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.278`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.489`", ",", "0.77`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.978`", ",", "2.579`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.187`", ",", "3.348`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.186`", ",", "0.724`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.381`", ",", "0.586`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.798`", ",", "1.628`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.281`", ",", "2.623`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.35`", ",", "0.053`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.518`", ",", "1.161`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.066`", ",", "0.798`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.464`", ",", "2.262`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}], ",",
FractionBox["1",
SqrtBox["5"]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "5"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1", "2"], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}], "-",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1",
SqrtBox["5"]]}], "+",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}], ")"}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["3",
SqrtBox["5"]], "-",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["3",
SqrtBox["5"]], "+",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}], ")"}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["3",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["3",
RowBox[{"4", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]]}], ")"}]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], "+",
FractionBox["1",
RowBox[{"4", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "-",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]], "-",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]], "+",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{
FractionBox["1", "2"], "+",
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]]}]}], ",",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1",
SqrtBox["5"]], "-",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "-",
SqrtBox["5"]}], ")"}]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "8"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}], "2"]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
SqrtBox["5"], "8"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], ",",
RowBox[{"-",
SqrtBox[
RowBox[{
FractionBox["5", "4"], "+",
FractionBox[
SqrtBox["5"], "2"]}]]}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.5`", ",", "0.866`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5`"}], ",",
RowBox[{"-", "0.866`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.5`", ",",
RowBox[{"-", "0.866`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.618`"}], ",", "1.902`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.618`"}], ",",
RowBox[{"-", "1.902`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.354`"}], ",",
RowBox[{"-", "0.354`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618`"}], ",", "1.176`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618`", ",", "1.176`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.618`"}], ",",
RowBox[{"-", "1.176`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.354`", ",",
RowBox[{"-", "0.354`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.618`", ",", "1.902`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.354`"}], ",", "0.354`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.618`", ",",
RowBox[{"-", "1.176`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.354`", ",", "0.354`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.618`", ",",
RowBox[{"-", "1.902`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5`"}], ",", "0.866`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.951`", ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.951`"}], ",",
RowBox[{"-", "0.309`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.588`", ",", "0.809`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.809`", ",",
RowBox[{"-", "0.588`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.809`"}], ",",
RowBox[{"-", "0.588`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.588`"}], ",", "0.809`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.309`", ",", "0.951`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.951`", ",",
RowBox[{"-", "0.309`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "1.`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.309`", ",",
RowBox[{"-", "0.951`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.309`"}], ",", "0.951`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.809`", ",", "0.588`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.588`", ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.309`"}], ",",
RowBox[{"-", "0.951`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.951`"}], ",", "0.309`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.588`"}], ",",
RowBox[{"-", "0.809`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.809`"}], ",", "0.588`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.`", ",", "1.034`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.249`", ",", "1.921`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.626`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.535`", ",", "2.867`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.25`", ",", "1.036`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.712`", ",", "2.868`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.625`", ",", "1.056`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.091`", ",", "2.659`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.092`", ",", "0.296`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.724`", ",", "1.249`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.526`", ",", "1.706`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.156`", ",", "2.66`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.526`", ",", "1.251`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.537`", ",", "0.087`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "1.919`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.723`", ",", "1.705`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.159`", ",", "0.297`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.624`", ",", "1.9`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.714`", ",", "0.088`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.623`", ",", "2.957`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1928`"}], ",",
RowBox[{"-", "0.1065`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2.6314`"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.4662`", ",",
RowBox[{"-", "0.4662`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.309`"}], ",", "0.5`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.0583`", ",",
RowBox[{"-", "3.0583`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2.6314`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "0.8999`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.309`"}], ",",
RowBox[{"-", "0.5`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.4662`", ",", "0.4662`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "0.8999`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "2.3999`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.0583`"}], ",",
RowBox[{"-", "3.0583`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3.0583`", ",", "3.0583`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.2461`", ",", "0.1065`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4662`"}], ",", "0.4662`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.4662`"}], ",",
RowBox[{"-", "0.4662`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.309`", ",", "0.5`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",", "2.3999`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.309`", ",",
RowBox[{"-", "0.5`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "3.0583`"}], ",", "3.0583`"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",", "1"}], "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUU\
ID->"e11e0f55-c161-4ea1-9cf2-62dfbdaccd5a"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["GraphData", "Section",ExpressionUUID->"fdf185ec-6996-4ebc-b834-e09a59240e23"],
Cell[CellGroupData[{
Cell["GraphClassString", "Subsection",ExpressionUUID->"be7b8408-b3af-4123-831d-d51a72d40479"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphClassString", "[", "\"\\"", "]"}]], "Input",\
ExpressionUUID->"73eacaae-f18c-4dfe-af0e-c5d4b3a7e569"],
Cell[BoxData["\<\"\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Biconnected Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Bridgeless \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Class 1 Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Completely Regular \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Connected Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Cubic Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Cyclic \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Determined by Spectrum Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Distance-Regular \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Edge-Transitive Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Generalized Petersen \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Hamiltonian Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:LCF Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Noneulerian \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Planar Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Platonic Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Polyhedral \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Regular Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Square-Free Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Symmetric \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Traceable Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph \
Theory:Simple Graphs:Triangle-Free Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Unitransitive \
Graphs}\\n\\\\subj{Mathematics:Discrete Mathematics:Graph Theory:Simple \
Graphs:Vertex-Transitive Graphs}\\n\\\\subj{Mathematics:Discrete \
Mathematics:Graph Theory:Simple Graphs:Weakly Regular Graphs}\"\>"], "Output",\
ExpressionUUID->"8d280a76-c4f9-420b-8da7-15c217afba5e"]
}, Open ]]
}, Open ]]
}, Closed]]
}, Open ]]
},
WindowSize->{1143, 819},
WindowMargins->{{Automatic, 107}, {Automatic, 57}},
ShowSelection->True,
FrontEndVersion->"13.4 for Mac OS X ARM (64-bit) (June 20, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"5cf10c05-ae21-4ede-bde3-1850f4026aa6"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{
"ewwwin (4)"->{
Cell[1008007, 18494, 90276, 1601, 1967, "Output",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5",
CellTags->"ewwwin (4)"]}
}
*)
(*CellTagsIndex
CellTagsIndex->{
{"ewwwin (4)", 8806578, 162192}
}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 90, 0, 98, "Title",ExpressionUUID->"a719feb7-6218-48af-b5e8-21f1220eac5f"],
Cell[CellGroupData[{
Cell[695, 26, 83, 0, 54, "Subsection",ExpressionUUID->"f72a88d6-f7e7-4f57-b144-1a8e1bc4e1bd"],
Cell[781, 28, 110, 3, 58, "Text",ExpressionUUID->"fa961551-c271-4c7b-83ef-08279d067795"],
Cell[894, 33, 346, 9, 35, "Text",ExpressionUUID->"24ffcfd0-f681-421a-a813-4fc79abacb4a"],
Cell[1243, 44, 364, 10, 35, "Text",ExpressionUUID->"1dfde49c-c2c1-49b9-842c-06de76e1f4f0"],
Cell[1610, 56, 154, 2, 35, "Text",ExpressionUUID->"c3418fa4-d105-40ff-98dc-b8aed831e346"]
}, Open ]],
Cell[CellGroupData[{
Cell[1801, 63, 84, 0, 67, "Section",ExpressionUUID->"24231fdd-d4bd-490f-8510-54130413d4a0"],
Cell[1888, 65, 167, 3, 46, "Input",ExpressionUUID->"6829a3f3-589f-4628-a602-7ee3267aef9c",
InitializationCell->True],
Cell[CellGroupData[{
Cell[2080, 72, 85, 0, 45, "Subsubsection",ExpressionUUID->"6485c1e4-179b-4603-9511-2debe3310c9a"],
Cell[CellGroupData[{
Cell[2190, 76, 214, 5, 30, "Input",ExpressionUUID->"3846e362-6f7f-476d-b901-8ef8f4f026a5"],
Cell[2407, 83, 135, 2, 34, "Output",ExpressionUUID->"e1514d7b-c035-4b90-b0f4-437a572a6e75"]
}, Open ]],
Cell[CellGroupData[{
Cell[2579, 90, 210, 4, 30, "Input",ExpressionUUID->"c14a0012-a7bf-4d66-8056-562b63b5b5ad"],
Cell[2792, 96, 1644, 44, 77, "Output",ExpressionUUID->"1694eadc-a4ab-4d53-a8fa-e0abfde9c8b0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[4485, 146, 87, 0, 45, "Subsubsection",ExpressionUUID->"fcf7cb8b-a55e-4b17-aeb5-698c2bb792b7"],
Cell[CellGroupData[{
Cell[4597, 150, 314, 8, 30, "Input",ExpressionUUID->"1aede9d9-f9f7-4bd1-ae12-82d78b0f7984"],
Cell[4914, 160, 3242, 58, 189, "Output",ExpressionUUID->"9702c973-6331-4ccd-ba39-1987c8b1c2dd"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[8205, 224, 113, 0, 45, "Subsubsection",ExpressionUUID->"33041918-817b-423b-81bb-81828335e9a4"],
Cell[8321, 226, 126410, 2076, 360, "Input",ExpressionUUID->"35a42c58-aba7-4263-80f5-0316ba66e920"],
Cell[134734, 2304, 65715, 1081, 203, "Input",ExpressionUUID->"6a55b2ac-cfff-4a65-a5f9-b8486e87b5c9"],
Cell[CellGroupData[{
Cell[200474, 3389, 2168, 62, 136, "Input",ExpressionUUID->"d0e406fd-bdee-4a34-8397-f730a6da77b7"],
Cell[202645, 3453, 9945, 201, 367, "Output",ExpressionUUID->"512a5081-3e74-433a-9dc1-d0df3860c10a"]
}, Open ]],
Cell[CellGroupData[{
Cell[212627, 3659, 141, 2, 30, "Input",ExpressionUUID->"77ca0b0f-6250-48b9-9b0a-b1b50158c6a0"],
Cell[CellGroupData[{
Cell[212793, 3665, 214, 4, 24, "Print",ExpressionUUID->"bc120d34-edbc-4c3b-b951-73b91c97a3ea"],
Cell[213010, 3671, 224, 4, 24, "Print",ExpressionUUID->"737d2373-8ab9-450b-ba84-d5f8032574e8"],
Cell[213237, 3677, 374, 8, 24, "Print",ExpressionUUID->"8b2f3ba9-f045-4cf4-a6ec-f1c52ca2f47d"]
}, Open ]],
Cell[213626, 3688, 131, 1, 34, "Output",ExpressionUUID->"67b71a61-faf3-41b5-9e89-afb5cb80c1e4"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[213806, 3695, 83, 0, 45, "Subsubsection",ExpressionUUID->"99dc9a1f-6677-443b-a40f-4dc3008776eb"],
Cell[CellGroupData[{
Cell[213914, 3699, 263, 6, 30, "Input",ExpressionUUID->"4fb6db46-aa12-4631-9e90-aa8297ef9833"],
Cell[214180, 3707, 123360, 2193, 1269, "Output",ExpressionUUID->"b3a3fdf7-f777-4739-82c5-4aa7aa531c4d"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[337589, 5906, 87, 0, 45, "Subsubsection",ExpressionUUID->"42ca6f6b-8aa2-4475-9f15-30dc033ae241"],
Cell[CellGroupData[{
Cell[337701, 5910, 557, 16, 30, "Input",ExpressionUUID->"1fe60508-c88b-4a93-bcde-32f1df616dfa"],
Cell[338261, 5928, 36806, 626, 412, "Output",ExpressionUUID->"d180ff1a-2ad4-4f38-a6e5-4eb8184f5f2d"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[375116, 6560, 95, 0, 45, "Subsubsection",ExpressionUUID->"10029b6f-dd88-4dbb-88d1-a23d7f426fe6"],
Cell[CellGroupData[{
Cell[375236, 6564, 257, 6, 30, "Input",ExpressionUUID->"9845f8e1-6b8c-4095-b4bc-3455ea219da2"],
Cell[375496, 6572, 40859, 770, 701, "Output",ExpressionUUID->"73e77f01-9592-4c45-a3d0-5df8f2006dcb"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[416404, 7348, 97, 0, 37, "Subsubsection",ExpressionUUID->"ce415c54-1933-47fa-bd4d-310fe8d96dae"],
Cell[CellGroupData[{
Cell[416526, 7352, 240, 6, 30, "Input",ExpressionUUID->"faf94607-dcf0-4929-8292-8493117db0a9"],
Cell[416769, 7360, 1905, 31, 345, "Output",ExpressionUUID->"b03b9712-39b8-4b3b-9e83-91b23617dd06"]
}, Open ]],
Cell[418689, 7394, 499, 13, 52, "Input",ExpressionUUID->"549ab679-60f0-4eaa-be2d-b62e39876ae2"],
Cell[419191, 7409, 150, 3, 30, "Input",ExpressionUUID->"622071e2-8b9f-4aed-82c1-dde3957bf88a"],
Cell[419344, 7414, 3011, 52, 356, "Input",ExpressionUUID->"15d45042-c1bf-4a9e-a80e-002135bb4d19"],
Cell[CellGroupData[{
Cell[422380, 7470, 1976, 57, 115, "Input",ExpressionUUID->"9612ae56-7004-42c1-855f-894dc93883c5"],
Cell[424359, 7529, 9344, 188, 367, "Output",ExpressionUUID->"dcaecd19-f03f-4f5b-b8df-2da51347baa3"]
}, Open ]],
Cell[CellGroupData[{
Cell[433740, 7722, 146, 2, 30, "Input",ExpressionUUID->"853ee9d2-2e8f-4295-a778-451de8f984e7"],
Cell[433889, 7726, 131, 1, 34, "Output",ExpressionUUID->"db918082-ec36-4ef1-885b-34a30adb2c3f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[434069, 7733, 90, 0, 45, "Subsubsection",ExpressionUUID->"05a4b6fc-bbcc-4f97-9c21-efa80de85f9f"],
Cell[CellGroupData[{
Cell[434184, 7737, 271, 6, 30, "Input",ExpressionUUID->"69a228bf-34f5-4594-b28e-d855859d6967"],
Cell[434458, 7745, 33201, 621, 204, "Output",ExpressionUUID->"273334b7-a07d-4ae8-8a90-d144f6774965"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[467708, 8372, 89, 0, 37, "Subsubsection",ExpressionUUID->"11f68b86-6819-4502-ac72-73629a85d1e5"],
Cell[CellGroupData[{
Cell[467822, 8376, 269, 6, 30, "Input",ExpressionUUID->"2b2cc173-03d3-4a4a-9ea7-f28632aabea8"],
Cell[468094, 8384, 46450, 820, 420, "Output",ExpressionUUID->"2bac46a8-e2ff-4f28-b046-42ed914e146b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[514593, 9210, 99, 0, 45, "Subsubsection",ExpressionUUID->"5ba8f7d4-b117-478b-b597-31ecbe308535"],
Cell[CellGroupData[{
Cell[514717, 9214, 255, 6, 30, "Input",ExpressionUUID->"88054afc-1d53-4388-8d6e-5214c8f6255b"],
Cell[514975, 9222, 157, 4, 34, "Output",ExpressionUUID->"bee96356-f190-47e9-b8bf-bf43d0b60856"]
}, Open ]],
Cell[CellGroupData[{
Cell[515169, 9231, 279, 6, 30, "Input",ExpressionUUID->"fd954b66-6b6f-480a-b4b1-0dffd74e9b41"],
Cell[515451, 9239, 123, 2, 34, "Output",ExpressionUUID->"84bc0978-5a6b-465c-8149-eecaa03d3202"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[515623, 9247, 98, 0, 45, "Subsubsection",ExpressionUUID->"2994d932-2236-42a5-bd96-339becf954fa"],
Cell[CellGroupData[{
Cell[515746, 9251, 279, 6, 30, "Input",ExpressionUUID->"eed3e15e-9f4f-40c6-9be3-8778de8b3d9a"],
Cell[516028, 9259, 2957, 49, 144, "Output",ExpressionUUID->"0491aaa8-2131-40b5-9970-081a8d1eda59"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[519034, 9314, 88, 0, 37, "Subsubsection",ExpressionUUID->"5829c57d-da56-4119-8132-31b11beec275"],
Cell[CellGroupData[{
Cell[519147, 9318, 269, 6, 30, "Input",ExpressionUUID->"be3f2e8b-86c0-486a-a8c1-27fbf42699c5"],
Cell[519419, 9326, 19130, 339, 192, "Output",ExpressionUUID->"ba70ecbc-2c32-46dd-b3f8-06ed3db46184"]
}, Open ]],
Cell[CellGroupData[{
Cell[538586, 9670, 311, 7, 30, "Input",ExpressionUUID->"98f8815a-8964-42ae-a81a-1cf37783b792"],
Cell[538900, 9679, 78222, 1438, 192, "Output",ExpressionUUID->"b0c537ec-50c0-4f49-8ce2-aa7e25d11e9a"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[617171, 11123, 86, 0, 37, "Subsubsection",ExpressionUUID->"1e04846a-ca31-4c7f-aedb-c57ba4f8c70b"],
Cell[CellGroupData[{
Cell[617282, 11127, 242, 6, 30, "Input",ExpressionUUID->"3803e134-dd2d-47a4-8431-b7d92a7a5f7a"],
Cell[617527, 11135, 167, 4, 34, "Output",ExpressionUUID->"66a3c90f-7ac6-4a4e-b216-44b24a949017"]
}, Open ]],
Cell[CellGroupData[{
Cell[617731, 11144, 266, 6, 30, "Input",ExpressionUUID->"3a3b45b0-a78a-4504-ba33-04c5cc86e6f2"],
Cell[618000, 11152, 18620, 330, 194, "Output",ExpressionUUID->"e41a355d-19f5-4e8f-a877-608715087e43"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[636669, 11488, 88, 0, 37, "Subsubsection",ExpressionUUID->"6a198bb2-a69f-4490-8f66-a524a74f29bc"],
Cell[CellGroupData[{
Cell[636782, 11492, 269, 6, 30, "Input",ExpressionUUID->"d5794f9b-5a18-4c50-887c-b90030af168e"],
Cell[637054, 11500, 4141, 76, 200, "Output",ExpressionUUID->"a1bbe989-425c-4b1e-855d-93cd58129174"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[641244, 11582, 86, 0, 37, "Subsubsection",ExpressionUUID->"787cdfd2-064b-48d3-b032-1eb5d86bb9e4"],
Cell[CellGroupData[{
Cell[641355, 11586, 208, 5, 30, "Input",ExpressionUUID->"737a7248-2894-47c0-ae6c-d728eca79c2a"],
Cell[641566, 11593, 114, 2, 34, "Output",ExpressionUUID->"4c4a204b-a2c0-477d-9ac7-744793136e19"]
}, Open ]],
Cell[CellGroupData[{
Cell[641717, 11600, 270, 7, 30, "Input",ExpressionUUID->"79e9a92e-e973-406c-b2f7-43c8ab65322f"],
Cell[641990, 11609, 13299, 230, 192, "Output",ExpressionUUID->"fa7f5635-527b-42e1-9715-b285f1729971"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[655338, 11845, 96, 0, 37, "Subsubsection",ExpressionUUID->"a1dc7eff-6a41-46b8-843e-0877d9ace473"],
Cell[CellGroupData[{
Cell[655459, 11849, 290, 7, 30, "Input",ExpressionUUID->"8c20b6ec-46ee-4fcc-bee9-ade6f3d5877a"],
Cell[655752, 11858, 216, 6, 34, "Output",ExpressionUUID->"2d43832e-2d15-48da-bd3b-8be9f75519ec"]
}, Open ]],
Cell[CellGroupData[{
Cell[656005, 11869, 213, 5, 30, "Input",ExpressionUUID->"3d3faf88-f6b4-45e9-aaf6-d417c9211c25"],
Cell[656221, 11876, 180, 5, 34, "Output",ExpressionUUID->"b1a91e56-0e3f-4a0d-aed5-54b0c4d908bd"]
}, Open ]],
Cell[CellGroupData[{
Cell[656438, 11886, 330, 9, 30, "Input",ExpressionUUID->"11912f5a-bfa6-4dcb-8a39-82ffafe003a8"],
Cell[656771, 11897, 3287, 61, 190, "Output",ExpressionUUID->"31b4492e-2d7d-46b6-8e89-4a98b485a65d"]
}, Open ]],
Cell[CellGroupData[{
Cell[660095, 11963, 398, 12, 30, "Input",ExpressionUUID->"920e6827-848d-4e71-b342-73d65792670e"],
Cell[660496, 11977, 128, 3, 34, "Output",ExpressionUUID->"e76b0052-c200-4377-af06-0be33ab05bf9"]
}, Open ]],
Cell[660639, 11983, 119, 1, 30, "Input",ExpressionUUID->"84346213-9d36-416e-b47f-386e63e1d99c"]
}, Closed]],
Cell[CellGroupData[{
Cell[660795, 11989, 95, 0, 37, "Subsubsection",ExpressionUUID->"74fd435e-2046-4023-b2ec-04d2d3a4954c"],
Cell[CellGroupData[{
Cell[660915, 11993, 256, 5, 30, "Input",ExpressionUUID->"9699808a-8b75-4e9b-bc81-05f95871883e"],
Cell[661174, 12000, 152, 3, 34, "Output",ExpressionUUID->"a898329d-0681-4cd1-b17f-f831454d083c"]
}, Open ]],
Cell[CellGroupData[{
Cell[661363, 12008, 276, 6, 30, "Input",ExpressionUUID->"bd7f5768-1b6c-49ca-9c0b-d5b859a7099b"],
Cell[661642, 12016, 13295, 229, 192, "Output",ExpressionUUID->"bf43147e-773f-44c1-a979-333fcf9c925a"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[674986, 12251, 95, 0, 37, "Subsubsection",ExpressionUUID->"5525967c-2e88-47dc-8007-b1a2db96a83e"],
Cell[CellGroupData[{
Cell[675106, 12255, 276, 6, 30, "Input",ExpressionUUID->"d821c3f0-dd8b-4f1e-a5b7-ecedf6e9ad8c"],
Cell[675385, 12263, 12172, 222, 192, "Output",ExpressionUUID->"8f950747-9dce-4eb4-901d-e15eba5188ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[687594, 12490, 318, 7, 30, "Input",ExpressionUUID->"81c30224-37e7-4a46-9382-efd774429692"],
Cell[687915, 12499, 50798, 940, 192, "Output",ExpressionUUID->"b7cf392b-5178-4191-a0fe-7b5d8960eaee"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[738762, 13445, 101, 0, 37, "Subsubsection",ExpressionUUID->"ac93d627-0451-4c27-908a-785f50630a27"],
Cell[CellGroupData[{
Cell[738888, 13449, 327, 8, 30, "Input",ExpressionUUID->"a0c5ff72-2f86-4402-82d2-566215e717e6"],
Cell[739218, 13459, 27001, 495, 192, "Output",ExpressionUUID->"8dabffce-229c-4f7c-a6fb-a9584d50f537"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[766268, 13960, 89, 0, 37, "Subsubsection",ExpressionUUID->"451f4e4b-88c7-4117-a304-c05606209c00"],
Cell[CellGroupData[{
Cell[766382, 13964, 206, 4, 30, "Input",ExpressionUUID->"9a4c91e2-ba13-449b-974f-cfdad45bdcfb"],
Cell[766591, 13970, 110, 1, 34, "Output",ExpressionUUID->"7e05193a-49eb-4ee4-8966-966edc62fd88"]
}, Open ]],
Cell[CellGroupData[{
Cell[766738, 13976, 269, 6, 30, "Input",ExpressionUUID->"0217e9bd-dbd8-4f12-9ab3-68e2b7f13305"],
Cell[767010, 13984, 123, 2, 34, "Output",ExpressionUUID->"62665c00-aa61-4bfa-bf31-7b0100c22594"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[767182, 13992, 85, 0, 37, "Subsubsection",ExpressionUUID->"c61aca9c-f6a0-481d-801a-24b5c30742c0"],
Cell[CellGroupData[{
Cell[767292, 13996, 201, 4, 30, "Input",ExpressionUUID->"a3f731b7-fea3-43d3-9f47-dc037a7eca9a"],
Cell[767496, 14002, 110, 1, 34, "Output",ExpressionUUID->"3ff1636f-5f81-4c4f-957d-5d486bd11728"]
}, Open ]],
Cell[CellGroupData[{
Cell[767643, 14008, 265, 6, 30, "Input",ExpressionUUID->"79143728-c29b-4ca6-b1f1-e7a9c60e5a23"],
Cell[767911, 14016, 124, 2, 34, "Output",ExpressionUUID->"75af72d6-4da8-4e9b-8637-b5f2014c08b9"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[768084, 14024, 83, 0, 37, "Subsubsection",ExpressionUUID->"94a8e40c-195c-4d28-bd2c-d7b8bce59cd1"],
Cell[CellGroupData[{
Cell[768192, 14028, 198, 3, 30, "Input",ExpressionUUID->"46089590-a5dd-45a0-9497-bcf21c76c02a"],
Cell[768393, 14033, 110, 1, 34, "Output",ExpressionUUID->"6b7e4cdf-1964-492a-89d5-9fa7fa8da618"]
}, Open ]],
Cell[CellGroupData[{
Cell[768540, 14039, 219, 4, 30, "Input",ExpressionUUID->"e9ade6fb-032d-4c22-a9ef-5f9a1aa0ca29"],
Cell[768762, 14045, 108, 1, 34, "Output",ExpressionUUID->"333da5e2-1c10-4a0c-ae5d-107941880283"]
}, Open ]],
Cell[CellGroupData[{
Cell[768907, 14051, 210, 4, 30, "Input",ExpressionUUID->"867bf96c-1bee-4e28-96cc-92e3abdf7540"],
Cell[769120, 14057, 176, 4, 34, "Output",ExpressionUUID->"13e8d7aa-371c-4aeb-a1bf-536ab3b2cd0e"]
}, Open ]],
Cell[CellGroupData[{
Cell[769333, 14066, 263, 6, 30, "Input",ExpressionUUID->"31a6ad5b-7397-4db0-b337-b9f8b1d8ff56"],
Cell[769599, 14074, 4141, 76, 200, "Output",ExpressionUUID->"749f138f-7c3d-434b-8800-e6fed358da32"]
}, Open ]],
Cell[CellGroupData[{
Cell[773777, 14155, 282, 7, 30, "Input",ExpressionUUID->"bd0a5c4d-13bd-4b9a-a767-b95e06878eb0"],
Cell[774062, 14164, 176, 4, 34, "Output",ExpressionUUID->"64f48760-4974-46a4-8714-aefd8fa45ee3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[774287, 14174, 91, 0, 37, "Subsubsection",ExpressionUUID->"0f59d380-1dc6-4198-b941-a401158b595e"],
Cell[CellGroupData[{
Cell[774403, 14178, 411, 11, 30, "Input",ExpressionUUID->"de92e3d0-310a-4c4f-9e71-017d45b50089"],
Cell[774817, 14191, 161, 3, 34, "Output",ExpressionUUID->"3916dbc6-b2b6-4019-ab83-7a429adf9e1b"]
}, Open ]],
Cell[CellGroupData[{
Cell[775015, 14199, 442, 13, 30, "Input",ExpressionUUID->"c1f97f9a-1f88-4d92-b3c0-6898d0cce313"],
Cell[775460, 14214, 234, 6, 34, "Output",ExpressionUUID->"ccdd64ee-f450-4168-8188-59760475a9cf"]
}, Open ]],
Cell[CellGroupData[{
Cell[775731, 14225, 172, 3, 30, "Input",ExpressionUUID->"63905200-494a-4826-880b-92cffa70b78c"],
Cell[775906, 14230, 3884, 70, 200, "Output",ExpressionUUID->"485cc936-f57f-418b-bf4b-56995d91f40a"]
}, Open ]],
Cell[CellGroupData[{
Cell[779827, 14305, 2319, 65, 136, "Input",ExpressionUUID->"4ced435d-99b4-485e-ad67-f57134cd1885"],
Cell[782149, 14372, 3689, 63, 200, "Output",ExpressionUUID->"3716d496-ad91-4c66-8fa2-d850251cac25"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[785887, 14441, 91, 0, 37, "Subsubsection",ExpressionUUID->"d44c7d2f-a5f3-4262-9181-b7d3e1d9096b"],
Cell[CellGroupData[{
Cell[786003, 14445, 271, 6, 30, "Input",ExpressionUUID->"a8a9f883-78ca-4cef-927a-3f6394caebc3"],
Cell[786277, 14453, 45247, 822, 420, "Output",ExpressionUUID->"6e09960d-9813-43a5-9b97-eaacf9b7f1cb"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[831573, 15281, 92, 0, 37, "Subsubsection",ExpressionUUID->"76e1f70f-a12a-4637-88f7-190cd792c722"],
Cell[CellGroupData[{
Cell[831690, 15285, 214, 5, 30, "Input",ExpressionUUID->"5de9c8f4-df04-4a60-9dcd-188c7f456afd"],
Cell[831907, 15292, 114, 2, 34, "Output",ExpressionUUID->"1fd2bd9c-d999-47ef-ae17-bd8b52bdeedc"]
}, Open ]],
Cell[CellGroupData[{
Cell[832058, 15299, 302, 7, 30, "Input",ExpressionUUID->"92c48c81-9270-430e-8f93-835df9d7a393"],
Cell[CellGroupData[{
Cell[832385, 15310, 183, 3, 24, "Print",ExpressionUUID->"2e008220-2f9b-4263-a6aa-0e6ec15fae46"],
Cell[832571, 15315, 196, 4, 24, "Print",ExpressionUUID->"74da8381-df03-4c13-bab8-0ccaf4fd7b0c"],
Cell[832770, 15321, 548, 11, 24, "Print",ExpressionUUID->"2b51dfd8-e175-4893-9a37-37954461bc99"],
Cell[833321, 15334, 211, 4, 24, "Print",ExpressionUUID->"390420dc-cd09-4eb1-94d1-3ba6c9401acf"],
Cell[833535, 15340, 238, 4, 24, "Print",ExpressionUUID->"fe3313c0-5bb0-4f9e-a328-cd8c78cb302c"]
}, Open ]],
Cell[833788, 15347, 170, 4, 34, "Output",ExpressionUUID->"6da59cd2-99a2-4c20-ab67-5c2bc01b97dd"]
}, Open ]],
Cell[CellGroupData[{
Cell[833995, 15356, 277, 7, 30, "Input",ExpressionUUID->"e019868d-d4e0-4fb0-b388-b5b72a62503d"],
Cell[834275, 15365, 29416, 515, 400, "Output",ExpressionUUID->"076b5209-b4bc-4974-b540-74de99e80bfe"]
}, Open ]],
Cell[CellGroupData[{
Cell[863728, 15885, 356, 11, 30, "Input",ExpressionUUID->"104b91d1-3f3b-4862-b3a5-8cb0392c7ce6"],
Cell[864087, 15898, 17556, 301, 194, "Output",ExpressionUUID->"c170660f-0740-4391-9ab6-4d4c8740a56e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[881692, 16205, 106, 0, 37, "Subsubsection",ExpressionUUID->"b6649de6-e28f-41cb-ab19-46f3c4aa6322"],
Cell[CellGroupData[{
Cell[881823, 16209, 436, 11, 30, "Input",ExpressionUUID->"59465ab2-7193-42ec-a7b1-f20950059c2f"],
Cell[882262, 16222, 3144, 53, 366, "Output",ExpressionUUID->"585ed9a2-2683-4631-8518-ee4051eae404"]
}, Open ]],
Cell[CellGroupData[{
Cell[885443, 16280, 163, 3, 30, "Input",ExpressionUUID->"a2ff7ddc-05a1-4b98-b90e-507ac06feb6e"],
Cell[885609, 16285, 114, 2, 34, "Output",ExpressionUUID->"c10d05b3-8cfe-465c-906c-bcc38990573f"]
}, Open ]],
Cell[CellGroupData[{
Cell[885760, 16292, 715, 21, 52, "Input",ExpressionUUID->"dad7bc69-939d-4305-97d3-7e8af13a5b32"],
Cell[886478, 16315, 56461, 994, 978, "Output",ExpressionUUID->"5cc8663b-e7b6-43c9-9cc2-4cdb8db5d864"]
}, Open ]],
Cell[CellGroupData[{
Cell[942976, 17314, 191, 4, 30, "Input",ExpressionUUID->"5cc40b95-385f-4b9b-a4e6-69543c88a179"],
Cell[943170, 17320, 56461, 994, 978, "Output",ExpressionUUID->"18805099-ebc7-40ec-9b5a-690973fc6ab9"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[999680, 18320, 121, 0, 37, "Subsubsection",ExpressionUUID->"4849a62c-2d86-457d-9c8d-ac5a3d7164b1"],
Cell[CellGroupData[{
Cell[999826, 18324, 383, 9, 30, "Input",ExpressionUUID->"ebbf0780-56ad-487b-a8b3-14db11c991aa"],
Cell[1000212, 18335, 3288, 57, 178, "Output",ExpressionUUID->"eb3092d6-f261-493d-8046-d6c1ff847a4b"]
}, Open ]],
Cell[CellGroupData[{
Cell[1003537, 18397, 423, 10, 30, "Input",ExpressionUUID->"06d84af0-d50d-449b-8345-6fb843b8b308"],
Cell[1003963, 18409, 3370, 62, 174, "Output",ExpressionUUID->"246c8a06-f822-481b-8633-9af6f47bf599"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1007382, 18477, 129, 0, 37, "Subsubsection",ExpressionUUID->"7dd8109a-647f-426d-a3a5-d68ecf6d8363"],
Cell[CellGroupData[{
Cell[1007536, 18481, 468, 11, 52, "Input",ExpressionUUID->"5ef270fe-df9a-4c09-984c-149aa5af5ab5"],
Cell[1008007, 18494, 90276, 1601, 1967, "Output",ExpressionUUID->"0777ed95-e3f8-4be5-9bce-302121604dd5",
CellTags->"ewwwin (4)"]
}, Closed]],
Cell[CellGroupData[{
Cell[1098320, 20100, 385, 10, 26, "Input",ExpressionUUID->"1400e62e-a2ef-4a51-8822-369a7deb2916"],
Cell[1098708, 20112, 68140, 1185, 245, "Output",ExpressionUUID->"5be09209-cd4a-4c69-8ecd-a22d5d5dbefc"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1166897, 21303, 90, 0, 37, "Subsubsection",ExpressionUUID->"2b5e045b-b9ac-438b-a83f-469092230192"],
Cell[CellGroupData[{
Cell[1167012, 21307, 212, 5, 30, "Input",ExpressionUUID->"ec4589ff-c1a9-4c9a-8b6c-3f50068a8bde"],
Cell[1167227, 21314, 115, 2, 34, "Output",ExpressionUUID->"b4e2c91f-33e5-48e8-ab24-da71e927c16e"]
}, Open ]],
Cell[CellGroupData[{
Cell[1167379, 21321, 275, 7, 30, "Input",ExpressionUUID->"4cf46922-ed30-40b0-969a-60c2b6725144"],
Cell[1167657, 21330, 128, 3, 34, "Output",ExpressionUUID->"f052d6c3-6323-43f0-870c-8c16b39c299f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1167834, 21339, 90, 0, 37, "Subsubsection",ExpressionUUID->"2fe9222b-fe63-463a-8d45-7d27ed22b1af"],
Cell[CellGroupData[{
Cell[1167949, 21343, 242, 6, 30, "Input",ExpressionUUID->"75395905-d1a4-437a-9f59-78f66595df99"],
Cell[1168194, 21351, 3157, 59, 410, "Output",ExpressionUUID->"fc61cbab-6965-4e6c-bc56-91ee9f5b2e54"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1171400, 21416, 86, 0, 37, "Subsubsection",ExpressionUUID->"62dbb921-cc4c-40c6-b11f-8c92dd50d1f2"],
Cell[CellGroupData[{
Cell[1171511, 21420, 282, 6, 30, "Input",ExpressionUUID->"6a2d026d-0f8d-4e70-861b-1aba37e84c58"],
Cell[1171796, 21428, 23021, 450, 216, "Output",ExpressionUUID->"909e5147-b1e3-4b51-8a8c-a6a5412cdf43"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1194866, 21884, 95, 0, 37, "Subsubsection",ExpressionUUID->"6dc555d2-6057-47a8-b561-239a9bf6c23d"],
Cell[CellGroupData[{
Cell[1194986, 21888, 294, 7, 30, "Input",ExpressionUUID->"af5395e5-e01a-4884-acdf-f975b09dfe3a"],
Cell[1195283, 21897, 17428, 339, 216, "Output",ExpressionUUID->"9d3a01df-5eed-4bc4-89f1-5894b0745160"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1212760, 22242, 93, 0, 37, "Subsubsection",ExpressionUUID->"95c1d4f7-fa4d-410f-b298-c8888353e44b"],
Cell[CellGroupData[{
Cell[1212878, 22246, 212, 5, 30, "Input",ExpressionUUID->"76206053-d8b3-48ac-b4c6-388db81195cd"],
Cell[1213093, 22253, 114, 2, 34, "Output",ExpressionUUID->"a0cd78d3-4ee9-46d7-88f2-916a316c3df3"]
}, Open ]],
Cell[CellGroupData[{
Cell[1213244, 22260, 292, 7, 30, "Input",ExpressionUUID->"44f5e6c6-5c35-4a06-9cd4-7611975801eb"],
Cell[1213539, 22269, 23021, 450, 216, "Output",ExpressionUUID->"8bc08d98-4990-4354-8382-38ccbee68a95"]
}, Open ]],
Cell[CellGroupData[{
Cell[1236597, 22724, 373, 10, 30, "Input",ExpressionUUID->"220e9a0a-47d3-4c75-8611-5a899d089108"],
Cell[1236973, 22736, 3958, 73, 378, "Output",ExpressionUUID->"f656b054-9f22-4f97-a235-3cbba1b0f1a0"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1240980, 22815, 92, 0, 37, "Subsubsection",ExpressionUUID->"d0b1f09b-c8ad-48d7-bfd5-e87bb21a5f99"],
Cell[CellGroupData[{
Cell[1241097, 22819, 290, 7, 30, "Input",ExpressionUUID->"a1fa4da1-e161-40b7-83a3-09a6c6ce8f46"],
Cell[1241390, 22828, 5610, 114, 204, "Output",ExpressionUUID->"67188992-8845-4ec2-89d3-42f11839e135"]
}, Open ]],
Cell[CellGroupData[{
Cell[1247037, 22947, 441, 11, 30, "Input",ExpressionUUID->"85b970bd-4370-442b-8820-fdb87e448f98"],
Cell[1247481, 22960, 3985, 73, 400, "Output",ExpressionUUID->"bee9a666-bd4c-49d4-b9ec-7967b13505ab"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1251515, 23039, 105, 0, 37, "Subsubsection",ExpressionUUID->"22115181-0253-4838-a9c0-1233f52ee399"],
Cell[CellGroupData[{
Cell[1251645, 23043, 450, 12, 30, "Input",ExpressionUUID->"1df6e35b-48a6-4bc4-acf9-45f09f834136"],
Cell[1252098, 23057, 1168, 21, 389, "Output",ExpressionUUID->"3c76a681-4ea7-4a8c-8c4b-310743c2a2de"]
}, Open ]],
Cell[CellGroupData[{
Cell[1253303, 23083, 702, 17, 52, "Input",ExpressionUUID->"e9b04051-436c-42a7-ba5a-9751d4417478"],
Cell[CellGroupData[{
Cell[1254030, 23104, 817, 18, 39, "Print",ExpressionUUID->"770699f0-640d-4c6f-9146-65117752c57c"],
Cell[1254850, 23124, 841, 22, 24, "Print",ExpressionUUID->"41192d31-f3c8-4059-80e3-3a2f8cc333c5"],
Cell[1255694, 23148, 821, 21, 24, "Print",ExpressionUUID->"63e315c8-dfa3-4939-99d4-3e05bb93c453"],
Cell[1256518, 23171, 804, 20, 24, "Print",ExpressionUUID->"7bcadedd-ee5b-47ba-8e59-0ba43f7cb122"]
}, Open ]],
Cell[1257337, 23194, 21075, 411, 61, "Output",ExpressionUUID->"5856ab11-f1ab-4081-8601-4e342d3ee7e7"]
}, Open ]],
Cell[CellGroupData[{
Cell[1278449, 23610, 304, 8, 30, "Input",ExpressionUUID->"78f5799d-496a-4fb2-99dc-390a9afef4fa"],
Cell[1278756, 23620, 1001, 18, 402, "Output",ExpressionUUID->"e8631154-9a7d-4613-8fd9-cf8c5f887ee2"]
}, Open ]],
Cell[CellGroupData[{
Cell[1279794, 23643, 501, 15, 30, "Input",ExpressionUUID->"8911d37f-34df-40a4-afd3-ca8e63226e43"],
Cell[1280298, 23660, 151, 3, 34, "Output",ExpressionUUID->"a28c3e3d-053f-467c-ae04-8bf33cb6f27f"]
}, Open ]],
Cell[1280464, 23666, 201, 5, 30, "Input",ExpressionUUID->"5944530c-cf90-4dd2-a5fd-7c0219fb6320"],
Cell[CellGroupData[{
Cell[1280690, 23675, 499, 15, 30, "Input",ExpressionUUID->"318f6c4f-7708-4a9f-a3ac-7bd48d6b3c42"],
Cell[1281192, 23692, 196, 5, 34, "Output",ExpressionUUID->"e9c3d6a5-e82f-4632-ac9a-07a7f8cb9e8d"]
}, Open ]],
Cell[CellGroupData[{
Cell[1281425, 23702, 766, 21, 52, "Input",ExpressionUUID->"accccc50-a1dd-49dd-a406-9b973c85ab5d"],
Cell[1282194, 23725, 5859, 122, 380, "Output",ExpressionUUID->"98f06e3b-fbd7-4d80-8fed-24afa478718e"]
}, Open ]],
Cell[CellGroupData[{
Cell[1288090, 23852, 176, 4, 30, "Input",ExpressionUUID->"83c5fa11-ddeb-4787-a7dc-a8ac56a4f58d"],
Cell[1288269, 23858, 8479, 162, 382, "Output",ExpressionUUID->"207e38cc-c5f8-44a4-ac82-fe0d9c25a9b9"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[1296809, 24027, 85, 0, 67, "Section",ExpressionUUID->"188557dc-2d4c-4abe-9380-3f4444f88a9c"],
Cell[CellGroupData[{
Cell[1296919, 24031, 677, 19, 30, "Input",ExpressionUUID->"6d921bf1-a537-41f3-b7d2-f2014d783862"],
Cell[1297599, 24052, 1929, 42, 665, "Output",ExpressionUUID->"8130b679-29eb-4af1-ab0a-988ca2c7d189"]
}, Open ]],
Cell[CellGroupData[{
Cell[1299565, 24099, 86, 0, 54, "Subsection",ExpressionUUID->"acebe07c-4761-4d7a-ad97-a47939132b4e"],
Cell[CellGroupData[{
Cell[1299676, 24103, 483, 11, 30, "Input",ExpressionUUID->"cbbef6d3-ebf8-48c4-b55f-5da1b70a19c2"],
Cell[1300162, 24116, 6609, 145, 329, "Output",ExpressionUUID->"8232163e-8eb0-4cba-900e-5a6a7a02ba60"]
}, Open ]],
Cell[CellGroupData[{
Cell[1306808, 24266, 444, 9, 30, "Input",ExpressionUUID->"bbcf51e0-9d6b-4930-b57c-4d8d9e5d8be4"],
Cell[1307255, 24277, 25116, 478, 64, "Output",ExpressionUUID->"61c0f29b-e278-4177-bad6-dec70e9273b0"]
}, Open ]],
Cell[1332386, 24758, 261, 7, 30, "Input",ExpressionUUID->"320bd543-282e-4207-b1f6-de43095fc926"],
Cell[CellGroupData[{
Cell[1332672, 24769, 295, 7, 30, "Input",ExpressionUUID->"523e6aa8-3e7c-492f-956d-394d6bb853cf"],
Cell[1332970, 24778, 16860, 491, 211, "Output",ExpressionUUID->"385ea12a-a94a-404d-826b-9660996492b8"]
}, Open ]],
Cell[CellGroupData[{
Cell[1349867, 25274, 214, 4, 30, "Input",ExpressionUUID->"8969a307-6b74-4b5d-89c4-ca84067de464"],
Cell[1350084, 25280, 8185, 176, 329, "Output",ExpressionUUID->"d95d02aa-e9df-4cce-a753-e5e96ab7421b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1358318, 25462, 277, 6, 54, "Subsection",ExpressionUUID->"969aad1f-1120-4550-a0c5-5d570009f6ad"],
Cell[CellGroupData[{
Cell[1358620, 25472, 271, 7, 30, "Input",ExpressionUUID->"c493e9e1-9518-4614-a05c-582bc8c73392"],
Cell[1358894, 25481, 1092, 32, 60, "Output",ExpressionUUID->"e768b64f-6462-4925-92a6-76b8a884f384"]
}, Open ]],
Cell[CellGroupData[{
Cell[1360023, 25518, 277, 9, 63, "Input",ExpressionUUID->"da1123b5-8b76-4357-95ae-d667bc5b4f5c"],
Cell[1360303, 25529, 299, 10, 49, "Output",ExpressionUUID->"cac3f34c-6b34-4ef7-b2e2-4397e3ab419d"]
}, Open ]],
Cell[CellGroupData[{
Cell[1360639, 25544, 137, 3, 30, "Input",ExpressionUUID->"0f7f8886-efbb-4406-8359-566c093d1b19"],
Cell[1360779, 25549, 211, 6, 34, "Output",ExpressionUUID->"931e897a-a4fe-4edb-9ef5-ee3d1cba931e"]
}, Open ]],
Cell[CellGroupData[{
Cell[1361027, 25560, 163, 4, 30, "Input",ExpressionUUID->"77b693f1-debc-4f34-88a4-9fac90a76dde"],
Cell[1361193, 25566, 130, 2, 34, "Output",ExpressionUUID->"e83266bf-789c-46fd-9ff3-2a1b33eced24"]
}, Open ]],
Cell[CellGroupData[{
Cell[1361360, 25573, 506, 11, 30, "Input",ExpressionUUID->"31b5bcb9-72a9-408f-8f1f-904e3616ec87"],
Cell[1361869, 25586, 34808, 652, 357, "Output",ExpressionUUID->"e9015a6c-0815-467f-9ce5-5eb88b3f2877"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1396726, 26244, 82, 0, 54, "Subsection",ExpressionUUID->"3024dc8c-b30d-416d-b860-e23fec438550"],
Cell[CellGroupData[{
Cell[1396833, 26248, 443, 13, 30, "Input",ExpressionUUID->"3dbe8aef-d531-44eb-bd78-c8de0ead7c0b"],
Cell[1397279, 26263, 1284, 40, 50, "Output",ExpressionUUID->"82aa19b4-0194-4065-a0e9-e73948e9b8cc"]
}, Open ]],
Cell[CellGroupData[{
Cell[1398600, 26308, 1635, 45, 88, "Input",ExpressionUUID->"48563c9c-ed47-45df-88d6-5643d4d2c343"],
Cell[1400238, 26355, 288963, 4750, 370, "Output",ExpressionUUID->"7d39f62e-c7f8-41d4-b5b0-f0c2ca1ef90e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1689250, 31111, 86, 0, 54, "Subsection",ExpressionUUID->"cf3eb0c3-a1f4-4dda-bcb4-878347f2955a"],
Cell[1689339, 31113, 144, 3, 30, "Input",ExpressionUUID->"bbcbaad9-4f9f-46d9-9225-f93f89cd5013"],
Cell[CellGroupData[{
Cell[1689508, 31120, 470, 11, 30, "Input",ExpressionUUID->"7d521d82-7847-41c2-856d-9f83cfa62171"],
Cell[1689981, 31133, 13626, 278, 379, "Output",ExpressionUUID->"1f7fb817-acb5-4f3b-8beb-da6307532064"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1703656, 31417, 86, 0, 54, "Subsection",ExpressionUUID->"953ec095-87c6-46f2-99b4-7f2cd7dea229"],
Cell[CellGroupData[{
Cell[1703767, 31421, 408, 9, 30, "Input",ExpressionUUID->"c4e333e2-2a54-4639-8900-ff19220c622c"],
Cell[1704178, 31432, 8358, 178, 367, "Output",ExpressionUUID->"de3f19cf-a75b-431e-b269-2583eb97f58a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1712585, 31616, 86, 0, 54, "Subsection",ExpressionUUID->"3fd9f6cf-6ab4-4d21-a2fa-65e0d970cb66"],
Cell[CellGroupData[{
Cell[1712696, 31620, 408, 9, 30, "Input",ExpressionUUID->"d74853fe-7fcc-49be-aeea-c54071215886"],
Cell[1713107, 31631, 10525, 221, 360, "Output",ExpressionUUID->"3ef5dd85-16d4-4e93-82b4-baa763202dfa"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1723681, 31858, 87, 0, 54, "Subsection",ExpressionUUID->"bc8f9aef-6c65-471c-a5d8-611edbb0b949"],
Cell[CellGroupData[{
Cell[1723793, 31862, 429, 10, 30, "Input",ExpressionUUID->"63e8e1ec-b968-4463-a427-c424c368edcf"],
Cell[1724225, 31874, 10513, 222, 388, "Output",ExpressionUUID->"4c23f1fc-b918-4f6a-8472-6d6f36b0e1d8"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1734787, 32102, 98, 0, 54, "Subsection",ExpressionUUID->"8e7630aa-33de-41f7-89e5-67211777b543"],
Cell[CellGroupData[{
Cell[1734910, 32106, 519, 12, 30, "Input",ExpressionUUID->"96d0d904-4944-4e45-b9b5-c2196ef40be3"],
Cell[1735432, 32120, 7173, 158, 364, "Output",ExpressionUUID->"fcf387ae-b103-4296-87f1-14351fa49c16"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1742666, 32285, 98, 0, 53, "Section",ExpressionUUID->"16039d06-ccd4-4310-a720-aafa21f8cb02"],
Cell[CellGroupData[{
Cell[1742789, 32289, 186, 3, 30, "Input",ExpressionUUID->"927f151d-e8eb-4ffe-9e2e-079776adaa6d"],
Cell[1742978, 32294, 168, 3, 34, "Output",ExpressionUUID->"84e2db5a-415b-48ff-b410-af29b8fd7b3e"]
}, Open ]],
Cell[CellGroupData[{
Cell[1743183, 32302, 631, 17, 30, "Input",ExpressionUUID->"4111de57-9857-4f1e-bda9-3e9b8c6c0e82"],
Cell[1743817, 32321, 43632, 1381, 733, "Output",ExpressionUUID->"def94d1d-b8e4-4da4-8937-b41b86308424"]
}, Closed]],
Cell[CellGroupData[{
Cell[1787486, 33707, 596, 17, 26, "Input",ExpressionUUID->"95edaba2-bd35-4c29-b487-ebd3f62e713d"],
Cell[1788085, 33726, 64295, 2017, 950, "Output",ExpressionUUID->"16c0681c-8337-46a6-ba11-f4b5f86ecfc9"]
}, Closed]],
Cell[CellGroupData[{
Cell[1852417, 35748, 631, 17, 26, "Input",ExpressionUUID->"78a751de-431d-4448-89fc-af1caef794f0"],
Cell[1853051, 35767, 48352, 1487, 652, "Output",ExpressionUUID->"944adf27-c5f6-4100-875d-1d0e26b59c6c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1901452, 37260, 84, 0, 53, "Section",ExpressionUUID->"83b5fe29-9f96-4dcf-a9fb-36e65102afcd"],
Cell[CellGroupData[{
Cell[1901561, 37264, 84, 0, 54, "Subsection",ExpressionUUID->"8b730682-5e81-41e1-a487-581abd20811f"],
Cell[CellGroupData[{
Cell[1901670, 37268, 181, 3, 30, "Input",ExpressionUUID->"8dfb3551-9dd3-44ae-bab3-d2f91bd24059"],
Cell[1901854, 37273, 823, 13, 77, "Output",ExpressionUUID->"e7cc43e7-bc53-4b61-9daa-80e9fe10d3a6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1902726, 37292, 85, 0, 54, "Subsection",ExpressionUUID->"fc440145-9aa5-44c8-a3e8-b8efcd991d3d"],
Cell[CellGroupData[{
Cell[1902836, 37296, 253, 6, 30, "Input",ExpressionUUID->"b7326196-fac2-42d1-a7ea-61dcc1e428c3"],
Cell[1903092, 37304, 5489, 114, 208, "Output",ExpressionUUID->"b4385df9-37bc-40ad-8288-fd0c2db99ff0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1908630, 37424, 87, 0, 54, "Subsection",ExpressionUUID->"e77a0d4d-7216-4d05-8893-611d3947da39"],
Cell[CellGroupData[{
Cell[1908742, 37428, 317, 8, 30, "Input",ExpressionUUID->"5db89822-e1cb-4c40-9ea9-4bd3852d4ee8"],
Cell[1909062, 37438, 244, 5, 21, "Message",ExpressionUUID->"36ae7f36-2ce6-4a1f-9d13-48632ef85e3e"],
Cell[1909309, 37445, 7425, 201, 750, "Output",ExpressionUUID->"8ad34215-0530-433d-b2de-78839e4786e6"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1916795, 37653, 92, 0, 67, "Section",ExpressionUUID->"7e6802a5-1c3c-42c3-9b80-595f5898e3b7"],
Cell[CellGroupData[{
Cell[1916912, 37657, 210, 5, 30, "Input",ExpressionUUID->"d7480361-7534-4df3-a485-240d88ccfe47"],
Cell[1917125, 37664, 114, 2, 34, "Output",ExpressionUUID->"b10900cb-510c-46ed-baa1-fbb284f2f7ed"]
}, Open ]],
Cell[CellGroupData[{
Cell[1917276, 37671, 214, 4, 30, "Input",ExpressionUUID->"3e7fb1c9-9f23-444c-94a7-12f2c13edeac"],
Cell[1917493, 37677, 438, 9, 34, "Output",ExpressionUUID->"0b78b421-80ad-45ea-a688-ad31fc657e8b"]
}, Open ]],
Cell[CellGroupData[{
Cell[1917968, 37691, 181, 4, 30, "Input",ExpressionUUID->"0f964443-e679-498e-a856-12eca09d8673"],
Cell[1918152, 37697, 357, 7, 34, "Output",ExpressionUUID->"b0f97601-0f57-4ba2-819a-961d15389e97"]
}, Open ]],
Cell[CellGroupData[{
Cell[1918546, 37709, 376, 9, 30, "Input",ExpressionUUID->"7ea3f009-dfc5-4034-89b4-a502517626fd"],
Cell[1918925, 37720, 6678, 141, 362, "Output",ExpressionUUID->"0634ede0-3202-43d4-a9e1-d152a80128d0"]
}, Open ]],
Cell[CellGroupData[{
Cell[1925640, 37866, 155, 2, 30, "Input",ExpressionUUID->"91133d85-4205-465e-887d-bda94012de9f"],
Cell[1925798, 37870, 110, 1, 34, "Output",ExpressionUUID->"355d5388-c9c8-408b-9ea7-407c99074eb9"]
}, Open ]],
Cell[CellGroupData[{
Cell[1925945, 37876, 95, 0, 54, "Subsection",ExpressionUUID->"2a897ff8-6b5f-4c86-b9c8-94e10e8d1152"],
Cell[1926043, 37878, 98, 0, 35, "Text",ExpressionUUID->"404aea2f-6f88-4db8-87c8-e93fed9d091c"],
Cell[1926144, 37880, 212, 3, 35, "Text",ExpressionUUID->"f50ff6d5-2d1f-4972-b0f4-65532c9f0e60"],
Cell[1926359, 37885, 1740, 48, 73, "Input",ExpressionUUID->"87918fa1-9ee8-474f-9d5e-e50cfb87f191"],
Cell[CellGroupData[{
Cell[1928124, 37937, 272, 7, 30, "Input",ExpressionUUID->"942c5efd-f6a1-4390-858d-dd8490085201"],
Cell[1928399, 37946, 135, 2, 34, "Output",ExpressionUUID->"a6cbc13c-bd80-4522-8893-caa862c5dbe9"]
}, Open ]],
Cell[CellGroupData[{
Cell[1928571, 37953, 302, 8, 30, "Input",ExpressionUUID->"9a957ae8-67c4-4e4c-aed4-d819de287701"],
Cell[1928876, 37963, 993, 24, 56, "Output",ExpressionUUID->"4753f43a-c89c-411a-9799-581c6ce2f69a"]
}, Open ]],
Cell[CellGroupData[{
Cell[1929906, 37992, 252, 7, 30, "Input",ExpressionUUID->"600b8144-165e-4469-9b80-7ab84bbb31ee"],
Cell[1930161, 38001, 361, 8, 34, "Output",ExpressionUUID->"681ba0ee-cf39-43b6-91ce-4b8f0ea33f15"]
}, Open ]],
Cell[CellGroupData[{
Cell[1930559, 38014, 454, 11, 30, "Input",ExpressionUUID->"8fa186f2-09ac-41e4-a73f-b57b654851d1"],
Cell[1931016, 38027, 362, 8, 34, "Output",ExpressionUUID->"93d2c122-a462-480c-9d6b-0a254dbfb52a"]
}, Open ]],
Cell[CellGroupData[{
Cell[1931415, 38040, 391, 11, 30, "Input",ExpressionUUID->"dcae9c4f-3022-4b4e-8021-95816da05133"],
Cell[1931809, 38053, 6683, 142, 362, "Output",ExpressionUUID->"95af7c10-d189-40a0-a8ce-450652f4e937"]
}, Open ]],
Cell[CellGroupData[{
Cell[1938529, 38200, 162, 3, 30, "Input",ExpressionUUID->"2cbbc6fe-8f61-454d-82eb-38d8e66e3f71"],
Cell[1938694, 38205, 114, 2, 34, "Output",ExpressionUUID->"23378912-f4bc-4056-9210-02ffae610868"]
}, Open ]],
Cell[CellGroupData[{
Cell[1938845, 38212, 96, 0, 45, "Subsubsection",ExpressionUUID->"105591d8-e1a7-4797-96ad-debb455290c1"],
Cell[1938944, 38214, 416, 10, 173, "Text",ExpressionUUID->"4fdbf445-4269-4121-a87c-1dcc4b4691bb"],
Cell[CellGroupData[{
Cell[1939385, 38228, 239, 6, 30, "Input",ExpressionUUID->"82656cf4-5dfd-4ad8-be89-ddad69d29e32"],
Cell[1939627, 38236, 113, 2, 34, "Output",ExpressionUUID->"5ffb2a7b-ee2e-468a-81c8-c284e745fa19"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1939813, 38246, 86, 0, 53, "Section",ExpressionUUID->"0b2d5c90-e928-4e33-abd5-88e2eebbbab8"],
Cell[CellGroupData[{
Cell[1939924, 38250, 96, 0, 54, "Subsection",ExpressionUUID->"82b341c1-e7a1-49cf-91f8-6c8eaeff028f"],
Cell[CellGroupData[{
Cell[1940045, 38254, 253, 7, 30, "Input",ExpressionUUID->"deacf966-44c3-43ea-b661-4414e3a3dc01"],
Cell[1940301, 38263, 2890, 50, 363, "Output",ExpressionUUID->"18fa493d-646c-41f7-a4f4-c761a25d015d"]
}, Open ]],
Cell[CellGroupData[{
Cell[1943228, 38318, 144, 3, 30, "Input",ExpressionUUID->"a346918b-79dd-4d71-9de3-21679b99dbe8"],
Cell[1943375, 38323, 327, 7, 43, "Output",ExpressionUUID->"166cb3ab-0bd1-4ff0-b4ca-9ebf53e4f20b"]
}, Open ]],
Cell[CellGroupData[{
Cell[1943739, 38335, 147, 3, 30, "Input",ExpressionUUID->"8b8ae36d-252c-4be9-aad4-bb129949a6c6"],
Cell[1943889, 38340, 112, 2, 34, "Output",ExpressionUUID->"deae0efb-f102-4e68-87f7-091f8fbfacfe"]
}, Open ]],
Cell[CellGroupData[{
Cell[1944038, 38347, 178, 4, 30, "Input",ExpressionUUID->"72fe1085-33a6-40ef-a820-578bd2cf6a95"],
Cell[1944219, 38353, 164, 4, 34, "Output",ExpressionUUID->"e99e24f4-0801-488c-bb3a-bc0b1223110f"]
}, Open ]],
Cell[CellGroupData[{
Cell[1944420, 38362, 182, 4, 30, "Input",ExpressionUUID->"8e9d4fe8-1597-4406-b2b2-b3d52378b7ae"],
Cell[1944605, 38368, 339, 10, 34, "Output",ExpressionUUID->"0dd0d847-0683-40a3-8093-9360e69b4597"]
}, Open ]],
Cell[CellGroupData[{
Cell[1944981, 38383, 188, 5, 30, "Input",ExpressionUUID->"474c91b2-0b9d-4784-8d85-2a3b37609c2b"],
Cell[1945172, 38390, 167, 4, 34, "Output",ExpressionUUID->"77a94d54-ed3d-4579-a5f5-e354367b87f4"]
}, Open ]],
Cell[CellGroupData[{
Cell[1945376, 38399, 182, 4, 30, "Input",ExpressionUUID->"2badbb65-2bae-4481-b877-09da698b9695"],
Cell[1945561, 38405, 382, 11, 34, "Output",ExpressionUUID->"84daac03-a3f7-4d54-b30b-7bc13f27e985"]
}, Open ]],
Cell[CellGroupData[{
Cell[1945980, 38421, 188, 5, 30, "Input",ExpressionUUID->"ea1be9a2-ee95-4b80-8a22-be209f7b61b4"],
Cell[1946171, 38428, 636, 29, 39, "Output",ExpressionUUID->"4aa48be7-b355-449f-8eee-f09970cb5988"]
}, Open ]],
Cell[CellGroupData[{
Cell[1946844, 38462, 195, 4, 30, "Input",ExpressionUUID->"989f74d1-bd67-4d6d-b96d-5c57147c0fb0"],
Cell[1947042, 38468, 113, 2, 34, "Output",ExpressionUUID->"654e9ef8-f250-4986-8b27-3d9adaf9eb48"]
}, Open ]],
Cell[CellGroupData[{
Cell[1947192, 38475, 153, 3, 30, "Input",ExpressionUUID->"0f0b755b-637e-4064-842e-601558288657"],
Cell[1947348, 38480, 114, 2, 34, "Output",ExpressionUUID->"f13fe61f-9fb5-4b12-8a3c-effb9bced661"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1947511, 38488, 104, 0, 38, "Subsection",ExpressionUUID->"dc779de8-88c6-4d15-9d85-c74ea57b5a5b"],
Cell[1947618, 38490, 62860, 1035, 417, "Input",ExpressionUUID->"8a3d5009-a17f-4bd2-9989-425a678bce0b"],
Cell[2010481, 39527, 1691, 45, 94, "Input",ExpressionUUID->"f8c5089c-ecc5-45de-8b8f-4b6401f27fc7"],
Cell[CellGroupData[{
Cell[2012197, 39576, 114, 1, 30, "Input",ExpressionUUID->"54a57b54-94ef-4d1b-8c2d-6a075f91d152"],
Cell[2012314, 39579, 84, 0, 34, "Output",ExpressionUUID->"2ea8716b-d48b-4aa2-9a07-7b4e4c0ec32e"]
}, Open ]],
Cell[CellGroupData[{
Cell[2012435, 39584, 2381, 64, 136, "Input",ExpressionUUID->"7ef39f4e-390f-4663-9519-dfe311d3a8d1"],
Cell[2014819, 39650, 11032, 300, 369, "Output",ExpressionUUID->"cd361cb8-a5b6-45c1-b155-8f773a3d9625"]
}, Open ]],
Cell[CellGroupData[{
Cell[2025888, 39955, 115, 1, 30, "Input",ExpressionUUID->"a11f76b2-9054-4b0a-8ceb-19cbbb58d0e9"],
Cell[2026006, 39958, 321, 6, 34, "Output",ExpressionUUID->"db7e9fbe-1704-4fc5-be68-4566046ed945"]
}, Open ]],
Cell[CellGroupData[{
Cell[2026364, 39969, 122, 1, 30, "Input",ExpressionUUID->"464089d0-4dc5-4f44-a689-a3f3891afee0"],
Cell[2026489, 39972, 107, 0, 34, "Output",ExpressionUUID->"bcaead3b-601f-4c74-88d6-677cfc5e6608"]
}, Open ]],
Cell[CellGroupData[{
Cell[2026633, 39977, 285, 8, 30, "Input",ExpressionUUID->"851835b0-64e5-472d-8938-b462d45a236b"],
Cell[2026921, 39987, 102, 0, 34, "Output",ExpressionUUID->"b12b5334-8145-4131-bcaa-aa7b59b2de20"]
}, Open ]],
Cell[2027038, 39990, 160, 4, 30, "Input",ExpressionUUID->"3d62074a-e44d-4f21-94cb-f0f8e3e93ee8"],
Cell[CellGroupData[{
Cell[2027223, 39998, 280, 8, 30, "Input",ExpressionUUID->"46945d60-3755-4f1c-ade0-074b4a12db41"],
Cell[2027506, 40008, 100, 0, 34, "Output",ExpressionUUID->"62b45bde-b1c8-4062-a0ed-fe0753fafdf1"]
}, Open ]],
Cell[CellGroupData[{
Cell[2027643, 40013, 495, 17, 48, "Input",ExpressionUUID->"f92bb9d4-0508-437c-b925-40dd2ffa3ae9"],
Cell[2028141, 40032, 2005, 50, 98, "Output",ExpressionUUID->"06407023-c123-41bd-be20-388f1553b56e"]
}, Open ]],
Cell[CellGroupData[{
Cell[2030183, 40087, 195, 5, 30, "Input",ExpressionUUID->"076410a5-30d4-46ec-a82d-522b28306ee4"],
Cell[2030381, 40094, 167, 3, 34, "Output",ExpressionUUID->"bd7adf36-d332-4163-bf79-a6735c66d175"]
}, Open ]],
Cell[CellGroupData[{
Cell[2030585, 40102, 202, 6, 30, "Input",ExpressionUUID->"dde58f36-0fca-420d-930a-e80c9a1c8906"],
Cell[2030790, 40110, 2439, 67, 98, "Output",ExpressionUUID->"5a9219fa-39b0-4c66-a7c5-913ed0d5a449"]
}, Open ]],
Cell[CellGroupData[{
Cell[2033266, 40182, 321, 8, 30, "Input",ExpressionUUID->"c266b839-359d-42ab-93e1-415eb3b29cab"],
Cell[2033590, 40192, 3761, 117, 360, "Output",ExpressionUUID->"9d09ad05-da6d-4e5f-8293-853ecef463f6"]
}, Open ]],
Cell[CellGroupData[{
Cell[2037388, 40314, 4073, 106, 315, "Input",ExpressionUUID->"1194a67c-adde-4d57-9665-d4ccaea24efc"],
Cell[2041464, 40422, 11167, 303, 360, "Output",ExpressionUUID->"0907969b-a907-4da3-bd68-fc3b72eaf1cf"]
}, Open ]],
Cell[CellGroupData[{
Cell[2052668, 40730, 114, 1, 30, "Input",ExpressionUUID->"c086a8bf-a17f-4a1f-a3ca-235944ab5b13"],
Cell[2052785, 40733, 1486, 30, 286, "Output",ExpressionUUID->"97ec1daf-cbb8-4156-984a-09eedaef9760"]
}, Open ]],
Cell[CellGroupData[{
Cell[2054308, 40768, 429, 12, 52, "Input",ExpressionUUID->"22931139-6d0c-4a31-8f1a-39abb8d43033"],
Cell[2054740, 40782, 893, 16, 56, "Output",ExpressionUUID->"7eda413c-acb9-4ebd-bfe6-aa438bc058b0"]
}, Open ]],
Cell[CellGroupData[{
Cell[2055670, 40803, 3079, 90, 217, "Input",ExpressionUUID->"5bcfd697-b47c-47f0-8b49-b1b480ca78a1"],
Cell[2058752, 40895, 11532, 427, 338, "Output",ExpressionUUID->"3a0be067-98ed-4500-a6f6-69dbb2e46758"]
}, Open ]],
Cell[2070299, 41325, 397, 13, 30, "Input",ExpressionUUID->"3dbcd2c6-484b-4078-b89c-06dcc878ee8a"],
Cell[CellGroupData[{
Cell[2070721, 41342, 88, 0, 45, "Subsubsection",ExpressionUUID->"0664bf38-cd2c-4f4d-b135-f196827d448e"],
Cell[CellGroupData[{
Cell[2070834, 41346, 1576, 44, 178, "Input",ExpressionUUID->"5c2e3880-40f4-4950-b21c-9c30153793df"],
Cell[2072413, 41392, 686, 19, 56, "Output",ExpressionUUID->"51c5010f-f0d3-48e6-93af-9ef722ee2f79"]
}, Open ]],
Cell[CellGroupData[{
Cell[2073136, 41416, 393, 11, 30, "Input",ExpressionUUID->"c1bfc502-f84b-425e-8537-5eafdaaf5455"],
Cell[2073532, 41429, 411, 13, 34, "Output",ExpressionUUID->"76365702-29a9-4a33-b128-f6d36db11e6e"]
}, Open ]],
Cell[2073958, 41445, 156, 4, 30, "Input",ExpressionUUID->"6e59d20a-ca98-46b4-a77e-450060db1ed9"],
Cell[CellGroupData[{
Cell[2074139, 41453, 322, 8, 30, "Input",ExpressionUUID->"32dab07f-2a8a-46cb-a4b3-0bcefc22b8c1"],
Cell[2074464, 41463, 11177, 305, 360, "Output",ExpressionUUID->"935c5bd5-0322-4251-9764-9a2d8853bce6"]
}, Open ]],
Cell[CellGroupData[{
Cell[2085678, 41773, 355, 10, 30, "Input",ExpressionUUID->"8a74711c-fefd-4ae4-bd21-ce6b4166e25b"],
Cell[2086036, 41785, 2951, 54, 287, "Output",ExpressionUUID->"95ece37e-6420-4a18-aded-d37fa5090a11"]
}, Open ]],
Cell[CellGroupData[{
Cell[2089024, 41844, 197, 4, 30, "Input",ExpressionUUID->"bc036703-687d-4946-8a51-55e5a77ff86d"],
Cell[2089224, 41850, 2383, 67, 98, "Output",ExpressionUUID->"27426b80-e854-4681-9ab4-fc3fd387847a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[2091656, 41923, 89, 0, 45, "Subsubsection",ExpressionUUID->"4c0675a8-f3e7-4e7a-8740-437ee0d8ebc5"],
Cell[2091748, 41925, 784, 21, 115, "Input",ExpressionUUID->"a9814760-64f0-4641-b5b8-e7918f15b290"],
Cell[CellGroupData[{
Cell[2092557, 41950, 327, 8, 30, "Input",ExpressionUUID->"a94495ba-d4f4-4f10-a47f-bb30189c919c"],
Cell[2092887, 41960, 394, 9, 34, "Output",ExpressionUUID->"7c96b766-9095-4290-a755-22cb3914def7"]
}, Open ]],
Cell[CellGroupData[{
Cell[2093318, 41974, 326, 8, 30, "Input",ExpressionUUID->"23199edc-4f65-4e37-9c4c-d72a5bd74a41"],
Cell[2093647, 41984, 375, 8, 34, "Output",ExpressionUUID->"94fa755a-ffcf-44e0-9ac6-afb207a69167"]
}, Open ]],
Cell[CellGroupData[{
Cell[2094059, 41997, 1447, 42, 152, "Input",ExpressionUUID->"b71b5d26-0feb-4fde-8446-212db02ecbb5"],
Cell[2095509, 42041, 2265, 74, 90, "Output",ExpressionUUID->"104ad5c4-3fbd-4f7a-9ad3-9f03ba721982"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[2097823, 42121, 96, 0, 45, "Subsubsection",ExpressionUUID->"d3f518c6-0465-4748-80c1-b20e9774163a"],
Cell[2097922, 42123, 283, 8, 30, "Input",ExpressionUUID->"d72ee1d1-bc82-4a60-b181-39276c92e1ee"],
Cell[2098208, 42133, 1783, 43, 115, "Input",ExpressionUUID->"582f63d8-850a-4457-a96b-d1a361542276"],
Cell[CellGroupData[{
Cell[2100016, 42180, 182, 5, 30, "Input",ExpressionUUID->"fd258edf-579f-4566-9d6a-2983e35bd1cb"],
Cell[2100201, 42187, 388, 9, 34, "Output",ExpressionUUID->"a575383c-442d-4d19-8ee5-6518f2e38282"]
}, Open ]],
Cell[CellGroupData[{
Cell[2100626, 42201, 401, 12, 30, "Input",ExpressionUUID->"4c23cf13-127b-41f8-901d-61d6fd7db98e"],
Cell[2101030, 42215, 264, 6, 34, "Output",ExpressionUUID->"35e78e4a-f466-4d62-a6e8-eb492f5160c9"]
}, Open ]],
Cell[2101309, 42224, 128, 3, 30, "Input",ExpressionUUID->"9cdef98d-cf72-470b-968d-5a138e1af207"],
Cell[CellGroupData[{
Cell[2101462, 42231, 408, 11, 30, "Input",ExpressionUUID->"3668651c-d780-4d71-875b-7940cce5e50c"],
Cell[2101873, 42244, 3837, 131, 154, "Output",ExpressionUUID->"cdb2730d-ac77-4bb7-96ee-f19ea0b4ac08"]
}, Open ]],
Cell[CellGroupData[{
Cell[2105747, 42380, 1172, 33, 52, "Input",ExpressionUUID->"d0543d39-c043-4299-b4b9-7cefccc9d4c6"],
Cell[2106922, 42415, 1410, 23, 46, "Message",ExpressionUUID->"8e7d2ed6-550c-4b35-8799-aeed9db953a6"],
Cell[2108335, 42440, 314, 8, 24, "Message",ExpressionUUID->"36a58c22-9d0a-4e79-acf3-5f5160214ae6"],
Cell[2108652, 42450, 314, 8, 24, "Message",ExpressionUUID->"9742aa88-97b6-4725-8687-f569828d76b4"],
Cell[2108969, 42460, 314, 8, 24, "Message",ExpressionUUID->"0b13745c-1ebe-4cf4-9e85-dd23eb9e24ea"],
Cell[2109286, 42470, 408, 9, 24, "Message",ExpressionUUID->"1250e417-5959-40aa-b5fb-c2d047671ddd"],
Cell[2109697, 42481, 1410, 23, 46, "Message",ExpressionUUID->"f1ac6358-a2c6-4a74-be49-d9e41da912f6"],
Cell[2111110, 42506, 1415, 23, 68, "Message",ExpressionUUID->"149114e2-0109-409c-9d3d-306e7ee4b12a"],
Cell[2112528, 42531, 408, 9, 24, "Message",ExpressionUUID->"07249812-f9d5-47dd-9ac0-51026a574348"],
Cell[2112939, 42542, 1632, 54, 56, "Output",ExpressionUUID->"e0ded6e3-6212-4e89-bf74-c8d385c80fd6"]
}, Open ]],
Cell[2114586, 42599, 2103, 66, 73, "Input",ExpressionUUID->"2327551b-c16a-4f50-8ea7-b4c2a1937165"],
Cell[CellGroupData[{
Cell[2116714, 42669, 550, 17, 30, "Input",ExpressionUUID->"3c070c64-e6ed-4325-a4c2-310b1aa606f0"],
Cell[2117267, 42688, 3830, 132, 154, "Output",ExpressionUUID->"abb35988-2720-4dd8-a530-fe892328dbb5"]
}, Open ]],
Cell[CellGroupData[{
Cell[2121134, 42825, 385, 9, 30, "Input",ExpressionUUID->"d05e7261-6065-4b37-afe6-df1da2ff08ff"],
Cell[2121522, 42836, 8453, 177, 367, "Output",ExpressionUUID->"88ed1993-d82f-4945-b9db-a426a533a971"]
}, Open ]],
Cell[CellGroupData[{
Cell[2130012, 43018, 150, 3, 30, "Input",ExpressionUUID->"3077224a-8846-4774-8df3-f5a2301fa0b8"],
Cell[CellGroupData[{
Cell[2130187, 43025, 215, 4, 24, "Print",ExpressionUUID->"e893ed52-8fe8-4eea-81cb-87a80a8605cd"],
Cell[2130405, 43031, 225, 4, 24, "Print",ExpressionUUID->"b1734736-54ed-432a-90a2-25288281fe68"],
Cell[2130633, 43037, 375, 8, 24, "Print",ExpressionUUID->"ef181d1b-6ba0-4ebe-9c06-e394eddab374"]
}, Open ]],
Cell[2131023, 43048, 135, 2, 34, "Output",ExpressionUUID->"c10f98c0-a1f4-4694-b099-9b4d5443691f"]
}, Open ]],
Cell[CellGroupData[{
Cell[2131195, 43055, 182, 4, 30, "Input",ExpressionUUID->"beef2994-3d5a-45d1-b955-0545c369d264"],
Cell[2131380, 43061, 833, 15, 34, "Output",ExpressionUUID->"6083cabf-4eb6-4d27-b073-e1ea3fd73481"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[2132262, 43082, 99, 0, 45, "Subsubsection",ExpressionUUID->"73a88d8f-41f3-4035-8525-fb4b798b0e54"],
Cell[CellGroupData[{
Cell[2132386, 43086, 139, 3, 30, "Input",ExpressionUUID->"52db371c-ea47-4206-a851-bd8cfb56737b"],
Cell[2132528, 43091, 131, 2, 34, "Output",ExpressionUUID->"5fb09c79-f5e4-4c9a-ae9f-f6d5ba7fe845"]
}, Open ]],
Cell[CellGroupData[{
Cell[2132696, 43098, 230, 6, 45, "Input",ExpressionUUID->"785d2cab-0215-4868-b8ab-0172fbe20853"],
Cell[2132929, 43106, 282, 8, 51, "Output",ExpressionUUID->"98706335-102e-4993-a14f-963e625d1434"]
}, Open ]],
Cell[CellGroupData[{
Cell[2133248, 43119, 3110, 91, 217, "Input",ExpressionUUID->"e7a2bc47-32ac-4d30-8a90-25327c7875a1"],
Cell[2136361, 43212, 11994, 440, 403, "Output",ExpressionUUID->"dc4f5eb3-26c7-4c56-8320-d655479c56ab"]
}, Open ]],
Cell[CellGroupData[{
Cell[2148392, 43657, 1447, 42, 152, "Input",ExpressionUUID->"2cce6c55-5384-4c8f-8bc1-0a588d8e86d0"],
Cell[2149842, 43701, 2923, 102, 100, "Output",ExpressionUUID->"8e499586-5d18-4df8-9f92-36c56920c839"]
}, Open ]],
Cell[CellGroupData[{
Cell[2152802, 43808, 283, 8, 30, "Input",ExpressionUUID->"c3f0ceb1-94ea-4348-b3ca-d5f9ccb19b59"],
Cell[2153088, 43818, 1663, 40, 77, "Output",ExpressionUUID->"02c1ca94-dcfa-48e5-917b-c133c71da961"]
}, Open ]],
Cell[CellGroupData[{
Cell[2154788, 43863, 550, 17, 30, "Input",ExpressionUUID->"c38ee6b7-9e88-49b4-b2ba-20724b5f20c1"],
Cell[2155341, 43882, 3831, 132, 154, "Output",ExpressionUUID->"c0652752-e9be-452d-ae54-910b51b91cf5"]
}, Open ]],
Cell[CellGroupData[{
Cell[2159209, 44019, 385, 9, 30, "Input",ExpressionUUID->"47ee53f1-442a-4136-82f3-b3fc0756e9c0"],
Cell[2159597, 44030, 8476, 178, 367, "Output",ExpressionUUID->"aed4f17a-0cb1-472e-9b69-5b45488a5c0b"]
}, Open ]],
Cell[CellGroupData[{
Cell[2168110, 44213, 150, 3, 30, "Input",ExpressionUUID->"02a5ae6a-c62c-4938-86da-9453073855b2"],
Cell[2168263, 44218, 135, 2, 34, "Output",ExpressionUUID->"d62b09e0-6522-4e74-942b-947b875e0346"]
}, Open ]],
Cell[CellGroupData[{
Cell[2168435, 44225, 182, 4, 30, "Input",ExpressionUUID->"4c77aa71-05ba-49ed-af8d-9b38f4c57cdb"],
Cell[2168620, 44231, 729, 13, 34, "Output",ExpressionUUID->"8c564fdd-ab26-4ea2-ae20-d6a34f1e7d75"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[2169398, 44250, 85, 0, 45, "Subsubsection",ExpressionUUID->"31c33c49-79d4-4cc3-9514-c68dee7142ca"],
Cell[CellGroupData[{
Cell[2169508, 44254, 140, 3, 30, "Input",ExpressionUUID->"f3013e0e-f940-4e02-a621-f92167e490c9"],
Cell[2169651, 44259, 3278, 109, 125, "Output",ExpressionUUID->"d381de93-d87c-4f23-bd27-530578a6ad15"]
}, Open ]],
Cell[CellGroupData[{
Cell[2172966, 44373, 345, 10, 30, "Input",ExpressionUUID->"dcefabd4-7c56-49ce-b95a-d2b6a37270c3"],
Cell[2173314, 44385, 118, 2, 34, "Output",ExpressionUUID->"e317a47d-16a1-4671-b8da-ae8061813f5d"]
}, Open ]],
Cell[CellGroupData[{
Cell[2173469, 44392, 810, 28, 44, "Input",ExpressionUUID->"c31068e6-56c4-45e3-b4a2-514412dc388a"],
Cell[2174282, 44422, 1691, 59, 90, "Output",ExpressionUUID->"50d05d44-2823-453a-8c78-0af77ab94660"]
}, Open ]],
Cell[CellGroupData[{
Cell[2176010, 44486, 137, 3, 30, "Input",ExpressionUUID->"1e301c4c-039f-4d56-8bd9-dad771073be6"],
Cell[2176150, 44491, 326, 10, 34, "Output",ExpressionUUID->"837362fe-18d3-4dae-91af-e0590a8b0064"]
}, Open ]],
Cell[CellGroupData[{
Cell[2176513, 44506, 1004, 34, 52, "Input",ExpressionUUID->"20ec89ef-73e2-4ff5-b420-f1e1cd59eafb"],
Cell[2177520, 44542, 817, 21, 34, "Output",ExpressionUUID->"778da5cb-4f77-4623-9844-8e97718d36ce"]
}, Open ]],
Cell[CellGroupData[{
Cell[2178374, 44568, 1092, 37, 83, "Input",ExpressionUUID->"71224ffa-dd98-4c75-9d8a-a3a4f989d123"],
Cell[2179469, 44607, 360, 10, 34, "Output",ExpressionUUID->"2e121f52-c7c7-4ae1-8874-bbb7d894a325"]
}, Open ]],
Cell[CellGroupData[{
Cell[2179866, 44622, 1091, 37, 83, "Input",ExpressionUUID->"3543dda5-bd43-482c-8377-b07a03708d80"],
Cell[2180960, 44661, 118, 2, 34, "Output",ExpressionUUID->"2e3aa18a-7b12-4311-ae66-0cdcae603f1c"],
Cell[2181081, 44665, 3278, 109, 125, "Output",ExpressionUUID->"6dbf01d8-0b0e-4fd2-b7f7-9b8c8e474fd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[2184396, 44779, 3838, 122, 203, "Input",ExpressionUUID->"3b44f48f-bfd6-4641-9df3-743d56dd4546"],
Cell[2188237, 44903, 1934, 47, 77, "Output",ExpressionUUID->"0a33f69f-ff58-4fa3-881d-80253f0a3e4b"]
}, Open ]],
Cell[CellGroupData[{
Cell[2190208, 44955, 3917, 123, 254, "Input",ExpressionUUID->"254ed205-7d26-4c40-912c-5c9c72016684"],
Cell[2194128, 45080, 4080, 105, 140, "Output",ExpressionUUID->"24c0f343-be80-474a-917d-6b762149bcb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[2198245, 45190, 1177, 40, 84, "Input",ExpressionUUID->"c27e6f7c-3910-46c5-bebf-f64f731d6b9a"],
Cell[2199425, 45232, 1073, 39, 83, "Output",ExpressionUUID->"65bc5d03-c2ee-4e77-b573-5b19506eaafa"]
}, Open ]],
Cell[CellGroupData[{
Cell[2200535, 45276, 4027, 127, 280, "Input",ExpressionUUID->"068e2938-310c-4dbb-ac5c-7abd8c42776a"],
Cell[2204565, 45405, 358, 9, 34, "Output",ExpressionUUID->"6737cf7f-d53b-4110-920a-a551c104a8d1"]
}, Open ]],
Cell[2204938, 45417, 326, 8, 30, "Input",ExpressionUUID->"41f4e5a4-3326-4bed-8e46-1bc14d8bc49d"],
Cell[CellGroupData[{
Cell[2205289, 45429, 3971, 125, 253, "Input",ExpressionUUID->"9f7b0633-d7c7-48da-a47d-d6bcfb33533f"],
Cell[2209263, 45556, 118, 2, 34, "Output",ExpressionUUID->"6c14e09e-e6d5-4ea7-893e-93341b5dbc2b"]
}, Open ]],
Cell[CellGroupData[{
Cell[2209418, 45563, 3750, 118, 231, "Input",ExpressionUUID->"52fbff18-1bdd-470e-88c0-053fceff4318"],
Cell[2213171, 45683, 11975, 283, 120, "Output",ExpressionUUID->"ee0e553b-cb7d-4efa-a30f-5ce9b5f9d35e"]
}, Open ]],
Cell[CellGroupData[{
Cell[2225183, 45971, 12700, 288, 69, "Input",ExpressionUUID->"14b7faf2-bfc5-4e87-b6de-ecf6b0c2492b"],
Cell[2237886, 46261, 12564, 289, 97, "Output",ExpressionUUID->"c068362a-464e-4454-9dc2-86d29f0cf6f4"]
}, Open ]],
Cell[CellGroupData[{
Cell[2250487, 46555, 449, 14, 30, "Input",ExpressionUUID->"4de6b66f-a087-4e5d-98e3-eebf1c86f266"],
Cell[2250939, 46571, 358, 9, 34, "Output",ExpressionUUID->"86f272f5-2902-4b32-b3be-50fad05b85b3"]
}, Open ]],
Cell[CellGroupData[{
Cell[2251334, 46585, 185, 5, 30, "Input",ExpressionUUID->"24b48e2f-213e-4c63-9424-fbb79b11e866"],
Cell[2251522, 46592, 11366, 262, 43, "Output",ExpressionUUID->"22bc0315-b10c-47dc-b665-bd4bf440daa5"]
}, Open ]],
Cell[CellGroupData[{
Cell[2262925, 46859, 12517, 274, 154, "Input",ExpressionUUID->"bc37ff55-b7ce-42d0-ba38-c71beebce6fa"],
Cell[2275445, 47135, 118, 2, 34, "Output",ExpressionUUID->"61327f40-0131-4330-9929-a8bc3393653f"]
}, Open ]],
Cell[CellGroupData[{
Cell[2275600, 47142, 12409, 270, 126, "Input",ExpressionUUID->"6b4546f6-69df-4024-9f3f-64d08b3f7ae2"],
Cell[2288012, 47414, 66208, 1404, 192, "Output",ExpressionUUID->"cb379063-04c1-496c-b0cf-ffb8853cc86f"]
}, Open ]],
Cell[CellGroupData[{
Cell[2354257, 48823, 144, 3, 30, "Input",ExpressionUUID->"3b8d99c9-ac73-44a2-b2eb-504ab3864cf0"],
Cell[2354404, 48828, 111, 2, 34, "Output",ExpressionUUID->"8887832b-9193-476b-98da-6b068febc291"]
}, Open ]],
Cell[CellGroupData[{
Cell[2354552, 48835, 228, 6, 30, "Input",ExpressionUUID->"cf0978b5-b3d1-4e48-9623-71c442c49f5f"],
Cell[2354783, 48843, 881, 24, 34, "Output",ExpressionUUID->"47ea35cf-35d2-48c8-a40c-e0299412c286"]
}, Open ]],
Cell[CellGroupData[{
Cell[2355701, 48872, 342, 10, 30, "Input",ExpressionUUID->"b17828b2-06b9-405d-939c-bee31a6bfb73"],
Cell[2356046, 48884, 25403, 476, 42, "Output",ExpressionUUID->"0fc3edf8-20ad-45f1-b09a-f26a05bdbede"]
}, Open ]],
Cell[CellGroupData[{
Cell[2381486, 49365, 140, 3, 30, "Input",ExpressionUUID->"3996824c-935e-4e40-a40b-ceb16506b1e2"],
Cell[2381629, 49370, 203, 5, 34, "Output",ExpressionUUID->"d8590b29-22b8-4fa1-b5ab-68cd4d34196f"]
}, Open ]],
Cell[2381847, 49378, 12437, 272, 126, "Input",ExpressionUUID->"886f30c2-86fc-4d95-a4bb-f5452424f06c"],
Cell[CellGroupData[{
Cell[2394309, 49654, 228, 6, 30, "Input",ExpressionUUID->"4396c039-b119-482a-922b-23132126861c"],
Cell[2394540, 49662, 510, 15, 34, "Output",ExpressionUUID->"80fda36e-efd8-4a54-bd00-d266121e3ac0"]
}, Open ]],
Cell[CellGroupData[{
Cell[2395087, 49682, 327, 10, 30, "Input",ExpressionUUID->"972956ad-1e48-4d63-8245-1f7c90b9e710"],
Cell[2395417, 49694, 10327, 199, 42, "Output",ExpressionUUID->"170ead83-c62c-45a6-8704-55963308d474"]
}, Open ]],
Cell[CellGroupData[{
Cell[2405781, 49898, 37937, 711, 39, "Input",ExpressionUUID->"ad18968b-347a-46ad-a7e6-5e62df535007"],
Cell[2443721, 50611, 843122, 14903, 236, "Output",ExpressionUUID->"cdb70db9-485a-4b07-baad-ad08673046ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[3286880, 65519, 137, 3, 30, "Input",ExpressionUUID->"6842c3e4-09ff-48b9-8467-92095b72860b"],
Cell[3287020, 65524, 327, 10, 34, "Output",ExpressionUUID->"d23fd462-c374-4928-9057-ef8ac7777fd8"]
}, Open ]],
Cell[CellGroupData[{
Cell[3287384, 65539, 418950, 7428, 152, "Input",ExpressionUUID->"062a2a6f-51ef-49a4-9a55-80e8ba62293f"],
Cell[3706337, 72969, 418951, 7428, 123, "Output",ExpressionUUID->"332a853b-9618-4ed4-bbe2-12a413efbbc8"]
}, Open ]],
Cell[CellGroupData[{
Cell[4125325, 80402, 411817, 7365, 182, "Input",ExpressionUUID->"3cc0f64e-74d2-432d-b8f3-e1a22f506ae9"],
Cell[4537145, 87769, 118, 2, 34, "Output",ExpressionUUID->"d2cb65ba-8d9c-4339-bb61-b2739b1ed697"]
}, Open ]],
Cell[CellGroupData[{
Cell[4537300, 87776, 137, 3, 30, "Input",ExpressionUUID->"fe67e0b4-5b26-45e7-a2fe-496d85728169"],
Cell[4537440, 87781, 225, 6, 34, "Output",ExpressionUUID->"1ed473e9-de7f-488c-a2b1-4a97522a8173"]
}, Open ]],
Cell[CellGroupData[{
Cell[4537702, 87792, 487, 15, 30, "Input",ExpressionUUID->"ba1ee72e-0f2f-4d78-bca8-1ead61561590"],
Cell[4538192, 87809, 358, 9, 34, "Output",ExpressionUUID->"e83a74fb-ae6d-445d-88b6-a806a98bad46"]
}, Open ]],
Cell[4538565, 87821, 1455, 47, 97, "Input",ExpressionUUID->"16b43fc7-da2e-43e0-9899-104e47dfd51a"],
Cell[4540023, 87870, 22768, 515, 226, "Input",ExpressionUUID->"d005a6f3-6db9-42a5-9a61-bf907a7ae841"],
Cell[CellGroupData[{
Cell[4562816, 88389, 385, 9, 30, "Input",ExpressionUUID->"dc992a5d-8b3d-41d7-8eea-38b175abb9a8"],
Cell[4563204, 88400, 10443, 209, 367, "Output",ExpressionUUID->"f1cd887d-2bf2-46c0-a25a-e0abb2cfa013"]
}, Open ]],
Cell[CellGroupData[{
Cell[4573684, 88614, 180, 4, 30, "Input",ExpressionUUID->"e9f14d96-f156-40f7-8ebd-3e8844195b30"],
Cell[4573867, 88620, 769, 14, 34, "Output",ExpressionUUID->"e49d4012-a9d2-48f9-bea7-03d4c523c2a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[4574673, 88639, 282, 9, 30, "Input",ExpressionUUID->"3d8812e6-a7ac-4ba2-a2f6-a196cf89c3a1"],
Cell[4574958, 88650, 134, 2, 34, "Output",ExpressionUUID->"77d753bc-dbb2-48eb-988c-62f8627e19c5"]
}, Open ]],
Cell[CellGroupData[{
Cell[4575129, 88657, 469167, 8240, 296, "Input",ExpressionUUID->"051fd746-f402-42dd-b359-5426a7186c9d"],
Cell[5044299, 96899, 223405, 4015, 314, "Output",ExpressionUUID->"93d93b76-31f8-4fa3-a6fa-44534c81fddf"]
}, Open ]],
Cell[CellGroupData[{
Cell[5267741, 100919, 137, 3, 30, "Input",ExpressionUUID->"4007f90c-7d9a-4d07-9605-628a9960378d"],
Cell[5267881, 100924, 2391, 69, 98, "Output",ExpressionUUID->"2035b795-9ef1-497e-ae15-83c692220769"]
}, Open ]],
Cell[CellGroupData[{
Cell[5270309, 100998, 385, 9, 30, "Input",ExpressionUUID->"3e54ab1b-bae7-419a-88a1-f3c7e9b2be69"],
Cell[5270697, 101009, 3328459, 55117, 367, "Output",ExpressionUUID->"552b3d37-5ecc-4b9e-9b66-14e6aaf778c6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[8599205, 156132, 84, 0, 45, "Subsubsection",ExpressionUUID->"f6b883e6-2c26-48e5-9e1b-8ccd359f7b72"],
Cell[CellGroupData[{
Cell[8599314, 156136, 4250, 119, 469, "Input",ExpressionUUID->"c712a265-fda5-4561-94e2-cc9cb4db0ec7"],
Cell[8603567, 156257, 6235, 187, 406, "Output",ExpressionUUID->"4a36d3f6-6a97-4715-9ed3-63b552484d2f"]
}, Open ]],
Cell[CellGroupData[{
Cell[8609839, 156449, 661, 20, 30, "Input",ExpressionUUID->"fdaaa393-22af-4a76-8e6d-9483e931323f"],
Cell[8610503, 156471, 1410, 23, 46, "Message",ExpressionUUID->"0c250869-e24d-4dda-883e-a1e745fcec3b"],
Cell[8611916, 156496, 1410, 23, 46, "Message",ExpressionUUID->"54dd3ab2-9b25-4854-b429-7e354969c6d9"],
Cell[8613329, 156521, 1415, 23, 68, "Message",ExpressionUUID->"dadbe2bd-7c24-4607-b48c-6738c40177cb"],
Cell[8614747, 156546, 408, 9, 24, "Message",ExpressionUUID->"ba4bd48e-1777-4b36-ae3b-c733b7467a10"],
Cell[8615158, 156557, 2539, 84, 77, "Output",ExpressionUUID->"c5f8d93e-4939-4127-9ee6-280ad62c56ea"]
}, Open ]],
Cell[CellGroupData[{
Cell[8617734, 156646, 384, 9, 30, "Input",ExpressionUUID->"ca82e210-7a1e-4784-81c4-15b065cf9023"],
Cell[8618121, 156657, 10902, 226, 367, "Output",ExpressionUUID->"ba6f11c4-04ed-4136-ac67-2d66c60e1d84"]
}, Open ]],
Cell[CellGroupData[{
Cell[8629060, 156888, 151, 3, 30, "Input",ExpressionUUID->"37fe6db0-c3a3-420d-8852-f4b274ddf12e"],
Cell[8629214, 156893, 128, 3, 34, "Output",ExpressionUUID->"c9ba7b42-9eaa-43da-9875-6b86c0d61780"]
}, Open ]],
Cell[CellGroupData[{
Cell[8629379, 156901, 149, 3, 30, "Input",ExpressionUUID->"ca8cac7a-ba0a-495a-9f8f-cb53bade24d8"],
Cell[8629531, 156906, 347, 7, 34, "Output",ExpressionUUID->"f6545ffc-d860-43e2-8c9e-6127d47bda36"]
}, Open ]],
Cell[CellGroupData[{
Cell[8629915, 156918, 885, 27, 30, "Input",ExpressionUUID->"b95a683d-a389-43cf-957c-2a13303d28e8"],
Cell[8630803, 156947, 1939, 64, 77, "Output",ExpressionUUID->"3e244091-4f99-46c7-a6c3-665f0555404a"]
}, Open ]],
Cell[CellGroupData[{
Cell[8632779, 157016, 294, 9, 30, "Input",ExpressionUUID->"f5482682-7208-4899-bb12-8b6b70eeb205"],
Cell[8633076, 157027, 111, 2, 34, "Output",ExpressionUUID->"98c68064-120a-4158-83f2-ebb1b9472f15"]
}, Open ]],
Cell[CellGroupData[{
Cell[8633224, 157034, 384, 9, 30, "Input",ExpressionUUID->"0f98e7c2-b2df-479a-a736-6662fb052bb4"],
Cell[8633611, 157045, 10744, 223, 367, "Output",ExpressionUUID->"78ea2c7b-85fd-4f96-b091-04d0973b0f5b"]
}, Open ]],
Cell[CellGroupData[{
Cell[8644392, 157273, 173, 4, 30, "Input",ExpressionUUID->"4c085f10-e05a-434d-907c-90c5fb628851"],
Cell[8644568, 157279, 135, 2, 34, "Output",ExpressionUUID->"6de90f61-2952-42fa-a747-f2679d4b7af2"]
}, Open ]],
Cell[CellGroupData[{
Cell[8644740, 157286, 152, 3, 30, "Input",ExpressionUUID->"9b638cca-9062-4cbe-bd66-a2dcf5eb0e3d"],
Cell[8644895, 157291, 2958, 55, 287, "Output",ExpressionUUID->"3c29ed3b-7d82-45a3-bf87-552bd6fc7bbe"]
}, Open ]],
Cell[CellGroupData[{
Cell[8647890, 157351, 590, 17, 30, "Input",ExpressionUUID->"cf7ece9b-94e7-4108-88b8-9b35bc2771c1"],
Cell[8648483, 157370, 67709, 1984, 2417, "Output",ExpressionUUID->"b7b19763-9dea-45ab-a815-8dfcdf8fbd34"]
}, Open ]],
Cell[CellGroupData[{
Cell[8716229, 159359, 215, 5, 30, "Input",ExpressionUUID->"de9b8c52-714f-4f64-a829-f03e500e8e43"],
Cell[8716447, 159366, 292, 7, 24, "Print",ExpressionUUID->"a09edcc4-5e71-43e8-a0bc-611040cc0f34"],
Cell[8716742, 159375, 178, 4, 34, "Output",ExpressionUUID->"c71077e1-b961-49c1-b960-dca3073b2bb6"]
}, Open ]],
Cell[CellGroupData[{
Cell[8716957, 159384, 147, 3, 30, "Input",ExpressionUUID->"8c735f44-1fc3-4d9d-9e5b-f3aac69c30e7"],
Cell[CellGroupData[{
Cell[8717129, 159391, 150, 4, 24, "Print",ExpressionUUID->"f135ad35-99c8-43b1-9bd9-43cd8cff38b6"],
Cell[8717282, 159397, 150, 4, 24, "Print",ExpressionUUID->"61dbc858-b061-46db-b8c2-2b6624abbd11"],
Cell[8717435, 159403, 150, 4, 24, "Print",ExpressionUUID->"f8f15bd2-1fe4-4ae7-8fdf-eef916296cfd"],
Cell[8717588, 159409, 150, 4, 24, "Print",ExpressionUUID->"7b52a3e0-e23b-49c1-995c-98406e8945b5"],
Cell[8717741, 159415, 150, 4, 24, "Print",ExpressionUUID->"39265c73-8e0d-4a0d-bd8d-c31cf87079b8"],
Cell[8717894, 159421, 150, 4, 24, "Print",ExpressionUUID->"ac3aca45-0000-4efc-97a4-a258a647275f"],
Cell[8718047, 159427, 150, 4, 24, "Print",ExpressionUUID->"2c75c398-7564-4ff1-9995-98e1565d6593"],
Cell[8718200, 159433, 150, 4, 24, "Print",ExpressionUUID->"5dad46c1-fe3c-4d23-816f-f9ec8378dd6a"],
Cell[8718353, 159439, 182, 4, 24, "Print",ExpressionUUID->"ab4fc304-60b3-4534-b24f-8609b8593cf6"]
}, Open ]],
Cell[8718550, 159446, 491, 15, 34, "Output",ExpressionUUID->"6fa06227-82a1-4acf-8724-4b841e05c160"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[8719102, 159468, 89, 0, 54, "Subsection",ExpressionUUID->"5f20e4f8-29c7-4f98-9430-671089063ea2"],
Cell[8719194, 159470, 1389, 46, 132, "Input",ExpressionUUID->"74102536-27d6-47b4-9fd7-537303cb1b2c"],
Cell[CellGroupData[{
Cell[8720608, 159520, 1707, 45, 214, "Input",ExpressionUUID->"f96cfff6-9c85-458f-97cd-75fd29d24b5d"],
Cell[8722318, 159567, 7511, 218, 354, "Output",ExpressionUUID->"353fbe1e-9a12-4264-988a-b0c21913cfac"]
}, Open ]],
Cell[CellGroupData[{
Cell[8729866, 159790, 295, 9, 29, "Input",ExpressionUUID->"fa36c9b7-dc8d-4f4f-94b3-8ee0796a574c"],
Cell[8730164, 159801, 83, 0, 33, "Output",ExpressionUUID->"b427258c-a166-406f-9062-74596d1b01be"]
}, Open ]],
Cell[CellGroupData[{
Cell[8730284, 159806, 297, 9, 29, "Input",ExpressionUUID->"b72a157c-94ff-4acc-8f7d-cb820ebc6060"],
Cell[8730584, 159817, 83, 0, 33, "Output",ExpressionUUID->"660816c1-58b0-4c51-9523-52f60ea5781f"],
Cell[8730670, 159819, 124, 0, 23, "Print",ExpressionUUID->"fdf5a1c8-e024-45f6-9412-189cb37f1c5f"]
}, Open ]],
Cell[8730809, 159822, 174, 4, 29, "Input",ExpressionUUID->"5254fba3-aa81-45b2-9f8e-b269ee38109f"],
Cell[CellGroupData[{
Cell[8731008, 159830, 571, 17, 29, "Input",ExpressionUUID->"c11aa6bc-58a4-43ca-b1f3-f51617d22dd1"],
Cell[8731582, 159849, 804, 30, 59, "Output",ExpressionUUID->"8203959f-0dad-4608-ace3-51c7d673e4c9"]
}, Open ]],
Cell[CellGroupData[{
Cell[8732423, 159884, 105, 1, 29, "Input",ExpressionUUID->"dafd4dae-f201-4f5a-8dc5-6cb308822c61"],
Cell[8732531, 159887, 165, 3, 33, "Output",ExpressionUUID->"a52a426e-6a86-4f0e-9e3a-e7732e817015"]
}, Open ]],
Cell[CellGroupData[{
Cell[8732733, 159895, 492, 15, 29, "Input",ExpressionUUID->"11338d97-25ec-4842-a6fe-50414beda70a"],
Cell[8733228, 159912, 666, 11, 24, "Message",ExpressionUUID->"43dbc7f7-e30a-4481-9ef3-5e9dac1369e5"],
Cell[8733897, 159925, 1018, 31, 58, "Output",ExpressionUUID->"6b8c6bea-c6fb-486c-8ba7-2503f4498623"]
}, Open ]],
Cell[CellGroupData[{
Cell[8734952, 159961, 109, 1, 29, "Input",ExpressionUUID->"a16df880-f9b7-4958-88e9-ea7cbe033c04"],
Cell[8735064, 159964, 275, 7, 33, "Output",ExpressionUUID->"464b162c-dcce-442e-98fb-ada3a6baca77"]
}, Open ]],
Cell[8735354, 159974, 625, 19, 32, "Input",ExpressionUUID->"8f984807-abc3-42df-a364-e8c9e9074c7e"],
Cell[CellGroupData[{
Cell[8736004, 159997, 2192, 58, 255, "Input",ExpressionUUID->"884d0158-a7a9-4906-bf91-0564dd058bb7"],
Cell[8738199, 160057, 11257, 309, 362, "Output",ExpressionUUID->"6988da54-92df-4b14-826b-26d38eec7068"]
}, Open ]],
Cell[CellGroupData[{
Cell[8749493, 160371, 399, 12, 50, "Input",ExpressionUUID->"62a061bf-d1ef-4e73-ad67-816439554d9b"],
Cell[8749895, 160385, 83, 0, 33, "Output",ExpressionUUID->"89f98185-69a3-4e5c-9dbf-c0247f67ccaa"]
}, Open ]],
Cell[CellGroupData[{
Cell[8750015, 160390, 122, 1, 29, "Input",ExpressionUUID->"bd57a2af-89cc-4062-a634-a5f3980b00c2"],
Cell[8750140, 160393, 350, 7, 23, "Print",ExpressionUUID->"086c0593-7bcb-4d3f-93ed-94416fc8d2ce"],
Cell[8750493, 160402, 107, 0, 33, "Output",ExpressionUUID->"1447def7-ece0-47f7-86c1-59bd97ea69dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[8750637, 160407, 328, 10, 29, "Input",ExpressionUUID->"1c65a81a-76d0-4acb-b9a8-b05b903408b6"],
Cell[8750968, 160419, 473, 14, 35, "Output",ExpressionUUID->"865d7075-b031-4a2f-80e0-da3ad9eb92fb"]
}, Open ]],
Cell[CellGroupData[{
Cell[8751478, 160438, 2259, 60, 255, "Input",ExpressionUUID->"c8fd2aa7-2b50-4a25-bb19-f4669bee1a84"],
Cell[8753740, 160500, 11215, 307, 354, "Output",ExpressionUUID->"884425db-68f6-4127-85a7-8bed3b59f82e"]
}, Open ]],
Cell[CellGroupData[{
Cell[8764992, 160812, 230, 5, 29, "Input",ExpressionUUID->"9c41ca90-610d-4e3e-92f7-50c0c0f8eaf0"],
Cell[8765225, 160819, 3386, 110, 207, "Output",ExpressionUUID->"28b48b50-2567-444c-bcb6-86409ec37bad"]
}, Open ]],
Cell[CellGroupData[{
Cell[8768648, 160934, 230, 6, 29, "Input",ExpressionUUID->"afd79d3b-3f6a-4ad4-b835-12587d02188d"],
Cell[8768881, 160942, 9013, 347, 352, "Output",ExpressionUUID->"820b9e93-ba8a-45b9-8e96-68c15a135357"]
}, Open ]],
Cell[CellGroupData[{
Cell[8777931, 161294, 118, 1, 29, "Input",ExpressionUUID->"5580b1e5-4866-4588-ab1c-ba091b29b8ca"],
Cell[8778052, 161297, 703, 11, 40, "Message",ExpressionUUID->"91601e04-3d80-4d3e-aa99-098056799160"]
}, Open ]],
Cell[CellGroupData[{
Cell[8778792, 161313, 431, 12, 29, "Input",ExpressionUUID->"a051ba8d-075c-44fd-8ac9-612b6a70789a"],
Cell[8779226, 161327, 105, 1, 33, "Output",ExpressionUUID->"afe8b871-3161-496a-aaca-b12236487cea"]
}, Open ]],
Cell[CellGroupData[{
Cell[8779368, 161333, 422, 11, 50, "Input",ExpressionUUID->"d75710fa-6913-4110-b5d3-11d289813fee"],
Cell[8779793, 161346, 23487, 774, 1094, "Output",ExpressionUUID->"e11e0f55-c161-4ea1-9cf2-62dfbdaccd5a"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell[8803341, 162127, 83, 0, 53, "Section",ExpressionUUID->"fdf185ec-6996-4ebc-b834-e09a59240e23"],
Cell[CellGroupData[{
Cell[8803449, 162131, 93, 0, 54, "Subsection",ExpressionUUID->"be7b8408-b3af-4123-831d-d51a72d40479"],
Cell[CellGroupData[{
Cell[8803567, 162135, 150, 2, 30, "Input",ExpressionUUID->"73eacaae-f18c-4dfe-af0e-c5d4b3a7e569"],
Cell[8803720, 162139, 2438, 35, 539, "Output",ExpressionUUID->"8d280a76-c4f9-420b-8da7-15c217afba5e"]
}, Open ]]
}, Open ]]
}, Closed]]
}, Open ]]
}
]
*)